Enhancing the requirements engineering of
configurable systems by the ongoing use of
variability models

Abstract

Software systems and product lines often use configurable features to specify a
portfolio of product variants from a common core. Typically, their requirements
also include constraints on which combinations of features are valid. Especially
for larger systems and systems where the specifications are scattered among
documents, the analysis of a new product’s variability-related requirements is
challenging. To address this, we introduce a scalable, tool-supported framework
that uses a variability model to automate checks for missing and inconsistent fea-
tures and constraints. Our approach also extends and scales traditional variability
requirements engineering by incorporating combinatorial interaction testing tech-
niques to build valid product variants covering all configurations in the variability
model and to automatically discover faulty feature settings in failed builds.
Results from evaluation on two configurable systems show that our framework is
effective both at early detection of missing, incorrect, and inconsistent variability
requirements and at later finding faulty feature configurations.
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1 Introduction

Configurable software systems and product lines use variability requirements to spec-
ify a portfolio of product variants beyond a common core. Variability requirements
include both configurable features, which specify options, and variability constraints,
which specify which combinations of features are valid [1-3]. An ongoing challenge
for requirements analysts is how to detect missing and inconsistent variability-related
features and constraints. Rarely is the software so small that all combinations of
configurable features can be checked.

The work reported here was motivated by, and builds on, earlier experience
with a NASA configurable flight-software system used by multiple space missions.
For new users wanting to reuse this flight software in their own products (such as
small satellites), it can be cumbersome to figure out what options are available and



what combinations of options are not allowed, especially since the variability require-
ments are spread across several documents. Based on experience with its configurable
software requirements, the authors proposed addition of a new software artifact, a
variability model, to support easier analysis by future developers of the flight software
in a new product [4]. A variability model is a higher-level representation of features,
dependencies, and constraints among them [5].

In this paper we report our development of a new and significantly more gen-
eral framework, VarCORE™, that is both scalable to highly configurable systems
[6] and appropriate for a wide range of application domains. VarCORE™Y is a tool-
supported framework that uses a variability model to automate checks for missing
and inconsistent features and constraints. Our approach extends and scales traditional
variability requirements engineering by incorporating combinatorial interaction testing
techniques to build valid product variants covering all configurations in the variability
model and to automatically discover faulty feature settings in failed builds.

The new work described here provides new variability modeling and analysis capa-
bilities that help detect variability-related issues. It continues to be the case that many
projects only discover configuration constraints that are inconsistent or missing from
the requirements during testing or operations [7]. We seek to discover these variability
issues earlier and to provide projects with the traceability information they need to
resolve them.

While many techniques exist to formally model and analyze all valid configurations
exist [8, 9], many industrial projects do not have, nor want to have, the formal models
that these techniques need. We aim to meet such projects where they are. Thus, much
of our framework has been newly automated to simplify its use and customization by
a variety of project domains, and is made available. A limitation is that VarCORE™
takes as input a manually populated requirements traceability worksheet and a map-
ping between features in the variability model and configurable variables in the code,
an artifact which many projects already produce. Use of VarCORE™ on a new project
also may require some one-time, low-overhead customization to match its build sys-
tem or configuration framework. Additionally, this paper reports results from a new
application of our tool-supported framework on a configurable software system that
shows its effectiveness at scale.

The new contributions of this paper are fourfold:

e Fully automate creation of a variability model in order to support a large number
of variability requirements and constraints

® Enhance scalability by building product variants automatically using combinatorial
interaction testing (CIT) techniques

® Analyze build results for product variants to automatically identify faulty feature
configurations.

e Evaluate VarCORE™, our tool-supported framework, on configurable systems in
two different domains

Results reported here from evaluation on two diverse, configurable software sys-
tems show that VarCORE™T found multiple variability-requirements issues. The issue
types included missing configurable feature, missing configuration constraint, conflict



between configuration constraints, variability requirement specified but not imple-
mented, variability bug occurring only in a single configuration, and variability bug
caused by a 3-way feature interaction.

The rest of the paper is organized as follows. Section 2 describes motivation,
an illustrative example, and background. Section 3 presents our approach. Section
4 describes our applications and evaluation of VarCORE™. Section 5 discusses find-
ings, threats to validity, related work, and future work. Section 6 provides concluding
remarks.

2 Motivation and Background

In this section we first motivate our work, then demonstrate the usage of VarCORE™
on a simple car product, and lastly provide background information on two real-world
applications and a combinatorial interaction testing technique used in our approach
and evaluation.

2.1 Motivation

Our work is motivated in large part by experience with an open-source configurable
NASA flight software system. The flight software uses many best practices for vari-
ability management and is well maintained by experienced developers. However, for
developers initially unfamiliar with it and wanting to reuse it, there remain obstacles
to navigating the maze of information [7] to get their project’s variability require-
ments right. As with many other large, configurable software systems, information
about variability-related requirements and constraints is dispersed among documents,
not all of which are labeled as requirements. This makes it more time-consuming to
identify and understand optional requirements and constraints on the design space. It
also makes it easier to miss needed variability requirements or to inadvertently violate
constraints by introducing inconsistent or conflicting requirements.

These challenges for the requirements analysis of configurable software systems are
well-known. An interview-based study in 2021 by Schmid et al. noted that “industry
still struggles to deal with a high number of variants of their systems systematically.
The underlying issue, i.e., that knowledge about variability is often only tacit, available
from the heads of the developers only, has not disappeared” [10]. Similarly, a survey of
industrial practice in variability modeling found that the evolution and visualization
of variability models were the most frequently reported problems [11]. Pointing the
way to potential solutions, Kruger et al. reported in a 2019 study that the availabil-
ity of lightweight traceability of features to source code immediately benefited both
developers and maintainers [12]. More recently, Ruiz et al. reported that practitioners
do value traceability despite it still being “mainly performed manually” [13].

Variability-related requirements and constraints are easily overlooked and need
special attention, especially in high-dependability configurable software. Inconsistent,
invalid, or missing variability requirements and constraints have been contributing
causes to multiple spacecraft anomalies, many with safety implications for the system
or mission[14-16]. Our aim in the work reported here has been to improve the state of
requirements engineering practice for configurable software systems or product lines.



VarCORE™ makes the knowledge about variability requirements and constraints on
their valid feature combinations less tacit and more obvious to the developers.

We anticipate that VarCORE™ may be especially useful to developers in finding
inconsistencies or omissions of requirements in abnormal scenarios. An example is
error-recovery software, which is triggered only when something goes wrong. In safety-
critical systems, recovery may be essential to safe operation or mission completion.
In prior work on spacecraft software, violation of requirements constraints were found
to be more common in error-recovery scenarios than in normal scenarios [17]. Error-
recovery scenarios typically involve critical coordination among software processes,
including some interactions that do not occur in normal scenarios, so may be less
understood. Moreover, because error-recovery scenarios occur less often, these atypi-
cal interactions may not have been as thoroughly thought out or verified. VarCORE™
can contribute by helping developers visualize and verify that variability requirements
and constraints are implemented in error-recovery and other critical but rarely used
software. For spacecraft, this includes launch, planetary orbital insertion, and fault-
protection software. Spacecraft and other configurable software systems with long
operational lifetimes may experience turnover in personnel and ensuing loss of knowl-
edge about dependencies and constraints among options. For long-lived configurable
systems, VarCORE™ may offer another tool toward maintaining safe operations over
time.

2.2 Example

Consider the requirements (see Table 1) for a simple car product.
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Table 1: Textual Requirements for a
Simple Car Fig. 1: Variability Model for a Simple Car

Constructing and analyzing a variability model. Variability requirements may be
dispersed across multiple requirements documents. We propose to collect variabil-
ity requirements into a centralized structured worksheet (see Section 3.2 for details).
This eases the transformation of the textual variability requirements into an easy-to-
read and understand graphical representation. Fig 1 is the graphical variability model
automatically generated by VarCORE™ based on the textual requirements in Table
1. VarCORE™’s static analysis flags any invalid (dead or false-optional) elements and



any inconsistencies among the variability requirements. Here, it finds that Fig 1 is a
valid variability model.

Iterating and tracing as requirements evolve. Suppose that two updates now are
made to the requirements. First, the autopilot is updated to use camera sensors, for
example to detect stop lights and signs. This functionality triggers a new constraint
in the car’s requirements: “autopilot requires camera sensors” (Req ID 5 in Table 2)
Second, at the same time the new autopilot will newly be included in all models of cars
This changes requirement Req ID 4 (in Table 2) as the autopilot is now a mandatory
feature instead of an optional feature.
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Table 2: Evolved Car Variability Fig. 2: Variability Model with Evolved
Requirements Car Requirements

At each requirements update, the developers can use VarCORE™T to automatically
regenerate the new variability model and perform static analysis on it to verify its
validity and consistency. VarCORE™ now finds that the constraint requirement Req ID
5 makes the feature Low_End a dead feature (since it has no camera sensors it cannot
be selected). It also finds that the feature High_Fnd is now a false-optional feature
(since it must be selected to satisfy the requirements). Since VarCORE™ includes
traceability between requirements and features, Fig. 2 provides the trace (highlighted
in the red box) to the constraint causing the model inconsistency.

To fix it, the developer updates the requirements, shown in Table 3. Thus, Req
ID 3: “A high end car shall include camera sensors” is removed and replaced by the
new Req ID 6: “A car shall include camera sensors” (see Table 3). Since autopilot and
camera sensors are now the mandatory features for all cars, the constraint: “Autopilot
requires camera sensors” (Req ID 5 in Table 3) becomes a redundant constraint, and is
flagged as such in the output. However, redundant constraints do not break the model,
and here it is a good practice to keep this constraint explicit as it reinforces awareness
of the autopilot’s dependency on the camera sensors. After making the corrections in



requirements, VarCORE™ is used to regenerate and verify the new variability model
(see Fig. 3).
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Generating minimum sets of valid configurations to cover feature combinations. In
the simple car example above (see Fig. 1), the variability model generates four valid
configurations: {Low_End}, {Low_End, Autopilot}, {High_End, Camera_Sensors}, and
{High_End, Camera_Sensors, Autopilot}. These are the only valid configurations out
of the possible 2% = 16 configurations that satisfy all four requirements in Table 1.

As the number of configurations grows, identifying all valid configurations from
the textual variability requirements and constraints manually is not an easy task, and
it is easy to make mistakes. VarCORE™ computes and automatically produces the
valid configurations once the variability model is constructed and checked. However,
for configurable systems or product lines with a large number of features, VarCORE™
also includes combinatorial interaction testing (CIT) techniques to generate minimum
sets of configurations that cover all possible t-way combinations of features instead
of finding all valid configurations. For N boolean configurable features, CIT can sig-
nificantly reduce the configuration space from 2 to a much smaller space, which is
proportional to 2¢ log N [18] (where ¢ is the degree of combinatorial interactions, see
Section 2.5). By default, VarCORE™ automatically produces minimum sets of config-
urations that cover all possible 2-way (i.e. pair-wise) combinations of features. (Users
can change the t-way to higher degrees of combinatorial interactions if desired.)

For faulty configurations that fail to build, VarCORE™ automatically identifies
the faulty feature or combination of features that cause each failed configuration for
further investigation by the developer/tester. It also provides them with traces to
the requirements associated with each involved feature or combination of features to
expedite their resolution.

2.3 Core Flight System (cFS)

The National Aeronautics and Space Administration (NASA) core Flight System
(cFS) [19] is an open-source configurable flight software that can support the major-
ity of basic flight requirements for a variety of spacecraft missions. It was created by
experienced developers based on past successful spacecraft software.



In 2020, cFS' was awarded NASA’s Software of the Year. At NASA it has been
used on at least nine spacecraft projects, and it is also chosen by NASA Goddard
Space Flight Center (GSFC), Johnson Space Center (JSC) and Johns Hopkins Univer-
sity Applied Physics Lab (APL) for all future embedded flight software projects [19].
As part of the Lunar Gateway program, work is also underway to certify cFS as suit-
able for human-rated vehicles [20]. According to the team lead for certification, “We
work on maybe two or three missions a year, but outside of NASA, people are try-
ing it out, finding new ways to use it, and making suggestions for improvement” [21].
Examples include the CubeSat nanosatellites and small spacecraft [22]. Educationally,
OpenSatKit (OSK) adopts cFS to provide a free flight software system platform for
aerospace and STEM education [23]. To the best of our knowledge, it has not been
used by the requirements engineering community, although it has been studied in both
architecture and testing papers [24-26].

TIME is the most configurable service module in the core Flight Executive (cFE),
which is a framework component of cFS. TIME consists of 14 configurable features,
as shown in Table 4, to support various time configurations such as time format (TAI
or UTC), time mode (Server or Client), and time-tone order (data following tone or
data preceding tone).

To provide some context, Fig. 4 shows a cFS-based, multi-processor flight system
with its connectivity and communication channels among flight processors and the
ground system. TIME (which resides inside the cFE Fig. 4) manages and distributes
the spacecraft time among various mission applications for synchronization in this
complex cyber-physical system.

Table 4: TIME Configuration Variability and its Functionality

Variability Functionality

Time_Server Time operation in Server mode

Time_Client Time operation in Client mode

Big_Endian_Byte_Order | Force tone message in big endian order

Virtual _MET Configure as virtual MET if there is no local hardware MET.
virtual-met = false indicates local hardware MET is enabled.

Ezternal_Time_Source Source of time data is external

MET Type of external time data source is MET

GPS Type of external time data source is GPS

Spacecraft-Time Type of external time data source is spacecraft time

Active_Tone_Signal Select the active tone signal

TAI_Format Default time format is International Atomic Time

UTC_Format Default time format is Coordinated Universal Time

Fake_Tone Enable fake tone signal generation in the absence of real hardware
signal

Data_Following-Tone Tone signal arrives before ”time at the tone” data

Data_Preceding-Tone Tone signal arrives after ”time at the tone” data

Yhttps://github.com/nasa/cFS
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Fig. 4: cFS-based Multi-processor Flight System [27]

In general, TIME uses C-preprocessor (CPP) macros (#define) to define all 14
configurable features. To manage the various combinations of feature configuration
within a single module, TIME uses annotated C-pre-processor directive conditionals
(such as #if, #ifdef, #elif, #ifndef) to control and compile the code based on the
setting defined by each configurable feature. Therefore, the configuration of TIME
variabilities is defined at build-time and dictates the TIME system behavior at run-
time.

2.4 axTLS Embedded Secure Sockets Layer (SSL) Project

The axTLS? embedded SSL project is described as a “highly configurable client /server
Transport Layer Security (TLS) v1.2 library designed for platforms with small memory
requirements” [28]. It is a real-world application which has been used on multiple
variability research projects, including SugerC [29] and Kmax [30].

The axTLS uses the KConfig system to construct and select its configurable mod-
ules and features at build time. KConfig was designed by developers of large industrial
systems [31] and is also used by Linux to configure its kernel. The set of axTLS’s
configuration options is organized in a tree structure, and its model structure is quite
similar to a feature model (described in Section 3.3).

There are 62 boolean configurable features implemented in the axTLS-2.1.5 release.
Generation of all valid configurations (O(2") where N is the number of configurable
features) for axTLS is not practical. It requires an effective technique to produce a
number of configurations feasible for use in analysis and testing.

2.5 Combinatorial Interaction Testing (CIT)

According to empirical studies by the National Institute of Standards and Technology
(NIST) and others, all software failures could be triggered by the interaction of one
to six variables (i.e., configurable features) [18]. The studies included applications in
a variety of domains such as embedded medical devices, web browser, HI'TP server,

Zhttps://axtls.sourceforge.net/
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Fig. 5: VarCORE™ Overview.

network security, and aerospace. For instance, in the study of various NASA appli-
cations, “67% of the failures were triggered by only a single parameter value, 93%
by 2-way combinations, 98% by 3-way combinations and reaching 100% with 4-way
interactions” [18]. This finding indicated that testing up to 4-way combinations of
configurable features can be highly effective for detecting software failures.

CIT is an innovative testing technique that generates sets of configurations cover-
ing t-way combinations of configurable features. CIT is proven effective [18, 32-34] in
increasing the effectiveness of software testing for many applications with lower test-
ing effort. It is often adopted in software testing of highly configurable systems and
software product lines.

For N boolean configurable features, CIT can significantly reduce the configuration
space from 2V to a much smaller space, proportional to 2! log N [18] (where ¢ is
the degree of combinatorial interactions). Therefore, even with a large number of
configurable features, CIT may still produce a feasible number of configurations for
analysis and testing. For instance, in a system with 10 boolean configurable features,
instead of generating all 1024 (2!°) configurations, CIT can reduce the configurations
to just 13 that cover all possible 3-way (¢ = 3) combinations of features [18].

3 Approach

In this section we describe our VarCORE™ framework and the new software variabil-
ity model it produces. The framework uses combinatorial interaction testing (CIT)
techniques to generate a reduced set of product variants for verifying the compliance
of the implementation to the variability requirements.



3.1 Overview

Fig. 5 gives an overview of VarCORE™T and the two main artifacts® (Requirements
Traceability Worksheet (RTW) and Variability Model) it provides. First, VarCORE ™"
collects variability requirements into a centralized structural worksheet. This is done
manually by the requirements content expert. Second, VarCORE™ constructs the vari-
ability model automatically using information from the worksheet. Then, VarCORE™
performs automatic static analysis to check the validity and consistency of the vari-
ability requirements. The user is required to import the generated variability model to
a tool and analyze the result generated automatically by the tool. Finally, VarCORE™
conducts semi-automated combinatorial interaction analysis to verify that the gener-
ated product variants are consistent with the variability requirements. This section
describes the details of our approach.

3.2 Variability Requirements Collection

The primary input to VarCORE™ is the software requirements documents. For large-
scale software projects there are typically more than one requirements document,
starting from system requirements and decomposing them into subsystem, module
and atomic requirements. Often these are produced by different engineering teams at
different levels of refinement. This can create a challenge to maintaining consistency
and traceability among all requirements documents. In our approach, we propose
a lightweight process to collect the scattered variability requirements from diverse
requirements documents into a centralized Requirements Traceability Worksheet
(RTW), illustrated in Table 5.

Table 5: Requirements Traceability Worksheet (RTW)

Requirements Traceability Worksheet (RTW)

Requirements | Requirements | Valid | Rule Parent Children Source of

ID Specification Feature | Features | Requirements

First, the variability requirements are extracted from the dispersed requirements
documents. From each extracted requirement or constraint, we identify the relevant
variant features (i.e., units of functionality) and their hierarchical relationships such
as parent-child or constraint relationship. Then we standardize the structure of each
requirement or constraint according to the format specified in Table 6, based on the fea-
tures’ relationship. To facilitate traceability, each requirement or constraint is assigned
a unique requirement ID, and the source of each requirement is logged. Finally, the
requirements ID, the structured requirements specification, the features’ relationship,
the parent features, the children features and the source of the requirements are entered
into the RTW, one requirement or constraint per entry.

3https://github.com/chinkhor/VarCORE2/tree/main/artifacts
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Table 6: Requirements Specification Template

Features Hierarchical Requirements Specification Format
Relationship
Parent and a mandatory child ‘Parent feature’ shall <action verb> ‘child feature’
Parent and an optional child ‘Parent feature’ may <action verb> ‘child feature’
Parent and one and only one of ‘Parent feature’ shall <action verb> one and only one
children of ‘child feature 1°, ‘child feature 2’, ... or ‘child feature N’
Parent and one or more children ‘Parent feature’ shall <action verb> at least one of
‘child feature 1°, ‘child feature 2’ ... or ‘child feature N’
Constraint between two ‘Feature A’ requires ‘feature B’
unrelated features ‘Feature A’ excludes ‘feature B’

The feature relationship is decoded and mapped to the assigned rule as shown
in Fig. 6 and described below, with the relevant rule entered into the RTW’s Rule
field. For a cross-tree constraint (indicated by rule R7) in which the constraint is
established between two unrelated features, the first feature is entered as the parent
feature and the second feature is entered as child feature. Such constraints “cross-
cut” hierarchy dependencies in the variability model [11]. For the Validity field of the
RTW, all variability requirements are initially set to valid (represented as a “17). If
subsequent requirements analysis reveals that a RT'W entry is invalid, that entry can
be invalidated by setting the value in the Valid field to zero. VarCORE™ discards all
invalidated entries during the construction of variability model.

VarCORE™ provides a utility to export the valid RTW entries into a Comma
Separated Values (CSV) format file. This eases the integration of the variability
requirements in the RTW into widely used requirements management tools such as
IBM Rational DOORS [35] or JIRA Software [36].

3.3 Variability Modeling

Once the RTW has been created, VarCORE™ will automatically generate a variability
model (i.e., represented by a feature model). Feature models are a standard type of
variability model that are widely used in software product lines (SPLs) [11, 37, 38]. A
feature model is a feature diagram that represents the features of the software product
line in a graphical view, together with the constraints on those features. Features are
units of functionality, i.e., functional requirements [37, 39, 40]. Feature models were
first introduced by Kang et al. [41] in their Feature Oriented Domain Analysis (FODA)
study in 1990. Many researchers have studied the relationship between FODA notation
and propositional logic. Fig. 6 summarizes the mapping between the propositional logic
and FODA notation which was provided by Batory [1]. Each mapping is identified
here using a rule ID.

To construct a variability model, VarCORE™ extracts the features from each RTW
entry and uses them as feature nodes to build a feature tree. The connectivity of
feature nodes is determined by their hierarchical parent-child relationship as specified
in the RTW (indicated by the Rule field). VarCORE™ then performs a breadth-first
search to examine the feature connectivity in the feature tree. Any unconnected feature

11
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Fig. 6: Rule Definition for Mapping Propositional Formulas to FODA

(i.e., a feature that does not appear in the feature tree) is reported for the developers’
attention. It may indicate a missing requirement for specifying the relationship of the
unconnected feature with the rest of the features in the requirements. Alternatively,
it may indicate an inconsistent use of that feature’s name in the requirements.

Using the traceability information inherent in VarCORE™’s design, the require-
ment that specifies the unconnected feature can be identified using its requirement 1D,
and the source of the requirement can be retrieved from the respective RTW entry for
further investigation by the developer. Requirements and constraints for the uncon-
nected features are invalidated and excluded by VarCORE™T from the variability model
construction. The developer can remedy the model by adding the missing require-
ment(s) or by fixing an inconsistently named feature in the RTW and regenerating
the variability model.

After assuring that all features are fully connected in the feature tree, VarCORE™
constructs the variability model (also called a feature model) using the syntax spec-
ified by FeatureIDE [42], a widely used open-source feature modeling tool. First,
VarCORET™ traverses the fully connected feature tree using depth-first search. At every
traversed feature, its notation will be determined based on the relationship with its
child or children (as indicated by the rule shown in Fig. 6). All variability-related
constraints (indicated by rule R7 in the RTW entry) are converted to propositional
logic formulas (see Fig. 6) to represent variability model constraints. This intermedi-
ate product from VarCORET is in the form of Extensible Markup Language (XML).
The XML format is fully compatible with the FeatureIDE tool, enabling it to output
a visual display of the feature tree and the constraints.
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3.4 Static Analysis of Variability Requirements

The variability model constructed by VarCORE™ can be imported into the FeatureIDE
tool for feature-diagram rendering and variability model analysis. Fig. 7 shows a sam-
ple feature diagram consisting of a hierarchical feature tree and a list of constraints
associated with those features. The advantage of the feature diagram is that it is eas-
ier to read and understand the relationship among features by viewing the feature
diagram than by reading requirements in the textual form.
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Fig. 7: Variability Model for cFS Time Module

Checking consistency among variability requirements is often a challenging effort.
We use FeatureIDE’s built-in capabilities to analyze the model’s validity, including
checks for void-model detection (i.e., a variability model without any valid configura-
tion), dead-feature detection (i.e., a feature that is not part of any valid configuration),
false-optional feature detection (i.e., an optional feature but present in all products),
constraint redundancy, and conflict of constraints. During the variability model analy-
sis, FeatureIDE flags any occurrence of these errors in the feature diagram and includes
them in its statistical report.

VarCORE™’s generated variability model has traceable requirement IDs embed-
ded in the description of each feature and constraint (see highlighted red boxes of Fig.
8). This is useful for analyzing and troubleshooting any model inconsistencies and vio-
lations by narrowing the investigation of the requirements causing the problem. For
example, once the erroneous feature or constraint is reported by FeatureIDE, the ana-
lyst can use the requirement IDs associated with each feature or constraint to identify
the impacted variability requirements or constraints using RT'W. The analyst also can
more quickly identify the source of any problematic requirements or constraints (e.g.,
the requirements document where they originate) by means of their RTW entries.

The requirements analysis may result in changes needing to be made to
some requirements. VarCORE™ provides strong support for requirements evolution.
Requirements can be added, modified, deleted or invalidated in the RTW at any time.
Furthermore, variability-model creation from the RTW using VarCORE™ is fully auto-
mated. This means that the RTW can be scaled up or down incrementally as needed.
Additionally, VarCORE™ can be used to create experimental variability models for
comparison of alternatives, change-impact analysis, or troubleshooting.
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Fig. 8: Variability Model with Traceable Requirements ID

3.5 Combinatorial Interaction Analysis of Variability
Requirements

The static analysis described above checks the validity and consistency among the
variability requirements. For instance, VarCORE™’s static requirements analysis can
find unconnected features indicating missing requirements, and identify the con-
flicted requirements and/or constraints via variability model analysis. However, the
requirements analysis does not detect configuration implementation bugs (i.e., vari-
ability requirements not implemented) or variability bugs (i.e., variability requirements
not implemented correctly) in the code. Examples include certain feature options
that are not implemented, coding errors that change the variability behaviors, and
implementation that does not satisfy the variability constraints.

To detect inconsistencies between the specification of the variability requirements
in the variability model and the source code, VarCORE™T adds support for combinato-
rial interaction analysis. It achieves this by using the product configurations generated
from the variability model as inputs to the product’s build system to create product
variants for variability analysis.

Each product configuration generated from the variability model represents a valid
configuration that satisfies all variability requirements specified in the RTW. Building
these product variants, which can subsequently be handed over to the test team, helps
assure consistency between the variability requirements/constraints and the code that
should satisfy them. Inconsistencies indicate potential flaws in the requirements or in
their implementation.

Fig. 9 expands Fig. 5’s combinatorial interaction analysis to illustrate its semi-
automated flow in more detail. VarCORE™ uses combinatorial interaction testing
(CIT) techniques [18, 32, 33] to generate product variants for verifying the compli-
ance of the implementation to the variability requirements. By default, VarCORE™
uses the state-of-the-art CIT tool: Advanced Combinatorial Testing System (ACTS)
[34, 43], shown in blue in Fig. 9, to generate pair-wise (2-way) combinatorial inter-
action configurations. ACTS is a free tool provided by NIST for constructing t-way
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Fig. 9: Overview of VarCORE™’s Combinatorial Interaction Analysis

combinatorial test configurations (where ¢ is the degree of combinatorial interaction).
Although VarCORE™ could be readily extended to work with other CIT tools (e.g.,
CASA [44]), we chose ACTS for its ongoing availability and broad use.

VarCORE™T first (Step 1 in Fig. 9) automatically extracts all features and con-
straints from the variability model to create an input file for the ACTS tool.
The input file consists of all boolean configurable features, and the constraints
derived from the variability model (i.e. feature model). VarCORE™ then directs
the ACTS tool to generate pair-wise combinatorial interaction configurations based
on the provided configurable features and constraints among features using In-
Parameter-Order-General-Doubling-Construction (IPOG-D) algorithm [45]. In return,
VarCORE™ receives a set of combinatorial configurations in which all possible pairs
(2-way) of features are covered by at least one configuration and all specified variability
constraints are satisfied. This step is fully automated.

After acquiring the pair-wise combinatorial configurations, VarCORE™ translates
the configurations to the respective product’s configuration files that are used by the
product’s build system (Step 2 in Fig. 9) to create the product variants.

Since the feature name used in the variability model may not be identical to the
name used in the code implementation, VarCORE™ takes as input a mapping between
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the feature variables in the variability model and the configurable variables (e.g., anno-
tated pre-processor(CPP) macros) in the code (see example in Table 7) to correctly
perform the translation. The mapping process requires the content expert to perform
the matching manually before starting the semi-automated combinatorial interaction
analysis. The list of CPP conditionals for the source code (limited to C only) are
extracted using the Linux ifnames? tool to ease the matching with the feature variables
in the variability model.

When the mapping is provided, VarCORE™ automatically updates the variability
model. Those feature variables which are unmatched are set as abstract features in the
updated variability model (i.e feature model). Basically, abstract features represent
features that are not implemented in the code and thus will not be used to generate
product configuration files. However, they are useful for grouping features to enhance
the readability of the variability model. Abstract features make it easier to understand
the hierarchical relationship among features (see Fig. 7).

Every project has its own unique build system and configuration framework. A
new project will thus manually create the mapping, translate the t-way combinatorial
configurations to configuration files, and automate the building of its product variants
once (Steps 2 and 3 in Fig. 9). After that, the build system will automatically build the
product variants based on the given configuration files. VarCORE™ has followed these
steps to automate the product variants’ generation for both the cFE TIME service
module (see Section 2.3) and for the axTLS embedded SSL project (see Section 2.4).

Table 7: Feature Mapping between Variability Model and Code for cFE
TIME

C Pre-processor Directive Macros in CFE Time Ser-

Features in Variabil-

ity Model

vice Module (Code)

Time_Server

CFE_PLATFORM_TIME_CFG_SERVER

Time_lient

CFE_PLATFORM_TIME_CFG_CLIENT

Big-Endian_Byte_Order

CFE_PLATFORM_TIME_CFG_BIGENDIAN

Virtual_MET

CFE_PLATFORM_TIME_CFG_VIRTUAL

Eaxternal_Time_Source

CFE_PLATFORM_TIME_CFG_SOURCE

MET

CFE_PLATFORM_TIME_CFG_SRC_MET

GPS

CFE_PLATFORM_TIME_CFG_SRC_GPS

Spacecraft_Time

CFE_PLATFORM_TIME_CFG_SRC_TIME

Active_Tone_Signal

CFE_PLATFORM_TIME_CFG_SIGNAL

TAI_Format

CFE_MISSION_TIME_CFG_DEFAULT _TAI

UTC_Format

CFE_MISSION_TIME_CFG_DEFAULT_UTC

Fake_Tone

CFE_MISSION_TIME_CFG_FAKE_TONE

Data-Following-Tone

CFE_MISSION_TIME_AT_TONE_WAS

Data_Preceding_-Tone

CFE_MISSION_TIME_AT _TONE_WILL_BE

VarCORE™ then performs build tests for (only) the product variants. The build
test results for the product variants are collected for analysis (Step 3 in Fig. 9). If the
product variants are built successfully, they can be used as test cases for further prod-
uct variability testing (e.g., unit testing, integration testing, and system testing). If

“https://code.tools/man/1/ifnames2.64/
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a build fails, VarCORE™ performs automated configuration fault analysis to find the
faulty-feature setting(s) that caused a build failure (Step 4 in Fig. 9). It achieves this by
comparing the feature setting(s) of passed and failed product variants’ configurations.
Each feature setting, pair-wise feature combination, and 3-way feature combination
in the failed configurations is determined and logged. The feature setting(s) or com-
bination of feature setting(s) that do not appear in any of the passed configurations
are thus identified as potential causes of the build failure. VarCORE™ first checks for
single-feature faults (settings), followed by 2-way and 3-way feature-interaction faults.

The automated configuration fault-detection is an approximation method. It uses
passed product variants configurations as references for ruling out the good feature
setting(s) or combinations of feature setting(s). It depends on the availability of good
references. Thus, it may not be able to pinpoint the cause of faulty feature setting(s)
if there are insufficient good references. However, it will still reduce the number of
potential faulty feature setting(s) to a small list of candidates for further investigation
by analysts. This reduces the effort of identifying faulty feature setting(s) especially
in a system with very many configurable features.

Since a failed build may reflect a flaw in the requirements or constraints specifi-
cation, the analyst also can trace backward from the features identified as potential
causes of the build failure to help determine a remedy. The automatic configuration
fault analysis provides the requirement IDs that are associated with each identified
faulty feature setting. Using the requirements traceability captured in the RTW, the
developers can trace from the failed build test back to the impacted requirements
and/or constraints and check them for flaws.

If the flaw is caused by erroneous requirements or constraints, the developer can
manually update the RTW to correct the requirements or constraints (Step 5 in Fig.
9). Then they can use VarCORE™ iteratively to re-generate the variability model auto-
matically (Step 0 in Fig. 9) and re-start the semi-automated combinatorial interaction
analysis after each correction (either to the RTW or to the code) until consistency
between the requirements/constraints and the implementation is achieved.

4 Applications and Evaluation

In this section we describe our application of VarCORE™ on a portion of the cF'S flight
software and a real-world highly configurable software (axTLS). We also present our
findings regarding the following four research questions:

RQ1: Did VarCORE™ find missing variability requirement(s)?

RQ2: Did VarCORET find inconsistencies among the specified variability require-
ments?

RQ3: Did VarCORE™ find variability requirement(s) not implemented in the code?
RQ4: Did VarCORET scale to support configurable software in both domains?

4.1 System Configuration
The system (hardware and software) that was the setup for the evaluation consists of:

e Intel CORE vPRO i7 processor (with 16GB RAM memory)
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Linux Ubuntu 22.04.2 LTS (with python3.10.12 and javac-11.0.20.1)
ACTS-3.2°

cFS Caelum release®

axTLS-2.1.5 release”

VarCORE™*#®

4.2 Application and Evaluation on cFE TIME

We chose to evaluate our VarCORE™ technique first on the smaller configurable NASA
core Flight Executive (cFE) TIME software. Initially we selected the ¢cFE Software
Requirement Specification [27] and the ¢FE Funtional Requirements specification [46]
as the sources from which to collect the variability requirements for cFE TIME. How-
ever, we found that only six variability requirements for cFE TIME are described in
these two requirements documents. Moreover, they do not document the configuration
options available or the variability constraints that the developers of a new product
need to know. We then discovered that, instead, the cFE User’s Guide (which is the
1,056 page reference for application, tool and test development) describes the TIME
variability requirements in detail. We thus used it as the primary input document for
our VarCORE™ application and evaluation. It specifies requirements for the configu-
ration options and the variability constraints. However, its length renders it difficult
for projects to navigate and use.

Table 8 shows an excerpt of the first generated artifact produced with VarCORE™,
the RTW (Requirements Traceability Worksheet) described in Section 3.2. Follow-
ing the process described there, 21 variability requirements were identified for cFE
TIME configurations and extracted from the cFE User’s Guide. Then, 18 configurable
features (see Figure 7) were derived from the 21 variability requirements.

4.2.1 Static Analysis of Variability Requirements

With cFE TIME'’s variability requirements now collected into the structured RTW,
we used VarCORE™ to construct the variability model automatically. During the
construction process, VarCORE™ created the feature tree for connectivity analysis
and discovered that feature Single_Processor did not appear in the feature tree. Fea-
ture Single_Processor was used by variability requirement TIME-5.2 (see Table 8) to
set constraint with feature Time_Server, but it was not defined by any variability
requirement. There is thus a missing variability requirement in the RTW for feature
Single_Processor definition.

Variability requirement TIME-5.2 originated from this constraint statement in the
cFE User’s Guide?: “If the target system has only one processor running the cFE, then
TIME must be configured as a server”. This is a legitimate constraint. However, there

5https://drive.google.com/file/d/ITERKQQSNwSrKanvajoj ogfdjxqP7cp/view?usp=sharing
Shttps://github.com/nasa/cFS

Thttps://sourceforge.net/projects/axtls/files/

8https://github.com/chinkhor/VarCORE2
Yhttps://github.com/nasa/cFS/blob/gh-pages/cfe-usersguide.pdf
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Table 8: Excerpts from the cFE TIME Requirements Traceability Worksheet
(RTW)[47]. Variability requirements that are unsatisfiable or conflicted with others
are highlighted in red
Requirements Traceability Worksheet (RTW)

Req ID |Requirements Valid | Rule| Parent Children Source of
Specification Feature Features Requirements
TIME-0 |The core Flight System 1 R1 |Root CFS_Time cfe-userguide, section:
Time (cFS Time) is the 1.22.4 Time
time management service Configuration
module
TIME-5.1 | The time operation 1 R4 |Time- Time_Server, |cfe-userguide, section:
mode shall use one and Operation_ Time_Client |1.22.4.5 Specifying
only one of the time Mode Time Server/Client
server or the time client
TIME-5.2 | The single processor 0 R7 |Single_ Time_Server |cfe-userguide, section:
requires the timer server Processor 1.22.4.5 Specifying
Time Server/Client
TIME-6 |The cFS Time may use 1 R3 |CFS_Time Virtual_ MET |cfe-userguide, section:
the virtual MET 1.22.4.7 Virtual MET
TIME-6.1| The time client requires 1 R7 |Time_Client |Virtual MET |cfe-userguide, section:
the virtual MET 1.22.4.7 Virtual MET
TIME-6.2 | The time server requires 0 R7 |Time_Server |Virtual MET |cfe-userguide, section:
the virtual MET 1.22.4.7 Virtual MET
TIME-7 |The cFS Time may use 1 R3 |CFS_Time External_ cfe-userguide, section:
the external time source Time_Source |1.22.4.8 Specifying
Time Source
TIME-7.1 | The external time source 1 R7 |External- Time_Server |cfe-userguide, section:
requires the time server Time_Source 1.22.4.8 Specifying
Time Source
TIME-8 |The cFS Time may 1 R3 |CFS_Time Active_Tone_ |cfe-userguide, section:
specify the active tone Signal 1.22.4.9 Specifying
signal Time Signal
TIME-10 | The external time source 1 R7 |External- Virtual_ MET | cfe-userguide, section:
requires the virtual MET Time_Source 11.98.2.13

CFE_PLATFORM._
TIME_CFG_VIRTUAL

is no variability requirement for specifying single or multiple processors in the require-
ment documents. In the code review process, we also did not find any implementation
related to single or multiple processors variability in cFE TIME.

In this case, VarCORE™ reported the feature Single_Processor as an undefined
feature for attention by the developer, then invalidated its associated requirement (e.g.
TIME-5.2) to exclude it from variability model construction. In general, VarCORE™
automatically invalidates and excludes all unsatisfiable requirement(s), and uses only
the features appearing in the fully connected feature tree to build the variability model.

By default, all identified features from variability requirements are initially set as
concrete features (indicating features implemented in code). However, in reality not
all features are implemented as needed. We used the ifnames tool to list all con-
figurable variables (parameters) in the ¢cFE TIME implementation and performed
mapping between features and variables. All four unmatched features were changed to
abstract features in the variability model, which indicated that they were not imple-
mented in cFE TIME. These unmatched features include cFS_Time, Time_Format,
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Tone_Data_Order and Time_Operation_Mode (see Fig. 7). This update to the variabil-
ity model served the purpose of improving the readability of the variability model for
better understanding of the variability of cFE TIME.

oe———" o = S e —
Time_Format | | Big_Endian_Byte_Order | | Tone_Data_Order | | Fake_Tone |

X Active_Tone_signal

. ———————o -
Time_Operation_Mode || A\ Virtual MET | | External_Time_Source

N PN < N
TAI_Format | | UTC_Format Data_preceding_Tone | = Data_folowing_Tone | Time_Server ~Time_Cient | | Virtual_MET
Concrete feature is false optional
- Constraint Description
Legend: .
. @ Extemal Time_Source = Vinual MET  Constraint Requirement: TME-10 || Description:
#  Mandatory @ Fake_Tone = Virtual MET Constraint Requirement: TME-4,1 || Requirements: [TIME-4.1°, ‘TIME-6', "TIME-6.1', ‘TIME-6.2, "TIME-107
& Optional @ Time_Client = Vittual MET Constraint Requirement: TIME-6.1

@ Time_Server = Virtual MET Constraint Requirement: TIME-6.2 || Constraints:
« Fake_Tone = Virtual_MET
« Time_Ciient = Virtual MET
Concrete Feature « Tme_Server = Virtual_MET
i\ False-Optional Feature « External_Time_Source = Virtual_ MET
@ Redundant Constraint

/l\. Alternative Group
Abstract Feature

The selected element is defect
because of the highighted dependencies:

likely cause uniikely cause

Fig. 10: Initial Constructed Variability Model Showing Detection of False-Optional
Feature and Inconsistent Constraints

After producing the variability model, we imported the model into the FeatureIDE
tool (described in Sect. 3.4) to render the feature diagram. Fig. 10 shows the initial
constructed variability model, including the cross-tree constraints. Once the feature
diagram was rendered, the FeatureIDE tool automatically checked the model for valid-
ity and consistency. As shown in Fig. 10, the FeatureIDE’s model checker flagged
Virtual_ MET as a false-optional feature (an optional feature present in all products)
and reported that the requirements TIME-6.1 and/or TIME-6.2 were the likely cause
of the issue.

Knowing that Time_Server and Time_Client were mutually exclusive (see Fig.
10 or requirement TIME-5.1 in Table 8), the co-existence of requirements TIME-6.1
(Time_Client = Virtual_ MET) and TIME-6.2 ( Time_Server = Virtual MET) would
cause the feature Virtual_LMET to be always selected. This was contradicted by the
optional configuration for the feature Virtual MET (see requirement TIME-6 in Table
8 or Fig. 10). Therefore, either requirement TIME-6.1 or TIME-6.2 was invalid.

Using the traceability provided by VarCORE™, we could readily identify the source
of constraints TIME-6.1 and TIME-6.2 for further investigation. TIME-6.2 originated
in this constraint statement in the cFE User’s Guide: ” TIME servers must be con-
figured as using a virtual MET”. This constraint is contradicted by TIME-6.1 and
TIME-6 which require instantiation of TIME to be Server when the MET (Mission
Elapsed Time) is local (i.e., Virtual MET = false).

Therefore, the variability constraint specified in TIME-6.2 (highlighted in red in
the RTW, see Table 8) was found to be erroneous by the developers. After removal of
TIME-6.2, the new generated variability model (see Fig. 7) was consistent and valid
without any dead feature or false-optional feature (see Fig. 11a).
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Project Name: axTLS Project

Project Mame: cFS Time Generation Tool: Feature Modeling
Generation Tool: Feature Modeling w  Statistics of the feature model
w Statistics of the feature model v Syntactical statistics

Number of features: 71

" Syntactical statistics
Mumber of concrete features: 62

L e Murnber of abstract features: 9
MNumber of concrete features: 14

Number of compound features: 17
Number of abstract features: 4

Mumber of terminal features: 34

Mumber of compound features: 5 Number of hidden features: 0

Number of terminal features: 13 Number of constraints: 18

Number of hidden features: 0 Number of features in constraints: 26

Mumber of constraints: 6 Relative number of features in constraints: 0.366
w Semantical statistics

Number of features in constraints: 6
Feature model is valid (not void): true

Relative number of features in constraints: 0.333
Mumber of core features: 4

v Semantical statistics e e e

Feature model is valid (not void): true Number of false-optional festures: 0

Murnber of core features: 4 v  Number of atomic sets: 3
Mumnber of dead features: 0 Atomic Set #1: 4
Number of false-optional features: 0 Atomic Set #2: 2
Number of atomic sets: 4 Atomic Set #3: 3

Number of configurations: 112

(b) axTLS. Number of configurations and
program variants were not computable due to
(a) cFE TIME large configuration space

Murmnber of program variants: 112

Fig. 11: FeatureIDE Statistics for cFE TIME and axTLS

4.2.2 Combinatorial Interaction Analysis of Variability
Requirements

After completion of the variability model analysis, we used VarCORE™ to generate
pair-wise (2-way) combinatorial feature interaction configurations, which produced
only 13 configurations. All possible pairs (total 449 pairs) of the cFE TIME feature
combination were covered at least once by these 13 configurations. VarCORE™ then
automatically mapped the concrete features to the respective variables in the code
using the mapping table (see Table 7) created earlier. After mapping, all 13 config-
urations were transformed to code configurations files which were recognized by the
cFE TIME build system. Subsequently, VarCORE™ built all 13 product variants, one
product variant per code configuration file.

Table 9 shows all 13 generated configurations and their respective build results.
7 of the 13 product variants failed to build successfully. Finally, VarCORE™ ana-
lyzed the build results to identify any faulty feature setting(s). Fig. 12 (console output
of VarCORE™) shows that two faulty feature settings: Virtual MET = False and
Active_Tone_Signal = True were identified. They were both single-parameter faults
which caused all 7 of the cFE TIME product variants’ build failures. VarCORE™ did
not find any 2-way or 3-way feature interaction that triggered a build failure.

Table 10 compares three build results. The first build result is the current existing
cFE TIME build test result using default configuration, in which the cFE TIME was
built successfully. The second build result was acquired from our recent study [4],
which derived 112 possible valid configurations for cFE TIME and found that 64
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Table 9: cFE TIME’s 2-way Combinatorial Configurations and Build Test
Results

Features cfgl|cfg2|cfg3|cfgd |cfgh|cfgb |cfg7|cfg8 | cfg9|cfgl0|cfgll |cfgl2|cfgl3
CFS_Time 1 1 1 1 1 1 1 1 1 1
Time_Format
TAI_Format
UTC_Format
Big_Endian_Byte_Order
Tone_Data_Order
Data_Preceding_Tone
Data_Following_Tone
Fake_Tone

Virtual MET
External_Time_Source
Time_Operation_Mode
Time_Server
Time_Client

MET

GPS

Spacecraft_Time
Active_Tone_Signal
Build Test Results
(F:failed, P:passed)

HoooooO R R OOORORORO KR
Hil O O R O R K #FEF OO MHKE O K H
M~ O 0O 0O~ OOOO KK FKF O
Hooo oo~ OoORRRFROROORR
H O OO OO R, OO0 OKRF OO
Hilr O O O R O O HKEOMF K M=OK
H O OO R O R R HEFOFOF OO = -
oo oo orRr R, OR R RORRERFROHR
H O O OO~ O O F OO HKF H=O = -
FHIlO O —m OO0 R = H = Ok OKFF#M=O M
= O~ OO0 R R R MHFOORKRFEOO R H
Hi= = O O O ¢ HIkH = OF O MK = O
HOR OO0 O R P HFF OO OO R M -

Test Result:
passed: ['4','7", 8", "9, "10, '13']
failed: ['1",'2, 3", '5", 6", '11', '12']

Failure triggered by single parameter, potential candidates:
Virtual_MET = False
Requirements: ['TIME-4.1', 'TIME-6', 'TIME-6.1", 'TIME-10']
Active_Tone_Signal = True
Requirements: ['TIME-8']

Mo failure triggered by 2-way feature interaction

Mo failure triggered by 3-way feature interaction

Fig. 12: cF'S TIME Build Test Result Analysis using VarCORE™

out of 112 configurations (product variants) failed to build. The study determined
that all 64 build failures were caused by known configuration implementation bugs!®
triggered by two configuration options: cFE_PLATFORM_TIME_CFG_SIGNAL=True
or cFE_PLATFORM_TIME_CFG_VIRTUAL=False. These two configuration options

Ohttps://github.com/nasa/cFE /issues/109
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Table 10: Comparison of TIME Build Results
Configuration Generation Passed | Failed | Total Configurations
Method
Current cF'S TIME Build System 1 0 1
(default configuration)
FeatureIDE’s Product Generator 48 64 112
(all valid configurations) [4]
ACTS’s CIT Method (2-way 6 7 13

combinatorial interaction
configurations)

trigger the cFE TIME to call the unimplemented abstract functions: OS_SelectTone(),
0S_SetLocal MET() and OS_-GetLocal MET(), and thus failed the compilation.

The third build result in Table 10 summarizes our build results with 13
product variants for ¢cFE TIME (see Table 9). We found that VarCORE™
was able to find the same configuration implementation bugs discovered in
[4], but with just 13 configurations. The two identified faulty feature settings,
Virtual_ MET=False and Active_Tone_Signal=True, were mapped to the corre-
sponding configuration options: ¢FE_PLATFORM_TIME_CFG_SIGNAL=True and
c¢FE_PLATFORM_TIME_CFG_VIRTUAL=False (see Table 7), which triggered a
compilation error.

Comparing the build results (see Table 10) indicates that testing with the single
default configuration was not sufficient to discover the configuration bugs. Gener-
ating all valid configurations for finding configuration bugs is costly, and may not
always be practical, especially for systems with a large number of configurable fea-
tures. VarCORE™ was effective in finding the same configuration bugs with 10X less
test efforts for cFE TIME.

The 13 product variants represented valid configurations derived from cFE TIME
variability requirements. A build failure would indicate inconsistency between the
implementation and the variability requirements. VarCORE™ used its requirements
traceability information to retrieve the relevant variability requirement(s) associated
with the faulty features (see Fig. 12). This identified that the code did not satisfy the
following variability requirements (refer to Table 8 for more information):

o TIME-6 when the feature Virtual MET is False
e TIME-8 when the feature Active_Tone_Signal is True

VarCORE™’s semi-automated process of (1) generating 2-way combinatorial con-
figurations from the variability model, (2) transforming and building the respective
product variants from the combinatorial configurations, and (3) analyzing product
variants’ build results to identify faulty feature setting(s) reduces the effort of com-
binatorial interaction analysis for verifying requirements/constraints. The generated
product variants can also be reused for subsequent software verification activities such
as unit testing, integration testing and system testing.
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4.3 Application and Evaluation on axTLS

VarCORE™T was initially customized to support NASA’s cFS; however, its generic
design also makes it applicable for use in other domains. In this subsection, we describe
our new use of VarCORE™ on axTLS, an open-source highly configurable software
system.

There is no requirement specification document for axTLS. For the evaluation,
we thus synthesized the variability requirements (using the convention described in
Table 6) manually from its KConfig model, which can be accessed via menuconfig and
Config.in files in the code. Since VarCORE™ currently only considers binary configu-
ration options, 24 configuration options that require string and numerical inputs were
excluded from the requirements/constraints synthesis, but will be added in future
work. Thus, 74 variability requirements were produced for input to the RTW [48]. We
applied the process as described in Section 3.2 to construct the RTW for the axTLS

project. Table 11 shows an excerpt of the resulting axTLS RTW.

Table 11: Excerpts from the axTLS Requirements Traceability Worksheet
(RTW)[48]

Requirements Traceability Worksheet (RTW)

Req ID |Requirements Valid | Rule|Parent Children Source of

Specification Feature Features Requirements
AXTLS- | The SSL library shall 1 R2 |SSL_Library SSL_Mode synthesized from
4.1 select SSL mode axTLS-2.1.5

menuconfig

AXTLS- | The SSL mode shall use 1 R4 |SSL_Mode synthesized from
4.1.1 one and only one of the Server_Only, axTLS-2.1.5

Server Only, the Server Ser\fer,Only, menuconfig

Only with Verify, the Verify, )

Server and Client, the Server_Client,

Server and Client with Serveerhemj

Full Diagnostic or the Full_Diagnostic,

Skeleton mode Skeleton_Mode
AXTLS- | The axTLS may select 1 R3 |axTLS Language_ synthesized from
7 the language bindings Bindings axTLS-2.1.5

menuconfig

AXTLS- | The language bindings 1 R3 |Language- Java_Bindings |synthesized from
7.3 may use the Java Bindings axTLS-2.1.5

bindings menuconfig
AXTLS- | The axTLS may select 1 R3 |axTLS axSSL_Sample_ |synthesized from
8 the axSSL sample Generation axTLS-2.1.5

generation menuconfig
AXTLS- | The axSSL sample 1 R3 |axSSL_Sample. |Java_Language- |synthesized from
8.4 generation may select Generation Sample axTLS-2.1.5

the Jave language sample menuconfig
AXTLS- | The Java language 1 R7 |Java_Language_ |Java_Bindings synthesized from
24 sample requires the Java Sample axTLS-2.1.5

bindings Config.In

4.3.1 Static Analysis of Variability Requirements

Once the RTW was created, VarCORE™T generated the variability model automati-
cally. No unconnected features were detected during the variability model construction
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for axTLS. Subsequent variability model analysis also showed that the generated model
was valid and consistent. No dead feature or false-optional feature (an optional fea-
ture present in all products) was detected, as shown in Figs. 11b and 13. This result
was expected as the variability requirements were synthesized from the implemented
KConfig model.

Legend;

¥ Mandatory

< Optional

,’Cﬁ Atemative Group
Abstract Feature

[] Concrete Feature

() Cotapsed

Fig. 13: axTLS Variability Model [49]. Some features were elided for display clarity
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From the 74 variability requirements, we derived 71 Boolean configurable features
for variability modeling. Based on the feature mapping between variability model and
implementation (see Table 12), 9 of the 71 configurable features were set as abstract
features, as they were not implemented in axTLS source code. See Fig. 13 for examples
of abstract features. With 71 configurable features, axTLS has a large configuration
space, and generating all valid configurations for variability analysis was not practical.

Table 12: Excerpts of Feature Map [50] between Variability Model
and Code for axTLS

Features in Variability | C Pre-processor Macros in axTLS (Code)
Model

Linux_OS CONFIG_PLATFORM_LINUX
CygWin_OS CONFIG_PLATFORM_CYGWIN
Win32_0S CONFIG_PLATFORM_WIN32
Server_Only CONFIG_SSL_SERVER_ONLY
Server_Only_Verify CONFIG_SSL_CERT_VERIFICATION
Server_Client CONFIG_SSL_ENABLE_CLIENT
Server_Client_Full_Diagnostic CONFIG_SSL_.FULL-MODE
Skeleton_Mode CONFIG_SSL_.SKELETON_MODE
Language_Bindings CONFIG_BINDINGS
CSharp_Bindings CONFIG_CSHARP_BINDINGS
VB_NET _Bindings CONFIG_VBNET_BINDINGS
Java_Bindings CONFIG_JAVA_BINDINGS
axSSL_Sample_Generation CONFIG_SAMPLES
Java_Language_Sample CONFIG_JAVA_SAMPLES
LUA_Language_Sample CONFIG_LUA_SAMPLES
LUA_Build_Install CONFIG_HTTP_BUILD_LUA

4.3.2 Combinatorial Interaction Analysis

axTLS supports multiple operating system (OS) platforms such as Linux, CygWin
(Unix-like environment on Microsoft Windows) and Win32. We fixed and excluded a
few configuration options as described below so that we could evaluate axTLS on our
setup environment, described in Section 4.1:

Linux_OS = True
CSharp_Bindings = False
VB_NET Bindings = False
LUA Bindings = False
LUA Build_Install = False

Basically, we fixed configurations to run Linux OS platform only and excluded C#,
VB .NET and LUA languages.

We then used VarCORE™ to produce a minimal set of pair-wise combinatorial
interaction configurations. This resulted in a total of 28 configurations [51] being
generated. With 71 Boolean configurable features, and taking 18 variability constraints
and a few fixed configurations above into account, the ACTS tool calculated 7339
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Test Result:
passed: ['1°,'3','5','6", '8', "12', '17', '18', "21', '23', '24', '26', "28']
failed: ['2', "4, '7','9', '10°, 11", '13', '14', 15", '16', '19', "20°, '22','25", '27]

Failure triggered by single parameter, potential candidates:
Java_Bindings = True
Requirements: ['"AXTLS-7.3', "AXTLS-24"]
Java_language Sample = True
Requirements: ['"AXTLS-8.4', "AXTLS-24]

Mo failure triggered by 2-way feature interaction

No failure triggered by 3-way feature interaction

Fig. 14: axTLS Build Result and Analysis using VarCORE™

possible pairs of feature combinations in axTLS and assured that all were covered at
least once by the generated 28 configurations.

Subsequently, VarCORE™ converted the 28 combinatorial configurations into cor-
responding code configuration files recognized by axTLS’s build system. For example,
the feature setting of Linuz_OS=true in the VarCORE™’s generated configurations was
matched and transformed to CONFIG_.PLATFORM_LINUX=y and #define CON-
FIG_.PLATFORM_LINUX 1 in axTLS’s .config and config.h files, respectively (see
Table 12 for the mapping). After conversion, VarCORE™ built the axTLS’s 28 product
variants sequentially, one product variant per configuration file.

Fig. 14 shows the build result for each configuration file. 15 of the 28 con-
figurations failed to build successfully. A useful capability of VarCORE™ is that
its automated identification of potential faulty-feature setting(s) after collecting
the build result. VarCORE™ analysis found two single-parameter faults (see Fig.
14) that contributed to the 15 build failures. Whenever Java_Bindings=True or
Java_Language_Sample=True was configured in any configuration file, the axTLS com-
pilation failed. VarCORE™ then proceeded with its feature interaction analysis, but
found no failure triggered by a 2-way or 3-way feature interaction.

Fig. 15 explains the root cause of the compilation error. When a new parameter:
SSL_EXTENSIONS* was added to the ssl_client_new() function in the axTLS-2.1.0
release, the two Java-bindings functions and Makefile, shown in the figure, were
not updated to reflect the addition of the new parameter. Consequently, this vari-
ability bug was hidden until either configuration option Java_Bindings=True or
Java_Language_Sample=True was configured for compilation.

VarCORE™ also traced that these feature settings were specified by the require-
ments AXTLS-7.3, AXTLS-8.4, and constraint AXTLS-24 (see Table 11 for details).
Although not found in axTLS, we note that having the variability requirements trace-
ability available can be especially useful for troubleshooting a software configuration
misuse problems (i.e., a configuration that should never be allowed). This type of issue
is usually caused by a variability requirement specification error rather than by an
implementation bug.
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axTLS-2.0.1: axTLS-2.1.0-2.1.5:

ssl/tlsl.c, tls1_clnt.c, ssl.h ssl/tlsl.c, tlsl_clnt.c, ssl.h

EXP_FUNC SSL * STDCALL ssl_client_new( EXP_FUNC SSL * STDCALL ssl_client_new(
SSL_CTX "ss5l_cty, SSL_CTX *ssl_ctx,
int client_fd, int client_fd,
const uints_t *session_id, const uints_t *session_id,
Lints_‘c sess_id_si:e);_' uint8 t sess id size,
> [ SSL_EXTENSIONS' ssl_ext); |

Added new parameter

axTLs-2.1.0-2.1.5:

binding/generate_SWIG_interface.pl Missing new parameter

19 if (jarg3 == NULL) L
0);

w oy

w
R

{

jresult = (jint)ssl client new(argl,argl,NULL,
J return jresult;

bindings/java/SSLClient.java

3 public 55L connect(Socket s, byte[] session id)

[#

4 H

715 int client_fd = axtlsj.getFd(s):

76 r byte sess id size = (byte) (session_id != nunll ?

7 ' session_id.length : 0);

78 % retorn new S5SL{axctlsj.ssl client new(m ctx, client fd, session id,
TS I sess_id size));

80 | 1 T

bindings/java/Makefile Missing new parameter
50 JAVA FILES= \
1 axtlsjINI.java |\

2 | ax'l:lstonstanEs.java LY L. i ) i
3 Missing link to include new library

axtlss.java \

4 S5LReadHolder.java \ | SWIGTYPE_p_SSL_EXTENSIONS.java \
5 55L.java \

6 S55LUcil.java \

S5LCTX.java \

SS5LServer.java \

SSLClient.java

wnonon tnoWn Ln L

Ao
& B

Fig. 15: axTLS Build Error Root Cause

4.3.3 Feature Interaction Analysis with Error Injection

In both cFE TIME and axTLS, VarCORE™ discovered only single-parameter faults.
To evaluate the effectiveness of VarCORE™ in identifying inconsistency triggered by
feature interaction, we fixed the Java Bindings issue we discovered and un-did a fix
referred to as ‘Header compile issue when “Create Language Bindings” is used’ in the
axTLS-2.1.5 change log'!. That fix addressed a variability bug'? triggered by feature
interaction and was found by the Kmax tool [30].

Hhttps://axtls.sourceforge.net/README /index.html
2https://github.com/paulgazz/kmax/blob/master/docs/bugs_found/2017-12-26_axtls_language_bindi
ngs.txt
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Test Result:
passed: ['1','S",'6, ‘7', '", '9", '12','13', '14", '15', '17', '18', 20", '23, '24', 26, '28']
failed: ['2', '3, '4', '10', '11', "16', '19", "21", 22/, '25", '27']

No Failure triggered by single parameter
No failure triggered by 2-way feature interaction
Failure triggered by 3-way feature interaction, potential candidates:
Server_Client = False && Server_Client_Full_Diagnostic = False && Language_Bindings = True
Requirements for Server_Client: ['AXTLS-4.1.1']

Requirements for Server_Client_Full_Diagnostic: ['AXTLS-4.1.1', "AXTLS-4.1.1.2]
Requirements for Language_Bindings: ['AXTLS-7', "AXTLS-7.1', "AXTLS-7.2', 'AXTLS-7.3", 'AXTLS-7.4", 'AXTLS-7.5']

Fig. 16: axTLS Build Result and Analysis using VarCORE* with a 3-Way Feature
Interaction Error Injected

ssl/tlsl.c

2416 [[J#ifdef CONFIG_BI

+—— feature configuration 1

2417 —#if 'defined(CONFIG S5L ENMABLE CLIENT) #+— feature configuration 2
319 EXP_FUNC 3SSL * STDCALL &sl client new(S5SL CTX *ssl ctx, int client fd,
const uint8_t #*session id, uint8 t sess _id size)
* !
printf("%s", unsupported_ str):
return NULL: Missing new parameter
}
2424 Fendif
crypto/crypto.h
53 /* enable features based on a '"super-set' capbaility. */
54 MODE) <+— feature configuration 3 overrides

feature configuration 2

Fig. 17: Root Cause of the Build Failure Triggered by 3-Way Feature Interaction

We re-started the combinatorial interaction analysis using VarCORE™ on the
modified axTLS. Fig. 16 shows the new build result and analysis. With the modi-
fied axTLS, 10 out of 28 configurations failed to build. No single-parameter fault (as
former discovered faults were fixed) and no 2-way feature interaction failures were
detected. However, VarCORE™ found that the 10 build failures were triggered by a
3-way feature interaction when Language_Bindings=True, Server_Client=False and
Server_Client_Full_Diagnostic=False.

Fig. 17 illustrates the root cause of the variability bug triggered by this 3-
way feature interaction. In ssl/tlsl.c file, ssi_client_-new() function (at line 2418 and
2419) would be called when CONFIG_BINDINGS was defined (see line 2416) and
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CONFIG_SSL_.ENABLE_CLIENT was not defined (see line 2417). Both code vari-
ables CONFIG_BINDINGS and CONFIG_SSL_.ENABLE_CLIENT are mapped to
features Language_Bindings and Server_Client, respectively (see Table 12). The third
feature-configuration option was CONFIG_SSL_FULL_-MODE (mapped to feature
Server_Client_Full_Diagnostic) at crypto/crypto.h (line 54); it would override CON-
FIG_.SSL_LENABLE_CLIENT configuration when it was defined. This verified that
ssl_client_new() function would only be called when (1) CONFIG_BINDINGS was
defined (i.e. set to True), (2) CONFIG_SSL_.ENABLE_CLIENT was not defined (i.e.,
set to False) and (3) CONFIG_SSL_FULL_MODE was not defined (i.e., set to False).
This aligned with the finding in Fig. 16. However, ssi_client_new() function was miss-
ing a new parameter, SSL_EXTENSIONS*, and caused a compilation error. This is
the same root cause as described in Fig. 15. Thus, when axTLS-2.1.5 fixed this issue
triggered by 3-way feature interaction, it missed the variability bug described in Fig.
15 and found by VarCORE™.

4.4 Research Questions

We now discuss what the results from our evaluation of VarCORE™ on the two
configurable systems indicate for our four research questions.

RQ1: Did VarCORE™ find missing variability requirement(s)?

VarCORE™ identified missing variability requirements in both applications.
VarCORE™ extracts all configurable features from variability requirements in the
RTW and uses them as feature nodes to build a feature tree for connectivity analysis.
Any discovery of unconnected feature (assume feature names are consistent in require-
ments) indicates that there is a missing requirement to specify the linkage between
the unconnected feature and the full connected feature tree.

For example, in the evaluation for cFE TIME, VarCORE™ detected that feature
Single_Processor was not defined as it was an unconnected feature from the cFE
TIME feature tree. As shown in VarCORE™’s requirement traceability, feature Sin-
gle_Processor was derived from variability constraint TIME-5.2. However, there was
no variability requirement in the RTW to define or specify the hierarchical relation-
ship between Single_Processor and any feature in the feature tree. Therefore, we can
conclude that there was a missing requirement in the RTW.

For verification, the generated variability model diagram by VarCORE™ can be
used as a visual aid to check for the missing Single_Processor feature. The visual
variability model diagram is useful as it allows the user to view all the features and
their hierarchical relationships and constraints. It is easy to identify if a feature is
missing from the diagram, which may indicate a missing requirement for the system.

In another example, axTLS’s changes, notes and errata'® show that some configu-
ration options such as Java and Perl Bindings do not work for 64-bit Linux machine.
However, there is no explicit variability feature for specifying 32-bit or 64-bit system,
as shown in axTLS variability model diagram. This finding can prompt the developer
to add the missing requirement.

B https://axtls.sourceforge.net/ README/index.html
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In summary, VarCORE™ finds missing variability requirements using its feature-
tree connectivity analysis. The variability model diagram is also useful for visually
checking for any missing feature which may point to a missing requirement.

RQ2: Did VarCORE™ find inconsistencies among the specified variabil-
ity requirements?

Our results show that finding inconsistencies among the specified variability
requirements and/or constraints is one of the major benefits of using VarCORE™.
Basically, VarCORE™ transforms all the textual variability requirements into a vari-
ability model, so that it can perform variability model analysis to find inconsistency
for repair.

For instance, the variability model analysis (see Section 4.2.1) for the flight software
reported Virtual_ MET as a false-optional feature (an optional feature present in all
products) in the initial constructed variability model. This was caused by a conflict
between the variability requirements TIME-6.1 and TIME-6.2. We showed in Section
4.2.1 that TIME-6.2 was erroneous. VarCORE™ assisted by tracing TIME-6.2 to its
original constraint statement (“TIME servers must be configured as using a virtual
MET”), which can then be updated accordingly.

For axTLS, VarCORE™ did not find any inconsistency among the specified vari-
ability requirements. This indicated that all the variability requirements were valid
and consistent. This outcome was expected as the requirements were synthesized from
a valid KConfig model of axTLS.

RQ3: Did VarCORE™ find variability requirement(s) not implemented
in the code?

We investigated this question and answered it affirmatively by running
VarCORE™’s combinatorial interaction analysis (see Section 4.2.2 and 4.3.2). The
results for the flight software (cFE TIME) show that neither requirement TIME-6 nor
requirement TIME-8 is implemented. The discovered configuration implementation
bugs are known open issues tracked by cFS’s Bug ID #109 ( https://github.com/n
asa/cFE/issues/109). Additionally, we analyzed the history of resolved bugs for cFE
TIME and found a variability bug #2072 (https://github.com/nasa/cFE/issues/2072)
which occurred only when feature Ezternal_Time_Source was configured to use feature
Spacecraft-Time. We reproduced the bug (temporarily undoing the fix) when building
the specific product variant and confirmed that the variability requirement was cor-
rect but not implemented correctly in the code. It is worth noting that this resolved
bug could have been detected earlier if VarCORE™ had been integrated into the cFS
build system.

On the other hand, the result for axTLS shows that the discovered variability
bug (see Fig. 15, let’s call this bugA) will cause axTLS compilation failure whenever
the single configuration option: Java_Bindings or Java_Language_Sample is enabled.
Additionally, we reproduced the variability bug (see Fig. 17) which was fixed in axTLS-
2.1.5 release by temporarily undoing the fix (let’s call this bugB). bugB was introduced
by a feature interaction. VarCORE™ found that the compilation failure caused by bugB
was triggered by a 3-way feature interaction by Language_Bindings, Server_Client and
Server_Client_Full_Diagnostic. Later, we found that the root causes for bugA and bugB
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are the same. However axTLS-2.1.5 fixed bugB, but missed bugA. Both issues could
be discovered and fixed together if VarCORE™ is integrated for use.

RQ4: Did VarCORE™ scale to support configurable software in both
domains?

Our evaluation on ¢cFE TIME and axTLS shows that VarCORE™ supports both
of our two configurable software applications, which differ in domain, number of
configurable features and build tools.

In VarCORE™ the processes of (1) variability requirements collection into RTW,
(2) variability model construction, and (3) static analysis of variability requirements
are the same for both ¢cFE TIME and axTLS. For other configurable software, our
approach scales although it may be bounded by system memory and computational
limits. However, VarCORE™’s semi-automated, combinatorial interaction analysis
must be modified and automated once to support a new project’s specific build system
and possibly new configuration framework. A project wanting to use VarCORE™ thus
incurs a relatively low, one-time overhead (as detailed in Section 3.5) in interfacing to
VarCORE™’s full functionality.

5 Discussion

It is known that the gap between requirements specification and implementation tends
to grow if requirements updates are not performed in a timely manner [52]. To mitigate
this, a developer can use VarCORE™ after making a change to quickly check all valid
configurations again. Moreover, the visualization provided by the variability model
guides any slicing that an analyst wants to do to restrict the scope while investigating
the requirements/code mismatch indicated by a failed build. VarCORE™’s built-in
focus on requirements traceability and visualization of relationships between features
also eases the discovery and removal of problematic changes.

5.1 Threats to Validity

The internal validity (i.e., whether the measured use of VarCORE™ to analyze the
requirements accurately reflects the ability of the methodology to find errors) faced
several challenges.

An internal threat to validity is that the variability requirements or constraints
themselves may be incorrect. VarCORE™ can assist to some extent in surfacing such
errors since it checks that all the configurations identified as valid by FeatureIDE can
be compiled and built for unit testing. Uncertainty modeling, as in [53], may offer a
way to cope with uncertainties as to the extent to which the documented software
requirements are adequate. Another threat to internal validity is that several steps
in VarCORE™ are manual (variability requirements/features extraction, features to
code variables mapping) and require domain expertise, with results dependent on the
accuracy of input provided by developers. We can automate more of the flow to lessen
this dependency; however, the current worksheet-to-model approach has the benefit
of being familiar with a low bar to adoption.

A significant threat to internal validity is that, although we assert that VarCORE T
can save developer effort and increase developer understanding, we do not provide

32



evidence from human studies, with that work needed before adoption. Toward this,
we have been in contact with NASA developers and hope to perform case studies in
the future.

A threat to construct validity was the unavailability of the original axTLS require-
ments. This led us to synthesize them from its KConfig model. As a result, the fact
that VarCORE™ did not find any inconsistencies in axTLS’s variability requirement
(RQ2) was expected and not useful in evaluating RQ2. However, it did give us some
confidence that the synthesized requirements correctly represented the KConfig model.
Additionally, as a sanity check, we also compared our axTLS variability model with
the feature model [54] that Knuppel et al. [55] translated from axTLS’s KConfig model
to the FeatureIlDE file format to further assure the correctness of our synthesized
requirements.

The external validity (i.e., the extent to which the conclusions asserted in this work
can be generalized) are limited by our two applications and the primary domain of
interest (spacecraft). However, we chose software systems from different domains, the
second of which is highly configurable, to provide some test of its potential breadth
of usage. Both are open-source projects with sizeable communities that have used
them. Its use on other applications might yield different results. Thus, the evaluation
reported here serves as a proof-of-concept study that would need to be repeated on
other software systems to draw generalized expectations.

We provide a package with scripts so that other researchers and developers can
replicate our results and use VarCORE™ on their own projects. For applications with
less variability and with requirements centralized in a single document, VarCORE™
may not provide the same benefits. However, the relatively low manual overhead
of VarCORE™ suggests its use might still be beneficial in preventing requirements
inconsistencies from propagating. Despite the threats, the evaluation of VarCORE™
indicates advantages in reducing requirements errors prior to testing for configurable
software systems.

5.2 Related Work

Variability models are well-studied and take multiple forms including feature models
[41], tabular configurability models [7], and formal models [56, 57|, created either
from requirements or reverse engineered from code. Feature models are widely used to
represent the commonality and variability of configurable systems [1, 11, 31, 37, 41].
Multiple approaches have been proposed to synthesize feature models from require-
ments and constraints in natural language (NL). Weston et al. [58] created a feature
model from NL requirements using natural language processing (NLP) and a clus-
tering algorithm, respectively. Davril et al. [59] mined the product descriptions from
online software repositories such as SoftPedia and CNET to identify a set of features,
then assembled them to construct a feature model. Mefteh et al. [60] derived a feature
model from functional requirements of the product variants written in NL, mining
features from product variants and constructing the feature model based on the hier-
archical relationship and constraints among the features. These approaches have in
common that they consist of two phases: automated extraction of requirements and
features, which mainly relies on NLP techniques, and feature model construction.
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However, even with major improvements in NLP techniques, it remains a chal-
lenging task to achieve high accuracy. It also requires significant, additional project
investment in domain expertise to pre-process requirement specifications for model
training, fine tune the models, and verify the results. Yu et al. [61], in a survey of trans-
formation approaches between requirements and analysis models, reported restricted
natural language, complicated pre-processing, and a great deal of user effort, with
many approaches specific to use-case templates. Mavin and Wilkinson have provided
five syntactic templates for expressing textual requirements that have been adopted
by multiple organizations [62]. Although techniques are likely to continue improving
rapidly, Zhao et al. [63] still recently noted a “huge discrepancy” between the state of
the art and current NLP4RE research. Further, the variability requirements and con-
straints for many systems, including NASA’s cFE TIME here, are scattered among
documents without having fixed patterns or consistent formats. This also increases
the difficulty of accurately automating requirements/constraints and feature extrac-
tion. For these reasons VarCORE™ uses manual extraction of requirements/constraints
from dispersed documents.

VarCORE™ uses combinatorial interaction testing (CIT) techniques to generate
product variants with t-way feature combinations from a feature model. Combinatorial
interaction testing, described in Section 2.5, is a mature field. Hervieu et al. [64]
introduced PACOGEN to generate pairwise test configurations from feature models
using a constraint programming technique. PACOGEN was limited to pairwise (2-way)
interactions between features and was not evaluated on real-world feature models.
In contrast, VarCORE™ uses the start-of-the-art CIT tool ACTS [43] to generate t-
way combinatorial interactions among features, with ¢ ranging from 1 to 6, and was
evaluated on two real-world industrial applications, NASA’s cFS and axTLS. Lopez-
Herrejon et al. [65] proposed a framework for comparing CIT techniques on feature
models.

Henand et al. [66] showed that the state-of-the-art CIT tools, including ACTS,
which we use, cannot scale to systems with very large configurable features. As an
example, for the Linux kernel with 6,888 configurable features and 343,944 constraints,
the number of pair-wise and 3-way configurations could be more than 9.25E7 and
4.19E11. They proposed a randomized and a search-based approach that generates
and prioritize configurations from feature model of very large configurable system
within time and space budgets. However, the approach gains scalability by trading
off test coverage, which may be problematic for critical systems. A recent study by
Bombarda et al. [67], introduced a method to maximize the reuse of existing generated
combinatorial configurations for testing evolving feature models. It used a greedy
approach to compute the dissimilarity between test suites based on changes in the
feature models to select re-usable test suites.

More broadly, Gazzillo and Cohen recently urged that configurability be pro-
moted to a first class element, noting that “configurable software makes up most
of the software in use today.” They cite a need for common ground to “bring
together researchers and practitioners who are typically siloed” [68]. We hope that the
VarCORE™ framework may provide one such opportunity for joint innovation.
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5.3 Future Work

A long-range goal is to include VarCORE™ in the cFS tool suite. Toward this goal
we plan to automate additional portions of VarCORE™, perhaps using existing NLP
techniques [69-71], and to enable variability code auto-analysis [29, 72] to further
evaluate the consistency between requirements specification and implementation.

6 Conclusion

We proposed VarCORET, a new tool-supported framework to centralize, specify,
and analyze variability requirements and constraints. Our approach uses variability-
modeling and combinatorial interaction testing (CIT) techniques to perform its
automated analyses and handle scalability issues. Results from our evaluation of
VarCORE™ on two diverse, configurable software systems show that it was effective
at uncovering and helping resolve missing, inconsistent, and conflicting variability
requirements and cross-tree constraints, including some that had been undetected
even after implementation.
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