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Abstract

Human civilization relies on estuaries, and many estuarine ecosystem ser-
vices are provided by microbial communities. These services include high
rates of primary production that nourish harvests of commercially valuable
species through fisheries and aquaculture, the transformation of terrestrial
and anthropogenic materials to help ensure the water quality necessary to
support recreation and tourism, and mutualisms that maintain blue carbon
accumulation and storage. Research on the ecology that underlies microbial
ecosystem services in estuaries has expanded greatly across a range of es-
tuarine environments, including water, sediment, biofilms, biological reefs,
and stands of seagrasses, marshes, and mangroves. Moreover, the applica-
tion of new molecular tools has improved our understanding of the diversity
and genomic functions of estuarine microbes. This review synthesizes recent
research on microbial habitats in estuaries and the contributions of mi-
crobes to estuarine food webs, elemental cycling, and interactions with plants
and animals, and highlights novel insights provided by recent advances in
genomics.
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INTRODUCTION

Microbes are essential, inhabiting every estuarine environment and carrying out ecological func-
tions that bridge the interface between ecology and chemistry. Microbes are simply defined as
microscopic organisms and thus include bacteria, archaea, protists, fungi, viruses, and microalgae.
Ecology is defined as the study of systems where individual organisms are considered as elements
of interaction, either among themselves or with their environment (Margalef 1968). Prokaryotes
like bacteria and archaea are the primary decomposers of organic matter, and they perform di-
verse metabolic functions that control the chemical state and biological availability of essential
elements (nitrogen, phosphorus, sulfur, iron, manganese, silicon, etc.). These organisms also serve
as prey for protists in microbial food webs that participate in organic matter decomposition, nu-
trient recycling, and the transformation of indigestible detrital materials into biomass for larger
consumers.

This review focuses on interactions among microbes and between microbes and their envi-
ronment, including the roles they play in biogeochemical cycling. The sections below describe
where microbes are found in estuaries, how they interact in food webs, and their key ecological
functions in the many environments that make up estuaries, including water, sediment, intertidal
wetlands (marshes, mangroves, etc.), and subtidal stands of plants and animals (seagrasses, benthic
algae, and coral and shellfish reefs). It also provides an update on the current state of knowledge
concerning ecologically important microbial metabolic processes that influence biogeochemical
cycling in estuaries. This review aims to strike a balance between broad concepts in estuarine mi-
crobial ecology that have been well studied by many scientists over the years and detailed examples
from recent literature that provide granularity and specificity. Considering the limitations on the
number of citations, our aim was to cite the most recent relevant work, from which further inves-
tigation would lead to the seminal work done by earlier researchers. This approach allows us to
raise up the voices of a diverse portfolio of new scientists working in estuarine microbial ecology
while still creating pathways to uncover, through their work, the foundational papers in the field.

ESTUARINE ENVIRONMENTS

Estuaries are remarkably variable in shape and size, and they feature many diverse interacting
habitats (Figure 1). Many estuaries are shallow (average depth <10 m), so water and sediment en-
vironments are often intimately coupled, exchanging chemistry and biology via diffusion, trophic
interactions, and particle settling and resuspension. Seagrass beds, macroalgal stands, and coral and
shellfish reefs sit at the interface between water and sediment, influencing both environments.
Tidal wetlands like marshes and mangroves are also closely coupled to the water environment
via daily tidal inundation and material exchange. Moreover, all of these estuarine habitats occur
across horizontal gradients of salinity that extend, for example, from tidal freshwater wetlands
to salt marshes and from brackish submerged aquatic vegetation beds to marine seagrass beds
(Figure 1). Salinity also varies vertically in many estuaries, creating density-stratified water
columns that isolate bottom waters from exchange with the atmosphere and favor two-layer estu-
arine circulation with net flow directed up-estuary in the bottom layer (Snedden etal. 2023). Every
estuary features a different combination of these environments, and every environment features a
different assemblage of microbes and their associated ecological functions.

Microbes in estuarine plankton are well studied, and many publications provide detailed de-
scriptions of their taxonomic and genomic diversity (Fortunato & Crump 2015, Wang etal. 2021).
Planktonic microbes in estuaries are taxonomically distinct from those in freshwater and coastal
oceans but can include organisms dispersed from these environments depending on the water
residence time (e.g., Morency et al. 2022). Much of our understanding of microbial ecology in
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Figure 1

Schematic diagram identifying representative microbial habitats found in estuaries around the world. Insets indicate the important roles
of bioturbating organisms (/eft) and the rhizospheres of estuarine macrophytes (right). Estuaries are defined by the mixing of coastal
marine water with freshwater entering through rivers and groundwater, resulting in distinct salinity gradients and the unique habitats
pictured here. Figure created with symbols from the Integration and Application Network (https://ian.umces.edu/media-library)
(CC BY-SA 4.0). This figure is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

estuarine water comes from ocean research on microbial food webs (Azam et al. 1983) and mea-
sured rates of respiration, growth, and grazing. In estuarine water, microbial food webs include
food chains of prokaryotes, small heterotrophic flagellates, and larger ciliates and heterotrophic
dinoflagellates. In general, only the larger or particle-associated microbes are big enough to
be grazed by abundant planktonic animals like copepods or benthic filter feeders like mussels
(Figure 2). These planktonic microbial communities are responsive to phytoplankton blooms
(Brussaard et al. 1996) and allochthonous organic matter inputs (Crump et al. 2017) and turn over
quickly due to grazing and viral lysis (Kirchman 2016). Key ecological functions of planktonic
estuarine microbes mirror those in oceans and are dominated by aerobic processes like aerobic
respiration, nutrient recycling, and transformation of dissolved organic matter. In many estuaries,
microbial regeneration of nutrients via mineralization of organic nitrogen and phosphorus fuels
a portion of estuarine primary productivity annually (Wilkerson et al. 2006), and planktonic mi-
crobes carry out aerobic oxidation of reduced inorganic compounds like ammonium and sulfide,
thus contributing to nitrogen and sulfur cycling in estuaries.

Sediments feature microbial food webs that are similar to those in plankton (Dietrich & Arndt
2000), except that benthic microbes are generally 1,000 times more concentrated than they are in
water and feature a strikingly high diversity, likely due to the variety of microenvironments and
redox conditions in sediments (Tee et al. 2021). Sediment microbes like those in water respire
detritus carbon and recycle nutrients, and they form microbial food webs with prokaryotes, flag-
ellates, ciliates, amoeba, foraminifera, and viruses (Lei et al. 2014, Middelburg 2018). But unlike
in water, sediment microbes are grazed by larger organisms via direct consumption of sediment
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Figure 2

Composite images of microbes and predators with all organisms accurately scaled in and overlaid on an image of the head and antennae
of the copepod Eurytemora carolleeae. The bacteria and archaea and the Poterioochromonas sp. mixotrophic nanoflagellates are shown both
at the correct relative sizes and in magnified images (zop /ef?). The small ciliates and dinoflagellates are (#) a tintinnid ciliate (Fzvella sp.),
(&) a dinoflagellate (Gyrodinium sp.), (c) a dinoflagellate (Protoperidinium sp.), (d) an oligotrich ciliate (Strombidium sp.), and (e) a ciliate
(Urotricha platystoma). At the bottom right are the chain-forming diatoms Skeletonema costatum and Pseudo-nitzschia pungens/

australis, and at the top right is a large Frontonia sp. ciliate that recently ingested some small diatoms. At the bottom left is the feeding
apparatus of the mussel Mytilus edulis, showing the water-pumping frontal cilia (fc) that create a downward feeding current, while the
upward stroke by the feather-like laterofrontal cirri (Ifc) capture and transfer food particles to the frontal cilia with a retention
efficiency of 100% for particles down to 4 um [lateral cilia (Ic) and pro-laterofrontal cirri (p-lfc) are also shown]. Eurytemora carolleeae
image provided by Teresa Popp, Carol Eunmi Lee, and Catherine Lorin-Nebel. Bacteria and archaea image adapted from Giovannoni
et al. (1990) with permission from the American Society for Microbiology. Poterioochromonas sp. image adapted with permission from
Bob Andersen and D.J. Patterson. Protists #— adapted from Tintinnidguy/Wikipedia (https://commons.wikimedia.org/wiki/File:
Dinoflagellates_and_a_tintinnid_ciliate.jpg) (CC BY-SA 4.0). Protists 4 and ¢ adapted with permission from Antonio Guillén/
Proyecto Agua/Flickr (https://www.flickr.com/photos/microagua/5229147099 and https://www.flickr.com/photos/microagua/
4892901955, respectively) (CC BY-NC-SA 2.0). S. costatum and P. pungens/australis images adapted with permission from Phyto’pedia
(https://phytoplankton.eoas.ubc.ca) (CC BY-NC-ND 3.0). Frontonia sp. image adapted with permission from Robert Berdan
(https://www.scienceandart.org). M. edulis image adapted with permission from Riisgard et al. (2015). This figure is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

particles by infauna (Schratzberger & Ingels 2018). Sediment surfaces often feature microbial
mats built by photosynthetic microbes that greatly narrow redox gradients (oxic above, anoxic
below) and create fine-scale interactions between aerobic and anaerobic microbial communities.
Grazing and burrowing activities by infauna (i.e., bioturbation) expand these redox gradients and
modify redox conditions, which influences many microbial biogeochemical processes, including
denitrification and sulfide oxidation (Schratzberger & Ingels 2018 and references therein).
Estuarine plants also modify sediment redox gradients and influence microbial communities
in marshes, mangroves, submerged aquatic vegetation, and seagrass beds. Rhizosphere microbes
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living on and around roots and rhizomes of submerged and emergent plants are taxonomically
similar to sediment microbes (Martin et al. 2020) but often include active populations that interact
with plants directly (Crump et al. 2018). Plant roots modify redox conditions in sediments by
injecting oxygen during the day and using oxygen at night (Scholz et al. 2021a and references
therein). This enhances the activity of other microbial communities that use both aerobic and
anaerobic metabolisms, such as coupled nitrification—denitrification, coupled sulfate respiration
and sulfur oxidation, and methane cycling.

MICROBIAL FOOD WEBS

Microbial food webs capture the carbon and energy of detritus organic matter and in the process
mineralize a huge fraction of the organic carbon, nitrogen, and phosphorus that cycle in estu-
aries (Williams 1981). These food webs are based on heterotrophic bacteria, archaea, and fungi,
which are the principal consumers of detritus. These organisms are then grazed by protists or
destroyed by viruses in an intricate microscopic food web that ultimately mineralizes most of the
organic matter it consumes due to inefficient trophic transfers over multiple trophic steps (Azam
et al. 1983). Microbial food webs also convert a small fraction of that material into living biomass
for consumption by predators. In water, predators include many different planktonic animals—
such as copepods, rotifers, and mysid shrimp, as well as benthic filter feeders such as mussels and
sponges—that generally only consume larger microbes, like ciliates. In sediments, predators are
infauna such as nematodes and polychaetes that can consume microbes of any size (Bergtold et al.
2005, Du et al. 2012). A diagram of carbon flow through microbial food webs (Figure 3) em-
phasizes three different modes of carbon transfer: (#) as dissolved organic carbon (DOC) that is
consumed by bacteria and archaea, (J) as particulate organic carbon (POC) (i.e., detritus) that is
colonized by prokaryotes and fungi and consumed by larger animals that directly ingest parti-
cles, and (¢) as living phytoplankton and benthic microalgae that are consumed at many different
trophic levels.

DOC is the main energy source for microbial food webs in estuarine waters. Bacteria and
archaea recover DOC, and these organisms, in turn, are consumed primarily by heterotrophic
and mixotrophic flagellates that are then consumed by ciliates and larger organisms. Viruses in-
fect and destroy (lyse) microbes at all levels of this food web (Wommack & Colwell 2000), and
when this happens, they release DOC that can subsequently be consumed by bacteria and archaea
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Figure 3

Microbial food web showing sources of organic matter and macroscopic consumers. Green lines represent primary production, yellow
lines nonliving organic matter, and blue lines living organic matter.
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again. DOC also coalesces in estuaries, forming aggregates with small particles and settling onto
sediments as POC (Asmala et al. 2014).

POC feeds microbial food webs in estuarine sediments where infauna and other deposit-
feeding animals consume microbes as they feed on detritus particles. Grazing by deposit feeders
reduces bacterial and fungal biomass, but at the same time it stimulates microbial productiv-
ity and accelerates the flux of energy and nutrients through microbial food webs (Walters &
Moriarty 1993) via bioturbation that oxidizes sediment and stimulates nutrient transformations
such as coupled nitrification—denitrification and sulfide oxidation (Vasquez-Cardenas et al. 2016).
Flagellates and ciliates also consume bacterial biomass in sediments, but their contribution is
not well constrained due to methodological limitations (Tuorto & Taghon 2014 and references
therein). A diverse community of deposit feeders, including nematodes, rotifers, foraminifera,
copepods, and bivalves (Lei et al. 2014, Wieltschnig et al. 2003), consume ciliates, flagellates, and
bacteria and thus institute top-down control on sediment microbial food webs (Middelburg 2018).
As in estuarine water, sediment microbial food webs consume far more detritus organic matter
than larger organisms do (see the section titled Microbial Respiration and Detritus Degradation,
below), but the importance of living microbial biomass in the diet of deposit-feeding invertebrates
remains uncertain.

Microbial food webs are also important consumers of primary production in estuaries, par-
ticularly in water where larger heterotrophic protists directly consume phytoplankton (Putland
& Iverson 2007). For example, measurements over a year in the Matang Mangrove estuary in
Malaysia indicated that approximately 82% =+ 27% of phytoplankton production was consumed
by protists (Yong et al. 2022). Similar results were found for the Zuari River estuary in India (58—
97% of primary production; Gauns et al. 2015). Less is known about protist grazing of benthic
microalgae, but early studies (e.g., Epstein 1997) suggested that benthic microbial food webs are
dominant consumers of both detritus and benthic primary production. One recent study of sev-
eral coastal and estuarine sites suggested that herbivory was the most common feeding strategy
for benthic ciliates (Lei et al. 2014), although other studies in estuarine and freshwater sediments
suggested that benthic ciliates share this trophic level with microscopic nematodes (Bergtold etal.
2005, Du et al. 2012).

In summary, estuarine microbial food webs feature a complete set of trophic levels, includ-
ing autotrophic primary producers such as phytoplankton and benthic microalgae; heterotrophic
detritivores such as bacteria, archaea, and fungi that consume dissolved and particulate organic
matter; and a diverse assemblage of herbivorous and carnivorous protists. Trophic exchange
among these microscopic organisms is responsible for much of the carbon cycling that occurs
in estuaries.

MICROBIAL AUTOTROPHIC PRODUCTION
Photoautotrophy

Primary production in most estuaries is accomplished mainly by microbial photosynthesizers such
as eukaryotic phytoplankton, cyanobacteria, and benthic microalgae (Pinckney 2018), which pro-
vide dissolved and particulate organic matter to support both microbial and macroscopic food
webs. Intertidal and subtidal macrophytes can contribute to primary production in some estuaries,
but even in salt marshes, benthic microalgae contribute a significant (Alongi 2020) and sometimes
large fraction (approximately half) of total primary production (Zedler 1980). In these environ-
ments, macrophyte biomass and allochthonous detritus are thought to dominate carbon that is
sequestered in sediments (Geraldi et al. 2019), likely due to its chemical complexity. However,
isotopic studies have suggested that microbial photosynthesizers are often more important than
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macrophytes in the diets of estuarine planktonic and benthic invertebrates (Kim et al. 2020, Page
1997).

Besides contributing to estuarine productivity, benthic microalgae can physically and chem-
ically modify estuarine sediments by forming microbial mats that bind sediment particles and
limit sediment resuspension in subtidal and intertidal sediment (Cuadrado et al. 2011) and in
nonvegetated areas of marshes and mangroves (Bolhuis & Stal 2011). The growth of organisms
in these mats, a combination of photo- and chemoautotrophs and heterotrophs, creates sharp
and intricate vertical layers in microbial communities and redox conditions (Stal et al. 2019) that
undergo diel shifts, with daytime oxygen production and sulfide oxidation and nighttime oxy-
gen consumption and sulfide production (Mandal et al. 2021). These layers typically consist of
oxygenic phototrophic algae and cyanobacteria at the surface, followed by anoxygenic photosyn-
thetic purple and green sulfur-oxidizing bacteria. Within and below these layers are aerobic and
anaerobic heterotrophic taxa that consume photosynthate, including sulfate reducers that sup-
port chemoautotrophic sulfur-oxidizing bacteria by producing hydrogen sulfide (Armitage et al.
2012). Photosynthate can also support denitrifying bacteria (Morelle et al. 2022), although ben-
thic microalgal growth can also inhibit denitrification by competing with denitrifiers for nitrate
(Risgaard-Petersen 2003).

Chemoautotrophy

Chemoautotrophs, including nitrifiers and sulfur oxidizers, are important producers in some
marine systems (Middelburg 2011), where they fix CO; by oxidizing reduced inorganic com-
pounds. In nearshore systems, including estuaries, this light-independent dark carbon fixation was
estimated at 0.19 Pg C y~! (~5% of photoautotrophy) globally (Middelburg 2011), and several
recent studies have argued that dark carbon fixation should be included in ocean carbon budgets
(Baltar & Herndl 2019, Vasquez-Cardenas et al. 2020). However, dark carbon fixation is rarely in-
cluded in estimates of estuarine primary productivity despite the importance of chemoautotrophs
in estuarine nitrogen and sulfur cycling (see the section titled Nitrogen Cycle Processes and the
section titled Sulfur and Methane Cycling, below). High rates of dark carbon fixation have been
recorded in oxic-anoxic interfaces and particle-rich turbidity maxima regions of diverse estuaries,
ranging from deep systems like the Baltic Sea (Glaubitz et al. 2009) and Saanich Inlet (Juniper
& Brinkhurst 1986) to the shallower Rodrigo de Freitas Lagoon (Signori et al. 2020) and the
Columbia River estuary (Briuer et al. 2013).

The highest rates of dark carbon fixation in estuaries are typically found in surface sediments
at the interface between oxygenated water and anoxic sediments (Vasquez-Cardenas et al. 2020).
Here, sulfide oxidizers, principally members of the class Gammaproteobacteria, account for 70-
86% of dark carbon fixation (Dyksma et al. 2016) and are estimated to fix 0.122 Pg C y~! globally,
which is similar to the rate of carbon burial in vegetated marine sediments (Duarte et al. 2005).
These chemoautotrophic carbon fixation rates are enhanced by oxygen translocation into sedi-
ments via plant roots (Thomas et al. 2014) and bioturbation (Vasquez-Cardenas et al. 2016) that
effectively expand the area of oxic-anoxic interfaces, where sulfur oxidizers thrive.

One recently characterized group of sulfur oxidizers, cable bacteria, are important members
of chemoautotrophic communities in estuarine sediments, where they carry out electrogenic sul-
fur oxidation (Pfeffer et al. 2012). These colonial bacteria form centimeter-long, multicellular
filaments that bridge redox gradients and shuttle electrons between sulfidic and oxygenated sed-
iments, thereby extending the depths over which dark carbon fixation can occur (Boschker et al.
2014). Recent studies have found these organisms associated with roots of seagrass, submerged
aquatic vegetation, marsh grass, and mangroves (Scholz et al. 2021b); the walls of animal burrows
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(Li etal. 2020a); and sediments of bivalve reefs (Malkin et al. 2017). Cable bacteria and other sulfur
oxidizers are thought to benefit plants and animals by detoxifying hydrogen sulfide and potentially
serving as prey for burrowing infauna (Li et al. 2020a).

Nitrifying bacteria and archaea are another major group of chemoautotrophs in estuaries.
These organisms use energy from the oxidation of ammonium and nitrite to fix inorganic carbon
into biomass through various chemoautotrophic pathways, including the recently discovered ar-
chaeal 3-hydroxybutyrate 4-hydroxypropionate cycle (Kénneke et al. 2014), through which they
contribute substantially to the global carbon cycle (Meador et al. 2020). In estuaries, nitrifiers
inhabit water and oxygenated surface sediments, where their abundance and growth depend on
ammonium and oxygen availability and may be enhanced by temperature (Damashek & Francis
2018) and inhibited by light and competition with photoautotrophs for ammonium (Arun et al.
2021). The contribution of nitrifiers to dark carbon fixation rates in estuaries is not well stud-
ied but is thought to be low compared with their contribution to sulfide oxidation, particularly in
estuarine sediments (Dyksma etal. 2016, Middelburg 2011). This idea is supported by a study of in-
tertidal sedimentin the Yangtze River estuary that showed correlations among dark carbon fixation
rates, sulfide concentrations, and Calvin cycle cbbM genes from sulfur-oxidizing bacteria, as well
as preferential labeling of these c#bM genes in incubations with * C-bicarbonate (Liu et al. 2022).

Heterotrophic Carbon Fixation and Anaplerosis

Dark carbon fixation is sometimes considered secondary production because it depends on en-
ergy from inorganic compounds released during organic matter oxidation (e.g., ammonium and
hydrogen sulfide; Dyksma et al. 2016, Middelburg 2011). This categorization is somewhat con-
venient because measurements of dark carbon fixation using *C or *C incubations include both
chemoautotrophic CO; fixation and nonautotrophic CO; fixation via heterotrophic metabolisms.
The most important of these heterotrophic metabolisms is anaplerosis, which uses the enzyme
pyruvate carboxylase to replenish intermediates like oxaloacetate in the tricarboxylic acid cycle
(Braun et al. 2021). Heterotrophic carbon fixation has been documented in several marine sys-
tems (e.g., DeLorenzo etal. 2012, Molari et al. 2013). One early study in the freshwater Coromina
Lagoon in Spain showed that dark CO; incorporation in water was dominated by heterotrophs
and accounted for 31% of total carbon fixation (Llirés et al. 2011). In eutrophic Guanabara Bay,
Brazil, dark carbon fixation was low compared with bacterial secondary production and was at-
tributed to anaplerotic reactions (Signori et al. 2018). This form of dark carbon fixation is likely
to be important in estuaries that receive a large amount of detritus that supports heterotrophic
growth and associated anaplerosis and other forms of heterotrophic carbon fixation.

MICROBIAL RESPIRATION AND DETRITUS DEGRADATION

Estuaries are often net heterotrophic ecosystems where respiration of autochthonous organic car-
bon is enhanced by respiration of allochthonous material received from land or imported from
coastal oceans (Caffrey 2004). Degradation and respiration of detritus carbon in estuaries are car-
ried out by many organisms, including microbes and detritivorous invertebrates. These organisms
cooperate to convert particulate detritus into dissolved organic matter, and microbes then respire
DOC and mineralize organic nutrients. Rates of respiration vary depending on the bioavailability
of the organic carbon and local environmental conditions (e.g., redox and temperature). The high-
est rates are associated with freshly produced organic carbon in oxic conditions, and the slowest
are associated with older organic carbon in anoxic conditions.

The bioavailability of organic carbon for microbial respiration varies with source and with age
in estuaries. Terrestrial DOC and POC are thought to be older and less bioavailable due to bio- and
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photodegradation during their transit to estuaries (Bianchi et al. 2018). This material includes dis-
solved organic matter from rivers and groundwater and sediment-associated particulate organic
matter that accumulates in marshes, mangroves, and river delta environments. However, some
allochthonous organic matter, particularly riverine and coastal phytoplankton, can enhance het-
erotrophic activity in estuaries (Crump et al. 2017, Smith & Hollibaugh 1997). Autochthonous or-
ganic matter sources in estuaries vary broadly and range from highly bioavailable material released
by growing phytoplankton and benthic microalgae to recalcitrant lignin-based material produced
by mangrove trees. The types of microbes that degrade these different materials are diverse, and
seasonal variation in organic matter supply is associated with seasonally predictable synchronous
changes in microbial communities of river and estuarine systems (e.g., Kellogg et al. 2019). For
example, in the Baltic Sea during spring runoff, bacterial specialist taxa were favored by the influx
of terrestrial DOC, whereas in summer and fall, bacterial generalist taxa capable of respiring either
terrestrial or phytoplankton DOC were more abundant (Figueroa et al. 2021). Another study in
the Altamaha—Doboy-Sapelo estuary, USA, used incubation experiments to show that microbes
have a strong preference for marine DOC, leaving behind residual organic matter with a strongly
terrestrial signature that was more resistant to decomposition (Medeiros et al. 2017).

Most respiration in estuaries is accomplished with either the most energetic electron acceptor,
oxygen, or the most abundant electron acceptor, sulfate. In oxygenated water and sediments, respi-
ration is accomplished by aerobic heterotrophs that outcompete anaerobes for organic matter re-
sources. Aerobic respiration in water is assumed to dominate organic carbon oxidation in estuaries,
although few studies compare respiration in water and sediment at the ecosystem scale. One meta-
analysis estimated that most organic carbon respiration occurs in estuarine water, with sediments
accounting for on average 24% of total respiration in estuaries (Hopkinson & Smith 2005). Recent
studies have suggested that the relative contributions of benthic and pelagic respiration are more
variable and depend on the system and season (e.g., Hetland & DiMarco 2008), although many of
these studies restrict comparisons of sediment respiration to pelagic rates in subpycnocline bottom
waters rather than the whole water column (Murrell & Lehrter 2011, Zhou et al. 2021).

In anoxic estuarine environments, sulfate reduction is the predominant decomposition path-
way, accounting for an estimated 70-90% of decomposition in salt marshes (Howarth 1984) and
50-90% in other coastal sediments (Soetaert et al. 1996). This anaerobic respiratory process dom-
inates despite the low energy of sulfate respiration because sulfate is the second most concentrated
anion in seawater (Canfield & Farquhar 2009) and is orders of magnitude more concentrated than
any other electron acceptor (e.g., Segarra et al. 2013).

In estuarine environments where primary production outpaces respiration, including coastal
wetlands and seagrass beds, slow decomposition and respiration via sulfate reduction lead to high
rates of carbon storage in anoxic sediments below the reach of plant roots (Chmura et al. 2003),
leading to their designation as coastal blue carbon habitats (reviewed in Macreadie et al. 2019).
Slow microbial decomposition and associated carbon storage also contribute to the ability of
intertidal salt marshes and mangrove habitats to grow vertically and keep pace with sea level rise,
although rates of vertical accretion are system specific and depend, in part, on organic matter
content, sediment delivery, tide range, and distance from tidal creek channel (Chmura & Hung
2004).

These issues stimulated research into the impacts of eutrophication and climate change on
rates of decomposition and respiration in blue carbon habitats. One recent study demonstrated
eutrophication-enhanced respiration in marsh sediment incubations via the addition of more en-
ergetic electron acceptors, such as nitrate (Bulseco et al. 2019). Nitrate addition has the potential
to diminish the carbon storage capacity of blue carbon habitats (Deegan et al. 2012, Palacios et al.
2021), although the effect may be offset in some systems by eutrophication-enhanced primary
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production (Moseman-Valtierra et al. 2022). The relative balance between enhanced decomposi-
tion and enhanced primary productivity may be a function of the form of nitrogen that is available
(Bowen et al. 2020). Changes in salinity associated with sea level rise and shifting precipitation
patterns may also influence degradation and respiration in these environments. In one study, soil
respiration and organic carbon loss were enhanced by both increases and decreases in salinity
(Chambers et al. 2013), suggesting that any deviation from average salinity increases decomposi-
tion. The mechanisms behind this effect remain unclear but may include shifting availability of
electron acceptors used by microbes for anaerobic respiration.

In estuarine environments where respiration keeps pace with primary production, nutrient
recycling (i.e., mineralization, regeneration, and ammonification) helps maintain continuous pri-
mary productivity. In fact, for many estuaries the fraction of phytoplankton productivity supported
by recycled nitrogen is very high for most of the year. In surface oceans, the fraction of productiv-
ity supported by new nitrogen flux from deeper waters is referred to as the f ratio, where low ratios
indicate that productivity is supported by recycled nutrients (Eppley & Peterson 1979). In estuar-
ies, where new nitrogen flux is mainly from rivers and coastal oceans, the f ratio is often much less
than 0.5 and increases only when external nitrogen inputs peak. This effect has been observed in
many estuaries, such as during high freshwater flow in San Francisco Bay (Wilkerson et al. 2006)
and Apalachicola Bay (Mortazavi et al. 2000) and during influx of nutrient-rich coastal water to
Funka Bay, Japan, from the Oyashio current (Kudo et al. 2015). Thus, through nutrient recycling,
microbial heterotrophic activity is essential for maintaining continuous primary productivity in
estuaries.

Estuarine environments where respiration outpaces primary production are often light-limited
habitats where allochthonous organic matter is respired, such as deeper water and sediments
(Fennel & Testa 2019) and estuarine turbidity maxima (Abril et al. 1999). These environments
are susceptible to hypoxia and anoxia, when oxygen consumption by aerobic respiration is greater
than oxygen resupply by oxygenic photosynthesis, advection, and diffusion (Fennel & Testa
2019). The taxonomic composition of microbial communities in low-oxygen bottom waters is
sometimes different from that of surface waters (e.g., Wu et al. 2019). However, temporal studies
suggest that these communities are not highly sensitive to reductions in oxygen concentration
(Crump et al. 2007, Zaikova et al. 2010), possibly because many aerobic bacteria can function at a
very low oxygen concentration or switch to anaerobic respiration facultatively. One pair of studies
used metatranscriptomics to show a gradual change in the expression of genes for anaerobic
respiration following the formation of anoxia in Chesapeake Bay bottom waters (Eggleston et al.
2015, Hewson et al. 2014). Low-oxygen conditions are expanding in estuaries and oceans globally
(Breitburg et al. 2018), and more research is required to understand microbial taxonomic and
functional succession during seasonal hypoxia and anoxia.

NITROGEN CYCLE PROCESSES

The essential nutrient nitrogen is a component of diverse organic and inorganic compounds in es-
tuaries, and most chemical transformations of these compounds are only carried out by microbes
(Figure 4). The main external sources of nitrogen to estuaries are freshwater (rivers and ground-
water) and ocean water that carry nitrogen into estuaries, mainly in the form of nitrate and organic
nitrogen. Other potentially important sources are atmospheric deposition of inorganic nitrogen
and autochthonous nitrogen fixation. As described above, organic nitrogen (e.g., urea, nucleotides,
and amino acids) is mineralized to ammonium primarily by heterotrophic microbes in estuarine
water and sediments. Ammonium can be taken up by primary producers or oxidized by nitrifying
bacteria and archaea. Once oxidized, nitrogen becomes useful for a suite of anaerobic microbial
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Nitrogen cycle processes in estuaries, showing the major oxidation and reduction reactions that are
performed by microbial communities. Typical oxygen conditions associated with these processes are
indicated by background shading. Abbreviations: anammox, anaerobic ammonium oxidation; DNRA,
dissimilatory nitrate reduction to ammonium; Norg, organic nitrogen. Figure adapted from Philippot et al.
(2007) with permission from Elsevier.

processes, many of which produce gaseous nitrogen compounds, including inert N gas and the
greenhouse gas N, O (Figure 4). The primary sinks for nitrogen in estuaries are burial, uptake
by primary producers, export to coastal oceans, and loss to the atmosphere. Recent metagenomic
studies have shed new light on the microbial nitrogen cycle in estuaries and coastal waters.

Nitrification

Nitrification, the oxidation of nitrogen from NH;* to NO; ™, is a critical transformation in the
nitrogen cycle of estuaries. The process has two steps: the conversion of NH4* to NO, ™ followed
by the conversion of NO, ™ to NO; ™. These two steps, ammonia oxidation and nitrite oxidation,
respectively, have been recognized as important steps in nitrogen management since their dis-
covery in the late 1800s (Winogradsky 1890); however, it is only with recent genomic insights
that we recognize the breadth of organisms that carry out these processes (Zou et al. 2020 and
references therein). Traditionally, ammonia oxidation was thought to be restricted to clades of
Betaproteobacteria and Gammaproteobacteria, but early shotgun metagenomics suggested that
the ammonia monooxygenase gene, encoding an essential protein in ammonia oxidation, might
exist within the archaea (Venter et al. 2004). This was later confirmed when the first ammonia-
oxidizing archaea were isolated (Kénneke et al. 2005), dramatically expanding our list of nitrifying
taxa. Ammonia oxidation is considered the rate-limiting step in nitrification and has thus received
considerably more attention than nitrite oxidation; however, new insights into nitrite oxidation are
also expanding our understanding of nitrification. Of particular interest is that nitrite oxidation,
long considered to be oxygen dependent, appears to be possible in both oxic and anoxic waters
(Sun et al. 2021), greatly expanding the number of estuarine environments where nitrification can
occur. Lastly, even the long-held paradigm that the two steps of nitrification are facilitated by two
distinct syntrophic microbes has fallen with the recent discovery of complete ammonia oxidizers
(comammox bacteria) that can perform both steps within a single cell (Daims etal. 2015). Sedlacek
(2020) published a summary of these bacteria and other paradigm shifts in nitrification over the
last 150 years.
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In estuaries, nitrification forms a bridge between regeneration of NH4 " from organic nitrogen
and removal of NO; ~ via denitrification (Figure 4), thereby helping to prevent eutrophication of
coastal waters. Nitrification requires NH4" and so can occur in estuarine waters and surface sed-
iments in systems with NH4" inputs both from anthropogenic sources and from autochthonous
production via mineralization (also called ammonification). Rates of nitrification in estuaries are
generally higher than those found in adjacent ocean systems. However, they are highly variable
in space and time, with the highest rates of nitrification typically associated with estuarine tur-
bidity maxima and at oxic-anoxic interfaces (Damashek & Francis 2018). Damashek et al. (2016)
reported average rates of nitrification in the ocean water column to be 50 nM d~!, whereas es-
tuaries can have rates in excess of 10,000 nM d~!'. Water column nitrification is also a source
for the potent greenhouse gas N, O, though a recent meta-analysis indicated that benthic deni-
trification dominates the N, O flux from estuaries (Murray et al. 2015). The relative importance
of ammonia-oxidizing archaea (AOA) versus ammonia-oxidizing bacteria (AOB) also varies from
system to system; in some systems (e.g., San Francisco Bay; Mosier & Francis 2008), AOB were
more abundant than AOA, and in other systems (e.g., Plum Island Sound; Bernhard et al. 2010),
the opposite was true. Caffrey et al. (2007) quantified the abundance of AOA and AOB in six estu-
aries and showed that in five of the six, AOA were up to 80 times more abundant than AOB, and
that measured rates of potential nitrification more closely tracked the abundance of AOA than that
of AOB (Caffrey et al. 2007). Comammox can also play a role in estuaries, with rates accounting
for up to 27% of measured nitrification in tidal flats of the Yangtze River estuary (Sun et al. 2022).
Additional research is needed to disentangle controls on the relative importance of these different
diverse nitrifying groups in estuarine systems.

Coupled Nitrification and Denitrification

Since NO; ™~ produced by nitrification serves as a highly valued electron acceptor in the decom-
position of organic matter via denitrification, the two reactions are often very tightly coupled,
particularly in oligotrophic estuaries where ambient NO; ™~ concentrations are low (Vieillard &
Thrush 2021). Coupled nitrification—denitrification occurs largely along oxic—anoxic interfaces
since nitrification requires a supply of oxygen and denitrification requires its absence. Thus, cou-
pled nitrification—denitrification tends to be the dominant mechanism of nitrogen loss in vegetated
estuarine sediments, where oxygen can penetrate further into anoxic sediments than would be pos-
sible via diffusion alone. For example, coupled nitrification—denitrification was the predominant
nitrogen loss pathway in Florida seagrass beds (Hoffman et al. 2019), New England salt marshes
(Mason et al. 2021), and mangrove sediments in Vietnam (Comer-Warner et al. 2022), to list
just a few of the many examples. Unvegetated sediments can also support high rates of coupled
nitrification—denitrification. Rates of nitrification can be further enhanced by benthic microalgal
oxygen production and infaunal bioturbation (reviewed in Moulton et al. 2016). Seasonal hypoxia,
which is increasingly common in estuaries, can inhibit coupled nitrification—denitrification and
promote nitrogen retention, which may exacerbate estuarine eutrophication over time, indicating
that controls on coupled nitrification—denitrification may be highly sensitive to future changes in
climate and oxygen supply.

Dissimilatory Nitrate Reduction Processes

Microbes use three distinct processes for dissimilatory nitrate reduction: denitrification, where
NO;~ is reduced to N, or N,O; dissimilatory nitrate reduction to ammonium (DNRA); and
anaerobic ammonium oxidation (anammox), which also produces N, (Figure 4). It was once
widely thought that denitrification was performed predominantly by heterotrophs, anammox by
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autotrophs, and DNRA by a combination of the two. However, recent evidence indicates that
autotrophic denitrification coupled to oxidation of hydrogen sulfide can also be important in es-
tuarine systems (Bulseco et al. 2020). Furthermore, denitrification is now recognized to be a highly
modular process, with some taxa having only a subset of the genes needed for the complete denitri-
fication pathway (Roco etal. 2017). The capacity for denitrification is widespread phylogenetically
and is typically facultative, with many taxa capable of using alternative electron acceptors in the
absence of nitrate (Bowen et al. 2015). The genetic capacity for DNRA is also phylogenetically
widespread (Welsh et al. 2014), and DNRA frequently co-occurs with the genetic capacity for
denitrification and occasionally co-occurs with the genetic capacity for nitrogen fixation. In con-
trast, anammox is highly phylogenetically constrained, with the genetic capacity thought to belong
solely to a monophyletic group of Planctomycetes (Woebken et al. 2008).

In estuaries, understanding the controls on denitrification, DNRA, and anammox is important
because anammox and denitrification remove fixed nitrogen from the system, whereas DNRA re-
tains fixed nitrogen that can fuel additional primary production. Furthermore, the modularity of
the denitrification pathway can lead to incomplete denitrification, resulting in the production of
the potent greenhouse gas N, O (Bakken et al. 2012), which does not appear to be produced via
anammox. Delineating where and when these three processes dominate is essential for predicting
both primary productivity and the production of greenhouse gas from estuaries. Rates of anammox
in estuaries appear to be low, relative to coupled nitrification—denitrification and direct denitrifi-
cation, across a range of habitats (Chen et al. 2021), including subtidal and vegetated sediments
(Koop-Jakobsen & Giblin 2009). DNRA is much less well studied in estuaries than denitrifica-
tion, though it can account for substantial NO; ~ reduction (reviewed in Burgin & Hamilton 2007,
Giblin et al. 2013). Modeling results suggest that denitrification is favored in systems where the
ratio of bioavailable carbon to NO; ™ is low and DNRA is favored when this ratio increases (Algar
& Vallino 2014) and when salinity and sulfide concentrations are high (Domangue & Mortazavi
2018). These complex patterns of nitrogen retention and loss make it challenging to scale up rates
of nitrogen cycling to the ecosystem level, rendering cross-system comparison and prediction of
future rates a challenge.

Nitrogen Fixation

Nitrogen fixation is the microbially mediated conversion of N, gas to NH4", making it
available for biological use. Historically, microbes capable of nitrogen fixation, collectively re-
ferred to as diazotrophs, were thought to be dominated by colony-forming cyanobacteria (e.g.,
Trichodesmium spp.) in marine systems (Zehr & Capone 2020). However, recent discoveries of di-
vergent cyanobacterial clades and noncyanobacterial heterotrophic nitrogen fixers have expanded
our understanding of the phylogenetic breadth of nitrogen fixation (Delmont et al. 2018) and
raised new questions about the distribution and function of these diazotrophs in estuaries. For
example, the small unicellular cyanobacteria UCYN-A, -B, and -C, some of which are obligate
symbionts with extensive genome streamlining, appear to be globally distributed (Thompson et al.
2012) and function even under nitrogen-replete conditions, where nitrogen fixation is thought to
be inhibited (Mills et al. 2020). Additional recent discoveries of nitrogen-fixing symbionts associ-
ated with lucinid clams and seagrasses (Mohr et al. 2021) that are widespread in coastal habitats
further expanded the possible role of diazotrophic microbes in estuaries.

The prevailing wisdom, prior to these discoveries, was that nitrogen fixation rates in estuaries
were low, perhaps because of apparent molybdate inhibition in estuarine waters and because of
high ambient NH4* concentrations in estuarine sediments (Howarth et al. 1988). Fixing nitrogen
is energetically costly, requiring 16 moles of ATP per mole of N fixed, fueling the expectation that
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nitrogen fixation rates would be low in nutrient-rich estuaries. However, recent studies suggest
otherwise. As just one of many examples, in one Australian estuary, rates of nitrogen fixation (10—
64 nmol L~! d~!) were 5-30 times higher than rates measured in nearby coastal waters and were
attributed to a combination of UCYN-A cyanobacteria and noncyanobacteria diazotrophs related
to the cluster 3 Deltaproteobacteria (Messer et al. 2021). These rates were comparable to those
observed in the water of other tropical (Jabir et al. 2020) and temperate (Li et al. 2020b) estuaries.
Benthic nitrogen fixation rates in estuaries are also substantial (Oczkowski et al. 2020), and resus-
pended sediments can contribute significantly to nitrogen fixation in estuarine waters (Pedersen
etal. 2018). While countless studies have predicted anthropogenic inputs of nitrogen to estuaries,
surprisingly few have quantified both allochthonous nitrogen fluxes and autochthonous nitrogen
fixation, perhaps because net nitrogen fixation is so variable in space and time (Marcarelli et al.
2022). Thus, it is important that we assess the contributions of the broad diversity of diazotrophs
in these systems to better constrain their contributions to estuarine nitrogen cycling.

SULFUR AND METHANE CYCLING

Sulfur and methane metabolisms are important aspects of estuarine biogeochemistry. Biogenic
sulfur compounds, including dimethylsulfide, dimethylsulfoniopropionate, and dimethylsulfox-
ide, are derived from algae and phytoplankton and from some estuarine macrophytes, including
the salt marsh grass Spartina alterniflora (Husband & Kiene 2007). These trace gases can serve
as cloud condensation nuclei and thus play important roles in the climate system. They can also
be decomposed by estuarine microbes (Kiene & Service 1991) and thus contribute to estuarine
food webs. The estuarine sediment sulfur cycle is closely coupled to the methane cycle, with well-
defined zones of sulfate-rich and methane-rich sediment pore water and a transition zone where
concentrations overlap. These concentrations are influenced by several oxidation and reduction
reactions (Figure 5), including the reduction of SO4>~ to sulfide and its subsequent reoxidation
back to SO42~ and the reduction of CO, to CHy (i.e., methanogenesis) and its subsequent reoxi-
dation by methanotrophs. Broadly, estuarine organic matter decomposition follows the supply of
energy-yielding electron acceptors, with SO42~ and CO; reduction having lower energy yields
than O, and NO;~ (Canfield et al. 2006). Despite the lower energy yield, the ubiquity of SO4*~
in seawater results in SO4%~ reduction being the predominant detrital decomposition pathway in
many coastal systems (Howarth 1984).

Methanogenic organisms often compete for substrates (e.g., hydrogen and acetate) with SO4*~
reducers, so it was once thought that methanogenesis is hindered by substrate availability in the
presence of SO42~, with methanogens only gaining the upper hand in regions of estuaries where
both salinity and SO4?~ concentrations are low (Weston et al. 2014). However, recent evidence
for both a cryptic sulfur cycle and a cryptic methane cycle in coastal systems makes assessing
gross fluxes in methane and sulfide production across estuaries a challenge (Kevorkian et al. 2022).
Nonetheless, there is extensive evidence from incubation experiments and sediment pore water
chemistry that SO4?~ reduction and CH, production can co-occur, in part because methanogens
can use methanol or trimethylamine for CH; production, avoiding the need to compete with
SO42~ reducers for hydrogen or acetate (Oremland & Polcin 1982). The relative proportions of
these rates tend to vary seasonally (Jorgensen & Serensen 1985), and although CH,4 production
can be measured throughout estuarine habitats, the rates are typically orders of magnitude lower
than those of SO4?~ reduction (Sela-Adler et al. 2017). Methane production rates often appear low
because the methane that is produced can be rapidly reoxidized (Figure 5), either by reversal of
the metabolic pathway in the same organisms or by syntrophic interactions with others (Kevorkian
etal.2022).In one study, up to 25% of SO4>~ reduction was coupled via electron transfer with CHy
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Microbial respiratory processes in sediments. Newly derived organic material at the surface of sediments is selectively decomposed,
ultimately producing CO;, acetate, and H that can be used to support methanogenesis. The remaining organic material that is
resistant to decomposition is stored as blue carbon. The methane that is produced via methanogenesis can then be reoxidized through
microbial transformations using several electron acceptors, including SO4?~, NO; ~, and O;. Abbreviation: DNRA, dissimilatory
nitrate reduction to ammonium. Figure created with symbols from the Integration and Application Network (https://ian.umces.
edu/media-library) (CC BY-SA 4.0). This figure is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
(CC BY-SA 4.0) license.

oxidation, demonstrating the importance of the syntrophic interaction between SO4*~ reducers
and the supply of CHy4 produced by methanogens (Sawicka & Briichert 2017).

A diverse collection of microbes are responsible for methane and sulfur cycles in estuaries. As
with denitrification, the genetic capacity for SO4°~ reduction is not phylogenetically constrained
and can be carried out by at least 13 microbial phyla (Anantharaman et al. 2018), including Pro-
teobacteria, Nitrospirae, and Firmicutes (among the bacterial lineages) as well as Archaeoglobus
from the Euryarchaeota and Thermoproteaceae from the Crenarchaeota (among the archaeal lin-
eages) (Chernyh et al. 2020). In contrast, the capacity for sulfide oxidation is performed mainly by
a small number of clades within the Proteobacteria, with members of the Gammaproteobacteria
being particularly common in estuarine systems (Baker etal. 2015, Thomas et al. 2014), along with
members of the Chlorobia (Gregersen et al. 2011). Oxidation of reduced sulfur compounds can
occur through two different pathways, mediated either by the SOX complex or through a reverse-
acting dissimilatory sulfite reductase pathway (Thomas et al. 2014), and is typically, though not
always (Xia etal. 2017), autotrophic, using either O, or NO; ™ as terminal electron acceptors. Some
taxa capable of sulfur oxidation feature unique metabolic strategies, such as storage of NO;~ in
vacuoles for later oxidation of sulfide, as is done by the Gammaproteobacteria Beggiatoa, and trans-
mission of electrons from oxic sediment surfaces to suboxic depths by cable bacteria belonging to
the Desulfobulbaceae (Malkin et al. 2014).

The phylogeny of methanogens continues to shift as genomic insights reveal greater
methanogen diversity than previously recognized (Sorokin et al. 2017). All known methanogens
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belong to the Archaea and until recently were thought to be part of the Euryarchaeota; how-
ever, recent discoveries indicate that the genetic capacity for methanogenesis may also exist in
the Bathyarchaeota and the Verstraetearchaeota (Evans et al. 2019). Euryarchaeota also perform
anaerobic methane oxidation, or methanotrophy, through partial reversal of methanogenesis by
the Methanophagales and one clade of Methanosarcinales (Evans et al. 2019). Methanotrophy is
also widespread among bacterial lineages and can involve a diverse array of electron acceptors
(Figure 5) to reduce the vast majority of methane produced in coastal sediments (Kevorkian et al.
2022).

PLANT-MICROBE AND ANIMAL-MICROBE INTERACTIONS

Although there have been numerous studies on plant-microbe and animal-microbe mutu-
alisms in estuaries, research on host-associated microbiomes in estuaries still lags far behind our
understanding of these interactions in humans and other model organisms. Host-associated mi-
crobiomes provide concrete benefits to hosts through nutrient provisioning, defense, and chemical
signaling, while perturbations to the host microbiomes can lead to decreased fitness and disease.
Understanding the specific nature of host—microbe interactions and how they will respond to envi-
ronmental change is critical for predicting the sustainability of estuarine habitats and commercially
important organisms.

Microbe-Plant Interactions

Microbes associated with seagrasses, submerged aquatic vegetation, salt marshes, and mangroves
are important in host physiology, contributing to pathogen inhibition and influencing plant
growth directly through the release of plant growth-promoting compounds and the removal of
potential toxins such as hydrogen sulfide. There has long been evidence that nitrogen-fixing mi-
crobes promote the success of seagrasses in oligotrophic waters, such as in the Mediterranean Sea
(Welsh 2000). An exciting recent finding, however, suggests that seagrasses may have endosym-
biotic nitrogen fixers in their roots, akin to those found in leguminous land plants, providing
further evidence for this important mutualism (Mohr et al. 2021). Seagrass roots release oxygen
into sediments and create oxic microzones (Figure 1) that lead to an increased abundance of
sulfur-oxidizing bacteria compared with those found in bulk sediment and decreased concentra-
tions of toxic hydrogen sulfide (Miranda et al. 2022 and references therein). Initially, the symbiosis
responsible for reducing hydrogen sulfide was thought to require a three-way relationship in
which sulfur-oxidizing bacteria lived in association with the gills of lucinid clams living in sea-
grass sediments (Van Der Heide et al. 2012). More recent genomic work, however, has shown that
sulfur-oxidizing microbes are present on root surfaces of seagrasses worldwide, even in the absence
of lucinid clams (Martin et al. 2020, Crump et al. 2018). It is evident that both nitrogen-fixing and
sulfur-oxidizing microbes support the global distribution of seagrasses in estuarine and coastal
waters, and further research on their role in facilitating successful seagrass restoration is warranted.

As with seagrass systems, the microbiomes of salt marsh and mangrove vegetation contribute
to several critical ecosystem functions. For example, fungi are important primary decomposers of
standing dead biomass in salt marshes (Buchan et al. 2003) and are important in facilitating salt
marsh denitrification (Kearns etal. 2019, Starr et al. 2022). Many of the microbe-plant interactions
described above for seagrass rhizospheres, including high rates of nitrogen fixation and release of
oxygen from roots stimulating an active sulfur cycle, are also important in salt marsh (Rolando
et al. 2022, Thomas et al. 2014) and mangrove (Zhuang et al. 2020) sediments. Recent research
in salt marshes indicates, however, that rhizosphere microbiomes are strongly influenced by plant
genetics. For example, there is a greater diversity of microbes in regions colonized by the tall
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variation of the marsh plant S. a/terniflora compared with regions colonized by the short variation,
with the tall form being dominated by iron oxidizers and the short form being dominated by
sulfur oxidizers (Kolton et al. 2020). Not only is there a difference between tall and short forms
of S. alterniflora, but there is also an effect of plant genotype, with evidence of unique microbial
signatures in the rhizospheres of different genotypes within the same species (Hanley et al. 2021),
differences that can mediate the effect of flooding on soil microbial community structure (Tang
etal. 2021). Lastly, the microbiome found on the blades of macroalgae also plays important roles in
defense, nutrient exchange, reproduction, and settlement (Weigel et al. 2022), and environmental
changes can disrupt the host-microbe symbiosis, leading to disease.

Microbe-Animal Interactions

Many animals in estuaries rely on microbiomes for a range of different processes. Microbes can
provide reproductive and settling cues for marine invertebrates and can produce key nutrients
and vitamins for their hosts. However, much of the research on animal-host-associated microbes
in estuaries focuses on the role of microbes in diseases of marine organisms. Dysbiosis, a shift in
microbiomes that is associated with disease, can be induced by environmental change (King et al.
2019) and can cause disease of commercially important estuarine organisms, including oysters
(Kunselman et al. 2022) and lobsters (Feinman et al. 2017). Animal-host microbiomes are sensitive
to both environmental change and stress-induced changes to host physiology (Unzueta-Martinez
et al. 2022), so understanding microbial shifts that result from global change drivers is critical for
protecting commercially important species.

Recent reviews have addressed the role of microbe—animal associations in marine systems
(Apprill 2017, Moulton et al. 2016), corals (van Oppen & Blackall 2019), and sponges (Lurgi et al.
2019). One of the most important of these microbe—animal associations for estuarine ecosystem
function is found in reef-building bivalves and benthic macrofauna. Reef-building bivalves cou-
ple pelagic and benthic systems by filtering phytoplankton from the water and shuttling waste
to the sediments in the form of biodeposits (Kellogg et al. 2013). This filtration improves water
quality and decreases the symptoms of eutrophication, in part because the biodeposits promote
microbially mediated benthic denitrification (Ayvazian et al. 2021). The bioreactivity and denitri-
fication potential of those deposits and the microbes that decompose them vary by bivalve species,
with consequences for estuarine nitrogen removal (Murphy et al. 2019), making predicting effects
challenging. Benthic macrofauna also affect estuarine microbial ecology both directly through
their own symbiotic relationships and through engineering sediments, which leads to greater oxy-
gen penetration and increased coupled nitrification—denitrification (Stief 2013). However, little
is known about the direct effect of host-associated microbes for many species of benthic inver-
tebrates. As climate change continues to shift the geographic ranges of important estuarine taxa
(e.g., Johnson 2015) and their associated microbes, novel communities will form, with potential
implications for transmission of microbial disease.

CONCLUSION

Estuaries are centers of human civilization, and many of these ecosystems have been impacted by
anthropogenic activities for decades or centuries. Estuaries are now facing a new set of anthro-
pogenic impacts associated with climate change, including sea level rise, ocean acidification and
deoxygenation, altered hydrological cycles, and shifting geographic ranges of estuarine species.
Predicting the impacts of these changes in estuaries requires a sound understanding of estuarine
ecology. Microbes are intimately involved in this ecology through their contributions to estuarine
food webs, control of elemental cycling, and interactions with plants and animals. New molecular
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techniques are expanding our understanding of estuarine microbial taxa and the microbial pro-
cesses that underlie the ecosystem services provided by estuaries. Considering the outsized roles
that microbes play in the functioning of estuaries, continued research on microbial diversity and
function is important for the health and resilience of estuarine ecosystems.
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