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Global Newlander–Nirenberg Theorem for Domains with
C2 Boundary

Chun Gan & Xianghong Gong

Abstract. The Newlander–Nirenberg theorem says that a formally
integrable complex structure is locally equivalent to the standard com-
plex structure in the complex Euclidean space. In this paper, we con-
sider two natural generalizations of the Newlander–Nirenberg theo-
rem under the presence of a C2 strictly pseudoconvex boundary. When
a given formally integrable complex structure X is defined on the clo-
sure of a bounded strictly pseudoconvex domain with C2 boundary
D ⊂C

n, we show the existence of global holomorphic coordinate sys-
tems defined on D that transform X into the standard complex struc-
ture provided that X is sufficiently close to the standard complex struc-
ture. Moreover, we show that such closeness is stable under a small
C2 perturbation of ∂D. As a consequence, when a given formally in-
tegrable complex structure is defined on a one-sided neighborhood of
some point in a C2 real hypersurface M ⊂C

n, we prove the existence
of local one-sided holomorphic coordinate systems provided that M

is strictly pseudoconvex with respect to the given complex structure.
We also obtain results when the structures are finite smooth.

1. Introduction

Given a formally integrable smooth (i.e. C∞) almost complex structure defined
on D, where D is a bounded domain in R

2n, we consider the problem of finding
smooth global holomorphic coordinate systems on D compatible with the struc-
ture. By a smooth global holomorphic coordinate system on D, we mean a smooth
diffeomorphism sending D onto D′ where D′ is a domain in C

n, while the dif-
feomorphism transforms the given complex structure into the standard complex
structure on C

n. The classical Newlander–Nirenberg theorem asserts the exis-
tence of local holomorphic coordinate systems for a formally integrable almost
complex structure defined near an interior point of D. The main result of this
paper is to show the existence of such global holomorphic coordinate systems
when the structure is a small perturbation of the standard complex structure on D,
where D is a bounded, strictly pseudoconvex domain with C2 boundary. When
both boundary and the complex structure are C∞, this result is due to R. Hamilton
through a general program [7; 8; 9].
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We will use our global result to show the existence of local holomorphic co-
ordinate systems on a small, one-sided neighborhood of a given point in a real
hypersurface M : If the formally integrable almost complex structure is defined on
U ∪ M , where U is a domain in C

n and M is a piece of C2 boundary of U that
is strictly pseudoconvex with respect to the given complex structure on U ∪ M ,
then for any boundary point p ∈ M there is a smooth diffeomorphism, defined
on a neighborhood of p in U ∪ M , that transforms the complex structure into the
standard one. When both the real hypersurface and the almost complex structure
are C∞, this result is due to Catlin [1] and Hanges and Jacobowitz [10].

Therefore, by restricting to ∂D ∈ C2, we establish results for the complex
structures on strictly pseudoconvex domains with the minimum smoothness re-
quired to define the strict Levi pseudoconvexity. For simplicity, we shall refer to
the existence of global (resp. local) holomorphic coordinate systems as a global
(resp. local) Newlander–Nirenberg theorem with (C2) boundary.

To state our results more precisely, we first recall some definitions. Let p ∈R
2n

with n ≥ 2. Let X1, . . . ,Xn be vector fields defined near p and having C1 complex
coefficients. We say that {Xα}nα=1 defines an almost complex structure near p if

X1, . . . ,Xn,X1, . . . ,Xn are C-linearly independent at p.

Here Xα denotes the complex conjugate of Xα and

Xα =
n∑

β=1

{
a

β
α

∂

∂zβ

+ b
β
α

∂

∂zβ

}
, α = 1, . . . , n.

Let [Xα,Xβ ] = XαXβ − XβXα be the Lie bracket of Xα , Xβ . The almost com-
plex structure is said to be formally integrable if in addition there exist functions
c
γ

αβ
such that

[Xα,Xβ ] = c
γ

αβ
Xγ (1.1)

near p for α,β = 1, . . . , n. Here we have used Einstein convention to sum over
the repeated index γ , and we shall adapt this convention throughout the paper.

Recall that a domain D ⊂ C
n with C2 boundary is said to be strictly pseudo-

convex with respect to the standard complex structure at p ∈ ∂D if there exists
some open neighborhood U of p and a C2 real-valued function ρ : U → R such
that the following hold: D ∩ U = {z ∈ U : ρ < 0}, ρ(p) = 0, dρ(p) 
= 0, and∑ ∂2ρ

∂zα∂zβ
(p)tαtβ̄ > 0 for all vectors t ∈ C

n\{0} satisfying
∑

tα
∂ρ
∂zα

(p) = 0. Fi-
nally, for 0 < a < ∞, let ‖ · ‖D,a be the standard Hölder norm and let |·|D,a be
the Hölder–Zygmund norm of �a(D) for a domain D ⊂ R

n. Note that �a is the
Hölder space Ca in equivalent norms when a is noninteger; see Section 3 for the
definition of Zygmund spaces.

Our main result is the following.

Theorem 1.1. Let 5 < r ≤ ∞. Let D be a domain in C
n with C2 boundary that

is strictly pseudoconvex with respect to the standard complex structure on C
n.

Let Xα = ∂α + A
β
α∂β , α = 1, . . . , n be �r(D) vector fields defining a formally
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integrable almost complex structure on D. There exist positive constants δr (D)

and δ5(D) such that if

|A|D,r < δr(D), r < ∞,

|A|D,5 < δ5(D), r = ∞,
(1.2)

then there exists an embedding F of D into C
n such that dF(X1̄), . . . , dF (Xn̄)

are in the span of ∂
∂z1

, . . . , ∂
∂zn

, whereas F ∈ �r−1(D) if r < ∞, F ∈ C∞(D) if

r = ∞, and F(D) is strictly pseudoconvex in C
n. Moreover, the constants δr (D),

δ5(D) depend only on the C2 norm of a given defining function of domain D and
are lower stable (see Definition 3.6) under a small C2 perturbation of ∂D.

In fact, condition (1.2) can be relaxed. See Section 8 for more details. Notice that
when the structure is smooth, we only need to control |A|D,5 in order to achieve
a smooth embedding.

The lower stability of δr (D) in the theorem means that for any domain D̃ of
which a defining function is sufficiently close to a given defining function of D in
C2 norm, we have

δr (D) ≤ Cr(D)δr(D̃)

for some constant Cr(D) > 0 possibly dependent on D but independent of D̃, and
the theorem remains true for D̃. This is an important ingredient in our proof of the
local Newlander–Nirenberg theorem with C2 boundary which we now describe.

Let U be an open subset of Cn and let M ⊂ ∂U be a real C2 hypersurface in
C

n. Let X1̄, . . . ,Xn̄ be C1 vector fields on U ∪M that define a formally integrable
almost complex structure on U ∪ M . Let T 0,1(U ∪ M,X), denoted by T

0,1
X also,

be the span of {X1̄, . . . ,Xn̄} and �0,1(U ∪M,X) be its dual bundle. An integrable
almost complex structure {Xα}nα=1 induces a natural decomposition of the exterior

derivative d = ∂X + ∂X . Here ∂X : �p,q
X → �

p,q+1
X , ∂

2
X = 0, ∂X is its conjugate,

and �
p,q
X is the exterior algebra of smooth differential forms on U ∪ M of type

(p, q) w.r.t {Xα}nα=1.
We say that M is strictly pseudoconvex w.r.t. (U ∪ M, {Xα}nα=1) if for each

p ∈ M , there exists a C2 function ρ, defined in a neighborhood ω of p such that
ω ∩ U = {z ∈ ω : ρ(z) < 0}, ρ = 0 on M ∩ ω, dρ(p) 
= 0 and

∂X∂Xρ(p)(v, v) > 0, ∀v ∈ T 1,0
p (U ∪ M,X) ∩ (TpM ⊗C), v 
= 0. (1.3)

We now can state the following local Newlander–Nirenberg theorem with
boundary.

Theorem 1.2. Let 5 < r ≤ ∞. LetU be a domain inCn whose boundary contains
a piece ofC2 real hypersurfaceM , and letX1̄, . . . ,Xn̄ be�r(U ∪M) vector fields
defining a formally integrable almost complex structure onU ∪M . Assume thatM
is strictly pseudoconvex with respect to (U ∪M, {Xα}nα=1). Then, for each p ∈ M ,
there exists a diffeomorphism F defined on a neighborhood ω of p in U ∪ M

such that dF(X1̄), . . . , dF (Xn̄) are in the span of ∂
∂z1

, . . . , ∂
∂zn

, and F(ω ∩ M)
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is strictly pseudoconvex in C
n, whereas F ∈ �r−1(ω) ∩ �r+1(ω ∩ U) and F ∈

C∞(ω) if r = ∞.

For p ∈ U , this is the classical Newlander–Nirenberg theorem [20; 21; 15; 13; 16;
27]. Very recently, Street [25] obtained a sharp result for the elliptic structures.
By a result of Denson Hill [11], the local Newlander–Nirenberg theorem with
boundary can fail for a suitable formal integrable smooth complex structure on a
domain of which the boundary is smooth and has one negative Levi eigenvalue.

As mentioned above, under the assumptions that both boundary and almost
complex structure are C∞, the global Newlander–Nirenberg theorem with bound-
ary was first proved by Hamilton [7] and the local version was shown by Catlin
[1], Hanges and Jacobowitz [10] independently. In fact, Hamilton proved a more
general version of Theorem 1.1 assuming that D is a relatively compact subset
with smooth boundary in a complex manifold Y with H 1(D,T D) = 0, where
T D stands for the holomorphic tangent bundle of D. Catlin proved a local
Newlander–Nirenberg theorem with smooth pseudoconvex boundary. We note
that these results are all carried out in C∞ category with ∂D ∈ C∞ using ∂-
Neumann-type methods.

To prove Theorem 1.1 under the minimum requirement of ∂D ∈ C2, we will
employ the homotopy formula methods together with a Nash–Moser type itera-
tion. These techniques were originally employed by Webster [27; 28; 26] to prove
the classical Newlander–Nirenberg theorem, the CR vector bundle problem, and
the more difficult local CR embedding problem. These techniques together with a
more precise interior regularity estimate for Henkin’s integral solution operators
of ∂b on strictly pseudoconvex real hypersurfaces have been successfully used by
the second-named author and Webster [4; 5; 6] to obtain a sharp version of the CR
vector bundle problem and the local CR embedding problem. The second-named
author [3] recently obtained a parameter version of Frobenius–Nirenberg theorem
by using similar techniques. We also mention the work of Polyakov [23] who
used similar techniques and obtained CR embeddings for a small perturbation of
CR structures on compact regular 3-pseudoconcave CR submanifold M of some
complex manifold X with H 1(M,T X|M) = 0.

The scheme of the proof of Theorem 1.1 is similar to the previous related
work. However, we mention new features in the present work. First is the use of
the estimate of gaining 1

2 derivative for homotopy operators on the closure of a
C2 strictly pseudoconvex domain proved recently by the second-named author
[2]. Note that in previous mentioned work, interior regularity estimates of ∂ , ∂b

for homotopy formulas are used. Another important difference is that the Nash–
Moser smoothing operator [19] was applied to the interior of the domains before.
In our case, we must find a way to use the Nash–Moser smoothing operator for the
closure of the domain D since we are seeking global coordinate systems defined
on D. To use the smoothing, we simply extend the original complex structure
to a neighborhood of D; this simple extension, however, does not preserve the
formal integrability of the extended complex structure outside D. The failure of
the integrability is measured by the commutator [∂,E], where E is an extension
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operator for functions on D constructed by Stein [24]. We shall make essential
use of the vanishing order of [∂,E] in our estimates. (See Sections 3 and 6 for
details.) We remark here that this commutator term is the main source for losing
one derivative in our results. The important commutator [∂,E] was introduced by
Peters [22] and has been used by Michel [17], Michel and Shaw [18], and others.
It is also one of the main ingredients in the 1

2 -gain estimate [2] for a homotopy
operator on a strictly pseudoconvex domain with C2 boundary.

The plan of the paper is as follows. In Section 2, we first derive Theorem 1.2
from Theorem 1.1. In particular, we show that Catlin–Hanges–Jacobowitz’s the-
orem is a consequence of Hamilton’s theorem, the stability of δr (D) from Theo-
rem 1.1, together with an initial normalization process constructed in Section 2.
In Section 3, we recall basic facts about the standard Hölder–Zygmund norms, the
Stein extension operator, Nash–Moser smoothing operators, and homotopy oper-
ators in [2]. In Section 4, we derive an approximate solution of the embedding via
the homotopy formula. We then obtain necessary estimates for the approximate
solution and the new almost complex structure in Sections 5 and 6. In Section 7,
we describe the iteration scheme and verify the induction hypotheses. Finally, the
convergence proof is carried out in Section 8.

2. A Reduction for Local Newlander–Nirenberg Theorem with
Boundary

In this section, we derive Theorem 1.2 by using Theorem 1.1. To achieve this, we
need some preparations. First, we show that one can define the strict pseudocon-
vexity with respect to the standard complex structure instead of the given almost
complex structure near a reference point. Then we apply nonisotropic dilations to
achieve the initial normalization condition: |Xαz|· ≤ δr (the norm will be speci-
fied later), while the dilated hypersurface is close to the Heisenberg group near a
reference point in C2 norm. Here δr is the lower stability constant in Theorem 1.1
for some limiting domain under a nonisotropic dilation process. Finally, we con-
struct a relatively compact C2 strictly pseudoconvex domain U , which shares part
of the boundary with M , and apply Theorem 1.1 to (U, {X̃α}nα=1), where {X̃α}nα=1
is some suitable basis for the almost complex structure after dilation. We point out
that the lower stability of δr under C2 perturbation is crucial for this argument to
work.

Throughout the paper, the Greek letters α, β , γ , and so on have range
1,2, . . . , n and Roman indices j , k, and so forth have range 1,2, . . . , n−1. We de-
note by C1, C2, and so on constants bigger than 1 and by c1, c2, and so forth posi-
tive constants less than 1. We denote by z = (z1, . . . , zn) the standard coordinates
of C

n, whereas the standard complex structure on C
n is defined by ∂α := ∂

∂zα
,

1 ≤ α ≤ n. Set ∂α := ∂
∂zα

.
We will use various constants C(D), δ(D), and so on, which depend only on a

domain D. Thus it will be convenient to apply some standard procedures to find
defining functions of a domain. A bounded domain D in C

n with Ck boundary
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with k ≥ 1 is defined by a Ck function ρ on C
n. Thus D is defined by ρ < 0 and

∇ρ 
= 0 on ∂D. Locally D is defined by a Ck graph function R via

ρ = −yn + R(z′, xn) < 0

after permuting z1, . . . , zn, and replacing zn by izn or −izn if necessary. The
collection of such functions will be denoted by {Ri}. Using a partition of unity,
we can construct a defining function ρ from the collection {Ri}. We may assume
that ρ = 1 away from a neighborhood of D. In such a way one can construct a
defining function ρ that depends only on D, and we shall call such a ρ a standard
defining function of D.

We start with the following elementary lemma showing how an almost com-
plex structure changes with respect to a transformation of the form F = I + f ,
where I is the identity mapping. This lemma is essentially in Webster [27]; how-
ever, we present it here for convenience of the reader and for our later proofs.

Lemma 2.1. Let {Xα}nα=1 be a C1 almost complex structure defined near the
origin of R2n.

(i) By a R-linear change of coordinates of Cn, the almost complex structure
{Xα}nα=1 can be transformed into Xα = ∂α + A

β
α∂β with A(0) = 0.

(ii) Let F = I + f be a C1 map with f (0) = 0 and Df small. The associated
complex structure {dF(Xα)} has a basis {X′

α} such that X′
α = ∂α + A′β

α∂β .

Moreover, XαFβ = (XαFγ )(A′β
γ ◦ F). Equivalently, in the matrix form,

A(z) + ∂zf + A(z)∂zf = (I + ∂zf (z) + A(z)∂zf (z))A′ ◦ F(z). (2.1)

We remark that the formula in (ii) is valid when F = I + f is a diffeomorphism
of D onto D′ when ‖f ‖D,1 is sufficiently small.

Proof. (i) Let Uα = 1
2 (Xα + Xα) and Vα =

√−1
2 (Xα − Xα). We would like to

find another coordinate system wα = uα + √−1vα such that ∂
∂uα

|w=0 = Uα(0)

and ∂
∂vα

|w=0 = Vα(0). Since {Uα,Vα} and { ∂
∂xα

, ∂
∂yα

} both span T0C
n, then at 0

we have

Uα = aβ
α

∂

∂xβ

+ bβ
α

∂

∂yβ

, Vα = cβ
α

∂

∂xβ

+ dβ
α

∂

∂yβ

,

where the coefficient matrix
[

a b
c d

]
is invertible. Set x = au+bv and y = cu+dv.

In new variables w, we have Xα = A
γ

α∂γ + A
β
α∂β where (A

γ

α(0)) is the identity

matrix (δ
γ
α ) and A

β
α(0) = 0. In particular, (A

γ

α) is invertible near 0. We can then

use a linear combination to achieve Xα = ∂α + A
β
α∂β with A(0) = 0.

(ii) Let us show the existence of such a basis by determining the coefficient

matrix A′. Since T
1,0
dF(Xα)

= dFT
1,0
X , we know F∗Xα = C

β
α X′

β
for some invertible

matrix (C
β
α ). Apply both sides to Fβ and use Xβ = ∂β + A′γ

β
∂ ′
γ . Then we have
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(C
β
α ) = (XαFβ), which is invertible when Df is small. Consequently,

XαFβ∂β + XαFβ∂β = F∗Xα = C
β
α X′

β
.

Comparing the coefficients of ∂β and ∂β , we see that C
β
α = XαFβ and

XαFβ = (XαFγ )(A
′β
γ ◦ F).

Since (C
γ

α ) is invertible, we have A
′β
γ = (C−1)αγ (XαFβ) ◦ F−1.

Now identity (2.1) follows from

XαFβ = (∂α + A
γ

α∂γ )(zβ + f β)

= A
β
α + ∂αf β + A

γ

α∂γ f β = (A + ∂f + A∂f )βα,

(XαFγ )(A
′β
γ ◦ F) = (∂α + A

γ

α∂γ )(zβ + f β)(A′ ◦ F)

= ((I + ∂f + A∂f )(A′ ◦ F))βα. �

Using the integrability condition, we now remove the first order term in the Taylor
expansion of A at the origin.

Lemma 2.2. Suppose that a C1 almost complex structure defined by {Xα} with
Xα = ∂α +A

β
α∂β andA(0) = 0 satisfies the integrability condition (1.1) at 0. Then

we can make a polynomial change of coordinates such that in the new coordinate
system the almost complex structure is given by X′

α = ∂α + A
′β
α ∂β with A′(0) = 0

and DA′(0) = 0.

Proof. Throughout the paper, we write f (ζ ) = o(|ζ |k) if lim|ζ |→0 f (x)/|ζ |k = 0,
where ζ are real or complex variables. We make a polynomial change of coordi-
nates F = I + f , where

f β = −∂γ A
β
α(0)zγ zα − 1

2
∂γ A

β
α(0)zγ zα.

According to Lemma 2.1, we have

A + ∂f + A∂f = (I + ∂f + A∂f )A′ ◦ F.

Shrinking the domain if necessary, we can assume that (I + ∂f + A∂f ) and F

are invertible. Therefore, in order to show A′(z) = o(|z|), it suffices to show that
A(z) + ∂f (z) + A(z)∂f (z) = o(|z|).

Since our structure satisfies the integrability condition at 0, then [Xα,Xβ ] is in
the span of X1, . . . ,Xn at 0. This implies that via A(0) = 0,

∂αA
γ

β
(0) = ∂βA

γ

α(0). (2.2)

Plugging (2.2) into A + ∂f + A∂f , we get

A
β
α + ∂αf β + A

γ

α∂γ f β

= A
β
α − ∂γ A

β
α(0)zγ − 1

2
∂γ A

β
α(0)zγ − 1

2
∂αA

β
γ (0)zγ − A

ρ
α∂ρA

β
γ (0)zγ
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= A
β
α − ∂γ A

β
α(0)zγ − ∂γ A

β
α(0)zγ − A

ρ
α∂ρA

β
γ (0)zγ ,

where we have used the integrability condition at 0 in the second equality. Now it
is clear that the right-hand side vanishes up to second order at the origin, and thus
the lemma follows. �

Note that in the formulation of Theorem 1.2, we require the boundary to be strictly
pseudoconvex with respect to the given almost complex structure. However, in
order to apply Theorem 1.1, it is important that the boundary is strictly pseudo-
convex with respect to the standard complex structure. The next lemma shows
that these two conditions are locally equivalent provided the given structure and
the standard one agree up to second order at a reference point after some initial
normalization.

Lemma 2.3. Let M ⊂ ∂U be a C2 real hypersurface. Let Xα = ∂α + A
β
α∂β ,

α = 1, . . . , n, define a formally integrable C1 complex structure on the one-sided
domain U ∪ M . Suppose that 0 ∈ M and A(z) = o(|z|). Assume that M is strictly
pseudoconvex with respect to (U ∪M, {Xα}) (see (1.3) for definition). The follow-
ing hold:

(i) M is strictly pseudoconvex with respect to the standard complex structure
near the origin.

(ii) After a local polynomial change of coordinates that preserves the condition
A(z) = o(|z|), there exists a defining function r for M , defined near the ori-
gin, such that ρ < 0 on U , ρ = 0 on M , and

ρ(z) = −yn + |z′|2 + h(z′, xn),

where h = o(2) is a C2 function.

Proof. (i) Since Xα = ∂α + A
β
α∂β , α = 1,2, . . . , n, form a basis of T

0,1
X C

n near
0, we can find the dual frames ωα , ωα of Xα , Xα near 0. Let �

p,q

0,X denote the
germ of smooth (p, q) forms with respect to the almost complex structure X at 0.
More precisely, u = uIJ ωI ∧ ωJ ∈ �

p,q

0,X , where I , J are multi-indices, |I | = p,
|J | = q , and uIJ are elements in the germ of smooth functions at 0. Denote the
decomposition of the exterior derivative with respect to {Xα} by d = ∂X + ∂X .
See [14, P. 126]. Thus, for a function r ,

dr = Xαrωα + Xαrωα,

∂X∂Xr = (XαXβr + Xγ rC
γ

αβ
)ωα ∧ ωβ,

where C
γ

aβ
= −ωγ ([Xα,Xβ ]). Notice in particular that C

γ

aβ
(0) = 0 since A =

o(|z|).
According to (1.3), we need to show that

√−1∂X∂Xr(0) is positive-definite
on LX if and only if

√−1∂∂ρ(0) > 0 on L where LX = T
1,0
X C

n ∩ CT0M and
L = T 1,0

C
n ∩CT0M .
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Write r(z) = Im(
√−1cαzα)+O(2). Since dρ 
= 0 at 0, we may assume ∂ρ

∂yn

=

0 by permuting coordinates, which preserves conditions on A
β
α . Consequently, the

linear transformation (z′, zn) → (z′,
√−1cαzα) preserves A(z) = o(|z|), and we

have
ρ = −yn + O(2).

Applying the implicit function theorem to ρ(z′, xn, yn) = 0, we obtain yn =
F(z′, xn), where F = O(2). More precisely, we can write

yn = F(z′, xn) = ajkz
j zj + 2 Re(bjkz

j zk + cj z
j xn) + o(|z′|2 + x2

n)

= ajkz
j zk + 2 Re(bjkz

j zk + cj z
j zn) + o(|z′|2 + x2

n),

where in the second line, we use the fact that F = O(2).
Then it is easy to see that Li = Xi − Xiρ

Xnρ
Xn, i = 1, . . . , n− 1, form a basis for

LX near 0. Therefore, near the origin, we have

∂X∂Xρ(Li,Lj )

= (XαXβρ + Xγ ρC
γ

aβ
)(ωα ∧ ωβ)

(
Xi − Xiρ

Xnρ
Xn,Xj − Xjρ

Xnρ
Xn

)
.

Using the fact that A = o(|z|), C
γ

αβ
(0) = 0 and ∂ρ

∂zi
(0) = 0 for i = 1,2, . . . , n − 1,

we have
∂X∂Xρ(Li,Lj )(0) = (∂α∂βρ)(0)(dzα ∧ dzβ)(∂i, ∂j ).

The proof is then complete by noticing that {∂i}n−1
i=1 form a basis of L at 0 with

respect to the standard complex structure.
(ii) According to the first part, it suffices to show the conclusion for a strictly

pseudoconvex C2 real hypersurface in C
n. The proof is standard, but we include

it here to ensure that the condition A = o(|z|) is preserved, which is required in
the next lemma.

Let us make a second order change of coordinates

z′ → z′, zn → zn − √−1(bjkz
j zk + cαnz

αzn),

which clearly preserves the condition A(z) = o(|z|) according to part (ii) of
Lemma 2.1. We have

ρ = −yn + ajkz
j zk + h(z′, xn), h(z′, xn) = o(|z′|2 + |xn|2).

Since M is strictly pseudoconvex, we see that the Hermitian matrix (ajk) is
positive definite in z′. The final expression then follows from a complex linear
change of coordinates. Note that the latter also preserves A(z) = o(|z|). It is clear
from our construction that we still have h(0) = Dh(0) = D2h(0) = 0. �

We can now reformulate Theorem 1.2 in an equivalent form that requires the
boundary to be strictly pseudoconvex with respect to the standard complex struc-
ture. Indeed, since the integrability condition of our almost complex structure
holds at the origin by continuity, we can assume that A = o(|z|) by Lemma 2.2.
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Then, according to Lemma 2.3, the two assumptions are equivalent. Next, we
achieve initial normalization by a nonisotropic dilation.

Recall that for a ∈ (0,∞), ‖ · ‖D,r stands for the standard Hölder norm on D

and | · |D,r stands for the Hölder–Zygmund norm (see definition in Section 3).

Proposition 2.4. Let M ⊂ ∂U be a C2 real hypersurface containing the origin.
Let Xα = ∂α + A

β
α∂β , α = 1, . . . , n, in �r(U ∪ M), 1 < r < ∞, define an inte-

grable almost complex structure on the one-sided domain U ∪ M with A(z) =
o(|z|). Assume that M is strictly pseudoconvex with respect to (U ∪ M, {Xα}).
Then, after a nonisotropic dilation φε(z

′, zn) = (ε−1z′, ε−2zn), where ε > 0 is
sufficiently small, we have the following:

(i) There exist some open set B ⊂ C
n and a C2 function ρε : B → R such

that Dε = {z ∈ B : ρε(z) < 0} ⊂ φε(U ∪ M) is a connected C2 strictly
pseudoconvex domain that shares part of the boundary with φε(M) near
the origin. Moreover, there exists a C2 function ρ0 : B → R such that
limε→0‖ρε − ρ0‖B,2 = 0 and D0 := {z ∈ B : ρ0(z) < 0} is also a connected
C2 strictly pseudoconvex domain.

(ii) On Dε each dφεXβ is spanned by Xε
α = ∂α + (A(ε))

β
α∂β , α = 1, . . . , n, where

|A(ε)|Dε,r ′ tends to 0 with ε for any finite r ′ ≤ r .

Proof. (i) By the second part of Lemma 2.3, we can assume that the defining
function of M ∪ U is locally given by

ρ(z) = −yn + |z′|2 + h(z′, xn), h = o(|z′|2 + x2
n),

and the condition A(z) = o(|z|) is preserved. Let us denote Ba = {(z′, zn) ∈ C
n :

|z| < a} for any a > 0.
We apply the dilation φε to U ∪ M . Then the new defining function for Mε :=

φε(M) can locally be written as

ρ̂ε(z) = −yn + |z′|2 + ε−2h(εz′, ε2xn), h = o(|z′|2 + x2
n).

Without loss of generality, we may assume that ρ̂ε are defined on B3. More-
over, we have φε(U ∪ M) ∩ B2 = {z ∈ B2 : ρ̂ε(z) < 0}. Then we shall construct a
C2 strictly pseudoconvex domain Dε such that

B1 ∩ φε(U ∪ M) ⊂ Dε ⊂ B2 ∩ φε(U ∪ M)

as follows.
Let χ : R → R+ be a smooth nondecreasing convex function such that χ = 0

on (−∞,1] and χ(4) = 1. Moreover, we assume 0 < χ ′(x) ≤ 1 for x ∈ (1,4).
Define Dε = {z ∈ B2 : ρε(z) < 0}, where

ρε(z) = −yn + |z′|2 + ε−2h(εz′, ε2xn) + 5χ(|z|2).
Note that Dε ⊂ φε(U ∪ M) since we have added a nonnegative term to ρ̂ε .

We check that Dε satisfies all the requirements. Since χ = 0 on (−∞,1], one
has B1 ∩ φε(U ∪ M) ⊂ Dε . In order to show Dε ⊂ B2 ∩ φε(U ∪ M), it suffices to
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show that for all z ∈ ∂B2, we have rε(z) > 0, that is,

5χ(4) = 5 > yn − |z′|2 − ε−2h(εz′, ε2xn).

This holds for ε small since h(z′, xn) = o(|z′|2 + x2
n).

We want to prove that ρε defines a strictly pseudoconvex domain with C2

boundary.
Clearly, ρε is a C2 function. It then suffices to show that (a). dρε(z) 
= 0 for all

z ∈ ∂Dε; (b). λ := inf ∂2ρε

∂zi∂zj
(z)ti tj > 0, where the infimum is taken for z ∈ ∂Dε ,∑n

j=1 tj ∂jρε = 0, and |t | = 1.

Note that −yn + |z′|2 and χ(|z|2) are plurisubharmonic. On ∂Dε ∩ Mε , we
have ρε = ρ̂ε . It is clear that there is a positive constant c0 such that when ε is
small,

λ0 := inf
t∈TxMε,|t |=1,x∈∂Dε∩Mε

∂2ρ̂ε

∂zi∂zj

(z)ti tj > c0.

We can find a neighborhood N of Mε ∩ ∂Dε , independent of ε, such that

λ1 := inf
t∈TxM,|t |=1,x∈∂Dε∩N

∂2ρε

∂zi∂zj

(z)ti tj > c0/2.

On Dε \N , we have −yn +|z′|2 ≤ −c′
0, where c′

0 is a positive constant, and hence

χ(|z|2) ≥ c′
0/5, z ∈ ∂Dε \ N.

Note that χ(|z|2) is strictly plurisubharmonic at z when χ(|z|2) > 0. Therefore,

λ2 := inf
t∈TxMε,|t |=1,x∈∂Dε\N

∂2ρε

∂zi∂zj

(z)ti tj > c1 > 0.

This shows that λ > min(λ0, λ1, λ2)/2 when ε is small. Therefore, Dε is a C2

strictly pseudoconvex domain.
It is obvious that limε→0‖ρε − ρ0‖B,2 = 0. Note that r0 is a convex function.

Thus D0 is connected, and the connectedness of Dε follows easily from the C2

convergence.
(ii) To find the new vector fields, we let X

(ε)
α = ε(φε)∗(Xα), X

(ε)
n =

ε2(φε)∗(Xn). Then, for 1 ≤ j, k ≤ n − 1, we have

X
(ε)

j
= ∂ ′

j
+ (Aε)k

j
∂ ′
k + ε−1(Aε)n

j
∂ ′
n,

X
(ε)
n = ∂ ′

n + ε(Aε)kn∂
′
k + (Aε)nn∂

′
n,

where ∂· are vector fields associated to new coordinate and (Aε)(z) :=
A(εz′, ε2zn).

Since A(z) = o(|z|), then |A(ε)|Dε,r ′ → 0 as ε → 0 for any finite r ′ ≤ r . �
Assuming that Theorem 1.1 holds, we are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. According to Lemma 2.3, we may assume without loss
of generality that M ∪ U = {z ∈ U0 : ρ(z) ≤ 0}, where ρ(z) = −yn + |z′|2 +
h(z′, xn), h = o(2), and h ∈ C2(V ) on some neighborhood V of the origin. Let
ρε and φε be as in Proposition 2.4.
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First, we let 5 < r < ∞ and apply Lemma 2.4 to {U ∪ M, {Xα}nα=1} with
ε to be determined. Then we obtain a C2 strictly pseudoconvex domain Dε ⊂
φε(U ∪ M), which shares part of the boundary with Mε . Moreover, there ex-
ists a new basis {X(ε)

α }nα=1 ∈ Cr(Dε) for {(φε)∗X(ε)

1
, . . . , (φε)∗X(ε)

n } such that

|A(ε)|Dε,r tends to 0 as ε → 0 and a limiting C2 strictly pseudoconvex domain
with defining function ρ0 such that ‖ρε − ρ0‖B2,2 tends to 0 as ε → 0.

According to Theorem 1.1, there exists δr (D0) > 0 that is lower stable under a
small C2 perturbation of D0. Therefore, we can find ε sufficiently small such that

|A(ε)|Dε,r ≤ δr (D0)/C(D0),

δr (D0) ≤ C(D0)δr (rε).
(2.3)

Here ε is chosen for the C(D0) in (2.3). Therefore, we have

|A(ε)|Dε,r ≤ δr (rε).

Consequently, we are able to apply Theorem 1.1 to (Dε,X
(ε)
α ) to obtain a

�r−1(Dε) diffeomorphism Fε : Dε → C
n onto its image that sends the almost

complex structure to the standard one. Since Dε shares part of the boundary with
Mε , Fε induces a diffeomorphism near 0 ∈ Mε that sends the integrable almost
complex structure to the standard one on one side of the domain. The embedding
F is then given by Fε ◦ φ−1

ε .
Finally, we consider the case r = ∞. Notice that merely |A|D,5 ≤ δ5(D0) is

required for the statement of Theorem 1.1 to be valid. Therefore, we do not need
to control higher order derivatives of the error and the previous argument still
applies. The proof of Theorem 1.2 is complete. �

3. Preliminaries

In this section, we present some preliminaries for the proof of Theorem 1.1. First,
we recall some basic results for standard Hölder norms ‖·‖D,a , 0 ≤ a < ∞, and
Hölder–Zygmund norms |·|D,a , 0 < a < ∞, on domains D ⊂R

n with cone prop-
erty. We then introduce three main tools used in the proof: the Stein extension op-
erator, the Nash–Moser smoothing operator, and the homotopy formula on strictly
pseudoconvex domain with C2 boundary in [2]. We also include necessary esti-
mates for these operators for later use.

3.1. Convexity of Hölder–Zygmund Norms

We say that a domain D in R
n has the cone property if there exists some C∗ =

C∗(D) > 0 such that the following hold.

(1) Given two points p0, p1 in D, there exists a piecewise C1 curve γ (t) in D

such that γ (0) = p0 and γ (1) = p1, |γ ′(t)| ≤ C∗|p1 − p0| for all t except
finitely many values.

(2) For each point x ∈ D, D contains a cone V with vertex x, opening θ > C−1∗ ,
and height h > C−1∗ .

(3) The diameter of D is less than C∗.



Newlander–Nirenberg Theorem 13

For a domain with cone property, the following Hölder estimates for interpola-
tion, product rule, and chain rule are well known. For instance, see the appendices
of [5; 2] or [12] for proofs and more details:

‖u‖D,(1−θ)a+θb ≤ Ca,b‖u‖1−θ
D,a ‖u‖θ

D,b, 0 ≤ θ ≤ 1, (3.1)

‖uv‖D,a ≤ Ca(‖u‖D,a‖v‖D,0 + ‖u‖D,0‖v‖D,a), (3.2)

‖u ◦ g‖D,a ≤ Ca(‖u‖D̃,a‖g‖a
D,1 + ‖u‖D̃,1‖g‖D,a + ‖u‖D̃,0). (3.3)

If (a, b) = θ(a1, b1) + (1 − θ)(a2, b2), 0 ≤ θ ≤ 1, we have

‖u‖D,a‖v‖D′,b ≤ Ca,b(‖u‖D,a1‖v‖D′,b1 + ‖u‖D,a2‖v‖D′,b2). (3.4)

We now recall the definition of Hölder–Zygmund spaces and basic properties.
For 0 < r ≤ 1, the Hölder–Zygmund space �r(Rn) is the set of functions f ∈
L∞(Rn) such that

|f |Rn,r := |f |L∞(Rn) + sup
0
=y∈Rn

|�2
yf |L∞(Rn)

|y|r . (3.5)

Here �yf (x) := f (x + y) − f (x) and thus �2
yf (x) = f (x + 2y) + f (x) −

2f (x + y). When r > 1, we define �r(Rn) to be the set of functions f ∈
C[r]−1(Rn) satisfying

|f |Rn,r := |f |L∞(Rn) + |∂f |Rn,r−1 < ∞.

For a noninteger r , | · |Rn,r is equivalent to the Hölder norm ‖ · ‖Rn;r ; when 1 <

r < 2, |·|Rn,r is also equivalent to the norm defined by (3.5). See [24, Prop. 8,
p. 146], and by the equivalence of the two norms one means

cr‖f ‖Rn,r ≤ |f |Rn,r ≤ Cr‖f ‖Rn,r

for two positive numbers cr , Cr depending only on r . Clearly, we have cr tends
to 0 when r tends to a positive integer and Cr ≤ 2. Let F be a closed subset in
R

n. Let r ∈ (0,∞). We write f ∈ �r(F ) if there exists f̃ ∈ �r(Rn) such that
f̃ |F = f . Define |f |F,r to be the infimum of |f̃ |Rn,r for all such extensions f̃ .

Next, we recall the extension operator constructed by Stein [24]. Given a
bounded domain D ⊂ R

n with Lipschitz boundary (i.e. the boundary is locally
the graph of some Lipschitz function), there exists an extension operator

E : �r(D) → �r(Rn) with |Ef |Rn,r ≤ Cr(D)|f |D,r ,∀r ∈ (0,∞), (3.6)

where the operator norm Cr(D) depends only on the Lipschitz constants of
finitely many graph functions of the boundary. In fact, Stein [24] proved the above
estimates for Sobolev spaces. The estimates (3.6) for Zygmund spaces can be
found in [2]. We refer the reader to [2; 24] for more details on the construction
and the estimates. When there is no confusion, we write |·|D,r as |·|r .

We now derive convexity in Hölder–Zygmund norms. It is clear that the second
term in (3.5) satisfies

sup
y∈Rn

|�2
yf |L∞(Rn)

|y|(1−θ)r0+θr1
≤

(
sup
y∈Rn

|�2
yf |L∞(Rn)

|y|r0

)1−θ(
sup
y∈Rn

|�2
yf |L∞(Rn)

|y|r1

)θ
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for r0, r1 ∈ (0,2) and θ ∈ (0,1). Then we get

|u|(1−θ)a+θb ≤ Cb−a |u|1−θ
a |u|θb, 0 ≤ θ ≤ 1, (3.7)

for 0 < b − a < 2 and θ ∈ (0,1). Hence, it also holds for all positive a, b; indeed,
suppose it holds for 0 < b − a < d . Suppose a < c < b with d/2 < b − a < 3d/2
and c = (1 − θ)a + θb. We take e so that 0 < max(b − e, e − a) < d . We may
assume that c < e. Thus

|u|c ≤ C|u|
e−c
e−a
a |u|

c−a
e−a
e , |u|e ≤ C|u|

b−e
b−c
c |u|

e−c
b−c

b .

Eliminating |u|e and solving for |u|c , we get (3.7). By (3.6) and (3.7), for D we
get

|u|D,(1−θ)a+θb ≤ Ca,b(D)|u|1−θ
D,a |u|θD,b, 0 ≤ θ ≤ 1, a, b > 0. (3.8)

Lemma 3.1. Let D, D̃ be connected bounded domains with Lipschitz boundary,
and let g map D into D̃. Suppose that ‖g‖D;1 < C. Then we have∣∣∣∣

k∏
j=1

uj

∣∣∣∣
D,a

≤ Ca(D)C1/ε

∑
i 
=j

|ui |D,a‖uj‖D,ε

∏
�
=i,j

‖u�‖D,0, a > 0; (3.9)

∣∣∣∣ 1

u

∣∣∣∣
D,a

≤ Ca(D)(1 + ‖u−1‖0)
[a]+2(1 + C1/ε‖u‖a+1

D,ε )|u|D,a; (3.10)

|u ◦ g|D,1 ≤ C(D)C(D̃)|u|D̃,1(1 + C1/ε‖g‖
1

1+ε

D,1+ε); (3.11)

|u ◦ g|D,a ≤ Ca(D)Ca(D̃)(|u|D̃,a(1 + C1/ε‖g‖
1+2ε
1+ε

D,1+ε)

+ ‖u‖D̃,1+ε|g|D,a + ‖u‖D̃,0), a > 1. (3.12)

Here, ε is any positive number and C1/ε is a positive constant depending on ε that
tends to ∞ as ε → 0.

Proof. Note that stronger inequalities for Hölder norms are given by (3.1)–(3.3).
We only need to verify the lemma when a is an integer. Here we need a bit more
for low order derivatives for g. We will also employ the Stein extension operator.

For the product rule, by Stein extension it suffices to consider the case D =R
n,

and u, v have compact support in a ball of fixed radius.
Let k = a − 1 ≥ 0 be an integer. We have

(uv)(k) = u(k)v + uv(k) +
∑

0<j<k

Bk,ju
(k−j)v(j). (3.13)

We remark that we do not have (3.4) for Zygmund norms. We have

|�2
y(u

(k)v)(x)|
= |(�2

yu
(k)(x))v(x) + u(k)(x)�2

yv(x)

+ (u(k)(x + 2y) − u(k)(x))(v(x + 2y) − v(x))

+ (u(k)(x + y) − u(k)(x))(v(x + y) − v(x))|
≤ C|y|(|u|a‖v‖0 + ‖u‖0|v|a + ‖u‖k+(1−ε)‖v‖ε + ‖u‖ε‖v‖k+1−ε).
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We then use ‖u‖k+1−ε ≤ C1/ε|u|a . For terms in the sum of (3.13), we use 1 ≤
j < k to get

|u(k−j)v(j)|1 ≤ C‖u(k−j)v(j)‖1 ≤ C′(‖u‖k−j+1‖v‖j + ‖u‖k−j‖v‖j+1)

≤ C′′(‖u‖k+1−ε‖v‖ε + ‖u‖ε‖v‖k+1−ε).

Here, we have used (3.2) and (3.4). We have verified (3.9) for k = 2. For k > 2,
we can verify by a similar argument combining with (3.4).

To verify (3.10), it suffices to consider the case that a is a positive integer.
Computing derivatives of u−1 of order a − 1 and using the product rule (3.9), it
suffices to verify it for a = 1. It is convenient to write u−1 = g(u) where g is a
smooth function. By the Taylor formula for g, we have

|�2
y(g(u))(x)| ≤ |g′(u(x))�2

yu(x)|
+ 2‖u−3‖D,0(|u(x + y) − u(x)|2 + |u(x − y) − u(x)|2).

Note that |u(x + y) − u(x)|2 ≤ ‖u‖ε‖u‖1−ε|y|. We can get (3.10).
We now verify (3.11). Let ũ = ED̃u and let g̃ = EDg. Then

|u|D,1 ≤ |̃u|1 ≤ C(D̃)|u|D̃,1, |g|D;1+ε ≤ 2‖g̃‖1+ε ≤ Cε(D̃)|g|D,1+ε.

Thus ũ ◦ g̃ is an extension of u ◦ g. Let us drop all tildes in ũ, g̃. We have

|u ◦ g(x + h) + u ◦ g(x − h) − 2u ◦ g(x)|
≤ |u|1|g(x + h) − g(x)| + |u(g(x − h)) − u(2g(x) − g(x + h))|
≤ C1|u|1‖g‖1|h| + ‖u‖ 1

1+ε
(Cn‖g‖1+ε|h|1+ε)

1
1+ε

≤ C1|u|1‖g‖1|h| + CnC1/ε|u|1‖g‖
1

1+ε

1+ε|h|.
Here we have used

g(x + h) + g(x − h) − 2g(x) = h ·
∫ 1

0
(∇g(x + th) − ∇g(x − th) dt,

‖g‖α ≤ C1/α|g|1, 0 < α < 1.

Note that C1/α is not bounded as α tends to 1−. We have verified (3.11). To verify
(3.12), it remains to verify it for integer a ≥ 2. We have

∂a−1(u ◦ g) = (∂a−1u) ◦ g∂g +
a−2∑
i=1

(∂iu) ◦ g∂a1g · · · ∂ai g, (3.14)

where a� ≥ 1 and
∑

al = a − 2. By (3.9) with a = 1 and (3.11), we get

|(∂a−1u) ◦ g∂g|1 ≤ C(|u|a(1 + C1/ε‖g‖
2+ε
1+ε

D,1+ε) + ‖u‖a−1+ε|g|2).
When a = 2, we get the required estimate. When a ≥ 3, we further estimate the
last term by

‖u‖a−1+ε‖g‖2 ≤ Ca,1/ε(‖u‖a−ε‖g‖1+2ε + ‖u‖1+2ε‖g‖a−ε)

≤ C′
a,1/ε(|u|a‖g‖1+2ε + ‖u‖1+2ε|g|a).
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We now estimate the other terms in (3.14). We use 1 ≤ i ≤ a − 2. By (3.3),
(3.2), and (3.4) for Hölder norms, we get

‖(∂iu) ◦ g∂a1g · · ·∂ai g‖1

≤ ‖(∂iu) ◦ g‖1‖g‖a1 · · · ‖g‖ai

+ ‖u‖i

i∑
j=1

‖g‖a1 · · · ‖g‖aj +1 · · · ‖g‖ai

≤ C{‖u‖i+1+(a1+···+ai−i−ε))‖g‖1+ε + C‖u‖1‖g‖a−1+ε},
which gives us (3.12). �
We need the following more general chain rule estimate. The proof can be found
in the appendix of [2] for Hölder norms. The similar estimate can be obtained
analogously by using the above chair rule, product rule for the Zygmund spaces.
We left the details to the reader.

Lemma 3.2. Let Dm be a sequence of Lipschitz domains in R
d of which C∗(Dm)

are bounded. Let Fi = I + fi map Di into Di+1 with ‖fi‖1 ≤ C0. Then

‖u ◦ Fm ◦ · · · ◦ F1‖D0,r

≤ Cm
r

{
‖u‖r +

∑
i

‖u‖1‖fi‖r + ‖u‖r‖fi‖1

}
, r ≥ 0;

|u ◦ Fm ◦ · · · ◦ F1|D0,r

≤ Cm
r

{
|u|r +

∑
i

‖u‖1+ε|fi |r + C1/ε|u|r‖fi‖
1+2ε
1+ε

1+ε

}
, r > 1.

We also need to extend an inverse mapping estimate in Webster [27] to the Zyg-
mund spaces. Note that

(∂a
x g) ◦ F =

∑
Qα(∂f )∂α1f · · ·∂αi f,

where i ≥ 1, αj ≥ 1, α1 + · · · + αi ≤ a, and Qα(∂f ) are rational functions in ∂f

with ‖Qα(∂f )‖Br ,0 < C.

Lemma 3.3. Let F = I + f be a C1 map from Br := {x ∈ Rn : ‖x‖ ≤ r} into Rn

with

f (0) = 0, ‖Df ‖Br ,0 ≤ θ <
1

2
.

Let r ′ = (1 − θ)r . Then the range of F contains Br ′ and there exists a C1 inverse
G = I + g, which maps Br ′ injectively into Br with

g(0) = 0, ‖Dg‖Br′ ,0 ≤ 2‖Df ‖Br ,0.

Assume further that f ∈ �a+1(Br). Then g ∈ �a+1(Br ′) and

‖Dg‖Br′ ,a ≤ Ca‖Df ‖Br ,a, a ≥ 0;
|Dg|Br′ ,a ≤ Ca|Df |Br ,a(1 + C1/ε‖f ‖

1+2ε
1+ε

1+ε ), a > 1.
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In applications, the r in the lemma will be bounded between two absolute con-
stants. Thus the constant Ca does not depend on r , r ′. In fact, for convenience we
will drop the requirement that f (0) = 0 replacing with the condition that f has
compact support in Br . This allows us to take r ′ = r , too.

3.2. Estimates on the Commutator

For our application, we need to consider the commutator [∂,E] := ∂E − E∂ .

Proposition 3.4. Let D be a bounded C1 domain in R
n and E be the Stein

extension operator for D satisfying (3.6). Moreover, let U = D + η · �N , where �N
is the outer unit normal vector of D and 0 < η < 1. Then we have the following
estimates:

‖[∂,E]u‖U,a ≤ Cbη
b−a−1‖u‖D,b, b − 1 ≥ a ≥ 1;

|[∂,E]u|U,a ≤ Cbη
b−a−1|u|D,b, b − 1 ≥ a > 1.

Proof. First, let k, l be integers such that 0 ≤ k ≤ l. Notice that for any func-
tion f ∈ Cl(U) that vanishes on D, we have the point-wise estimate for the kth
derivatives

|f (k)(x)| ≤ Cl dist(x, ∂D)l−k‖f ‖U,l, ∀x ∈ U\D.

Indeed, fix any x ∈ U\D. We may assume without loss of generality that 0 ∈ ∂D

and |x| = dist(0, x) = dist(x, ∂D). Let γ (t) = tx, 0 ≤ t ≤ 1, be the line segment
that connects 0, x. Let N = l − k. Then, by the fundamental theorem of calculus,

f (k)(x) =
∫ 1

0

d

dt1
· · ·

∫ 1

0

d

dtN
f (k)(tN · · · t1x)dtN · · ·dt1.

Consequently,

|f (k)(x)| ≤ CN |x|N‖f k+N‖U,0 ≤ CN dist(x, ∂D)l−k‖f ‖U,l .

In particular,
‖f ‖U,k ≤ C�−kη

�−k‖f ‖U,�.

Now, let 0 ≤ α,β < 1 and k + α ≤ l + β . We claim that

‖f ‖U,k,α ≤ Cl−kη
l−k+β−α‖f ‖U,l,β . (3.15)

Indeed, assume first that k = l and α ≤ β . Then, for any |x − y| ≤ η, we have

|f (k)(x) − f (k)(y)|
|x − y|α ≤ ‖f ‖U,l,β |x − y|β−α ≤ ‖f ‖U,l,βηβ−α. (3.16)

If |y − x| > cη, we use f (k)|D = 0. We find y∗ ∈ ∂D such that |y∗ − y| =
dist(y,D). Then we get (3.16) from

|f (k)(x) − f (k)(y)|
|x − y|α ≤ Cη−α(|f (k)(x)| + |f (k)(y)|)

≤ Cη−α‖f ‖�+β(|x|β + |y − y∗|β).
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Assume now that l > k. Note that any two points x, y in U can be connected by
a smooth curve of length at most C(D)|x − y|. Putting the above together, we
obtain

|f (k)(x) − f (k)(y)|
|x − y|α ≤ C(D)‖f ‖U,k+1|x − y|1−α ≤ Cl−kC(D)‖f ‖U,lη

l−k−α

≤ Cl−kC(D)‖f ‖U,l+βηl−k−α+β.

Finally, we apply (3.15) to f = [∂,E]u with k + α = a, l + β = b − 1. Notice
also that ‖[∂,E]u‖U,b−1 ≤ Cb‖u‖D,b, where Cb is the operator norm for E :
Cb(D) → Cb(Rn). Then

‖[∂,E]u‖U,a ≤ Cb−aC(D)ηb−a−1‖u‖D,b.

We now consider the Zygmund space case. Here we use real interpolation on
operator norms. Let EU be a Stein extension for functions on U . We have

EU [∂,ED]u = EU∂EDu − EUD∂u.

Thus, we can write the Hölder estimates as

‖EU [∂,ED]u‖Cn,a ≤ Cηb−a−1‖u‖b, ∀u ∈ �b(Cn).

We remark that the inequality is trivial when b = a + 1. Thus we assume that
b > a + 1. We also have a > 0. We take nonintegers ai , bi satisfying b0 < b < b1,
0 < a0 < a < a1, and bi > ai + 1. Furthermore,

a = (a0 + a1)/2, b = (b0 + b1)/2.

We have |[∂,E]u|ai
≤ Ciη

bi−ai−1|u|bi
. Since u → EU [∂,E]u is a linear operator,

we get via interpolation of operator norms (see for instance [2])

|[∂,E]u|a ≤ |EU [∂,E ]̃u|a ≤ C(C0η
b0−a0−1)1/2(C1η

b1−a1−1)1/2 |̃u|b
for any ũ ∈ �b with ũ|D = u. This gives us the last inequality. The proposition is
proven. �

Let U0 = D0 + t0 · �N , where �N is the unit outer normal vector of the boundary. Fix
L ∈N. Moser constructed in [19] a smoothing operator St : C0(U0) → C∞(D0),

Stu(x) =
∫

|y|<1
u(y)χt (x − y)dy, x ∈ D0,0 < t < t0/C, (3.17)

where
∫

χ(z) dz = 1, χt (z) = χ(z/t), suppχ ⊂ {z ∈R2n : |z| < 1/2}, and∫
zIχ(z) dz = 0, 0 < |I | ≤ L. (3.18)

Therefore, St is a convolutional operator, and for 0 < t < t0/C, we have

‖Stu‖D0,a ≤ Cat
b−a‖u‖U0,b, 0 ≤ b ≤ a < ∞; (3.19)

‖(I − St )u‖D0,a ≤ Cbt
b−a‖u‖U0,b, 0 ≤ a,0 ≤ b − a < L. (3.20)
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Here the last inequality relies on (3.18). Via interpolation as explained in the proof
of Proposition 3.4 and applied to linear operator St and I − St , we get from the
above two inequalities (3.19)–(3.20) the following for Zygmund norms:

|Stu|D0,a ≤ Cat
b−a |u|U0,b, 0 < b ≤ a < ∞; (3.21)

|(I − St )u|D0,a ≤ Cbt
b−a|u|U0,b, a > 0,0 ≤ b − a < L. (3.22)

3.3. Stability of Constants

We first recall the homotopy operators on a C2 strictly pseudoconvex domain
constructed in [2]. Let D0 be a C2 strictly pseudoconvex domain in C

n and U ⊂
C

n be some open neighborhood of D0. Then, for any φ ∈ �r
(0,1)(D0) with r > 1,

we have the homotopy formula

φ = ∂PD0,Uφ + QD0,U∂φ, on D0, (3.23)

where

PD0,Uφ(z) =
∫

ζ∈U
�0

0,0(ζ, z) ∧ ED0φ(ζ ) +
∫

ζ∈U\D0

�01
0,0(ζ, z) ∧ [∂,ED0]φ(ζ ).

Here, �0
0,0(ζ, z), �01

0,0(ζ, z) are forms of types (0,0) and (0,1) in z, respectively.
Moreover, ED0g has the form χED0g with the latter ED0g being the actual Stein
extension of g, and χ is a smooth function that has compact support in U and
equals 1 near D0; see the proof in [2, Prop. 2.1]. Thus we have the following
estimate by [2, Thm. 1.1]:

|PD0,Uφ|D0,r+1/2 ≤ Cr(D0)θ
−r−μ
0 |φ|D0,r , r > 1, (3.24)

where θ0 = dist(D0, ∂U), and μ is some constant depending only on the dimen-
sion and C(D0) > 0 is another constant depending on a C2 norm of the defining
function. Similar formula and estimates hold with Q in place of P and φ, a (0,2)

form. We refer to [2] for more details on these operators and estimates.
In our application, we will also apply estimates on P , Q to a sequence of

domains Dj such that dist(Dj , ∂U) are bounded below by a fixed positive number
depending on the initial domain D0. Consequently, we can absorb θ

−s−μ
0 into the

coefficient in the estimate. We shall also drop the subscript in D0 for simplicity
if no confusion is caused. We remark that the constant Cs in (3.24) depends on
s and it may not be bounded as s tends to some special values such as a positive
integer.

We make a remark about the stability of a constant under C2 perturbation of
the domains.

Remark 3.5. Let D0 := {x ∈ U : ρ0(x) < 0} ⊂ U ⊂ R
n be a domain with C2

boundary where U is some open neighborhood of D0 and ρ0 is a (standard) C2

defining function. Let

Dε0 = {ρ ∈ C2(U) : ‖ρ − ρ0‖U ,2 ≤ ε0}.
Here ε0 > 0 is sufficiently small such that, for all ρ ∈ Dε0 , we have dρ(x) 
= 0 on
{x ∈ U : ρ(x) = 0}.
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Suppose that there is a function

C :Dε0 → (0,∞).

Definition 3.6. We say C is upper stable (resp. lower stable) under small C2

perturbation of ρ0 if there exist ε(D0) > 0 and a constant C0(D0) > 1 possibly
dependent on ρ0, such that

C(ρ) ≤ C0(D0)C(ρ0) (resp. C(ρ0) ≤ C0(D0)C(ρ))

for all ρ satisfying ‖ρ − ρ0‖U ,2 ≤ ε(D0).

The following are examples of upper stable mappings that will be used for our
purposes.

(1) Recall that we introduce standard defining functions for Ck domains with
k ≥ 1 in Section 2. By being standard, we mean that the defining functions
depend only on the domains in construction. We will write C(ρ0) when ρ0 is a
standard definition function of D0. There are other ways to construct standard
definition functions. For instance, we can replace ρ0 by a Whitney extension
of ρ0|D0

so that ρ0 ∈ C∞ away from D0. There are other ways to construct
definition functions. For instance the Stein extension can also be used.

(2) The operator norms of Stein extension operator between �r(D0) → �r(D0)

for some r > 1 are upper stable under small C2 perturbation of the domain
D0. Indeed, it is well known that the operator norm Cr(D0) only depends on
the Lipschitz constant of D0; see [24, Section 3.3, p. 189] for Lp Sobolev
spaces L

p
k and [2] for Hölder–Zygmund spaces. Thus Cr(D̃) < C0Cr(D0)

when ∂D̃ has a C1 defining function ρ̃ with ‖ρ̃ − ρ0‖1 < ε(D0) sufficiently
small for some constant C0(D0, ε).

(3) The constants in estimates (3.1), (3.2), (3.3), (3.8), (3.9), (3.12) and
Lemma 3.2 are also upper stable under small C2 perturbation of D provided
that D is a C1 domain. This should follow in principle from the proofs of
these inequalities. Alternatively, it also follows from the above remark. In-
deed, let D̃ = {z ∈ U : ρ̃(z) < 0}, where ‖ρ̃ − ρ‖U ,2 ≤ ε for some ε(ρ) > 0.
Let ED̃ be the Stein extension operator on D̃. Then we have

‖u‖D̃,l ≤ ‖ED̃u‖U ,l ≤ Ca,b(U)‖ED̃u‖θ
U ,a‖ED̃u‖1−θ

U ,b

≤ Ca,b(U)C′
a(D̃)C′′

b (D̃)‖u‖θ

D̃,a
‖u‖1−θ

D̃,b

for l = θa + (1 − θ)b. Consequently, the stability of

Ca,b(D̃) = Ca,b(U)C′
a(D̃)C′′

b (D̃)

follows from the stability of C′
a(D̃), C′′

b (D̃) from the Stein extension operator.
The proofs for (3.2), (3.3), (3.8), (3.9), and (3.12) are similar. For the coeffi-
cients in Lemma 3.2, we simply notice they are finite products of the constants
from (3.1), (3.2), (3.3) and some dimensional constants. Consequently, they
are also stable under small C2 perturbation.

(4) It is easy to see that the operator norms for Nash–Moser smoothing operator
(3.17) are upper stable under small C2 perturbation of the domain D0.
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(5) The operator norms for (3.23) in (3.24) are upper stable under small C2 per-
turbation of the domain D0. This was proved in [2, Theorem 5.2].

The upper stability of these constants in (1)–(5) is important for the conver-
gence of our iteration process in Section 7 and also for the proof of the lower
stability of δr (D0). Notice that the latter condition already played an important
role in the proof of Theorem 1.2.

4. Approximate Solution via Homotopy Formula

Let D0 be a strictly pseudoconvex domain in C
n with C2 boundary. Given the

initial integrable almost complex structure Xα = ∂α + A
β
α∂β on D0, we wish to

find a transformation defined on D0 to transform the complex structure into a
new complex structure closer to the standard complex structure, whereas D0 is
transformed to a new domain that is still C2 strictly pseudoconvex.

According to Lemma 2.1, after a perturbation of the form F = I + f with Df

small, the new structure {∂α + Â
β
α∂β} has the matrix form

Â ◦ F = (I + ∂f + A∂f )−1(A + ∂f + A∂f ).

We first formally decide the correction f following Webster [27]. Then we
indicate the obstructions and make necessary modifications.

From now on, we shall regard A
β
α as the coefficients of (0,1) forms by simply

identifying A
β
α∂β with Aβ := A

β
αdzα , where β = 1, . . . , n. We can then apply the

homotopy formula (3.23) componentwise to A := (A1, . . . ,An) and write

A = ∂PA + Q∂A.

For Newton’s method, we would take f = −PA. Then

A + ∂f + A∂f = ∂PA + Q∂A − ∂PA + A∂f = Q∂A + A∂f.

Using the integrability condition ∂A = [A,∂A] and product rule (3.9), formally
we would have |Â| ≤ |A|2. This is used in Webster’s proof of the classical
Newlander–Nirenberg theorem [27]. However, similar to Webster [28], Gong and
Webster [6], and Gong [3], the homotopy operator P does not gain the full de-
rivative lost in applying ∂ to A as one can see from (3.24). Therefore, we need
to apply a smoothing operator to −PA so that the iteration does not terminate
within finitely many steps. Note also that the transformation F must be defined
on D0. Consequently, we need to use the Nash–Moser smoothing method in a
way different from the above mentioned work. Namely, we first extend PA to
a larger domain via the Stein extension operator and then apply the smoothing
operator St in (3.17). This ensures that the new complex structure is defined on
the closure D1 = F(D0) where the new structure is still formally integrable and
has the same regularity as the original complex structure. We first remark that the
new domain D1 as well as future iterated domains in C

n, which are small pertur-
bations of D0, need to be controlled to apply, for instance, the upper stability of
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various constants. The control of these domains will be achieved in Lemma 7.1.
Therefore, we modify f = −PA and take

f = −StED0PD0,U1A. (4.1)

Here we assume that
dist(D0, ∂B0) ≥ c∗

0,

and via a cut-off function, we assume that the Stein extension ED0u of functions
u has compact support in

B0 = {z ∈ C
n, |z| < σ0},

where B0 is a fixed large ball containing D0, D1 and their neighborhoods U . Note
that f defined by (4.1) still has compact support, provided

t < c∗∗
0 .

Consequently, we have the following identities on D0:

A + ∂f + A∂f = A − ∂StEPA + A∂f

= A − St∂EPA + [St , ∂]EPA + A∂f

= A − StE∂PA + St [E,∂]PA + A∂f

= A − StEA + StEQ∂A + St [E,∂]PA + A∂f

= (I − St )EA + StEQ∂A + St [E,∂]PA + A∂f,

where in the third equality, we use [St , ∂] = 0 on D0 when acting on C1(U0).
According to the above computation and Lemma 2.1, our new error Â satisfies

Â ◦ F

= (I + ∂f + A∂f )−1{(I − St )EA + StEQ∂A + St [E,∂]PA + A∂f }. (4.2)

We shall denote

I1 = (I − St )EA, I2 = StEQ∂A, (4.3)

I3 = −St [∂,E]PA, I4 = A∂f, I5 = ∂f + A∂f, (4.4)

Ã = (I + I5)
−1(I1 + I2 + I3 + I4). (4.5)

Then we have

Â ◦ F = Ã, on D0; Â = Ã ◦ G, on D1.

Here, G = F−1 maps D1 := F(D0) onto D0.
Before proceeding, let us briefly discuss the plan for proving Theorem 1.1. In

Section 5, we estimate lower order norm |f |D0,s for some s > 2 of the transfor-
mation F = I + f defined by (4.1) and give a rough estimate of the new complex
structure Â on the closure of the new domain D1. In Section 6, we refine our
estimates on the lower and high order norms |Ã|D0,s , |Ã|D0,r with s < r by es-
timating I1, . . . , I5 defined by (4.3), (4.4), (4.5). In Section 7, we describe the
iteration scheme and verify the induction hypotheses. We shall obtain uniform
control for the gradient, second order derivatives of f , and the Levi form of the
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defining function for iterated domains. In Section 8, we run the iteration and de-
termine all the parameters in order to achieve optimal regularity result. Finally,
we show the convergence of the composition of a sequence of transformations on
D0 in �k norm for suitable k.

5. Change of Coordinates and New Complex Structure

Let A ∈ �r(D0) be the error term in the original almost complex structure where
1 < r < ∞. Let 3

2 < m ≤ r + 1
2 and 1 < � ≤ r . We allow r , �, m, and s below be

nonintegers.
Recall that f is defined by (4.1), and I1, . . . , I5 are defined by (4.3)–(4.5). We

start by deriving the following two estimates for f = F − I via (3.21)–(3.22):

|f |D0,m = |StEPA|D0,m ≤ C′
m|EPA|U0,m ≤ C′

mC′′
m|PA|D0,m

≤ C′
mC′′

mC′′′
m |A|D0,m−1/2, (5.1)

|f |D0,�+1 = |StEPA|D0,�+1 ≤ C′
�+1t

− 1
2 |EPA|U0,�+1/2

≤ C′
�+1C

′′
�+1C

′′′
�+ 1

2
t−

1
2 |A|D0,�, (5.2)

where C′• is the constant from the Nash–Moser smoothing operator (3.19), which
is independent of the domain D0, C′′• is the constant from Stein’s extension oper-
ator (3.6), and C′′′• is the constant from estimate (3.24). Constants in the second
estimate have similar meaning.

Let us first describe how we control the norms in iteration. Let 3/2 < s < 3.
We need to get rapid convergence in low order derivatives of f . This will be
measured by the s-norn |A0|D0,s . There are two estimates (5.1) and (5.2) which
are available to control the lower order derivatives of f . We will use (5.1) to
control the second-order derivatives of f and thus the Levi forms of the domains
in iteration. We will use (5.2) to control the (s + 1)-norm of f . Let σ0 > 0 be any
number large enough such that

D0 ⊂ U ⊂ B0,

where U is an open neighborhood of D0 and B0 = {z ∈ C
n : |z| < σ0}. We shall

still denote by f the extension Ef to B0 where E is the Stein extension operator.
We may assume that Ef has compact support in B0.

To simplify our notation, we denote by Cm(D0) finite products of upper stable
constants. Notice that by definition of upper stability, finite products of upper
stable constants is still upper stable. We will then use C∗

m(D0) to indicate in the
context when these constants are fixed for the rest of the paper.

According to (5.1) and (5.2), we have

‖f ‖B0,2 ≤ C∗
2 |A|D0,s , (5.3)

|f |B0,s+1 ≤ C∗
s t−1/2|A|D0,s . (5.4)
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Let us first assume that

|A|D0,s <
1

C∗∗
s

, C∗∗
s >

√
8nC∗

2 , s >
3

2
. (5.5)

Here, we have fixed C∗
2 , C∗

s and we will adjust the constant C∗∗
s a few times,

which will be indicated sometime for clarity. By (5.3) and (5.5), we have for the
operator norm of Df ,

‖Df ‖B0,0 ≤ √
2n‖f ‖B0,2 ≤

√
2nC∗

2

C∗∗
s

<
1

2
. (5.6)

We now apply Lemma 3.3 to F = I + f to estimate its inverse G. Recall that f

has compact support in B0. Therefore F is a diffeomorphism from B0 onto itself.
Let F−1 = G be its inverse mapping defined on B0. Estimate (5.6) also ensures
that the constants in Stein extension for F(D0) and the convexity of norms are
equivalent to the constants for D0. However, in the next section we will impose a
stronger condition ensuring that F(D0) remains strictly pseudoconvex.

From (4.2)–(4.5), we have

Â ◦ F = (I + I5)
−1(I1 + I2 + I3 + I4) =: Ã, (5.7)

where I1 = (I − St )EA, I2 = StEQ∂A, I3 = −St [∂,E]PA, I4 = A∂f , and I5 =
∂f + A∂f .

We wish to estimate |Â|D1,� in terms of �s and �r norms of f , A. We do
this by first applying the chain rule to Â = Ã ◦ G and reducing the problem to
estimating |Ã|D0,�. Then, we use the convexity of Hölder norms to further reduce
the problem to estimating |Ã|D0,r , |Ã|D0,s .

According to (5.3), (5.4), (5.6) and Lemma 3.3, we have

‖g‖B0,2 ≤ C2‖f ‖B0,2 ≤ Cs |A|D0,s , (5.8)

|g|B0,s+1 ≤ Cs |f |B0,s+1 ≤ Cst
−1/2|A|D0,s . (5.9)

By (5.1), (5.6), and Lemma 3.3, we obtain

|g|D1,m ≤ Cm|f |D0,m ≤ Cm|A|D0,m−1/2. (5.10)

Let D1 = F(D0). We apply chain rule estimate (3.12) to Â on D1 together
with (5.8) and (5.5) to obtain

|Â|D1,m = |Ã ◦ G|D1,m ≤ Cm(|Ã|D0,m + |Ã|D0,1+ε · |g|D1,m). (5.11)

We take ε ∈ (0,1/2) to be a small positive number. Let us assume that

|Ii |s < 1/2, i = 1, . . . ,5. (5.12)

Then we have |Ã|s < C. Using (5.10) and (5.11), we have

|Â|D1,m ≤ Cm|Ã|D0,m.

Therefore, it suffices to estimate Ã, assuming (5.5) and (5.12).



Newlander–Nirenberg Theorem 25

According to the convexity of Hölder–Zygmund norms (3.8) with a = s, b = r

and � = (1 − θ)s + θr for some 0 ≤ θ ≤ 1, we have the following estimates for
intermediate derivatives:

|Ã|D0,� ≤ Cr,s,�|Ã|1−θ
D0,s

|Ã|θD0,r
.

Consequently, we can reduce the problem of estimating the intermediate deriva-
tives to estimating |Ã|D0,s and |Ã|D0,r , which we shall often refer to as low and
high order derivative estimates.

To this end, we apply product rule (3.9) to the �m norm of Ã = Â ◦ F . We get

|Ã|D0,m ≤ Cm

(
|(I + I5)

−1|D0,m

4∑
i=1

‖Ii‖D0,ε + ‖(I + I5)
−1‖D0,ε

4∑
i=1

|Ii |D0,m

)

≤ Cm

(
|(I + I5)

−1|D0,m

4∑
i=1

|Ii |D0,s + |(I + I5)
−1|D0,s

4∑
i=1

|Ii |D0,m

)
.

When m = s, we have the low order estimate

|Ã|D0,s ≤ 2Cs |(I + I5)
−1|D0,s ·

4∑
i=1

|Ii |D0,s . (5.13)

Similarly, when m = r , we have the high order estimate

|Ã|D0,r

≤ Cr

(
|(I + I5)

−1|D0,r

4∑
i=1

|Ii |D0,s + |(I + I5)
−1|D0,s

4∑
i=1

|Ii |D0,r

)
. (5.14)

We shall begin to estimate the right-hand sides in the next section.

6. Estimate of I1, . . . , I5 and Â

Let A ∈ �r , 3
2 < r ≤ ∞, be the error term in the original complex structure. Let

3
2 < s < 3. In this section, we assume that 3

2 < m ≤ r if r < ∞ and 3
2 < m < ∞

if A ∈ C∞. We also replace the initial conditions (5.5) and (5.12) by the stronger
conditions

t−1/2|A|D0,s ≤ 1

C∗∗
s

, t r−s−1/2|A|D0,r ≤ 1

C∗∗
r

, (6.1)

where t ∈ (0,1) and C∗∗
s , C∗∗

r that are larger than 1 will be adjusted several times
in this section. When r = ∞, we take r = 5 in the above condition.

When r < ∞, we choose our smoothing operator St depending on r . More pre-
cisely, in (3.17), we choose L = �r� where �·� means rounding up to the closest
integer. By (3.22) for the smoothing operator and (3.6) for the extension operator,
we get

|I1|D0,m = |(I − St )EA|D0,m ≤ Crt
r−m|EA|U0,r ≤ Crt

r−m|A|D0,r .
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Substituting s into m, we have

|I1|D0,s ≤ Crt
r−s |A|D0,r , (6.2)

|I1|D0,r ≤ Cr |A|D0,r , (6.3)

where the former inequality will be used to prove the rapid convergence of (5.13)
and the latter will be used to control the growth rate of (5.14).

When r = ∞, we construct another smoothing operator by choosing L = 3 in
the construction of St . Then, for all 3

2 < m < ∞, we have

|I1|D0,m = |(I − St )EA|D0,m ≤ Cm|A|D0,m.

To estimate I2, we need to use the integrability condition ∂A = [A,∂A] on D0

and estimate (5.1). We will also apply (3.24) to ∂A ∈ �s−1(D0) in the following
estimate, which forces us to impose a stronger condition:

s > 2.

By ∂A = [A,∂A], we have by (3.21), (3.24), and (3.9)

|I2|D0,m = |StEQ∂A|D0,m ≤ C′
s t

−1/2|EQ∂A|U0,m−1/2

≤ C′
mC′′

m− 1
2
t−1/2|Q∂A|D0,m−1/2

≤ C′
mC′′

m− 1
2
C

m− 1
2
t−1/2|∂A|D0,m−1

≤ Cmt−1/2(|A|D0,m−1‖A‖D0,1+ε + |A|D0,m‖A‖D0,ε)

≤ Cmt−1/2|A|D0,s |A|D0,m.

Using initial condition (6.1) and applying the above estimate with s, r in place of
m, we get

|I2|D0,s ≤ Cst
−1/2|A|2D0,s

, (6.4)

|I2|D0,r ≤ Cr |A|D0,r . (6.5)

When r = ∞, we have
|I2|D0,m ≤ Cm|A|D0,m.

For the estimate of I3, we have

|I3|D0,m = |St [∂,E]PA|D0,m ≤ C′
m|[∂,E]PA|U0,m

≤ C′′
r,mtr+1/2−m−1|PA|D0,r+1/2

≤ Crt
r−m−1/2|A|D0,r ,

where we used Lemma 3.4 in the second inequality recalling U0 = D0 + t �N with
�N being the unit outer normal vector of ∂D0. Here we emphasize that D0 + tN

needs to be contained in the domain U that appears in the integral operator P in
(3.24), which is satisfied since U can be chosen to contain D0 and its small C2

perturbation. Applying the above estimate with s, r in place of m, we have

|I3|D0,s ≤ Crt
r−s−1/2|A|D0,r , r − 1

2
≥ s > 2, (6.6)

|I3|D0,r ≤ Crt
−1/2|A|D0,r . (6.7)



Newlander–Nirenberg Theorem 27

We remark here that t−1/2 in the coefficient of (6.7) is the main obstruction that
prevents us from having a linear growth in [26; 2] for the high order norms.

When r = ∞, we have

|I3|D0,m ≤ Cmt−1/2|A|D0,m.

The estimate for I4 is more involved. Recall that f = −StEPA. By (5.4) we
have

|I4|D0,m = |A∂f |D0,m ≤ Cm+1(|A|D0,m‖f ‖
1+2ε
1+ε

D0,1+ε + ‖A‖D0,ε|f |D0,m+1)

≤ Cm+1(|A|D0,m|A|D0,s + ‖A‖D0,0t
−1/2|A|D0,m)

≤ Cm+1t
−1/2|A|D0,s |A|D0,m.

Using initial condition (6.1) and applying the above estimate twice with r , s in
place of m, respectively, we get

|I4|D0,s ≤ Cs+1t
−1/2|A|2D0,s

, (6.8)

|I4|D0,r ≤ Cr+1|A|D0,r . (6.9)

When r = ∞, we have

|I4|D0,m ≤ Cm+1|A|D0,m.

Finally, we need to estimate the low and high order derivatives for I5 and (I +
I5)

−1:
|I5|D0,m = |∂f + A∂f |D0,m ≤ Cm+1t

−1/2|A|D0,m.

Using the initial condition (6.1) for C∗∗
s sufficiently large and applying the

above estimate with r in place of m, we get by (5.4)

|I5|D0,s ≤ 1/Cs, (6.10)

|I5|D0,r ≤ Cr+1t
−1/2|A|r . (6.11)

Recall that in our notation all constants Cr , Cs , and so on are larger than 1 and
constants cr , cs , and so forth are positive and less than 1. When r = ∞, we have

|I5|D0,m ≤ Cm+1t
−1/2|A|m.

We now consider (I +I5)
−1 −I . By the matrix inversion formula (I +I5)

−1 =
det(I + I5)

−1(Aij ), where (Aij ) is the transpose of the adjugate matrix of I + I5.
Notice that every entry in (I + I5)

−1 − I is a polynomial in (det(I + I5))
−1 and

entries of I5 without constant term and with fixed degree. Therefore, we can now
estimate |(I + I5)

−1 − I |D0,m using product and quotient rules (3.9) and (3.10) to
show that

|(I +I5)
−1 −I |D0,m ≤ Cm(1+‖I5‖D0,ε)

n+m+2 |I5|D0,m

(1 − C∗‖I5‖D0,0)
m+2

, C∗ > 0,

if ‖I5‖D0,0 < C∗/2. Consequently, by (6.10),

|(I + I5)
−1|D0,m ≤ Cm(1 + |I5|D0,m), m > 0.

Recall that Cs > 1. By (6.10), we have the estimate

|(I + I5)
−1|D0,s ≤ Cs(1 + |I5|D0,s) ≤ 2Cs. (6.12)
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Letting m = r , we have

|(I + I5)
−1|D0,r ≤ Cr(1 + |I5|D0,r ). (6.13)

Similarly, when r = ∞,

|(I + I5)
−1|D0,m ≤ Cm(1 + |I5|D0,m).

Let C∗∗
s , C∗∗

r be sufficiently large in the initial condition (6.1), and we may
assume that s-norms of I1, I2, I3, I4, (I + I5)

−1 are uniformly bounded by some
positive constant Cr .

Using s-norm derivative estimates (6.1), (6.2), (6.4), (6.6), (6.8), (6.11), and
(6.12) in the product rule formula (5.13), we obtain

|Ã|D0,s ≤ Cr(t
r−s−1/2|A|D0,r + t−1/2|A|2D0,s

).

Then by using r-norm estimates (6.1), (6.3), (6.5), (6.7), (6.9), and (6.13) in
the product rule formula (5.14), we obtain

|Ã|D0,r ≤ Crt
−1/2|A|D0,r , r > 2.

Similarly, when r = ∞, we have

|Ã|D0,m ≤ Cmt−1/2|A|D0,m, m > 2.

Noticing that by (5.7), (5.9), and (6.1), Â = Ã ◦ G and ‖g‖1+ε < 1
2 , we apply

(5.9) and (5.11) to get

|Â|D1,s ≤ C∗
r (t r−s−1/2|A|D0,r + t−1/2|A|2D0,s

), r − 1

2
≥ s > 2, (6.14)

|Â|D1,r ≤ C∗
r t−1/2|A|D0,r , r > 2. (6.15)

And when r = ∞,

|Â|D1,m ≤ C∗
mt−1/2|A|D0,m, m > 2. (6.16)

We have derived the estimates for new A and f , g under assumption (6.1),
where the C∗∗

s is now fixed for the rest of the proof. Moreover, C∗
2 , C∗

s have been
fixed in (5.3), (5.4) and C∗

r , C∗
m have been fixed in (6.14), (6.15), and (6.16).

7. Levi Form of Iterated Domains

Let us summarize what we have achieved so far under assumption (6.1) on error
A0. Let D0 be a strictly pseudoconvex domain with C2 boundary in C

n, and
let X(0) = ∂ + A0∂ ∈ �r(D0) be the initial perturbed integrable almost complex
structure where ∂ = (∂1, . . . , ∂n) is the standard complex structure on Cn and ∂

is its conjugate. In Section 4, we defined F0 = I + f0 to be our first approximate
solution where

f0 = −St0ED0PD0A0

for some t0 > 0 to be determined. Let D1 := F0(D0) be the new domain and A1
be the error for the new almost complex structure on D1 where

A1 ◦ F0 = (I + ∂f0 + A0∂f 0)
−1(A0 + ∂f0 + A0∂f0)
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by Lemma 2.1. We then obtained estimates (6.14), (6.15) for the new error A1 in
terms of certain low and high order norms of the previous error A0.

We would like to repeat the above procedure on D1 to further reduce the new
error. However, in order to define the approximate solution F1 = I +f1 on D1 via
the homotopy formula, we have to show that D1 is still a strictly pseudoconvex
domain with C2 boundary. This is true provided that the initial error is small
enough. In fact, we shall set up an iteration scheme and prove a general statement
in the next proposition.

Without loss of generality, we assume that

D0 = {z ∈ U : ρ0(z) < 0} ⊂ D0 ⊂ U ⊂ B0,

where ρ0 is some C2 defining function of D0, U is some open neighborhood of
D0 and B0 = {z ∈C

n : |z| < 100}.
Next, we discuss how the Levi form of a C2 domain is controlled by a sequence

of C2 diffeomorphism.
It will be convenient to extend the defining function of a domain to a larger

and fixed domain. Let ρ0 be a Cm defining function of D0 on U . Suppose that
∂U ∈ C1 and D0 is relatively compact in U . Define

Ẽu = χEUu + (1 − χ), (7.1)

where χ ≥ 0 is a smooth function that equals 1 on U1 for some U1 and has com-
pact support in B0 and EUρ0 > 0 on U1, and furthermore U ⊂ U1 ⊂ B0.

Lemma 7.1. Fix a positive integer m. Let D0 ⊂ U ⊂ B0 ⊂ R
N with D0 ⊂ U .

Suppose that D0 admits a Cm defining function ρ0 satisfying

D0 = {x ∈ U : ρ0(x) < 0},
where ρ0 > 0 on U \ D0 and ∇ρ0 
= 0 on ∂D0. Let Fj = I + fj be a Cm diffeo-
morphism that maps B0 onto B0 and maps Dj onto Dj+1. Let ρ1 = (Ẽρ0) ◦ F−1

0
and ρj+1 = ρj ◦ F−1

j for j > 0, which are defined on B0. For any ε > 0, there
exists

δ = δ(ρ0, ε,m) > 0

such that if

‖fj‖B0,m ≤ δ

(j + 1)2
, 0 ≤ j < L,

then we have the following:

(i) F̃j = Fj ◦ · · · ◦ F0 and ρj+1 satisfy

‖F̃j+1 − F̃j‖B0,m ≤ Cm

δ

(j + 1)2 , 0 ≤ j < L,

‖F̃−1
j+1 − F̃−1

j ‖B0,m ≤ C′
m

δ

(j + 1)2
, 0 ≤ j < L,

‖ρj+1 − ρ0‖U ,m ≤ ε, 0 ≤ j < L.

(7.2)

(ii) All Dj are contained in U and

dist(∂Dj , ∂D) ≤ Cε, dist(Dj , ∂U) ≥ dist(D0, ∂U) − Cε. (7.3)
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In particular, when L = ∞, F̃j converges in Cm to a Cm diffeomorphism from B0

onto itself, whereas ρj converges in Cm of B0 as F̃−1
j converges in Cm norm on

the set.

Proof. Let us denote Ẽρ0 from (7.1) by ρ0.
(i) Let F̃i = I + f̃i . We have f̃i+1 = fi+1 ◦ F̃i + f̃i . By the chain rule, we get

‖f̃i+1 − f̃i‖B0,m ≤ Cm‖fi+1‖m

∏
i

(1 + ‖fi‖m)2m ≤ C′
m‖fi+1‖m ≤ Cm

δ

(i + 1)2
.

Let F−1
i = I +gi and F̃−1

i = I + g̃i . On B0, we can use the identity F̃−1
i+1 − F̃−1

i =
F̃−1

i+1 − Fi+1 ◦ F̃−1
i+1. Thus

g̃i+1 − g̃i = −fi+1 ◦ G̃i+1.

By the chain rule, we get ‖Gi+1‖m ≤ Cm(1 +‖f̃i+1‖m)2m ≤ C′
m. Then we obtain

‖g̃i+1 − g̃i‖m ≤ Cm‖fi+1‖m, ‖g̃i‖m ≤ Cmδ.

So far we have not used any assumption on δ other than the condition that
δ < C. To verify (7.2), we must use the uniform continuity of the m-th derivatives
of ρ0. Let DK be a derivative of order k. We have

ρi+1 − ρ0 = ρ0 ◦ G̃i − ρ0,

DK(ρi+1 − ρ0) = (DKρ0) ◦ G̃i − DKρ0 +
∑

PK,K ′(∂xg̃i , . . . , ∂
k
x g̃i)DK ′ρ0,

where PK,K ′(∂xg̃i , . . . , ∂
k
x g̃i) is a polynomial without constant term. Thus its sup

norm is bounded by

Cm‖g̃i‖m ≤ C′
mδ.

Applying the chain rule, we bound the sup norm of DK ′ρi by C‖ρ0‖m. By the
uniform continuity of DKρ0 and the estimate

‖g̃i‖0 ≤ Cmδ,

we therefore obtain ‖(DKρ0) ◦ G̃i − DKρ0‖0 < ε/2 when δ is sufficiently small.
(ii) Applying (7.2) for m = 1 implies that when ε < ε(ρ0) and ε(ρ0) > 0 is

sufficiently small, we have (7.3), where C depends only on ∇ρ0. �

To use the Levi form of ρ at z, it will be convenient to define

T 1,0
z ρ =

{∑
tj ∂zj

:
∑

tj ∂zj
ρ(z) = 0

}
,

∣∣∣∣∑ tj ∂zj

∣∣∣∣ =
√∑

|tj |2.

Lemma 7.2. Let D be a relatively compact C2 domain in U defined by a C2

function ρ. There are ε = ε(ρ) > 0 and a neighborhood N = N (ρ) of ∂D such
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that if ‖ρ̃ − ρ‖U ,2 < ε, then we have

inf
z̃,t̃ ,|t̃ |=1

{Lρ̃(z̃, t̃) : t̃ ∈ T
1,0
F(z)ρ̃, z̃ ∈ N }

≥ inf
z,t,|t |=1

{Lρ(z, t) : t ∈ T 1,0
z ρ, z ∈ N } − Cε.

Furthermore, D̃ = {z ∈ U : ρ̃ < 0} is a C2 domain with ∂D̃ ⊂ N (ρ).

Proof. Since ρ is a C2 defining function of D, there exists a neighborhood N
of ∂D such that ∇ρ(z) 
= 0 for z ∈ N . Let z̃ ∈ N . Without loss of generality,
we assume that z̃ = 0 and ∂ρ

∂zn

= 0 near the origin. When δ is small, we still

have ∂ρ̃
∂zn


= 0 near the origin. Consequently, we know that T
1,0

0 ρ̃ is spanned by

{∂i − ∂i ρ̃(0)
∂nρ̃(0)

∂n}ni=1. Let

t̃i = ∂i − ∂i ρ̃(0)
∂nρ̃(0)

∂n

|∂i − ∂i ρ̃(0)
∂nρ̃(0)

∂n|
, ti = ∂i − ∂iρ(0)

∂nρ(0)
∂n

|∂i − ∂iρ(0)
∂nρ(0)

∂n|
.

Then we have ∣∣∣∣∑
i,j

∂2ρ̃(0)

∂zi∂zj

t̃i t̃j −
∑
i,j

∂2ρ(0)

∂zi∂zj

ti tj

∣∣∣∣ ≤ Cε.

Shrinking N if necessary, we have ρ > ε′ on ∂N \ D. Taking ε < ε′/2, we con-
clude that ∂D̃ is contained in N . �

Before stating our main result in this section, let us fix some notations that will
appear in the next proposition. Let U be the same open neighborhood of D0 that
appears in the homotopy formula (3.23) and

B0 = {z ∈C
n : |z| < 100}.

Recall that the constants C∗
2 , C∗

s , C∗∗
s , C∗∗

r , C∗
r , C∗

m that appear in (5.3), (5.4),
(6.1), (6.14), (6.15), and (6.16) have been fixed. Next, recall that for a bounded
strictly pseudoconvex domain D0 with a C2 standard defining function ρ0, there
is positive ε(D0) such that if ‖ρ − ρ0‖2 < ε(D0), then all the bounds in the es-
timates for Stein extension, Nash–Moser smoothing operator, and the homotopy
operator in [2] are upper stable for domains with defining function ρ0. See Re-
mark 3.5. In particular, the domain defined by ρ < 0 is strictly pseudoconvex
when ε(D0) is sufficiently small. Finally, let

δ(ρ0, ε) = δ(ρ0, ε,2), δ(ρ0) = δ(ρ0, ε(D0),2) (7.4)

be the constants from Lemma 7.1.

Proposition 7.3. Let 2 < s < 3 and s + √
2 + 3

2 < r < ∞. Let C∗
2 , C∗∗

s , C∗
r ,

ε(D0), δ(ρ0) be the constants stated above, and let positive numbers α, β , d , γ ,
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κ satisfy

r − s − 1

2
− γ − κ > αd + β, α(d − 1) >

1

2
+ κ,

β(2 − d) >
1

2
+ κ.

(7.5)

Let ∂ := (∂1, . . . , ∂n)
t be the standard complex structure on C

n, and let ∂ be its
conjugate. Let D0 be a bounded strictly pseudoconvex domain with a C2 defining
function ρ0 on U and X(0) = ∂ + A0∂ ∈ �r(D0) be a formally integrable almost
complex structure. There exists a constant

t̂0 := t̂0(r, s, α,β, d, κ,C∗
2 ,C∗∗

s ,C∗∗
r ,C∗

r , ε(D0), δ(ρ0)) ∈ (0,1/2)

such that if 0 < t0 ≤ t̂0 and

|A0|D0,s
≤ tα0 , (7.6)

|A0|D0,r
≤ t

−γ

0 , (7.7)

then the following statements are true for i = 0,1,2 . . . :

(i) There exists a C∞ diffeomorphism Fi = I + fi from B0 onto itself with
F−1

i = I + gi such that fi , gi satisfy

|gi |B0,s+1 ≤ Cs |fi |B0,s+1, |fi |B0,s+1 ≤ C∗
s t

−1/2
i ai , (7.8)

where
ti+1 = tdi , i ≥ 0.

(ii) Set ρi+1 = ρi ◦ F−1
i . Then Di+1 := Fi(Di) = {z ∈ U : ρi+1 < 0} and

‖ρi+1 − ρ0‖U ,2 ≤ ε(D0), (7.9)

dist(Di+1, ∂U) ≥ dist(D0, ∂U) − Cε. (7.10)

(iii) (Fi |Di
)∗(X(i)) is in the span of X(i+1) := ∂ + Ai+1∂ on Di+1. Moreover,

ai+1 = |Ai+1|Di+1,s and Li+1 = |Ai+1|Di+1,r satisfy

ai+1 ≤ tαi+1, Li+1 ≤ L0t
−β

i+1.

(iv) If in addition A0 ∈ C∞(D0), then for any m > 1 and Mi = |Ai |Di,m, we
have

|fi |Di,m+ 1
2

≤ CmMi.

Moreover, there exist some η(d) > 0 independent of m and N = N(m,d) ∈
N such that, for all i > N ,

Mi ≤ MNt
−η
i . (7.11)

By Lemma 7.2, the assertions (i), (ii) clearly imply that Di is a strictly pseudocon-
vex domain with C2 boundary. According to the remark at the end of Section 3,
the assertion (ii) implies that we can choose the constants C∗

2 , C∗
s , C∗∗

s , C∗
r , C∗

m

to be independent of Di provided that ε = ε(D) is sufficiently small. This is im-
portant for our iteration to converge. The last two assertions roughly say that we
have rapid decay in the low order norm and rapid growth in the high order norm.
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This is different from the previous work, for example [26; 3], where the high order
norm grows only linearly. We refer the reader to [26; 3] for the precise definition
of rapid and linear growths. Here we would like to point out that for this reason
the parameters α, β , d , γ , κ , s will be carefully chosen in the end to both accom-
modate the constraints obtained in the iteration procedure and achieve optimal
regularity results for the convergence.

Proof of Proposition 7.3. We are given α > 0, β > 0, d > 1, γ > 0, κ > 0 satis-
fying (7.5). We will see at the end of the proof that such α, β , d , γ , κ exist when
r − s >

√
2 + 3/2. It is also clear that α > 1/2, β > 1/2, and 1 < d < 2.

For the moment, we require t̂0 ∈ (0, 1
2 ). We will further adjust t̂0 a few times

and indicate its explicit dependency on parameters mentioned in the statement of
the proposition. This will be used in the next section to prove the lower stability
of δr (D0), which appears in Theorem 1.1.

We consider first the case when i = 0.
Let E0 be the Stein extension operator on D0 and let St0 : C0(U) → C∞(D0)

be the Nash–Moser smoothing operator. Let PD0,U , QD0,U be the homotopy op-
erators defined in Section 3 (we shall abbreviate them as P0, Q0 for simplicity).
We defined in Section 4 that

f0 = −St0E0P0A0, F0 = I + f0.

By an abuse of notation, we still denote by F0 its extension E0F0 to C∞(Cn).
Assume that (6.1) holds, that is,

t
−1/2
0 |A0|D0,s ≤ 1

C∗∗
s

, t
r−s−1/2
0 |A0|D0,r ≤ 1

C∗∗
s

. (7.12)

Then, according to (5.9) and (5.4), we have

|g0|B0,s+1 ≤ Cs |f0|B0,s+1,

|f0|B0,s+1 ≤ C∗
s t

−1/2
0 |A0|D0,s .

To achieve (7.12), we require that

t̂0 ≤
(

1

C∗∗
s

) 2
2α−1

, t̂0 ≤
(

1

C∗∗
r

) 1
β

. (7.13)

Then it is clear that (7.12) is ensured by (7.6)–(7.7) and (7.13) since α > 1/2 and
β > 0 are fixed, r − s − γ − 1/2 > β > 0 and

t
−1/2
0 |A0|D0,s ≤ t

α−1/2
0 ≤ 1

C∗∗
s

, t
r−s−1/2
0 |A0|D0,r ≤ t

r−s−γ−1/2
0 ≤ 1

C∗∗
r

when t0 ≤ t̂0.
Now we verify (ii) when i = 0. Let δ = δ(ρ0) be the constant that appears in

(7.4). Assume that

t̂0 ≤
(

δ

C∗
2

)2

. (7.14)
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Then, according to (5.3) and (7.6), for 0 < t0 ≤ t̂0, we have

‖f0‖B0,2 ≤ C∗
2a0 ≤ C∗

2 tα0 .

Consequently, we obtain from (7.2)

‖ρ1 − ρ0‖U ,2 ≤ ε(D0).

By Lemma 7.1 (ii), we have

dist(D1, ∂U) ≥ dist(D0, ∂U) − Cε.

To verify (iii) for i = 0, let us recall what we proved in Section 6. Since (6.1)
is satisfied for i = 0 by (7.13), then from (6.14) and (6.15) we know that a1 =
|A1|D1,s , L1 = |A1|Di+1,r satisfy

a1 ≤ C∗
r · (tr−s−1/2

0 L0 + t
−1/2
0 a2

0), (7.15)

L1 ≤ C∗
r · (t−1/2

0 L0). (7.16)

We would like to show that

a1 ≤ tα1 , L1 ≤ L0t
−β

1 , (7.17)

where α > 1/2, β > 0 and t1 = td0 for some d > 1. We remark that (7.17) also
imply that (7.12) hold when t0, A0 are replaced by t1, A1, respectively.

Here we must use (7.7) in addition to (7.6). Recall that the positive parameters
α, β , κ , γ have been given such that

{(α,β, d, s) : αd + β < r − s − 1/2 − κ − γ } 
= ∅.

Next, choose t̂0 ∈ (0,1/2) so that

t̂0 ≤
(

1

2C∗
r

) 1
κ

. (7.18)

Note that this implies 2C∗
r tκ0 ≤ 1 for 0 < t0 < t̂0. Then it is easy to see from (7.15)

and (7.16) the following inequalities:

a1 ≤ 1

2
(t

r−s−1/2
0 t

−κ−γ

0 + t2α
0 t

−1/2
0 t−κ

0 ) ≤ tαd
0 = tα1 ,

L1 ≤ t
−1/2
0 t−κ

0 L0 ≤ t
−βd
0 L0 = t

−β
1 L0.

Here, we have used (7.6)–(7.7) and assumed the following constraints on α, β , d ,
κ , γ :

αd < r − s − 1/2 − κ − γ,

α(2 − d) > 1/2 + κ, α > 0,

βd > 1/2 + κ, β > 0.

We have verified (iii) for i = 0 assuming the intersection of these constraints is
nonempty. We will see in the induction step that this is true provided that 2 < s <

3 and s + 3
2 + √

2 < r < ∞.
Part (iv) will be proved separately at the end of the proposition.
Now, assume that the induction hypotheses hold for some i − 1 ∈N, i ≥ 1.
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(i) By induction hypotheses (i), (ii) and Lemma 7.2, we know that Di is a C2

strictly pseudoconvex domain. Therefore, we can apply the construction of the
approximate solution defined in Section 4 on Di

fi = Sti EiPiAi, Fi = I + fi,

where Ei is the Stein extension operator on Di , Sti : C0(U) → C∞(Di) is the
Nash–Moser smoothing operator, and Pi = PDi,U , Qi = QDi,U are the homotopy
operators defined in Section 3. Moreover, by induction hypothesis (ii), we can
assume that C∗

s is independent of 1,2, . . . , i. Therefore, estimates (5.3) and (5.4)
hold for fi ,

‖fi‖B0,2 ≤ C∗
2ai,

|fi |B0,s+1 ≤ C∗
s t

−1/2
i ai .

Notice that fi = Eifi has compact support in B0. Obviously, we have by (ii)i−1

C∗
2ai ≤ C∗

2 t
1/2
i ≤ C∗

2 t
1/2
0 ≤ 1/2.

Then by Lemma 3.3, Fi is a diffeomorphism from B0 to itself and Gi := F−1
i

exists on B0.
(ii) Let δ = δ(ρ0, ε, s) be the constant that appeared in Lemma 7.1. Let

Di+1 = {z ∈ U : ρi+1(z) < 0},
where ρi+1(z) = ρi ◦Gi . Since Di is strictly pseudoconvex by induction, by (5.3)
we get

‖fi‖B0,2 ≤ C∗
2ai ≤ C∗

2 tαi ,

where we used induction hypothesis (iv) for i − 1 in the last inequality. Notice
that we have

C∗
2 tαi ≤ δ

(i + 1)2
,

assuming that

C∗
2 t̂

1
2 di

0 ≤ δ

(i + 1)2
. (7.19)

This has been achieved for i = 0 in (7.14). We show how to achieve this condition
for all i assuming t̂0 is sufficiently small. Indeed, assume that we have achieved
(7.19) for i − 1. Then

C∗
2 t̂

1
2 di

0 = C∗
2 t̂

1
2 di−1

0 t̂
1
2 di−1(d−1)

0 ≤ δ

i2 t̂
1
2 di−1(d−1)

0 ≤ δ

(i + 1)2 ,

where the last inequality holds for all i ≥ 1 by requiring that

t̂0 ≤ 4− 2
d−1 . (7.20)

Consequently, we obtain from (7.2)

‖ρi+1 − ρ0‖U ,2 ≤ ε(D0).

Note that (7.10) follows from (7.9) and (7.3).
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(iii) The verification for (iii) in the general case is similar to the case when
i = 0. However, as we will see, extra constraints on the parameters α, β , d , κ , γ

appear, when i > 0.
According to induction hypothesis (iv) and (7.13), we have

t
−1/2
i |Ai |Di,s ≤ t

α−1/2
i ≤ 1

C∗∗
s

.

Moreover, since Di is a C2 strictly pseudoconvex domain, we know from Sec-
tion 5 that (6.14), (6.15) are valid for ai+1 = |Ai+1|Di+1,s , Li+1 = |Ai+1|Di+1,r :

ai+1 ≤ C∗
r · (tr−s−1/2

i Li + t
−1/2
i a2

i ),

Li+1 ≤ C∗
r · (t−1/2

i Li).

Here, the constant C∗
r does not depend on i by induction hypothesis (ii). Notice

that
ai ≤ tαi , Li ≤ L0t

−β
i , 2C∗

r tκi ≤ 1,

where the first two inequalities are nothing but induction hypothesis (iv), and the
last condition follows easily from (7.18) since ti < t0. Then, after a computation
similar to the case when i = 0, we obtain

ai+1 ≤ 1

2
(t

r−s−1/2
i t

−β
i t

−κ−γ

i + t2α
i t

−1/2
i t−κ

i ) ≤ tαd
i = tαi+1,

Li+1 ≤ t
−1/2
i t−κ

i t
−β
i L0 ≤ t

−βd
i L0 = t

−β

i+1L0,

which also gives us (7.12) when a0, A0 are replaced by ai+1, Ai+1, where we
have assumed

αd + β < r − s − 1/2 − κ − γ, (7.21)

α(2 − d) > 1/2 + κ, α > 0, (7.22)

β(d − 1) > 1/2 + κ, β > 0. (7.23)

Note that the first and third constraints are more restrictive than the ones for i = 0.
Before proceeding to the proof of (iv), we briefly discuss how the parameters

α, β , γ , and so on can be chosen to satisfy conditions (7.5).
Since the first condition in (7.5) is about the difference r − s, we therefore

introduce
ξ = r − s − 1/2. (7.24)

Let D(ξ, d, κ, γ ) ⊂ R
2 be the set of (α,β) such that (7.21), (7.22), and (7.23)

are satisfied. We must determine the values of ξ , d , κ , γ so that D(ξ, d, κ, γ ) is
nonempty.

We readily notice that 1 < d < 2, α > 1/2 + κ , β > 1/2 + κ , and r > 7
2 since

s > 2. We consider the limiting domain for fixed ξ , d and κ = γ = 0

D(ξ, d,0,0)

=
{
(α,β) ∈ R

2 : αd + β < ξ,α(2 − d) >
1

2
, β(d − 1) >

1

2

}
. (7.25)
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We first determine the condition on ξ , d so that D(ξ, d,0,0) is nonempty. By
the defining equations of D(ξ, d,0,0), the latter is nonempty if and only if ξ ,
defined by (7.24), satisfies

ξ > p(d), p(d) := d

2(2 − d)
+ 1

2(d − 1)
, 1 < d < 2.

Here, the first inequality is just the first inequality in (7.25), after α, β are solved
from the last two inequalities in (7.25). Note that on interval (1,2), p is a strictly
convex function that attains minimum value p(

√
2) = √

2 + 1. This implies that

ξ = r − s − 1

2
> p

(√
2
) = √

2 + 1.

Therefore, we obtain the minimum smoothness requirement for our complex
structure

r > s + 3

2
+ √

2 >
7

2
+ √

2.

Notice that D(ξ, d, κ, γ ) is still nonempty for sufficiently small κ , γ . Conse-
quently, we have found a set of values α, β , d , κ , γ so that the constraints are
satisfied. However, we remark here that our goal is to obtain the convergence of
|Aj |Dj ,� where s ≤ � ≤ r for � to be as large as possible. To achieve this, we need
to optimize our choice of the constants α, β , d , κ , γ together with s. This will be
done in the next section.

(iv) The case when A ∈ C∞ needs an additional estimate. We still keep all
previous assumptions. In particular, r , s are fixed finite numbers. Thus we have
(i), (ii), (iii). Recall that in Section 6 we constructed the smoothing operator St by
choosing L = 3 in (3.17) if A ∈ C∞. Let Mi := |Ai |m.

Since Di is strictly pseudoconvex, it follows from (5.1) that

|fi |m+ 1
2

≤ CmMi.

Since (6.1) holds for fi , it follows from (6.16) that

Mi+1 ≤ C∗
m · (t−1/2

i Mi).

We would like to show (7.26), that is, there exist some η = η(d) and N =
N(m,d) such that for all i > N , we have

Mi ≤ MNt
−η
i .

Note that this holds trivially for i = N .
Let N = N(m,d) ∈N be sufficiently large so that, for all i > N ,

C∗
mtλi ≤ 1.

Then we have an estimate that is almost identical to the estimate of Li+1 for
i > N(m,d),

Mi+1 ≤ t−λ
i t

−1/2
i Mi ≤ t

−λ−1/2−η
i MN ≤ t

−ηd
i MN = t

−η
i+1MN, (7.26)

where we have fixed an η satisfying

η(d − 1) > 1/2 + λ. �
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8. Optimal Regularity and Convergence of Iteration

Let us first explain what we mean by optimal regularity. Here we will use the
interpolation methods in Moser [19] and Webster [27].

Let 2 < s < 3 and s + 3
2 + √

2 < r < ∞. Assume that the given initial in-
tegrable almost complex structure X0 = ∂ + A0∂ is in �r(D0). Moreover, we
assume that conditions (7.6) and (7.7) from Proposition 7.3 are satisfied. That is,

|A0|D0,s
≤ tα0 , |A0|D0,r

≤ t
−γ

0 (8.1)

for some α, γ , t0 satisfying the requirements in Proposition 7.3.
By convexity of Hölder–Zygmund norms and (7.17), we can control the inter-

mediate derivatives � = (1 − θ)s + θr for 0 < θ < 1,

|Aj+1|Dj+1,� ≤ Cr |Aj+1|1−θ
Dj+1,s

|Aj+1|θDj+1,r
≤ Crt

(1−θ)α−θβ
j+1 , (8.2)

where j ∈ Z
+. To achieve the convergence of |Aj+1|Dj+1,�, we need (1 − θ)α >

θβ . Therefore, 0 ≤ θ < α
α+β

< 1. Let θ0 = α
α+β

, and we would like to maximize

�(α,β, r, s, d) = s + θ0(r − s) = s + α

α + β
(r − s)

under the constraints (7.21), (7.22), and (7.23). Notice that we cannot achieve the
maximum value �0 for �, because θ < θ0.

Recall that ξ = r − s − 1/2. Recall from the proof of induction hypothesis (iv)
in Proposition 7.3 the following facts. We have defined D(ξ, d, κ, γ ) ⊂ R

2 to be
the set of (α,β) such that (7.21), (7.22), and (7.23) are satisfied. That is,

D(ξ, d, κ, γ )

=
{
(α,β) : αd + β + κ + γ < ξ,α(2 − d) >

1

2
+ κ,β(d − 1) >

1

2
+ κ

}
.

We consider the limit domain when κ = γ = 0,

D(ξ, d,0,0) =
{
(α,β) ∈R

2 : αd + β < ξ,α(2 − d) >
1

2
, β(d − 1) >

1

2

}
and

p(d) := d

2(2 − d)
+ 1

2(d − 1)
, 1 < d < 2,

which is a strictly convex function on (1,2) and attains minimum value p(
√

2) =√
2 + 1. It is clear that D(ξ, d,0,0) is nonempty if and only if

ξ > p(d). (8.3)

It is also easy to see that the closure of D(ξ, d,0,0) is

D(ξ, d,0,0) =
{
(α,β) ∈ R

2 : αd + β ≤ ξ,α(2 − d) ≥ 1

2
, β(d − 1) ≥ 1

2

}
.

We write

�(α,β, r, s, d) = r − �̃(α,β, ξ, d), �̃(α,β, ξ, d) := ξ + 1
2

α
β

+ 1
. (8.4)
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On D(ξ, d,0,0), let us minimize

�̃(α,β, ξ, d) = ξ + 1
2

α
β

+ 1
.

Since D(ξ, d,0,0) is a compact set, the continuous function �̃ achieves minimum
at some point (α∞, β∞) ∈ D(ξ, d,0,0). It is clear that β∞ takes the smallest
possible value and α∞ takes the largest possible value. Thus,

β∞ = 1

2(d − 1)
, α∞ = ξ − β∞

d
.

Thus, we have

�̃(α∞, β∞, ξ, d) = ξ + 1
2

2 d−1
d

(ξ − β∞) + 1

= d(ξ + 1
2 )

2(d − 1)ξ + (d − 1)

= 1

2

(
1 + 1

d − 1

)
.

Fix any r > 7
2 + √

2 and ξ = r − s − 1
2 . In order to achieve the optimal regu-

larity, that is, to find the largest � (equivalently the smallest �̃) for a given r , we
would like to find the largest d that satisfies (8.3). Since p(d) is a strictly convex
function, the largest d for a given ξ is therefore achieved by the larger solution
d(ξ) where p(d(ξ)) = ξ . By a simple computation, we have

d(ξ) = 1 + 3ξ + √
ξ2 − 2ξ − 1

1 + 2ξ
= 1 + 1

2 + 1
ξ

+
√

1 − 2
ξ

− 1
ξ2

2 + 1
ξ

.

It follows that d(ξ) is an increasing function in ξ . In particular, it approaches 2−
and �̃(α∞, β∞, ξ, d) tends to 1 as ξ and hence r tends to +∞.

We observe that for any given r > 7
2 + √

2, d(ξ) is maximized when ξ =
r − s − 1/2 takes the maximum value

ξ∞ := r − 5

2

for s = 2. Let d∞ = d(ξ∞). Then at (α∞, β∞, ξ∞, d∞) ∈ D(0,0), �̃ achieves its
minimum �̃∞, where D(0,0) = ∪(ξ,d)D(ξ, d,0,0) for all (ξ, d) satisfies condi-
tion (8.3).

In particular, when

r = 5,

a simple computation shows that

ξ∞ = 5 − 5/2 = 5/2, d∞ = d(ξ∞) = 3/2, �̃∞ = 3/2.
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By monotonicity of d(ξ), this implies that we actually need r > 5 to ensure that
�̃∞ < 3/2. Therefore, we now assume r > 5. We can take ξ = r − s∗ for suitable
2 < s∗ < s, the above values then satisfy

d∞ ≥ 3/2 + c0, �̃∞ ≤ 3/2 − c̃0

for sufficiently small c0, c̃0 > 0.
In summary, we have proved the following: Let D(κ, γ ) = ∪ξ,dD(ξ, d, κ, γ )

be the set of (α,β, ξ, d) in R
4 satisfying (7.21), (7.22), and (7.23). Let r > 5. We

choose 2 < s∗ < s such that

ξ∗ = r − s∗ − 1/2 > 5/2.

Consequently,
d(ξ∗) > 3/2.

Then we choose 3/2 < d∗ < d(ξ∗) so that ξ∗ > p(d∗). This ensures that
D(ξ∗, d∗,0,0) is nonempty. Therefore, there exist parameters α∗, β∗, ξ∗, d∗ so
that D(0,0) is nonempty. Notice that κ , γ can be arbitrarily close to 0. Then,
for sufficiently small κ , γ , we have (α∗, β∗, ξ∗, d∗) ∈ D(κ, γ ). Moreover, since
d∗ > 3/2,

�̃(α∗, β∗, ξ∗, d∗) = 1

2

(
1 + 1

d∗ − 1

)
≤ 3/2 − 2c∗ (8.5)

for sufficiently small c∗ > 0. It is clear that c∗ depends only on the choice of ξ∗,
d∗ specified above. Note that (8.5) implies

�∗ = �(α∗, β∗, ξ∗, d∗) ≥ r − 3

2
+ 2c∗.

Let � = s∗ + θ(r − s∗) and choose 0 ≤ θ < α∗
α∗+β∗ such that

� > �∗ − c∗. (8.6)

Suppose that (8.1) is satisfied for the above choices of α∗ and γ . Then

|A0|D0,s∗ ≤ |A0|D0,s ≤ t
α∗
0 , |A0|D0,r ≤ t

−γ

0 .

Consequently, we know from (8.2) that

|Aj |Dj ,� ≤ Crt
a�

j , a� > 0, (8.7)

where a� = (1−θ)α∗ −θβ∗ for the above � that, according to (8.4)–(8.6), satisfies

� > r − 3

2
+ c∗. (8.8)

We now discuss briefly the case when the given structure X is smooth. Here
our goal is to minimize the value of r instead of minimizing �∞ to impose the �r

norm of initial A0 to be small. More precisely we require the initial conditions
(6.1) to be satisfied for the sequence Aj . Therefore, for this simple purpose, we
only need r − s − 1 > p(d) and s > 2. With p(d) having minimum value

√
2 + 1,

we can fix r = 5 (in fact any r > 7
2 +√

2) and then choose 2 < s < 3 and α, β , γ ,
κ , d easily to fulfill the requirements (7.5). We leave the details to the reader.

Finally, we are ready to show the convergence of the sequence F̃j = Fj−1 ◦
· · · ◦ F0 to some embedding F on D0 in �r−1(D0) for any r > 5 (including



Newlander–Nirenberg Theorem 41

r = ∞). Moreover, F maps the perturbed almost complex structure to the stan-
dard one and F(D0) := D is still a C2 strictly pseudoconvex domain in Cn.

Proposition 8.1. Let 5 < r < ∞ and 2 < s < r − 3. Let D0 be a C2 strictly
pseudoconvex domain in C

n and Xα = ∂α + A
β
α∂β ∈ �r(D0), α = 1, . . . , n, be a

formally integrable almost complex structure on D0. There exist constants α >

1/2, γ ∈ (0,1), and t̂0 ∈ (0,1/2) such that if

|A|D0,s ≤ tα0 and |A|D0,r ≤ t
−γ

0 , (8.9)

where 0 < t0 ≤ t̂0, then the following statements are true.

(i) There is a sequence of mappings F̃j converging to some embedding F :
D0 → C

n in ��+ 1
2 (D0) for any 0 ≤ � ≤ r − 3/2 + c∗. Here c∗ > 0 is the

same constant that appeared in (8.8). In particular, F ∈ Cr−1(D0).
(ii) If in addition A ∈ C∞(D0), then F ∈ C∞(D0) under (8.9) and the weaker

condition r − 3/2 − √
2 > s > 2.

(iii) F∗(Xα) are in the span of ∂1, . . . , ∂n and F(D0) is strictly pseudoconvex.
(iv) The δr (D0) := t̂ α0 is lower stable under a small C2 perturbation of ∂D0.

Proof. We may assume that 2 < s < 3.
(i) Let us first determine the constants α, γ , and t̂0. Recall t̂0 from Proposi-

tion 7.3 where

t̂0 := t̂0(r, s, α,β, d, κ,C∗
2 ,C∗∗

s ,C∗∗
r ,C∗

r , ε(D0), δ(ρ0)) ∈ (0,1/2).

Notice that r , C∗
2 , C∗∗

s , C∗
r , ε(D0), δ(ρ0) have been specified before the proof of

Proposition 7.3. Choose κ , γ and (α,β, d, ξ) ∈ D(κ, γ ) such that (8.5) is satisfied.
Then t̂0 that appeared in Proposition 7.3 is determined by the constraints (7.13),
(7.14), (7.18), and (7.20). These constraints will be written down explicitly when
proving the stability of δr (D) in (iv).

By assumption, for 0 < t0 ≤ t̂0, we have

|A0|D0,s ≤ tα0 , |A0|D0,r ≤ t
−γ

0 .

Consequently, Proposition 7.3 is now valid for such choices of t̂0 and A0. More-
over,

|fj |Dj ,�+ 1
2

≤ C�|Aj |Dj ,� ≤ C�t
a�

j , a� > 0

according to (5.1) and (8.7).
Consider the composition F̃j+1 = Fj ◦ Fj−1 ◦ · · · ◦ F0, where Fj = I + fj for

j ≥ 0. Let � = r − 3/2 + c∗. We use Lemma 3.2 to estimate

|F̃j+1 − F̃j |D0,�+ 1
2

= |fj ◦ Fj−1 ◦ · · · ◦ F0|D0,�+ 1
2

≤ (C�)
j

{
|fj |�+ 1

2
+

∑
i

(‖fj‖2|fi |�+ 1
2
+ |fj |�+ 1

2
|fi |s)

}

≤ (C�)
jC|fj |�+ 1

2
≤ C

j
r t

a�

j for some a� > 0. (8.10)
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This shows that |F̃j+1 − F̃j |D0,�+ 1
2

is a Cauchy sequence since
∑

j C
j
� t

a�

j clearly
converges. We denote the limit mapping by F .

(ii) The case r = ∞ needs a separate argument because the construction of
smoothing operator St depends on the r in the finite smooth case.

We are going to use (7.8), (7.11) from Proposition 7.3 and convexity (3.8)
without the optimization process. Indeed, let

η(d),N(m,d) ∈ N

be the same constants from (v) in Proposition 7.3. Then, for � = (1 − θ)s + θm,
j > N(m,d), we have

|fj+1|Dj+1,�+ 1
2

≤ Cm|fj+1|1−θ

Dj+1,s+ 1
2
|fj+1|θ

Dj+1,m+ 1
2

≤ C′
mt

(1−θ)α−θη
j+1 .

We have the convergence provided that (1− θ)α − θη > 0, which can be achieved
by choosing any 0 < θ < α

α+η
< 1. For instance, we can choose θ = α

2(α+η)
.

Then we can apply the same argument (8.10) to see that F ∈ ��+1/2(D0)

where

� + 1/2 = s + α

2(α + η)
(m − s) + 1/2 > r0 − 1 − 1/2

for m sufficiently large. Since m can be arbitrarily large and θ is independent of
m, we conclude that F ∈ ��(D0) for all �. This implies that F ∈ C∞(D0).

(iii) By part (iv) in Proposition 7.3, we see that F transforms the formally
integrable almost complex structure into the standard complex structure. By (ii)
in Proposition 7.3, we know that D := F(D0) is a strictly pseudoconvex domain
with C2 boundary in Cn.

Finally, we show that F is a diffeomorphism. Since F is �r−1, it suffices to
check the Jacobian of F(x) for x ∈ D0.

|DF − I |D0,0 ≤
∞∑

j=0

|DF̃j+1 − DF̃j |D0,0 ≤
∞∑

j=0

|F̃j+1 − F̃j |D0,1 ≤ 1

2
,

where the last inequality follows from (8.10).
(iv) Let ε(D0) be the size of second order perturbation of ρ0 such that we have

upper stability of C∗
2 (ρ0), C∗

s (ρ0), C∗∗
s (ρ0), C∗∗

r (ρ0), C∗
r (ρ0).

Recall that t̂0 is determined by the constraints (7.13), (7.14), (7.18), and (7.20).
More specifically,

t̂0 ≤ min

{(
1

C∗∗
s

) 2
2α−1

,

(
1

C∗∗
r

) 1
β

,

(
δ(ρ0)

C∗
2

) 1
α

,

(
1

2C∗
r

) 1
κ0

,

(
1

4

) 2
d−1

}
.

Here C∗
2 (ρ0), C∗∗

s (ρ0), C∗∗
r (ρ0), C∗

r (ρ0) are upper stable constants and δ(ρ0) is
given by (7.4) and satisfies the properties in Lemma 7.1. See also Section 3 for
details on upper stability.

Let us replace δ(ρ0) by a smaller quantity δ∗(D0) defined by

δ∗(D0) := min

{
ε(D0)

4C′′ , δ

(
ρ0,

ε(D0)

2
,2

)}
,
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where C′′ is an absolute constant determined later. Then we have 0 < t0 ≤ t̂0 for

t0(D0) := min

{(
1

C∗∗
s

) 2
2α−1

,

(
1

C∗∗
r

) 1
β

,

(
δ∗(D0)

C∗
2

) 1
α

,

(
1

2C∗
r

) 1
κ

,

(
1

4

) 2
d−1

}
.

Define δr (D0) = tα0 (D0), that is,

δr (D0)

:= min

{(
1

C∗∗
s

) 2
2α−1

,

(
1

C∗∗
r

) 1
β

,

(
δ∗(D0)

C∗
2

) 1
α

,

(
1

2C∗
r

) 1
κ

,

(
1

4

) 2
d−1

}α

. (8.11)

Finally, we show that δr (D0) is lower stable under C2 perturbation. Let (D̃, X̃)

be a pair of strictly pseudoconvex domains and formally integrable complex struc-
tures that satisfy the conditions of the proposition. Let D̃ = {z ∈ U : ρ̃ < 0} and
δr (D̃) be the corresponding stability constant to be determined.

Recall that we say δr (D0) is lower stable under C2 perturbation of ρ0 if the
following holds. There exist

ε∗(ρ0) > 0, C(ρ0) > 0

such that if ‖ρ̃ − ρ0‖U ,2 ≤ ε∗(ρ0), then we can choose δr (D̃) satisfying

δr (D0) ≤ C(ρ0)δr (D̃). (8.12)

We start by choosing

ε∗(ρ0) := ε(D0)

4C′′ ,

where as mentioned above C′′ > 1 is an absolute constant to be determined.
Next, for the domain D̃, we define

δr (D̃) := t̂ α0 (D̃)

:= min

{(
1

C∗∗
s

) 2
2α−1

,

(
1

C∗∗
r

) 1
β

,

(
δ̂(D̃)

C∗
2

) 1
α

,

(
1

2C∗
r

) 1
κ

,

(
1

4

) 2
d−1

}α

, (8.13)

where C∗
2 , C∗∗

s , C∗∗
r , C∗

r depend on D̃, and

δ̂(D̃) := δ

(
ρ̃,

ε(D0)

2
,2

)
.

Note that the second argument of the last expression does not depend on D̃.
Notice that, by definition of upper stability, the reciprocal of an upper stable

constant is lower stable. It also follows from the definition that taking minimum of
lower stable constants or raising to certain fixed positive power does not change
lower stability.

Therefore, in order to prove that δr (D0) is lower stable, it suffices to show that
if the initial domain D̃ has a defining function ρ̃ satisfying

‖ρ̃ − ρ0‖U ,2 < ε∗(D0),

then the following hold:
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(1) Proposition 7.3 holds for the pair (D̃, X̃) with ε(D̃), δ(ρ̃, ε(D̃),2) and t̂0

being replaced by ε(D0)/2, δ̂(D̃) = δ(ρ̃, ε(D0)/2,2) and δ̂(D̃)1/α , and the
rest of the statements remain unchanged.

(2) Let ρ̃1, ρ̃2, . . . , be the sequence of defining functions for domains obtained
in the previous assertion for the initial domain D̃ with a defining function ρ̃

satisfying ‖ρ̃ − ρ0‖U ,2 < ε∗(D0). Then

‖ρ̃ − ρ0‖U ,2 < ε(D0), ‖ρ̃j − ρ0‖U ,2 ≤ ε(D0).

Moreover, we get an embedding for (D̃, X̃) with the given δr(D̃) in (8.13).
(3) We can use the same set of parameters α, d , κ for initial defining functions

ρ0, ρ̃.
(4) Finally, we have δ∗(D0) ≤ δ̂(D̃), that is,

δ

(
ρ0,

ε(D0)

4
,2

)
≤ δ

(
ρ̃,

ε(D0)

2
,2

)
. (8.14)

In other words, δ(ρ0,
ε(D0)

4 ,2) fulfills the requirements for δ(ρ̃,
ε(D0)

2 ,2). No-
tice here the difference in the domains (with different defining functions) and
the difference in the scales of perturbation. Clearly, (8.11), (8.13), and (8.14)
imply immediately (8.12).

These assertions follow in principle from the proofs. However, let us point out
how to achieve them.

To see the first assertion, we only need to argue that we can replace ε(D̃) by
ε(D0)/2. The rest of the changes are obvious. One way to see this is to give a
precise estimate of how ε(D̃) depends on the defining function. However, we
give an alternative argument based on the proof of Proposition 7.3 itself.

Notice that the function ε(D̃), replacing ε(D0) in Proposition 7.3, is two fold.
On the one hand, we need to control the Levi forms of a sequence of domains. On
the other hand, in order to get convergence, we need to make sure that we can use
the same coefficients C∗

2 , C∗
s , C∗∗

s , C∗
r in the estimates during the iteration despite

that the domains D̃j are changing with D̃.
Let fj be the sequence of corrections in Proposition 7.3 for D̃. Then they are

guaranteed to satisfy the requirements in Lemma 7.1 when (7.14) and (7.20) are
satisfied. These two conditions are achieved by our choice of t̂0. Here Lemma 7.1
is applied to ρ̃, δ̂(D̃) and the sequence fj .

Consequently, by Lemma 7.1 applied to D̃ and ε = ε(D̃), we have

‖ρ̃j − ρ0‖U ,2 = ‖ρ̃j − ρ̃ + ρ̃ − ρ0‖U ,2 ≤ ε(D0)

2
+ ε∗(D0) < ε(D0), (8.15)

provided we can verify

‖ρ̃j − ρ̃‖U ,2 <
ε(D0)

2
. (8.16)

Therefore, the sequence of domains defined by ρ̃j is strictly pseudoconvex pro-
vided that ε(D0) is sufficiently small. Note also that by (8.15) we have

C∗
2 (ρ̃j ) ≤ C(ρ0)C

∗
2 (ρ0).

Similar estimates hold for C∗
s , C∗∗

s , C∗
r .
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Thus we have verified the second assertion. However, strictly speaking, one
should check (8.15) by induction in j ∈ N as we did in the original proof of
Proposition 7.3. However, since the ideas are the same, we leave the detail to the
interested reader. We will verify (8.16) below and show how δ̂(D̃), δr (D̃) are
chosen.

For the third assertion, we note that the choices of α, d , κ depend only on the
constraints (7.21), (7.22), (7.23) and the optimization process. Therefore, they can
be chosen uniformly.

Finally, we will show that δ∗(D0) ≤ δ̂(D̃), that is,

δ

(
ρ0,

ε(D0)

4
,2

)
≤ δ

(
ρ̃,

ε(D0)

2
,2

)
,

which amounts to verifying that δ(ρ0,
ε(D0)

4 ,2) fulfills the requirements for

δ(ρ̃,
ε(D0)

2 ,2).
Indeed, let Fj = I + fj be the sequence of diffeomorphisms that satisfy the

condition of Lemma 7.1 in which D0, δ are replaced by D̃, δ∗(D0). Thus, we can
assume

‖fj‖B0,2 ≤ δ∗(D0)

(j + 1)2
.

Let F̃j = I + f̃j = Fj ◦ · · ·F0 and G̃j = I + g̃j = F−1
j ◦ · · ·F−1

0 . Let |K| =
|K ′| = 2. Set ρj = ρ ◦ G̃j , ρ̃j = ρ̃ ◦ Gj , ρ′ = ρ̃ − ρ, and ρ′

j = ρ′ ◦ G̃j . We have

‖g̃j‖U ,2 ≤ C2δ
∗(D0) ≤ C2

and

‖ρ̃j − ρ̃‖U ,2 ≤ ‖ρj − ρ‖U ,2 + ‖ρ′ ◦ G̃j‖U ,2 + ‖ρ′‖U ,2

≤ ε(D0)

4
+ (1 + C′

2‖g̃j‖U ,2)
2‖ρ′‖U ,2

≤ ε(D0)

4
+ C′′

2 ε∗(D0) ≤ ε(D0)

2
.

Therefore, we have

‖ρ̃j − ρ̃‖U ,2 ≤ ε(D0)/2, ‖ρ̃j − ρ0‖U ,2 < ε(D0).

This completes the proof of assertion (4) and also assertion (2).
Having verified all four assertions, we conclude that δr (D0), δr (D̃) defined

by (8.11) and (8.13) are lower stable at D0 under small C2 perturbation. This
completes the proof. �
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