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Global Newlander—Nirenberg Theorem for Domains with
C? Boundary

CHUN GAN & XIANGHONG GONG

ABSTRACT. The Newlander—Nirenberg theorem says that a formally
integrable complex structure is locally equivalent to the standard com-
plex structure in the complex Euclidean space. In this paper, we con-
sider two natural generalizations of the Newlander—Nirenberg theo-
rem under the presence of a C 2 strictly pseudoconvex boundary. When
a given formally integrable complex structure X is defined on the clo-
sure of a bounded strictly pseudoconvex domain with c? boundary
D c C", we show the existence of global holomorphic coordinate sys-
tems defined on D that transform X into the standard complex struc-
ture provided that X is sufficiently close to the standard complex struc-
ture. Moreover, we show that such closeness is stable under a small
c? perturbation of dD. As a consequence, when a given formally in-
tegrable complex structure is defined on a one-sided neighborhood of
some point in a C2 real hypersurface M C C", we prove the existence
of local one-sided holomorphic coordinate systems provided that M
is strictly pseudoconvex with respect to the given complex structure.
We also obtain results when the structures are finite smooth.

1. Introduction

Given a formally integrable smooth (i.e. C*) almost complex structure defined
on D, where D is a bounded domain in R?", we consider the problem of finding
smooth global holomorphic coordinate systems on D compatible with the struc-
ture. By a smooth global holomorphic coordinate system on D, we mean a smooth
diffeomorphism sending D onto D’ where D’ is a domain in C", while the dif-
feomorphism transforms the given complex structure into the standard complex
structure on C". The classical Newlander—Nirenberg theorem asserts the exis-
tence of local holomorphic coordinate systems for a formally integrable almost
complex structure defined near an interior point of D. The main result of this
paper is to show the existence of such global holomorphic coordinate systems
when the structure is a small perturbation of the standard complex structure on D,
where D is a bounded, strictly pseudoconvex domain with C? boundary. When
both boundary and the complex structure are C°, this result is due to R. Hamilton
through a general program [7; 8; 9].
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We will use our global result to show the existence of local holomorphic co-
ordinate systems on a small, one-sided neighborhood of a given point in a real
hypersurface M: If the formally integrable almost complex structure is defined on
U U M, where U is a domain in C" and M is a piece of C? boundary of U that
is strictly pseudoconvex with respect to the given complex structure on U U M,
then for any boundary point p € M there is a smooth diffeomorphism, defined
on a neighborhood of p in U U M, that transforms the complex structure into the
standard one. When both the real hypersurface and the almost complex structure
are C°°, this result is due to Catlin [1] and Hanges and Jacobowitz [10].

Therefore, by restricting to dD € C2, we establish results for the complex
structures on strictly pseudoconvex domains with the minimum smoothness re-
quired to define the strict Levi pseudoconvexity. For simplicity, we shall refer to
the existence of global (resp. local) holomorphic coordinate systems as a global
(resp. local) Newlander—Nirenberg theorem with (C 2) boundary.

To state our results more precisely, we first recall some definitions. Let p € R*"
withn > 2. Let X7, ..., X5 be vector fields defined near p and having C 1 complex
coefficients. We say that {Xz}!,_, defines an almost complex structure near p if

X1, ..., X7, X_T wo., X5 are C-linearly independent at p.

Here X5 denotes the complex conjugate of X and

n

S Lot 3 ,p0
Xg= az-—+b-—1+2, a=1,...,n.
¢ { Tozg O 32;9}
p=1
Let [ Xg, X5] = Xa Xz — X5 Xg be the Lie bracket of Xg, Xz. The almost com-
porm et B B . LB ; .
plex structure is said to be formally integrable if in addition there exist functions

c’_ such that

ap
[Xg, XE] = C;BXV (11)
near p for o, B =1,...,n. Here we have used Einstein convention to sum over

the repeated index y, and we shall adapt this convention throughout the paper.
Recall that a domain D c C" with C? boundary is said to be strictly pseudo-
convex with respect to the standard complex structure at p € 9D if there exists
some open neighborhood U of p and a C? real-valued function p : U — R such
that the following hold: DNU ={z €U : p <0}, p(p) =0, dp(p) # 0, and

)3 af—;zﬂ(p)tat/; > 0 for all vectors 7 € C"\{0} satisfying 3o 22 (p) = 0. Fi-
nally, for 0 <a < oo, let || - || p,4 be the standard Holder norm and let |-|p , be
the Holder-Zygmund norm of A“(D) for a domain D C R”. Note that A“ is the
Holder space C“ in equivalent norms when a is noninteger; see Section 3 for the
definition of Zygmund spaces.

Our main result is the following.

THEOREM 1.1. Let 5 < r < 00. Let D be a domain in C" with C? boundary that
is strictly pseudoconvex with respect to the standard complex structure on C".
Let Xog = 0g + Af_laﬁ, a=1,...,n be A"(D) vector fields defining a formally
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integrable almost complex structure on D. There exist positive constants 8,(D)
and 85(D) such that if

|Alp,r <8r(D), r<o00,

Alp.s <385(D). r=oco, (12)

then there exists an embedding F of D into C" such that dF(X7),...,dF(Xp)
are in the span of%,..., %, whereas F € Ar_l(ﬁ) ifr<oo, F e COO(B) if
r =00, and F(D) is strictly pseudoconvex in C*. Moreover, the constants §,(D),
85(D) depend only on the C? norm of a given defining function of domain D and
are lower stable (see Definition 3.6) under a small C? perturbation of dD.

In fact, condition (1.2) can be relaxed. See Section & for more details. Notice that
when the structure is smooth, we only need to control |A|p 5 in order to achieve
a smooth embedding.

The lower stability of 6,(D) in the theorem means that for any domain D of
which a defining function is sufficiently close to a given defining function of D in
Cc? norm, we have

5,(D) < C,(D)8,(D)

for some constant C, (D) > 0 possibly dependent on D but independent of D, and
the theorem remains true for D. This is an important ingredient in our proof of the
local Newlander—Nirenberg theorem with C? boundary which we now describe.

Let U be an open subset of C" and let M C U be a real C? hypersurface in
C". Let Xj,...,Xzbe C ! vector fields on U U M that define a formally integrable
almost complex structure on U U M. Let TO'I(U UM, X), denoted by T)(()’1 also,
be the span of { X5, ..., X;} and AN (U UM, X) be its dual bundle. An integrable
almost complex structure { X}/, _, induces a natural decomposition of the exterior
derivative d = dx + dx. Here dx : A';(’q — A';(’qﬂ, 5§( =0, dx is its conjugate,
and Af(’q is the exterior algebra of smooth differential forms on U U M of type
(p,q) wrt{Xg},_,.

We say that M is strictly pseudoconvex w.r.t. (U U M, {Xg}!_,) if for each
p € M, there exists a C 2 function p, defined in a neighborhood w of p such that
oNU={zew:p(z) <0}, p=00n M Nw,dp(p)#0and

Ixoxp(p)(v.0) >0, YoeT'(WUM.X)N(T,M®C),v#0. (1.3)

We now can state the following local Newlander—Nirenberg theorem with
boundary.

THEOREM 1.2. Let5 < r < 00. Let U be a domain in C* whose boundary contains
a piece of C? real hypersurface M, and let Xi,..., X7 be A" (UUM) vector fields
defining a formally integrable almost complex structure on U UM . Assume that M
is strictly pseudoconvex with respect to (U UM, {Xg},,_,). Then, for each p € M,
there exists a diffeomorphism F defined on a neighborhood w of p in U UM
such that dF(X3),...,dF(X5) are in the span of %, .. i, and F(w N M)

©0 0z,
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is strictly pseudoconvex in C", whereas F € A"~ V(@) N A"* ' (w N U) and F €
C®() if r = o0.

For p € U, this is the classical Newlander—Nirenberg theorem [20; 21; 15; 13; 16;
]. Very recently, Street [25] obtained a sharp result for the elliptic structures.
By a result of Denson Hill [11], the local Newlander—Nirenberg theorem with
boundary can fail for a suitable formal integrable smooth complex structure on a
domain of which the boundary is smooth and has one negative Levi eigenvalue.

As mentioned above, under the assumptions that both boundary and almost
complex structure are C*°, the global Newlander—Nirenberg theorem with bound-
ary was first proved by Hamilton [7] and the local version was shown by Catlin
[1], Hanges and Jacobowitz [10] independently. In fact, Hamilton proved a more
general version of Theorem assuming that D is a relatively compact subset
with smooth boundary in a complex manifold Y with H 1 (D, T D) =0, where
T D stands for the holomorphic tangent bundle of D. Catlin proved a local
Newlander—Nirenberg theorem with smooth pseudoconvex boundary. We note
that these results are all carried out in C™ category with 3D € C* using 9-
Neumann-type methods.

To prove Theorem under the minimum requirement of 3D € C?, we will
employ the homotopy formula methods together with a Nash—-Moser type itera-
tion. These techniques were originally employed by Webster [27; 28; 26] to prove
the classical Newlander—Nirenberg theorem, the CR vector bundle problem, and
the more difficult local CR embedding problem. These techniques together with a
more precise interior regularity estimate for Henkin’s integral solution operators
of 9, on strictly pseudoconvex real hypersurfaces have been successfully used by
the second-named author and Webster [4; 5; 6] to obtain a sharp version of the CR
vector bundle problem and the local CR embedding problem. The second-named
author [3] recently obtained a parameter version of Frobenius—Nirenberg theorem
by using similar techniques. We also mention the work of Polyakov [23] who
used similar techniques and obtained CR embeddings for a small perturbation of
CR structures on compact regular 3-pseudoconcave CR submanifold M of some
complex manifold X with H'(M, T X|y) =0.

The scheme of the proof of Theorem is similar to the previous related
work. However, we mention new features in the present work. First is the use of
the estimate of gaining % derivative for homotopy operators on the closure of a
C? strictly pseudoconvex domain proved recently by the second-named author
[2]. Note that in previous mentioned work, interior regularity estimates of 9, d,,
for homotopy formulas are used. Another important difference is that the Nash—
Moser smoothing operator [19] was applied to the interior of the domains before.
In our case, we must find a way to use the Nash—-Moser smoothing operator for the
closure of the domain D since we are seeking global coordinate systems defined
on D. To use the smoothing, we simply extend the original complex structure
to a neighborhood of Dj this simple extension, however, does not preserve the
formal integrability of the extended complex structure outside D. The failure of
the integrability is measured by the commutator [9, E], where E is an extension
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operator for functions on D constructed by Stein [24]. We shall make essential
use of the vanishing order of [, E] in our estimates. (See Sections 3 and 6 for
details.) We remark here that this commutator term is the main source for losing
one derivative in our results. The important commutator [0, E] was introduced by
Peters [22] and has been used by Michel [17], Michel and Shaw [ 18], and others.
It is also one of the main ingredients in the %-gain estimate [2] for a homotopy
operator on a strictly pseudoconvex domain with C2 boundary.

The plan of the paper is as follows. In Section 2, we first derive Theorem
from Theorem 1.1. In particular, we show that Catlin—-Hanges—Jacobowitz’s the-
orem is a consequence of Hamilton’s theorem, the stability of §,(D) from Theo-
rem 1.1, together with an initial normalization process constructed in Section
In Section 3, we recall basic facts about the standard Holder—Zygmund norms, the
Stein extension operator, Nash—Moser smoothing operators, and homotopy oper-
ators in [2]. In Section 4, we derive an approximate solution of the embedding via
the homotopy formula. We then obtain necessary estimates for the approximate
solution and the new almost complex structure in Sections 5 and 6. In Section 7,
we describe the iteration scheme and verify the induction hypotheses. Finally, the
convergence proof is carried out in Section

2. A Reduction for Local Newlander—Nirenberg Theorem with
Boundary

In this section, we derive Theorem 1.2 by using Theorem 1.1. To achieve this, we
need some preparations. First, we show that one can define the strict pseudocon-
vexity with respect to the standard complex structure instead of the given almost
complex structure near a reference point. Then we apply nonisotropic dilations to
achieve the initial normalization condition: |Xgz|. < §, (the norm will be speci-
fied later), while the dilated hypersurface is close to the Heisenberg group near a
reference point in CZ norm. Here 8, is the lower stability constant in Theorem

for some limiting domain under a nonisotropic dilation process. Finally, we con-
struct a relatively compact C? strictly pseudoconvex domain U, which shares part
of the boundary with M, and apply Theorem 1.1 to (U, {)N(a}gzl), where {)N(a}gzl
is some suitable basis for the almost complex structure after dilation. We point out
that the lower stability of 8, under C? perturbation is crucial for this argument to
work.

Throughout the paper, the Greek letters «, B, y, and so on have range
1,2,...,nand Roman indices j, k, and so forth haverange 1,2, ...,n—1. We de-
note by C1, C», and so on constants bigger than 1 and by ¢y, ¢, and so forth posi-
tive constants less than 1. We denote by z = (z1, ..., z,) the standard coordinates

of C", whereas the standard complex structure on C” is defined by dg 1= =2

0Za’

1 <o <n. Setdy =5
We will use various constants C (D), §(D), and so on, which depend only on a
domain D. Thus it will be convenient to apply some standard procedures to find
defining functions of a domain. A bounded domain D in C" with C* boundary
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with k > 1 is defined by a C* function p on C”. Thus D is defined by p < 0 and
Vp #0on dD. Locally D is defined by a C* graph function R via

p=—yYn+ R xn) <0

after permuting z1, ..., z,, and replacing z, by iz, or —iz, if necessary. The
collection of such functions will be denoted by {R;}. Using a partition of unity,
we can construct a defining function p from the collection {R;}. We may assume
that p = 1 away from a neighborhood of D. In such a way one can construct a
defining function p that depends only on D, and we shall call such a p a standard
defining function of D.

We start with the following elementary lemma showing how an almost com-
plex structure changes with respect to a transformation of the form F =1 + f,
where [ is the identity mapping. This lemma is essentially in Webster [27]; how-
ever, we present it here for convenience of the reader and for our later proofs.

LEMMA 2.1. Let {Xg},_, be a C U almost complex structure defined near the

origin of R¥".

(1) By a R-linear change of coordinates of C", the almost complex structure
{XU}Z=1 can be transformed into Xe = 0z + Agaﬁ with A(0) =0.

(i) Let F =1+ f be a C' map with f(0) =0 and Df small. The associated
complex structure {d F (Xg)} has a basis {XL} such that X = 8z + A’gaﬂ.
Moreover, XgFP = (XgF7)(A’§ o F). Equivalently, in the matrix form,

AR +0f + A@)0,f = +0:f (@) + A)I. f(2)A 0 F(2). 2.1)

We remark that the formula in (ii) is valid when F' =1 + f is a diffeomorphism
of D onto D’ when || f||p,1 is sufficiently small.

Proof. (i) Let Uy = (X, + Xg) and Vy = Y51 (X5 — X,). We would like to
find another coordinate system wy = uy + +/—1vy such that % lw=0 = Uy (0)
and %hu:o = V,4(0). Since {Ug, Vy} and {%, &} both span TpC", then at 0
we have

a a a
Uaza('f@—i-bg Vazcg@‘i‘dﬂ—

dyp’ * oy’

where the coefficient matrix [‘Z Z] is invertible. Set x = au +bv and y = cu +dv.
In new variables w, we have Xg = Ag&b + Agaﬁ where (Ag(O)) is the identity
matrix (83; ) and Ag(O) = 0. In particular, (Ag) is invertible near 0. We can then

use a linear combination to achieve Xg = 0z + Agaﬁ with A(0) =0.
(ii) Let us show the existence of such a basis by determining the coefficient

matrix A’. Since lel’po(xa_) = dFTl’O, we know FyXg = C"‘EX/E for some invertible

matrix (Cg). Apply both sides to FP and use X7 = Iz + A%a)/,. Then we have
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(Cg) = (XgFE), which is invertible when Df is small. Consequently,
XaFPop+ XgFPog = FXq = ng’ﬁ.
Comparing the coefficients of 83 and dg, we see that Cg = XgF B and
XgFP = (XaFV)(A;ﬁ o F).
Since (CY) is invertible, we have Ag =(CHZ(XgFF)o F'.
Now identity (2.1) follows from
XaF? = 9z + AL3) @ + )
=AL 405 fP + AZo, P = (A+0f + Adf)E,
XaF7) (AL o F) = (9 + AL3,) P + fP)(A’ o F)
=(I+3f+AdfF)A o F)E, O

Using the integrability condition, we now remove the first order term in the Taylor
expansion of A at the origin.

LEMMA 2.2. Suppose that a C' almost complex structure defined by {Xg} with
Xg=0g+ Agaﬂ and A(0) = 0 satisfies the integrability condition (1.1) at 0. Then
we can make a polynomial change of coordinates such that in the new coordinate
system the almost complex structure is given by X = dg + Ag} dg with A’(0) =0
and DA’(0) =0.

Proof. Throughout the paper, we write f(¢) = o(|¢[¥) if limjz |0 £ (x)/|¢ ¥ =0,
where ¢ are real or complex variables. We make a polynomial change of coordi-
nates F =1 + f, where
1
fP=—0,40027 - anAg(O)EVZ"‘.
According to Lemma 2.1, we have
A+0f+Adf = +03f + Adf)A' o F.

Shrinking the domain if necessary, we can assume that (/ + 3f + Ad f) and F
are invertible. Therefore, in order to show A’(z) = o(|z|), it suffices to show that

AQR)+3f(2) + A3 f(z) = o(|z]).
Since our structure satisfies the integrability condition at 0, then [ X4, Xg] isin
the span of X7, ..., X5 at 0. This implies that via A(0) =0,

BEA%(O) = aﬁAg(O). (2.2)
Plugging (2.2) into A 4+ 3 f + Adf, we get
AP £ ogfP 4 Ad, fP

1 _ 1 _ _
= AL — 0y AG(0)T7 — SOy AG (0T — S35 AL — ALD, AL(O0)T



8 CHUN GAN & XIANGHONG GONG
= AL — 3, AL(0)Y — 0y AL(0)ZY — ALD,AL(0)Z".

where we have used the integrability condition at 0 in the second equality. Now it
is clear that the right-hand side vanishes up to second order at the origin, and thus
the lemma follows. O

Note that in the formulation of Theorem [.2, we require the boundary to be strictly
pseudoconvex with respect to the given almost complex structure. However, in
order to apply Theorem 1.1, it is important that the boundary is strictly pseudo-
convex with respect to the standard complex structure. The next lemma shows
that these two conditions are locally equivalent provided the given structure and
the standard one agree up to second order at a reference point after some initial
normalization.

LEMMA 2.3. Let M C dU be a C? real hypersurface. Let Xq = 0z + Agaﬁ,

a=1,...,n,define a formally integrable C' complex structure on the one-sided

domain U U M. Suppose that 0 € M and A(z) = o(|z]). Assume that M is strictly

pseudoconvex with respect to (U U M, {Xg}) (see (1.3) for definition). The follow-

ing hold:

(1) M is strictly pseudoconvex with respect to the standard complex structure
near the origin.

(ii) After a local polynomial change of coordinates that preserves the condition
A(z) = 0(|z]), there exists a defining function r for M, defined near the ori-
gin, such that p <0on U, p=00n M, and

P =—yu + 17 1P+ (2, xn),

where h = 0(2) is a C? function.

Proof. (i) Since Xz = 0 + Agaﬂ, a=1,2,...,n, form a basis of T)?’lC” near
0, we can find the dual frames w%, »? of X,, Xz near 0. Let Ag,’)q( denote the
germ of smooth (p, g) forms with respect to the almost complex structure X at 0.
More precisely, u = u; 50! A w’ e Ag”;’(, where I, J are multi-indices, |I| = p,
|J| =g, and u ;7 are elements in the germ of smooth functions at 0. Denote the

decomposition of the exterior derivative with respect to {Xz} by d = dx + x.
See [14, P. 126]. Thus, for a function r,

dr = Xqro® + Xgro®,

dxdxr = (XaXgr + XyrClof Aol

where C:E = —w’ (X, XF])' Notice in particular that CZE(O) =0 since A =
o(lz)). _

According to (1.3), we need to show that +/—1dxdx7(0) is positive-definite
on Ly if and only if /=139(0) > 0 on L. where Lx = TyC" N CTyM and
L=7"C"nCTyM.
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Write r(z) = Im(y/—1cy2%) 4+ O (2). Since dp # 0 at 0, we may assume Tor #*
0 by permuting coordinates, which preserves conditions on Ag. Consequently, the
linear transformation (z’, 7*) — (z/, /—1cyz®) preserves A(z) = o(|z]), and we
have
p==yn+0Q2).
Applying the implicit function theorem to p(z’, x,, y») = 0, we obtain y, =
F(Z', xp), where F = O(2). More precisely, we can write

yn=F( xp) = ajzzjzj + 2Re(bjkzjzk + cjzjx”) +o(1Z1* 4 x2)
= ajEszk + ZRe(bijjZk +ejz/ M+ oI/ 1> +x2),
where in the second line, we use the fact that F' = O(2).

Then it is easy to see that L; = X; — ))((”;)Xn, i=1,...,n—1, form a basis for

Lx near 0. Therefore, near the origin, we have

dxdxp(Li, L7)

_ _ Xip X=p
_ _ 7o APy (x. _ A __ T3P
—(XaXﬂP-FXyPCaB)(w Nw )(Xl anXn’Xj anxn>o
Using the fact that A = o(|z]), CZB(O) =0and 2 (0)=0fori=12,....n—1,
we have B
Ixdxp(Li, L7)(0) = (32050) (0)(dz® A dzP)(3;, 37).

The proof is then complete by noticing that {ai};?;f form a basis of L at 0 with
respect to the standard complex structure.

(i1) According to the first part, it suffices to show the conclusion for a strictly
pseudoconvex C? real hypersurface in C". The proof is standard, but we include
it here to ensure that the condition A = o(|z|) is preserved, which is required in
the next lemma.

Let us make a second order change of coordinates

=7, " = V=12 A canz®7),

which clearly preserves the condition A(z) = o(|z|) according to part (ii) of
Lemma 2.1. We have

p=—yn a2 +hE, x5, (@, x0) =002 1+ [xa?).

Since M is strictly pseudoconvex, we see that the Hermitian matrix (a jE) is
positive definite in z’. The final expression then follows from a complex linear
change of coordinates. Note that the latter also preserves A(z) = o(|z|). It is clear
from our construction that we still have 4 (0) = Dh(0) = D?h(0) = 0. O

We can now reformulate Theorem in an equivalent form that requires the
boundary to be strictly pseudoconvex with respect to the standard complex struc-
ture. Indeed, since the integrability condition of our almost complex structure
holds at the origin by continuity, we can assume that A = o(|z|) by Lemma
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Then, according to Lemma 2.3, the two assumptions are equivalent. Next, we
achieve initial normalization by a nonisotropic dilation.
Recall that for a € (0, 00), || - || p,r stands for the standard Holder norm on D

and | - | p,- stands for the H6lder—Zygmund norm (see definition in Section 3).

PROPOSITION 2.4. Let M C dU be a C? real hypersurface containing the origin.
Let xa—zaa—+A§a,g, a=1,...,n,in N"(UUM), 1 <r < o0, define an inte-
grable almost complex structure on the one-sided domain U U M with A(z) =
o(|z]). Assume that M is strictly pseudoconvex with respect to (U U M, {Xg}).
Then, after a nonisotropic dilation ¢.(z',z,) = (717, e72z,), where ¢ > 0 is
sufficiently small, we have the following:

(i) There exist some open set B C C" and a C? function ps : B — R such
that D ={z € B : p:(2) <0} C ¢.(U U M) is a connected Cc? strictly
pseudoconvex domain that shares part of the boundary with ¢.(M) near
the origin. Moreover, there exists a C?* function py: B — R such that
lim;,¢0l|pe — pollg,2 =0 and Do :={z € B : pp(z) < 0} is also a connected
C? strictly pseudoconvex domain.

(ii) On D, each d¢5XF is spanned by Xg =0z + (A(E))gaﬂ, a=1,...,n,where
|A® |p,.r tends to O with ¢ for any finite r' <r.

Proof. (i) By the second part of Lemma 2.3, we can assume that the defining
function of M U U is locally given by

p()=—yu +1Z P+ 0 x0), h=o0(1?+xD),

and the condition A(z) = o(|z|) is preserved. Let us denote B, = {(z/, z,) € C" :
|z| < a} forany a > 0.

We apply the dilation ¢, to U U M. Then the new defining function for M, :=
¢s (M) can locally be written as

Pe (@) = —yn + 12 P+ e (e, e%x),  h=o0(Z'|* +xP).

Without loss of generality, we may assume that p, are defined on Bz. More-
over, we have ¢, (U U M) N By ={z € By : p-(z) < 0}. Then we shall construct a
C? strictly pseudoconvex domain D, such that

BiN¢pe(UUM) C D C ByNepe(UUM)

as follows.

Let x : R — R™ be a smooth nondecreasing convex function such that x =0
on (—o0o, 1] and x(4) = 1. Moreover, we assume 0 < x’'(x) <1 for x € (1,4).
Define D, = {z € B; : p:(z) < 0}, where

Pe(2) = —yn + 127 + e 2h(eZ, €%x0) + 5x (I2]?).

Note that D, C ¢.(U U M) since we have added a nonnegative term to 0.
We check that D, satisfies all the requirerrEns. Since ¥ =0 on (—o0, 1], one
has B1 N¢.(UU M) C D,. In order to show D, C B, N¢.(U U M), it suffices to
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show that for all z € d By, we have r.(z) > 0, that is,
S =5>y,— IZ/|2 — E_Zh(ez/, 82x,,).

This holds for & small since (2, x,) = 0(|2'|* + x2).

We want to prove that p, defines a strictly pseudoconvex domain with C2
boundary.

Clearly, p; isa C 2 function It then suffices to show that (a). dp.(z) # 0 for all

z € 3Dg; (b). A :=inf ;& az az (z)t,t > 0, where the infimum is taken for z € 9 D,
Zj:l tjdjpe =0, and [t| = 1.
Note that —y, + |Z/|> and x (|z|%) are plurisubharmonic. On 9D, N M., we

have p, = p.. It is clear that there is a positive constant ¢y such that when ¢ is
small,

. 32 ,08
Ao = inf — (Z)tlt > €Q-
teTy M, |t|= IXGBDEOMS 0z2;07
We can find a neighborhood N of M, NadD,, 1ndependent of ¢, such that
82
A= inf (z)tlt— > co/2.

teTuM, \z| 1,xedD*NN 07;07
On D\ N, we have —y, +|Z/|*> < —cy,» where ¢ is a positive constant, and hence
x(z*) = ¢y/5, z€dD\N.

Note that x (|z|?) is strictly plurisubharmonic at z when x (|z|*) > 0. Therefore,

2
Ao =

inf ity 0.
LT M 1ol x€dDAN 927 8‘ @ty > e >
This shows that A > min(Xg, A1, A2)/2 when ¢ is small. Therefore, D, is a C?
strictly pseudoconvex domain.

It is obvious that lim;—|| 0 — poll 3,2 = 0. Note that rq is a convex function.
Thus Dyg is connected, and the connectedness of D, follows easily from the C 2
convergence.

(i) To find the new vector fields, we let Xg ) = (o)« (Xw), X,(l_s) =
€2(¢¢)«(X3). Then, for 1 < j, k<n—1, we have

XLS) (AE)kak + 871(A8)n n’

(3) a/+8(A8)k8k+(A8 Za;“
where 9. are vector ﬁelds associated to new coordinate and (A®)(z) :
A(eZ, €%z,).

Since A(z) = o(|z|), then |A®)|p_,» — 0 as & — O for any finite /' <r. O

Assuming that Theorem 1.1 holds, we are now ready to prove Theorem

Proof of Theorem 1.2. According to Lemma 2.3, we may assume without loss
of generality that M U U = {z € Uy : p(z) < 0}, where p(z) = —y, + |z/|* +
h(z',x,), h =0(2), and h € C*(V) on some neighborhood V of the origin. Let
pe and ¢, be as in Proposition
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First, we let 5 < r < oo and apply Lemma to (UU M, {Xg},_,} with
¢ to be determined. Then we obtain a C? strictly pseudoconvex domain D, C
¢ (U U M), which shares part of the boundary with M,. Moreover, there ex-
ists a new basis {X(()l_g)}:j[:1 e C"(D,) for {(qbg)*X?),...,(qu)*Xg)} such that
|A®)] p..r tends to O as ¢ — 0 and a limiting C 2 strictly pseudoconvex domain
with defining function pg such that || p; — pol| B,,2 tends to 0 as € — 0.

According to Theorem 1.1, there exists 6, (Dg) > O that is lower stable under a
small C? perturbation of Dy. Therefore, we can find & sufficiently small such that

|A©|p,., < 8,(Do)/C(Do),
8r(Do) < C (D)3 (re).

Here ¢ is chosen for the C(Dg) in (2.3). Therefore, we have

|A® | p, , <8, (re).

(2.3)

Consequently, we are able to apply Theorem to (Dg, Xg )) to obtain a
A"1(D,) diffeomorphism F, : D, — C” onto its image that sends the almost
complex structure to the standard one. Since D, shares part of the boundary with
M,, F; induces a diffeomorphism near O € M, that sends the integrable almost
complex structure to the standard one on one side of the domain. The embedding
F is then given by F; o ¢€_1.

Finally, we consider the case r = co. Notice that merely |A|p 5 < §5(Dg) is
required for the statement of Theorem to be valid. Therefore, we do not need
to control higher order derivatives of the error and the previous argument still
applies. The proof of Theorem 1.2 is complete. (]

3. Preliminaries

In this section, we present some preliminaries for the proof of Theorem [ .1. First,
we recall some basic results for standard Holder norms ||| p,4, 0 < a < oo, and
Holder—Zygmund norms || p 4, 0 < a < 00, on domains D C R" with cone prop-
erty. We then introduce three main tools used in the proof: the Stein extension op-
erator, the Nash—-Moser smoothing operator, and the homotopy formula on strictly
pseudoconvex domain with C2 boundary in [2]. We also include necessary esti-
mates for these operators for later use.

3.1. Convexity of Holder—Zygmund Norms

We say that a domain D in R” has the cone property if there exists some Cy =
C4«(D) > 0 such that the following hold.

(1) Given two points pg, p in D, there exists a piecewise C I curve y()in D
such that y(0) = pg and y (1) = p1, |Y' ()| < C«|p1 — pol for all t except
finitely many values.

(2) For each point x € D, D contains a cone V with vertex x, opening 6 > C, L
and height h > C 1.

(3) The diameter of D is less than C,.
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For a domain with cone property, the following Holder estimates for interpola-
tion, product rule, and chain rule are well known. For instance, see the appendices
of [5; 2] or [12] for proofs and more details:

lull p.1-6ya+66 < Capllulpollul,. 0<60 =<1, (3.1)
luvlip.a < Callullp.allvlpo+ el p.ollvllp.a). (32)
o gllp.a < Calllullpalighh + lull 5 Iglpa + lullzo)- — (3.3)

If (a,b) =6(ay,b1) + (1 —0)(az2,b2),0 <6 <1, we have

lullpallvlip s < Cap(ltllpa VD s, + llullp.a; lV]D5,)- (3.4

We now recall the definition of Holder—Zygmund spaces and basic properties.
For 0 < r < 1, the Holder—Zygmund space A" (R") is the set of functions f €
L°°(R™) such that

A3 f L)
| flger = flooomny + sup ————. (3.5)
0#£yeR” [yl
Here Ay f(x) == f(x +y) = f(x) and thus AT (x) = f(x +2y) + [ (x) —
2f(x + y). When r > 1, we define A"(R") to be the set of functions f €
ClrI=1(R™) satisfying

[ flrn = | flroo@ny + [0f R r—1 < 00.

For a noninteger r, | - |g» » is equivalent to the Holder norm || - ||g».,; when 1 <
r <2, |-|rn, is also equivalent to the norm defined by (3.5). See [24. Prop. 8,
p- 146], and by the equivalence of the two norms one means

crllfllrer < 1 flrnr < Crll fllre

for two positive numbers ¢, C, depending only on r. Clearly, we have ¢, tends
to 0 when r tends to a positive integer and C < 2. Let F be a closed subset in
R” Let r € (0,00). We write f € A"(F) if there exists f e A"(R") such that
f |F = f. Define | f|F,, to be the infimum of | f |rn, for all such extensions f

Next, we recall the extension operator constructed by Stein [24]. Given a
bounded domain D C R" with Lipschitz boundary (i.e. the boundary is locally
the graph of some Lipschitz function), there exists an extension operator

E:A'(D)— A'(R") with |Ef|ge, < Cr(D)|flp,.,Vr €(0,00), (3.6)

where the operator norm C,(D) depends only on the Lipschitz constants of
finitely many graph functions of the boundary. In fact, Stein [24] proved the above
estimates for Sobolev spaces. The estimates (3.6) for Zygmund spaces can be
found in [2]. We refer the reader to [2; 24] for more details on the construction
and the estimates. When there is no confusion, we write Il as |Ir

We now derive convexity in Holder—Zygmund norms. It is clear that the second
term in (3.5) satisfies

|A2 f| oo ) |A2 f oo @)\ 0 |A2 flroo@my\?
y Y Yy
SUP T By ror = | SUP r Sup P
yern |yl 0For yeRn lylo yeRn [yl
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for ro, 71 € (0,2) and 6 € (0, 1). Then we get
lul(1—p)a+op < Cpaluli™ulf), 0<6 <1, 3.7)

forO0 <b—a <2and @ € (0, 1). Hence, it also holds for all positive a, b; indeed,
suppose it holds for 0 < b —a < d. Suppose a <c <bwithd/2 <b—a <3d/2
and ¢ = (1 — 0)a + 6b. We take e so that 0 < max(b — e, e — a) < d. We may
assume that ¢ < e. Thus
e=¢ c=a b—e e—c
lule < Clulg™ lule™, lule < Clul™ |ul, .
Eliminating |u|, and solving for |u|., we get (3.7). By (3.6) and (3.7), for D we
get
ulp.(1-0yaton < Cap(D)ulp olulpy,, 0<6<1,a,b>0. (3.8

LEMMA 3.1. Let D, l~)~be connected bounded domains with Lipschitz boundary,
and let g map D into D. Suppose that ||g||p:1 < C. Then we have

k
[Tus
Jj=1

< Ca(D)C1se Y luilpallujlipe [ luelpo. a>0;  (3.9)

D.a i#] (i,
1 _
‘; < Ca(DYA + lu™ )21 + Crpellull D Ul p.a (3.10)
D.,a
~ 1
luoglp1 < C(DYCD)ulp (14 Cryellgl i) (3.11)

1+2¢

U0 glp.a < Ca(D)Ca(D)(ul5 o(1+ Cuyellgllpiiye)
+lullp 1 yelglpa+ 50, a>1. (3.12)

Here, ¢ is any positive number and C\ . is a positive constant depending on & that
tends to oo as € — 0.

Proof. Note that stronger inequalities for Holder norms are given by (3.1)—(3.3).
We only need to verify the lemma when a is an integer. Here we need a bit more
for low order derivatives for g. We will also employ the Stein extension operator.
For the product rule, by Stein extension it suffices to consider the case D = R",
and u, v have compact support in a ball of fixed radius.
Let k =a — 1 > 0 be an integer. We have

wv)® =u®y + uo® + Z Bk’ju(k_j)v(j). (3.13)
0<j<k
We remark that we do not have (3.4) for Zygmund norms. We have
AT @Ov) ()]

= |(A§u(k)(x))v(x) +u® (x)Aiv(x)
+ P @ +2y) —u® ) (x +2y) —v()
+ @O0+ = uP @) E +y) —v@)

< Clyl(ulalivlio + llullolvla + lullk+a-e lvlle + Nulle[vlkr1-e)-
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We then use |lu]lxy+1—s < C1/elut]q. For terms in the sum of ( ), weuse 1 <
Jj <k to get
u Do)y < Clu Ny < C Qulli— 101l + el 10141
< C"(lulli+1-ellvlle + Nullelvlli1—e)-
Here, we have used (3.2) and (3.4). We have verified (3.9) for k = 2. For k > 2,
we can verify by a similar argument combining with (3.4).

To verify ( ), it suffices to consider the case that a is a positive integer.
Computing derivatives of u~! of order ¢ — 1 and using the product rule (3.9), it
suffices to verify it for ¢ = 1. It is convenient to write ™' = g(u) where g is a
smooth function. By the Taylor formula for g, we have

|A2 () ()] < |g' () AJu(x)]

+20lu " lpo (e +3) = u@)® + lu@x = y) —u(@)).
Note that |u(x + y) — u(x)|* < [lull¢[lull1—|y]. We can get (3.10).
We now verify (3.11). Let = Eu and let ¢ = Epg. Then
lulp.y < [@li < CD)ulp,y.  Iglpise <208lise < Ce(D)IgID,14e-
Thus # o g is an extension of u o g. Let us drop all tildes in 7, g. We have
luogx+h)+uogx—h)—2uog(x)|
< lulilg(x +h) — g0 + lu(g(x — h)) —u(2g(x) — g(x + )|

<cC h C h|l+ey T
< Cilultligllilhl + llull 1_(Crliglhitelhl ™)

I+e
1
< Cilulliglhlhl + CuCiyeluliligl 5 1Al

Here we have used

1
gx+h)+gx—h)—2gx)=h- / (Vg(x +th) —Vg(x —th)dt,
0
lglle <Cryalgli, O<a<l.
Note that Cy /4 is not bounded as « tends to 1. We have verified ( ). To verify
( ), it remains to verify it for integer a > 2. We have
a—2
0 Muog)=@""uyogig+ Y (3'u)yogdg-d%g, (3.14)
i=1
where ag > 1and Y aj=a —2.By (3.9) witha =1 and (3.11), we get

2+e

10" u) 0 gdgh < C(lula(1+ Crreligllyp) + lullaivelgla).

When a = 2, we get the required estimate. When a > 3, we further estimate the
last term by

lulla-1+ellgllz = Caryelulla—ellglre + lulli12ellglla—e)
= Co1zelulallgliae + lulli42e18la)-
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We now estimate the other terms in ( ). Weuse 1 <i <a—2.By (3.3),
(3.2), and (3.4) for Holder norms, we get

(3'u) 0 gd™ g - 9%glly
<@ uwoglilgla - lgla

1
el D lglhar - gl 41+ lglla;
j=1

< Clllulli+1+@ ++a—i—enlgli1+e + CllullilIglla—1+e}
which gives us ( ). U

We need the following more general chain rule estimate. The proof can be found
in the appendix of [2] for Holder norms. The similar estimate can be obtained
analogously by using the above chair rule, product rule for the Zygmund spaces.
We left the details to the reader.

LEMMA 3.2. Let D,, be a sequence of Lipschitz domains in R? of which Cs(D,,)
are bounded. Let F; = I + f; map D; into D11 with || fi|l1 < Co. Then

lw o Fyyo---0 Fillpy,r
sC;“{||u||r+2||u||1||ﬁ||r+ ||u||r||f,~||1}, r=0;
i
|uoFyo---oFilp,,

142¢
< C;"{|u|r + ) lullirel filr + Cuyelul | £ill, } r>1.
i

We also need to extend an inverse mapping estimate in Webster [27] to the Zyg-
mund spaces. Note that

@) 0 F =) Qua(@f)0™ f- 0% f,
wherei > 1,a; > 1,01 +---+; <a, and Qy(df) are rational functions in df
with | Qq (3/) 8,0 <C.
LEMMA 3.3. Let F =1+ f be a C' map from B, :={x e R" : ||x|| < r} into R"
with |

f0)=0, ||Df||B,,O§9<§-

Let r' = (1 — 0)r. Then the range of F contains B, and there exists a C Uinverse
G =1 + g, which maps B, injectively into B, with

8(0) =0, IDgllB,.,0 <21 Df |l B, 0-
Assume further that f € A®TY(B,). Then g € A*TY(B,) and

I1DgllB, .a < CallDf lB,.as a=0;

1+2¢

|Dg|B,/,a < CalDf|Br,a(1 + Cl/s”fnll_t; , a>1




Newlander—Nirenberg Theorem 17

In applications, the r in the lemma will be bounded between two absolute con-
stants. Thus the constant C, does not depend on r, r’. In fact, for convenience we
will drop the requirement that f(0) = O replacing with the condition that f has
compact support in B,. This allows us to take r’ =, too.

3.2. Estimates on the Commutator

For our application, we need to consider the commutator [9, E]:=dE — E9.

PROPOSITION 3.4. Let D be a bounded C' domain in R" and E be the Stein
extension operator for D satisfying (3.6). Moreover, let U = D + 1 - N where N
is the outer unit normal vector of D and 0 < n < 1. Then we have the following
estimates:

109, Elullv.a < Con”* ullps, b—1>a>1;
0, Eluly.a < Con”“ ulpp, b—1>a>1.
Proof. First, let k, [ be integers such that 0 < k < /. Notice that for any func-

tion f € C Z(U ) that vanishes on D, we have the point-wise estimate for the kth
derivatives

|f® ()| < Cpdist(x, dD) | fllys,  ¥x € U\D.

Indeed, fix any x € U\ D. We may assume without loss of generality that 0 € D
and |x| = dist(0, x) = dist(x, D). Let y(t) =tx, 0 <t < 1, be the line segment
that connects 0, x. Let N =1 — k. Then, by the fundamental theorem of calculus,

1 1
d
) | an fodt PN -nx)diy 1
Consequently,

IFR @) < Cnlx NN v.o < Cadist(x, dDY X fllv .

In particular,
Il < Cekn 1 fllu.e-
Now, let0 <, 8 <1 and k + @ <[+ B. We claim that
I lv ke < Croan' ™ PN fllug. (3.15)
Indeed, assume first that k =/ and « < . Then, for any |x — y| <7, we have

1fO ) — FBO))

T < fllwsplx =P~ < flloapn® . (3.16)

If |y — x| > cn, we use f®|5=0. We find y* € D such that |y* — y| =
dist(y, D). Then we get ( ) from

F®O@) — fO)

—= < (P @I+ 1PN
lx — yl

<Cn N flesp(x1P + 1y — y*1P).
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Assume now that [ > k. Note that any two points x, y in U can be connected by
a smooth curve of length at most C(D)|x — y|. Putting the above together, we
obtain

1f®x) — FB )

lx — y|*

<CD)fllvsstlx = y'™% < e CD)| fllyan' =

< C_kCD flluipn 2 FE.

Finally, we apply ( Yto f =[0, E]lu withk +a =a,l+ p =b — 1. Notice
also that ||[9, Elully p—1 < Chllullp.», where Cp is the operator norm for E :
Cb(D) — Cb(R"™). Then

113, Elully.a < Co—aC(DYRP~* ullp .

We now consider the Zygmund space case. Here we use real interpolation on
operator norms. Let Ey be a Stein extension for functions on U. We have

Eyld, Eplu = EydEpu — EyDou.
Thus, we can write the Holder estimates as
IEu[d, Eplulicra < Cn”~ Hullp, Yue AP(CH).

We remark that the inequality is trivial when b = a 4 1. Thus we assume that
b > a+ 1. We also have a > 0. We take nonintegers a;, b; satisfying by < b < by,
0 <ag<a<ay,and b; > a; + 1. Furthermore,

a=(ap+ar)/2, b= (bo+b1)/2.

We have |[d, Eluly < Cinbf —ai—1 u]p,; . Since u — Eyld, Elu is a linear operator,
we get via interpolation of operator norms (see for instance [2])

18, Elula < |Eyld, Eliil, < C(Con?o%=H1/2(Cypbr=a=h1/2 ),

for any & € A® with it|p = u. This gives us the last inequality. The proposition is
proven. O

Let Uy = Do+1y- N , where N is the unit outer normal vector of the boundary. Fix
L € N. Moser constructed in [19] a smoothing operator S; : CO(UO) — C*®°(Dy),

Spu(x) =/ u()x(x —y)dy, xeDg,0<t<ty/C, (3.17)
Iyl<l
where [ x(z)dz =1, x:(z) = x(z/1), supp x C {z € R*": |z] < 1/2}, and

/z’x(z)dz=0, 0<|I|<L. (3.18)

Therefore, S; is a convolutional operator, and for 0 < ¢ < fy/C, we have
ISittll pp.a < Cat” “llullvgs. 0<b<a<oc; (3.19)

I = S)ullpy.a < Cot” “llullgs, 0<a,0<b—a<L. (3.20)
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Here the last inequality relies on ( ). Via interpolation as explained in the proof
of Proposition and applied to linear operator S; and I — S;, we get from the
above two inequalities ( )—( ) the following for Zygmund norms:

1Sitlpg.a < Cat® lulygp, 0<b<a<oc; (3.21)

(I — S)ulpy.a < Cot” “lulygs. a>0,0<b—a<L. (3.22)

3.3. Stability of Constants

We first recall the homotopy operators on a C2 strictly pseudoconvex domain
constructed in [2]. Let Dy be a C? strictly pseudoconvex domain in C" and U C
C" be some open neighborhood of Dy. Then, for any ¢ € A?O’ 1 (Do) with r > 1,
we have the homotopy formula

¢ =0Pp,uup+ Qp,1ud¢, on Dy, (3.23)
where

Ppyu¢(z) =[

e

Q0.0(¢.2) A Epy¢(¢) + / 2010(¢.2) A9, Epylo(0).
U ¢eld\Dy

Here, 98,0@’ 2), 98}0(4, z) are forms of types (0, 0) and (0, 1) in z, respectively.
Moreover, Ep,g has the form x Ep,g with the latter Ep,g being the actual Stein
extension of g, and x is a smooth function that has compact support in &/ and
equals 1 near Dy; see the proof in [2, Prop. 2.1]. Thus we have the following
estimate by [2, Thm. 1.1]:

|Ppo.ut®|Do.r+1/2 < Cr (D)0 “1@lpy.rs 7> 1, (3.24)

where 6y = dist(Dy, dl{), and p is some constant depending only on the dimen-
sion and C(Dy) > 0 is another constant depending on a C? norm of the defining
function. Similar formula and estimates hold with Q in place of P and ¢, a (0, 2)
form. We refer to [2] for more details on these operators and estimates.

In our application, we will also apply estimates on P, Q to a sequence of
domains D; such that dist(D, dU() are bounded below by a fixed positive number

depending on the initial domain Dy. Consequently, we can absorb 6, "~ into the
coefficient in the estimate. We shall also drop the subscript in Dg for simplicity
if no confusion is caused. We remark that the constant Cj in ( ) depends on
s and it may not be bounded as s tends to some special values such as a positive
integer.

We make a remark about the stability of a constant under C? perturbation of
the domains.

REMARK 3.5. Let Do :={x € U : po(x) <0} C U C R” be a domain with C?
boundary where I/ is some open neighborhood of Dy and py is a (standard) C?
defining function. Let

Dey =1{p e C*U) : llp — pollu2 < 0}

Here g > 0 is sufficiently small such that, for all p € D,,, we have dp(x) # 0 on
{xeld:pkx)=0}.
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Suppose that there is a function

C : Dey — (0, 00).

DEFINITION 3.6. We say C is upper stable (resp. lower stable) under small C?
perturbation of pg if there exist €(Dg) > 0 and a constant Cy(Dg) > 1 possibly
dependent on pg, such that

C(p) = Co(Do)C(po) (resp. C(po) < Co(Do)C(p))

for all p satisfying ||[o — pollzs.2 < e(Do).

The following are examples of upper stable mappings that will be used for our
purposes.

ey

@)

3

4)

Recall that we introduce standard defining functions for C*¥ domains with
k > 1 in Section 2. By being standard, we mean that the defining functions
depend only on the domains in construction. We will write C(og) when pg is a
standard definition function of Dy. There are other ways to construct standard
definition functions. For instance, we can replace pg by a Whitney extension
of ,00|50 so that pg € C*° away from Dy. There are other ways to construct
definition functions. For instance the Stein extension can also be used.

The operator norms of Stein extension operator between A’ (Dg) — A’ (Do)
for some r > 1 are upper stable under small C? perturbation of the domain
Dy. Indeed, it is well known that the operator norm C,(Dg) only depends on
the Lipschitz constant of Dy; see [24, Section 3.3, p. 189] for L? Sobolev
spaces L,f and [2] for Holder—Zygmund spaces. Thus Cr(ﬁ) < CoC, (Do)
when 9D has a C! defining function p with ||p — poll1 < &(Dg) sufficiently
small for some constant Co(Dy, €).

The constants in estimates (3.1), (3.2), (3.3), (3.8), (3.9), ( ) and
Lemma are also upper stable under small C? perturbation of D provided
that D is a C' domain. This should follow in principle from the proofs of
these inequalities. Alternatively, it also follows from the above remark. In-
deed, let D={z €U : p(z) < 0}, where ||p — pllys.2 < & for some &(p) > 0.
Let E'j be the Stein extension operator on D. Then we have

lull 5, < 1 Eullers < Cap@OIEpulfy I Egully,
< Cap@CLDYCy D ull’ lluls,
for / =60a 4+ (1 — 0)b. Consequently, the stability of
Cab(D) = Ca s U)C,(D)C}(D)

follows from the stability of C}, (D), cy (D) from the Stein extension operator.
The proofs for (3.2), (3.3), (3.8), (3.9), and ( ) are similar. For the coeffi-
cients in Lemma 3.2, we simply notice they are finite products of the constants
from (3.1), (3.2), (3.3) and some dimensional constants. Consequently, they
are also stable under small C? perturbation.

It is easy to see that the operator norms for Nash—-Moser smoothing operator
(3.17) are upper stable under small C? perturbation of the domain Dj.
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(5) The operator norms for ( )in ( ) are upper stable under small Cc? per-
turbation of the domain Dy. This was proved in [2, Theorem 5.2].

The upper stability of these constants in (1)—(5) is important for the conver-
gence of our iteration process in Section 7 and also for the proof of the lower
stability of §,(Dg). Notice that the latter condition already played an important
role in the proof of Theorem

4. Approximate Solution via Homotopy Formula

Let D be a strictly pseudoconvex domain in C* with C? boundary. Given the
initial integrable almost complex structure Xi = oy + Agaﬁ on Dy, we wish to
find a transformation defined on Dy to transform the complex structure into a
new complex structure closer to the standard complex structure, whereas Dy is
transformed to a new domain that is still C? strictly pseudoconvex.

According to Lemma 2.1, after a perturbation of the form F =1 4 f with Df
small, the new structure {dg + Agaﬂ} has the matrix form

AoF=(+03f +Adf) "' (A+3f + Adf).

We first formally decide the correction f following Webster [27]. Then we
indicate the obstructions and make necessary modifications.

From now on, we shall regard Ag as the coefficients of (0, 1) forms by simply
identifying Agaﬁ with AP .= Agdza, where 8 =1, ..., n. We can then apply the
homotopy formula (3.23) componentwise to A := (A', ..., A") and write

A=03PA+ Q0A.
For Newton’s method, we would take f = — P A. Then
A+df+Adf =0PA+ QA —0PA + Adf = Q0A + Adf.

Using the integrability condition dA = [A, dA] and product rule (3.9), formally
we would have |A| < |A|*. This is used in Webster’s proof of the classical
Newlander—Nirenberg theorem [27]. However, similar to Webster [28], Gong and
Webster [60], and Gong [3], the homotopy operator P does not gain the full de-
rivative lost in applying @ to A as one can see from (3.24). Therefore, we need
to apply a smoothing operator to —P A so that the iteration does not terminate
within finitely many steps. Note also that the transformation F must be defined
on Dy. Consequently, we need to use the Nash—-Moser smoothing method in a
way different from the above mentioned work. Namely, we first extend PA to
a larger domain via the Stein extension operator and then apply the smoothing
operator S; in (3.17). This ensures that the new complex structure is defined on
the closure D| = F (D) where the new structure is still formally integrable and
has the same regularity as the original complex structure. We first remark that the
new domain D; as well as future iterated domains in C”, which are small pertur-
bations of Dy, need to be controlled to apply, for instance, the upper stability of
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various constants. The control of these domains will be achieved in Lemma
Therefore, we modify f = —P A and take

f=—S,Ep, Pp.v, A- (4.1)

Here we assume that

dist(Dg, 0 Bg) > CS,
and via a cut-off function, we assume that the Stein extension Ep,u of functions
u has compact support in

By ={z€C", |z] < 00},

where By is a fixed large ball containing Dy, D1 and their neighborhoods /. Note
that f defined by (4.1) still has compact support, provided

t<cyt.
Consequently, we have the following identities on Dy:
A+df+Adf =A—03S,EPA+ Adf
=A—S0EPA+S;,d]EPA+ Adf
=A—S,EQPA+ S,[E,0]PA+ Adf
=A—S,EA+S,EQ)A+ S,[E,d|PA+ Adf
= —S)EA+ S;EQJA+ S,[E,d|PA + Adf,

where in the third equality, we use [S;, 9] =0 on Dy when acting on C Luy).
According to the above computation and Lemma 2.1, our new error A satisfies

AoF
=(I4+3f +Adf) "YU = S)EA+ S,EQIA + S;[E,d|PA + Adf}. (4.2)
We shall denote

Ii=—-S)EA, L =SEQJA, 4.3)
I3 =—5,00, E]PA, Iy = Adf, Is =0f + Adf, (4.4)
A= +I17" N+ L+ L+ Ly). 4.5)

Then we have
AoF:Z, on Dy; A:KOG, on Dj.
Here, G = F~1 maps D1 := F(Dy) onto Dy.

Before proceeding, let us briefly discuss the plan for proving Theorem 1.1. In
Section 5, we estimate lower order norm | f|p, s for some s > 2 of the transfor-
mation F = I 4+ f defined by (4.1) and give a rough estimate of the new complex
structure A on the closure of the new domainND 1. In S~ecti0n , we refine our
estimates on the lower and high order norms |A|p, s, |A|p,,- With s <r by es-
timating Ii, ..., Is defined by (4.3), (4.4), (4.5). In Section 7, we describe the

iteration scheme and verify the induction hypotheses. We shall obtain uniform
control for the gradient, second order derivatives of f, and the Levi form of the
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defining function for iterated domains. In Section 8, we run the iteration and de-
termine all the parameters in order to achieve optimal regularity result. Finally,
we show the convergence of the composition of a sequence of transformations on
Dy in A¥ norm for suitable k.

5. Change of Coordinates and New Complex Structure

Let A € A"(Dg) be the error term in the original almost complex structure where
1 <r<oo.Let%<m§r+%and 1 <€ <r.Weallow r, £, m, and s below be
nonintegers.

Recall that f is defined by (4.1), and I, ..., I5 are defined by (4.3)—(4.5). We
start by deriving the following two estimates for f = F — [ via ( )—( ):

| f1Dg,m = 1St EPAlpym < Cp,|[EPAlyg,m < Cp,Con| P Al Dym
< C,,Cr.CoIAlDy,m—1)2, 5.1

m>=m>=m

_1
| f1Do.e+1 =St EPAlpy,e+1 < Cpy1t 2|EPAly,,e41/2

1
/ i " —_=
= CE-‘rlCE-‘rng_’_%t 2| Alpy,¢ (5.2

where C,, is the constant from the Nash—-Moser smoothing operator ( ), which
is independent of the domain Dy, C_ is the constant from Stein’s extension oper-
ator (3.6), and C. is the constant from estimate (3.24). Constants in the second
estimate have similar meaning.

Let us first describe how we control the norms in iteration. Let 3/2 < s < 3.
We need to get rapid convergence in low order derivatives of f. This will be
measured by the s-norn |Ag|p,,s. There are two estimates (5.1) and (5.2) which
are available to control the lower order derivatives of f. We will use (5.1) to
control the second-order derivatives of f and thus the Levi forms of the domains
in iteration. We will use (5.2) to control the (s + 1)-norm of f. Let o9 > 0 be any
number large enough such that

D_0CZ/{CB(),

where I/ is an open neighborhood of Dy and By = {z € C" : |z| < 0p}. We shall
still denote by f the extension Ef to By where E is the Stein extension operator.
We may assume that E f has compact support in By.

To simplify our notation, we denote by Cy, (D) finite products of upper stable
constants. Notice that by definition of upper stability, finite products of upper
stable constants is still upper stable. We will then use C;, (Do) to indicate in the
context when these constants are fixed for the rest of the paper.

According to (5.1) and (5.2), we have

I £1lBy.2 < C31AlIDy.s, (5.3)
| flBos+1 < Clt7 2| Al py 5. (5.4)
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Let us first assume that
1 3
|A|D0,s < @7 C:* >N SnCik, s > E 5.5)

Here, we have fixed C5, C; and we will adjust the constant C;* a few times,
which will be indicated sometime for clarity. By (5.3) and (5.5), we have for the
operator norm of Df,

V2nCY 1
IDf1lBy0 < V2nllfliBy2 < o z < 5 (5.6)
N

We now apply Lemma 3.3 to F = I 4 f to estimate its inverse G. Recall that f
has compact support in By. Therefore F is a diffeomorphism from By onto itself.
Let F~! = G be its inverse mapping defined on By. Estimate (5.6) also ensures
that the constants in Stein extension for F(Dg) and the convexity of norms are
equivalent to the constants for Dy. However, in the next section we will impose a
stronger condition ensuring that F'(Dg) remains strictly pseudoconvex.

From (4.2)—(4.5), we have

AoF=(+15""(h+ L+ 51+ 1) =: A, (5.7)

where I} = (I — S))EA, I, = S;EQJA, L = —5,[9, EIPA, I = A3f, and I5 =
f + Adf.

We wish to estimate |A|D1‘g in terms of A® and A" norms of f, A. We do
this by first applying the chain rule to A=Ao0G and reducing the problem to
estimating |Z [ Dy,¢- Then, we use the convexity of Holder norms to further reduce
the problem to estimating |Z [ Do, s |Z [Do,s -

According to (5.3), (5.4), (5.6) and Lemma 3.3, we have

lgllBy,2 < Call fllBy,2 < Csl|Alpy,s» (5.8)
181B0.5+1 < Cs| flBo,s41 =< Cst ™Al py . (5.9)

By (5.1), (5.6), and Lemma 3.3, we obtain
lglpy.m < Cul flpom < Ci|AlDy,m—1)2- (5.10)

Let D1 = F(Dg). We apply chain rule estimate ( ) to A on D, together
with (5.8) and (5.5) to obtain

|Alpym =140 Glp,m < Cn(IAl Do + |AlDg 146 - IglDym). (1D
We take ¢ € (0, 1/2) to be a small positive number. Let us assume that
;s <1/2, i=1,...,5. (5.12)
Then we have |A|; < C. Using ( ) and ( ), we have
|AlDym < Cnl Al Dg,m-

Therefore, it suffices to estimate A , assuming (5.5) and ( ).
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According to the convexity of Holder—Zygmund norms (3.8) witha =s,b=r
and £ = (1 — 60)s + 6r for some 0 < 6 < 1, we have the following estimates for
intermediate derivatives:

e T1-6 76
|A|D0,€ E CT,S,K|A|DO’S|A|DOJ'

Consequently, we can reduce the problem of estimating the intermediate deriva-
tives to estimating |Z |Dy,s and |X |py,r» Which we shall often refer to as low and
high order derivative estimates.

To this end, we apply product rule (3.9) to the A norm of A=AoF.We get

4 4

A&l Dy < cm<|<l +15) " 1pom Y I illpg.c + 117 + I5)™! ||DO,EZ|1,~|DO,m)

i=1 i=1

4 4
<Cn (|(1 +15) " poum Y _ilpg.s + 1T+ 15) " pys D i |D0,m>.
i=1 i=1
When m = s, we have the low order estimate

4
|A1Dy.s <2Cs|U +15) " pg.s - Y il Dy.s- (5.13)

i=1
Similarly, when m = r, we have the high order estimate

|Al D, r

4 4
sCr(|(1+15>‘1|Do,r2|1i|uo,s+|(1+15)“|DO,SZ|Ii|DO,r>. (5.14)

i=1 i=1

We shall begin to estimate the right-hand sides in the next section.

6. Estimate of /;, ..., Is and A

Let Ae A", % < r < 00, be the error term in the original complex structure. Let
% < s < 3. In this section, we assume that % <m <rifr <ooand % <m< oo
if A € C®°. We also replace the initial conditions (5.5) and ( ) by the stronger

conditions
_ 1 o 1
Ay = o T PIADDy e = (6.1)
N

where ¢ € (0, 1) and C;*, C;* that are larger than 1 will be adjusted several times
in this section. When r = oo, we take r = 5 in the above condition.

When r < 0o, we choose our smoothing operator S; depending on r. More pre-
cisely, in ( ), we choose L = [r] where [-] means rounding up to the closest
integer. By (3.22) for the smoothing operator and (3.6) for the extension operator,
we get

|11|D0,m = |(1 - SZ)EA|D0,m < CrtrimlEA|U0,r < Crtr7m|A|D0,r~
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Substituting s into m, we have
111 Dy,s < Crt"*|Alpy.r (6.2)
|11|D0,r SCr|A|D0,rv (63)

where the former inequality will be used to prove the rapid convergence of (5.13)
and the latter will be used to control the growth rate of ( ).

When r = 0o, we construct another smoothing operator by choosing L = 3 in
the construction of ;. Then, for all % <m < 00, we have

1| pg,m =1 — SHEAIDym < CimlAlDy,m-

To estimate I, we need to use the integrabilitz condition A = [A, dA] on Dy
and estimate (5.1). We will also apply ( )to dA € AS~1(Dy) in the following
estimate, which forces us to impose a stronger condition:

s> 2.
By dA =[A, dA], we have by ( ), ( ), and (3.9)
|21 Dym = 1S EQIA| py.m < Cit ™' |EQIA|ygm—172
< CLC;%I_U2|Q5A|DO,m4/2

AR —1/2\q
SCmCmi%Cm_%t 219 Al pgm—1

< Cut "' 2(| Al g1 1Al Do.14¢ + [Al Dy | All Do)
< Ct "2 Alpy.s | Al Dy
Using initial condition (6.1) and applying the above estimate with s, r in place of
m, we get
|12l py.s < Cst ™AL . (6.4)
|12 py,r < Cr|AlDy,r- (6.5)
When r = 00, we have
|12|D0,m =< Cm|A|D0,m'
For the estimate of I3, we have
\I31pg.m = 18113, E1P Al py.m < Cp, |10, E1P Alyg.m

< Cr’fmtr+l/2_m_l |PA|py,ri1/2

< Cot" VY21 Alpyrs

where we used Lemma 3.4 in the second inequality recalling Uy = Do + tN with
N being the unit outer normal vector of d Dg. Here we emphasize that Dy + t N
needs to be contained in the domain I/ that appears in the integral operator P in
( ), which is satisfied since I/ can be chosen to contain Dy and its small C>
perturbation. Applying the above estimate with s, r in place of m, we have

1
|31py.s < Crt" V2 Alpyr, 7 — SZ5>2, (6.6)

|31 py.r < Crt Y2 Alpy - (6.7)
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We remark here that 7~1/2 in the coefficient of (6.7) is the main obstruction that
prevents us from having a linear growth in [26; 2] for the high order norms.
When r = 0o, we have

—1/2
1I31pg.m < Cmt " *| Al Dy-

The estimate for /4 is more involved. Recall that f = —S;EPA. By (5.4) we

have
142¢

I+e
1] Do.m = A8 1Dy < Cont1 (1Al Dy | £l 1 + 1 All Dy ] 1 Dgmt 1)
—1/2
< Cms1(1AlDy.mlAlDy.s + 1 Allpy.0t ™ *1AlDg.m)
—1/2
< Cms127 2| Alpy.s| Al Dgn-

Using initial condition (6.1) and applying the above estimate twice with r, s in
place of m, respectively, we get

14l py.s < Cs1t™?|AlD, s (6.8)
[14]pg,r < Cr+11AlDy,r- (6.9)
When r = 00, we have

|I4|D0,m < Cm+1 |A|D0,m~
Finally, we need to estimate the low and high order derivatives for /5 and (I +
15)71 :
|[5|Do,m = |8f +Aaf|D0,m < Cn1+lt71/2|A|D0,m~
Using the initial condition (6.1) for C;* sufficiently large and applying the
above estimate with r in place of m, we get by (5.4)

II5py,s < 1/Cs, (6.10)

s py.r < Cr1t 12| Al,. 6.11)

Recall that in our notation all constants C,, Cs, and so on are larger than 1 and
constants ¢, cg, and so forth are positive and less than 1. When r = oo, we have

—1/2
s pg.m < Cng1t 2| Al

We now consider (I +15) ' — 1. By the matrix inversion formula (I + I5)" 1 =
det(I + I5)~! (A;j), where (A;;) is the transpose of the adjugate matrix of I + Is.
Notice that every entry in (/ + Is5) ' —TIisa polynomial in (det(/ + I5))" ! and
entries of /s without constant term and with fixed degree. Therefore, we can now
estimate | (1 + I~ —1 | Dy, using product and quotient rules (3.9) and ( ) to
show that
415" L1 pym < (14 s g 7421 D51Dom

(1 = Cill 5l py,0)™ 2’

Cy >0,

if 151l py,0 < C«/2. Consequently, by ( ),
|(I +15)" " pgm < Cn(1 + 1 Is|pym),  m > 0.
Recall that Cs > 1. By ( ), we have the estimate
(I + 15) ' pys < Cs(1+|I5] py.s) < 2Cs. (6.12)
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Letting m = r, we have
|(I + 1) py.r < Cr(141I5]py.r)- (6.13)
Similarly, when r = oo,

|(I 4 I5) Y pgm < Cou(1 + 5| py.m)-

Let C¥*, C* be sufficiently large in the initial condition (6.1), and we may
assume that s-norms of I, I», Iz, I, (I + Is)~! are uniformly bounded by some
positive constant C,.

Using s-norm derivative estimates (6.1), (6.2), (6.4), (6.6), (6.8), ( ), and
( ) in the product rule formula ( ), we obtain

Al py.s < Cr(" 72| Alpy,r +1721AR, ).
Then by using r-norm estimates (6.1), (6.3), (6.5), (6.7), (6.9), and ( ) in
the product rule formula ( ), we obtain
|Alpyr < Crt V2| Alpyr, > 2.
Similarly, when r = oo, we have

e —-1/2
|A|D0,m < Cpt / |A|D(),n’l’ m>2.

Noticing that by (5.7), (5.9), and (6.1), A=AoG and lgllite < % we apply
(5.9) and ( ) to get

~ 1
Alpys < CE T2 ALy, + 17 AL O, r= Sz =2, (614)

|Alp,, <CHTV2Alpy . r>2. (6.15)
And when r = o0,

|Alp,.m < CEt7 V2| Alpym, m>2. (6.16)

We have derived the estimates for new A and f, g under assumption (6.1),
where the C}* is now fixed for the rest of the proof. Moreover, C;, C; have been
fixed in (5.3), (5.4) and C}, C;; have been fixed in ( ), ( ), and ( ).

7. Levi Form of Iterated Domains

Let us summarize what we have achieved so far under assumption (6.1) on error
Ag. Let Dy be a strictly pseudoconvex domain with C? boundary in C”*, and
let X (o) = 3+ Agd € A" (Do) be the initial perturbed integrable almost complex
structure where 9 = (97, ..., o) is the standard complex structure on C" and 9
is its conjugate. In Section 4, we defined Fo = I 4 fo to be our first approximate
solution where
fo=—S4Ep,Pp,Ao

for some fy > 0 to be determined. Let Dy := Fy(Dg) be the new domain and A
be the error for the new almost complex structure on D where

Ao Fo=(I+3fo+ Aodfo) (Ao + 3 fo+ Aodfo)
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by Lemma 2.1. We then obtained estimates ( ), ( ) for the new error A in
terms of certain low and high order norms of the previous error Ag.

We would like to repeat the above procedure on Dj to further reduce the new
error. However, in order to define the approximate solution F| = I + f] on D via
the homotopy formula, we have to show that D is still a strictly pseudoconvex
domain with C? boundary. This is true provided that the initial error is small
enough. In fact, we shall set up an iteration scheme and prove a general statement
in the next proposition.

Without loss of generality, we assume that

Do={z€U:po(z) <0} C Do CU C By,
where pg is some C? defining function of Dy, I is some open neighborhood of
Dg and By = {z € C" : |z] < 100}.

Next, we discuss how the Levi form of a C? domain is controlled by a sequence
of C? diffeomorphism.

It will be convenient to extend the defining function of a domain to a larger
and fixed domain. Let pg be a C™ defining function of Dy on U. Suppose that
8 € C! and Dy is relatively compact in /. Define

Eu=xEyu+ (- ), (7.1)

where x > 0 is a smooth function that_equals 1 on U for ‘some U, and has com-
pact support in By and Ezypo > 0 on U, and furthermore U C U; C By.

LEMMA 7.1. Fix a positive integer m. Let Dy C U C By C RN with Dy C U.
Suppose that Do admits a C"™ defining function pg satisfying

Do ={xeU: po(x) <0},
where py >0 on U \ Dy and Vo # 0 on dDy. Let Fi=1+ fj bea C" diffeo-
morphism that maps By onto By and maps D onto D . Let p1 = (Epp) o F(;1
and pj11 = pj o Fj_l for j > 0, which are defined on By. For any ¢ > 0, there
exists

8=208(pog,e,m)>0

such that if

3 .
Il fillBy,m < (j—}-—l)z’ 0<j<L,

then we have the following:

(6))] I:"j =Fjo---oFyand pjy satisfy

- - 8 .
||Fj+1_Fj||Bo,m§Cmm, 0<j<L,
~ ~_ . 7.2
1 = F M < G g 0= <L 72

loj+1 —pollm <&, 0=<j<L.
(ii) All D; are contained in U and
dist(@D;,9D) < Ce,  dist(D;, 9U) > dist(Do, ) — Ce. (1.3)
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In particular, when L = oo, Fj converges in C"™ to a C™ diffeomorphism from By
onto itself, whereas p; converges in C™ of By as F ]71 converges in C™ norm on
the set.

Proof. Let us denote E po from (7.1) by 0o.
(i) Let F; =1+ f;. We have f;11 = fi+1 0 F; + f;. By the chain rule, we get

I fit = fill Bom < Conll fis1llm U(l £ llm)?™ < Coll fis 1l < cm(i+—1)2.

Let Fl._1 =1+4g; and Fi_l = I+ g;. On By, we can use the identity 131;11 — I:*l._l =
F\ = Fip1 0 F|. Thus
giy1—&i=—fir10Giys1.
By the chain rule, we get ||Gi41llm < Cp (1 + ||fi+1 )%™ < C;,. Then we obtain
I8i+1 = &illm < Cmll fit1llm, & llm < Cid.

So far we have not used any assumption on § other than the condition that
8 < C. To verify (7.2), we must use the uniform continuity of the m-th derivatives
of pg. Let Dk be a derivative of order k. We have
pit1 — po=po o Gi — po,
Dk (pi+1 — po) = (Dxpo) o Gi — Dpo+ Y Py k(3. ... 05 8) D o,

where Pk g/ (0x8i,-- -, 8)](‘ gi) is a polynomial without constant term. Thus its sup
norm is bounded by

Cm ”gl ”m < C,/n(3

Applying the chain rule, we bound the sup norm of Dg/p; by C|lpo|l,». By the
uniform continuity of Dg po and the estimate

”gl ”O < Cp$,

we therefore obtain ||(Dg pg) o éi — Dk pollo < €/2 when § is sufficiently small.
(i1) Applying (7.2) for m = 1 implies that when ¢ < &(pg) and &(pg) > 0 is

sufficiently small, we have (7.3), where C depends only on V pg. U
To use the Levi form of p at z, it will be convenient to define
S VOB SR ) S8 ENO 3

LEMMA 7.2. Let D be a relatively compact C* domain in U defined by a C>
function p. There are € = £(p) > 0 and a neighborhood N = N '(p) of D such
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that if |p — plly 2 < €, then we have
inf (LpGZ,0):teTp . p,z2eN}
z.7|7|=1 ( )

> inf {L,o(z,t):teTzl’Op,zeN}—

z,t,[t|I=1
Furthermore, D ={z € U: p < 0} is a C* domain with aD C N(p).

Proof. Since p is a C? defining function of D, there exists a neighborhood N
of 3D such that Vp(z) # 0 for z € M. Let 7 € N. Without loss of generality,
we assume that 7 = 0 and ap # 0 near the origin. When & is small, we still

have 3 75 0 near the origin. Consequently, we know that T p is spanned by
{ai 3tp(0) 9\ Let

3,p0) “nJi=1"
35(0) ()
_ 9 — 3,50 on . % — 3,00 O
RO YT g i@ g "
10— 2550 19i — 3,500 Ol

Then we have

<Ces.

‘Z azp(o)“ B Z 92 pa(o)tlﬁ

0z;0z; 07;0Z;

Shrinking /\/~if necessary, we have p > ¢’ on N\ D. Taking ¢ < &’/2, we con-
clude that 8 D is contained in V. O

Before stating our main result in this section, let us fix some notations that will
appear in the next proposition. Let ¢/ be the same open neighborhood of Dy that
appears in the homotopy formula ( ) and

Bo={z€C":|z| < 100}.

Recall that the constants C3, Cy, Ci*, C}*, C), Cy that appear in (5.3), (5.4),
6.1), ( ), ( ), and ( ) have been fixed. Next, recall that for a bounded
strictly pseudoconvex domain Do with a C? standard defining function po, there
is positive (Dg) such that if ||p — poll2 < €(Dyp), then all the bounds in the es-
timates for Stein extension, Nash—Moser smoothing operator, and the homotopy
operator in [2] are upper stable for domains with defining function pg. See Re-

mark 3.5. In particular, the domain defined by p < 0 is strictly pseudoconvex
when ¢(Dy) is sufficiently small. Finally, let
8(po, €) =d(po, €,2), 8(po) = 8(po, £(Do), 2) (7.4)

be the constants from Lemma

PROPOSITION 7.3. Let 2 <s <3 and s +~/2+ 3 <r < 0. Let C§, C¥*, C¥,
e(Dy), §(po) be the constants stated above, and let positive numbers o, B, d, v,
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K satisfy
1 1
r—s———y—k>ad+p, ald—1)> - +«,
2 2
| (7.5)
BR2—d) > 3 + «.
Let 3 := (0,..., 07" be the standard complex structure on C", and let 9 be its

conjugate. Let Do be a bounded strictly pseudoconvex domain with a C 2 defining
function py on U and Xy = 0 + Agd € A"(Dy) be a formally integrable almost
complex structure. There exists a constant

fo:=fo(r, s, B,d, k, C3, C*, C2*, CF, 6(Do), 8 (po)) € (0, 1/2)
such that if 0 < tg < fo and
l[Aolpys <16 (7.6)

|Aolpg, <ty (1.7)
then the following statements are true fori =0,1,2...:

(1) There exists a C* diffeomorphism F; = I + f; from By onto itself with
Fi_1 =1 + g; such that f;, g; satisfy

—1/2
|gi|Bo,S+] E CS|ﬁ|B(),S+1’ |.fl'|BO‘S+1 E C;ktl / aj, (78)
where
i =11, i>0.
(i1) Set piy1 =pio Fl._l. Then Djt1:= F;(D;) ={z€lU: pi+1 <0} and

loit1 — pollus,2 < e(Do), (7.9
dist(Dj 41, 9U) > dist(Dy, dU) — Ce. (7.10)

(iii) (Filp,)« (X)) is in the span of X1y = 3+ A;110 on Di;1. Moreover,
aiy1 =1Aix1lp;y,,s and Liyy = |Aj11|p,,,.r Satisfy
aip1 <ty Liy1 = Lol,-lﬂl-
(iv) If in addition Ay € C*®(Dy), then for any m > 1 and M; = |A;|p, m, we
have
Ifilp, mst < CmMi.

2
Moreover, there exist some n(d) > 0 independent of m and N = N(m,d) €
N such that, for alli > N,

M; < MNl‘;n. (7.11)

By Lemma 7.2, the assertions (i), (ii) clearly imply that D; is a strictly pseudocon-
vex domain with C? boundary. According to the remark at the end of Section 3,
the assertion (ii) implies that we can choose the constants C5, Cy, C;*, C), C;y
to be independent of D; provided that ¢ = (D) is sufficiently small. This is im-
portant for our iteration to converge. The last two assertions roughly say that we
have rapid decay in the low order norm and rapid growth in the high order norm.
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This is different from the previous work, for example [26; 3], where the high order
norm grows only linearly. We refer the reader to [26; 3] for the precise definition
of rapid and linear growths. Here we would like to point out that for this reason
the parameters «, 8, d, y, k, s will be carefully chosen in the end to both accom-
modate the constraints obtained in the iteration procedure and achieve optimal
regularity results for the convergence.

Proof of Proposition 7.3. We are given @ >0, 8 >0,d > 1, y > 0, x > 0 satis-
fying (7.5). We will see at the end of the proof that such «, 8, d, y, k exist when
r—s>~/243/2.1tis also clear that« > 1/2, > 1/2,and 1 <d < 2.

For the moment, we require 7y € (0, %). We will further adjust 7y a few times
and indicate its explicit dependency on parameters mentioned in the statement of
the proposition. This will be used in the next section to prove the lower stability
of §, (Do), which appears in Theorem

We consider first the case when i = 0.

Let E( be the Stein extension operator on Dy and let Sy, : CO(U) — C®(Dy)
be the Nash—-Moser smoothing operator. Let Pp, 1/, O p,.z« be the homotopy op-
erators defined in Section 3 (we shall abbreviate them as Py, Qg for simplicity).
We defined in Section 4 that

Jo= =58 EoPoAo, Fo=1+ fo.

By an abuse of notation, we still denote by Fy its extension EqFy to C*°(C").
Assume that (6.1) holds, that is,

r—s—1/2

t_l/zA < ! t A < ! 7.12
0 | 0|D0,s_@s 0 | 0|Do,r—@- (7.12)

Then, according to (5.9) and (5.4), we have
|gO|Bo,s+l =< Cs|f0|Bo,s+l,

—-1/2
|fO|BO,s+1 fcjto / |A0|D0,s-

To achieve ( ), we require that

1

. 1\ =T A 1 \#
to§<C**) , toS<C**> : (7.13)
N r

Then it is clear that ( ) is ensured by (7.6)—(7.7) and ( ) since @ > 1/2 and
B > 0are fixed,r —s —y —1/2 > >0and

s—y— 1
tr s—y 1/2<

-1/2
|A0|D0,r§ 0 — C;k*

Iy

a—1/2 r—s—1/2
|A0|D0,s§t0 = Cr Iy
s

when 79 < f().
Now we verify (ii) when i = 0. Let § = §(pp) be the constant that appears in

(7.4). Assume that
5 \2
<= . 7.14
<(z) T
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Then, according to (5.3) and (7.6), for 0 < fo < fo, we have
I foll .2 < C3a0 < C3tg.
Consequently, we obtain from (7.2)
o1 = pollus,2 < €(Do).
By Lemma (ii), we have
dist(Dy, dU) > dist(Dg, dU) — Ce.

To verify (iii) for i = 0, let us recall what we proved in Section 6. Since (6.1)
is satisfied for i = 0 by ( ), then from ( ) and ( ) we know that a; =
|Atlp,,s» L1 =|A1lp;,,,r satisfy

ar <Cr ()T P Lo+ 1y 7)), (7.15)
Ly <C¥- (15 *Ly). (7.16)

We would like to show that
ar<1¥,  Li<Lot”, (7.17)

where o > 1/2, 8 > 0 and ] = té’ for some d > 1. We remark that ( ) also
imply that ( ) hold when #y, Ag are replaced by #1, A1, respectively.

Here we must use (7.7) in addition to (7.6). Recall that the positive parameters
o, B, k, y have been given such that

{(@,B.d,s):ad+B<r—s—1/2—k—y}#0.
Next, choose 7 € (0, 1/2) so that

1
R I \*
to < . 7.18
0 (2C:“> 719
Note that this implies 2C;#5 < 1 for 0 < 79 < fo. Then it is easy to see from (7.15)
and ( ) the following inequalities:

r—s—1/2

1 —k— —1/2.—
a1 = 5 i T iy ) <8l =1,

L < to_l/zt(;KLo < to_ﬁdLo = tl_ﬁLo.

Here, we have used (7.6)—(7.7) and assumed the following constraints on «, 8, d,
K,V:

ad<r—s—1/2—k—vy,

a2—-d)>1/24«, a>0,

Bd>1/2+k, B=>0.
We have verified (iii) for i = 0 assuming the intersection of these constraints is
nonempty. We will see in the induction step that this is true provided that 2 < s <
3ands+%+«/§<r<oo.

Part (iv) will be proved separately at the end of the proposition.
Now, assume that the induction hypotheses hold for some i — 1 e N, i > 1.
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(i) By induction hypotheses (i), (ii) and Lemma 7.2, we know that D; is a Cc?
strictly pseudoconvex domain. Therefore, we can apply the construction of the
approximate solution defined in Section 4 on D;

ﬁzSt,ElPlAlv E=I+f‘l7

where E; is the Stein extension operator on D;, S, : COU) — C®(Dy) is the
Nash—Moser smoothing operator, and P; = Pp, 14, Qi = O p, 1/ are the homotopy
operators defined in Section 3. Moreover, by induction hypothesis (ii), we can
assume that C} is independent of 1, 2, ..., i. Therefore, estimates (5.3) and (5.4)
hold for f;,

I fill Bo,2 = C3ai,
| filBy,s+1 < Cs*tifl/zai.
Notice that f; = E; f; has compact support in By. Obviously, we have by (ii); 1
Cia; = C317 = C31y* < 12,

Then by Lemma 3.3, F; is a diffeomorphism from By to itself and G; := Fi_l
exists on By.
(ii) Let 6 = 8(po, €, s) be the constant that appeared in Lemma 7.1. Let

Div1={z€elU: pi+1(z) <0},

where p;+1(z) = p;i o G;. Since D; is strictly pseudoconvex by induction, by (5.3)
we get

I fill Bo.2 < C3ai < C3tfY,
where we used induction hypothesis (iv) for i — 1 in the last inequality. Notice
that we have

Gt < —,

20 = (4 1)2

assuming that
Lgi

Gt <——.

20T+ 12
This has been achieved fori = 0 in ( ). We show how to achieve this condition
for all i assuming 7 is sufficiently small. Indeed, assume that we have achieved

( ) fori — 1. Then

(7.19)

Ad dditLaiY -1y 8 Ldila-1) 8
*22 _ (*F2 2 2
Gty =Chy 15 Si—zo Sm,
where the last inequality holds for all i > 1 by requiring that
<4 T, (7.20)

Consequently, we obtain from (7.2)

loi+1 — polles,2 < €(Do).
Note that ( ) follows from (7.9) and (7.3).
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(iii) The verification for (iii) in the general case is similar to the case when
i = 0. However, as we will see, extra constraints on the parameters «, 8, d, «, y
appear, when i > 0.

According to induction hypothesis (iv) and ( ), we have

=172 _ 1
Dis =1 _C**

—12
2 Ailp

Moreover, since D; is a C? strictly pseudoconvex domain, we know from Sec-
tion 5 that (6.14), (6.15) are valid for a; +1 = |A;+11D;41,5» Lit1 = [Ait1]Di

r—s—1/2 —1/2 2)

al+l<C* ( L+t

Lisi <CF -7 7Ly).
Here, the constant C;* does not depend on i by induction hypothesis (ii). Notice
that
a; <tf, L, < Lotlfﬂ, 2Cr e <1,
where the first two inequalities are nothing but induction hypothesis (iv), and the

last condition follows easily from ( ) since t; < t9. Then, after a computation
similar to the case when i = 0, we obtain

1 vs1/2 —f e
aiy1 <5 ”ztl- A A e ST L
1
Lit1<t; 2 - ﬂL0<t pd Lo—l,flLo,

which also gives us ( ) when ag, Ag are replaced by a;+1, Aj+1, where we
have assumed

ad+pB<r—s—1/2—k—y, (7.21)
aR—-d)>1/24+«x, a>0, (7.22)
Bd—-1)>1/24«k, p=>0. (7.23)

Note that the first and third constraints are more restrictive than the ones for i = 0.

Before proceeding to the proof of (iv), we briefly discuss how the parameters
o, B, ¥, and so on can be chosen to satisfy conditions (7.5).

Since the first condition in (7.5) is about the difference r — s, we therefore
introduce

E=r—s—1/2. (7.24)

Let D(£,d, k,y) C R? be the set of («, ) such that ( ), ( ), and ( )
are satisfied. We must determine the values of &, d, k, y so that D(&€,d, «, y) is
nonempty.

We readily notice that 1 <d <2, 0> 1/2+«k,8>1/2+«k,and r > % since
s > 2. We consider the limiting domain for fixed £,d andk =y =0

D(,d,0,0)

={(a,,3)eR2:ad+,B <& a—-d) > %,,B(d—l)> %} (7.25)
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We first determine the condition on &, d so that D(&, d, 0, 0) is nonempty. By
the defining equations of D(§, d, 0, 0), the latter is nonempty if and only if &,
defined by ( ), satisfies

d 1
d), d):= , l<d<?2.
E>p),  pdi=go g L<d<
Here, the first inequality is just the first inequality in (7.25), after «, 8 are solved
from the last two inequalities in ( ). Note that on interval (1,2), p is a strictly

convex function that attains minimum value p(~/2) = +/2 + 1. This implies that
1
§=r—s—§>p(«/§)=x/§+1.

Therefore, we obtain the minimum smoothness requirement for our complex
structure

3 7
res+o V2> o+ V2

Notice that D(£,d, k, y) is still nonempty for sufficiently small «, y. Conse-
quently, we have found a set of values «, 8, d, «, y so that the constraints are
satisfied. However, we remark here that our goal is to obtain the convergence of
|A; |Dj’g where s < £ <r for £ to be as large as possible. To achieve this, we need
to optimize our choice of the constants «, 8, d, k, y together with s. This will be
done in the next section.

(iv) The case when A € C* needs an additional estimate. We still keep all
previous assumptions. In particular, r, s are fixed finite numbers. Thus we have
(1), (i1), (iii). Recall that in Section 6 we constructed the smoothing operator S; by
choosing L =3 in ( Yif A e C®. Let M; :=|A;|m.

Since D; is strictly pseudoconvex, it follows from (5.1) that

[ fils) < CuMi.
Since (6.1) holds for f;, it follows from ( ) that
—-1/2
My <C5 -7 Py,
We would like to show ( ), that is, there exist some n = n(d) and N =
N (m, d) such that for all i > N, we have
M; < MNl‘i_n.
Note that this holds trivially fori = N.
Let N = N(m, d) € N be sufficiently large so that, foralli > N,

Crer <1.

m-r —
Then we have an estimate that is almost identical to the estimate of L;; for
i>N(m,d),

Mivr <677 P My <077V My <07 My = 17 My, (7.26)

where we have fixed an 7 satisfying

nd—1)>1/2+ . O
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8. Optimal Regularity and Convergence of Iteration

Let us first explain what we mean by optimal regularity. Here we will use the
interpolation methods in Moser [19] and Webster [27].

Let 2 <s <3 and s + % + +/2 < r < co. Assume that the given initial in-
tegrable almost complex structure Xy = 9 + Agd is in A7 (Dg). Moreover, we
assume that conditions (7.6) and (7.7) from Proposition are satisfied. That is,

-V
Aol s <18 1Aolpe, <1 8.1)

for some «, y, ty satisfying the requirements in Proposition
By convexity of Holder—Zygmund norms and (7.17), we can control the inter-
mediate derivatives £ = (1 —0)s +0r for0 <6 < 1,
1-6 0 (1-0)a—6p
1Aj+11Dj0.0 = CrlAjnlp 1Aj+ilp, , r = Crtjyy , (8.2)

where j € Z™. To achieve the convergence of |A j+1lD we need (1 — 0)o >

j+1.65

08. Therefore, 0 <4 < a—‘j‘_ﬂ <1.Let eoz—ai,s»and we would like to maximize
a
ZO[, ,r,S,d :S+0 r—3Ss :S+ r—s
(o, B ) o( ) Ot—f-,B( )

under the constraints ( ), ( ), and ( ). Notice that we cannot achieve the
maximum value £ for £, because 6 < 6.

Recall that £ =r — s — 1/2. Recall from the proof of induction hypothesis (iv)
in Proposition the following facts. We have defined D(%,d, «, y) C R? to be
the set of (&, B) such that ( ), ( ), and ( ) are satisfied. That is,

D(E.d.k,y)
={(a,ﬂ):ad+ﬂ+x+y<§,a(2—d)>%+K,ﬂ(d—1)>%+fc}.
We consider the limit domain when k =y =0,
D(é,d,O,O):{(a,ﬂ)ERZ:ad+,3<§,a(2—d)> %,ﬂ(d—1)> %}

and
d 1
22—-4d) + 2(d—-1)’
which is a strictly convex function on (1, 2) and attains minimum value p(ﬁ) =
V24 1.1t is clear that D(, d, 0, 0) is nonempty if and only if
&> p(d). (8.3)

It is also easy to see that the closure of D(€,d, 0, 0) is

p(d) = 1<d<?2,

D(E,d,O,O):{(a,ﬂ)eR2:ad+,3§§,(x(2—d)z%,ﬂ(d—l)z%}.

We write

e

+
+

D=

Lo, B,rs,d)=r —Ua, B,E,d), U, B, &, d) =

(8.4)

™IR
—
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On D(&,d, 0, 0), let us minimize

+
_l’_

e

D=

Ua, B,€,d) =

™IR
—

Since D(&, d, 0, 0) is a compact set, the continuous function ¢ achieves minimum
at some point (¢eo, Boo) € D(§,d,0,0). It is clear that S takes the smallest
possible value and o takes the largest possible value. Thus,

N =B
Po=ga—qy Y=g
Thus, we have
~ E+3
(oo, Boo, £.d) =
R Y = vy sy
dE+ %)

T2d—DE+@d—-1)
_1(1 1)
=:3\'Taz)

Fix any r > % +V2andéE=r—s5— % In order to achieve the optimal regu-

larity, that is, to find the largest £ (equivalently the smallest ) for a given r, we
would like to find the largest d that satisfies (8.3). Since p(d) is a strictly convex
function, the largest d for a given £ is therefore achieved by the larger solution
d(&) where p(d(§)) = &. By a simple computation, we have

2 1
143642 -2t -1 1 I-f-g
E+vE-—-2¢ ! e

I+26 2+ 241

d) =

It follows that d(£) is an increasing function in &. In particular, it approaches 2~
and Z(aoo, Boo, &, d) tends to 1 as & and hence r tends to 4-00.

We observe that for any given r > % + +/2, d(£) is maximized when & =
r —s — 1/2 takes the maximum value

5
2
for s = 2. Let doo = d(Ex0). Then at (tso, Boo, 0o, doo) € D(0, 0), ¢ achieves its
minimum Zoo, where D(0,0) = U ¢y D(£,d,0,0) for all (§, d) satisfies condi-
tion (8.3).

In particular, when

§oo =1 —

r=>5,
a simple computation shows that

£so=5-5/2=5/2, doo =d(Es) =3/2, ZOO=3/2.
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By monotonicity of d(§), this implies that we actually need r > 5 to ensure that
Loo < 3/2. Therefore, we now assume r > 5. We can take £ =r — s, for suitable
2 < 54 < s, the above values then satisfy

doo >3/24co,  €oo<3/2—3
for sufficiently small cg, ¢y > 0.
In summary, we have proved the following: Let D(k, y) = Us ¢ D, d, k, y)

be the set of («, B, &,d) in R* satisfying ( ), ( ), and ( ). Letr > 5. We
choose 2 < 54 < s such that

Ex=r—s,—1/2>5/2.

Consequently,

d(&y) >3/2.
Then we choose 3/2 < d, < d(&,) so that & > p(dy). This ensures that
D(&x, dy, 0, 0) is nonempty. Therefore, there exist parameters o, By, &x, dx SO
that D(0, 0) is nonempty. Notice that x, y can be arbitrarily close to 0. Then,
for sufficiently small «, y, we have (o, B«, &x, di) € D(k, y). Moreover, since
dy>3/2,

~ 1
Loy, /3*,5*7 dy) = E(l + d—1

for sufficiently small ¢* > 0. It is clear that ¢* depends only on the choice of &,
d, specified above. Note that (8.5) implies

) <3/2—2c* (8.5)

3
Ly = (s, Brs Ex,dy) =7 — E +2c*.

Let £ =5, 4+ 0(r — s4) and choose 0 <8 < a*"_‘:ﬁ* such that

>0, —c*. (8.6)

Suppose that (8.1) is satisfied for the above choices of o, and y. Then

O

|AolDy,s. < 1A0lDy,s <1y, |Aolpo.r <ty "
Consequently, we know from (8.2) that
[AjlD;.e < Crtjq‘f, ag >0, (8.7)
where a; = (1 —0)a, — 0B, for the above € that, according to (8.4)—(8.6), satisfies

3
£>r—§+c*. (8.8)

We now discuss briefly the case when the given structure X is smooth. Here
our goal is to minimize the value of r instead of minimizing £, to impose the A"
norm of initial Ag to be small. More precisely we require the initial conditions
(6.1) to be satisfied for the sequence A ;. Therefore, for this simple purpose, we
onlyneedr —s — 1 > p(d) and s > 2. With p(d) having minimum value V2+1,
we can fix r = 5 (in fact any r > % + \/3) and then choose 2 <s <3 and «, 8, y,
k., d easily to fulfill the requirements (7.5). We leave the details to the reader.

Finally, we are ready to show the convergence of the sequence F; = F;_1 o

-+ 0 Fy to some embedding F on Dy in A"~!(Dg) for any r > 5 (including
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r = 00). Moreover, F maps the perturbed almost complex structure to the stan-
dard one and F (Do) := D is still a C? strictly pseudoconvex domain in C".

PROPOSITION 8.1. Let 5 <r < oo and 2 <s <r — 3. Let Dy be a C? strictly
pseudoconvex domain in C" and Xz = 0 + Agaﬁ € Ar(D_o), a=1,...,n,bea
formally integrable almost complex structure on Dg. There exist constants o >

1/2,y €(0, 1), and fy € (0, 1/2) such that if
|Alpy,s <t and |Alpyr <ty (3.9)

where 0 < ty < fy, then the following statements are true.

(1) There is a sequence of mappings F |} converging to some embedding F :
Dy — C" in A”%(D_o)forany 0<{¢<r—3/2+c" Here c* >0 is the
same constant that appeared in (8.8). In particular, F € Cc"~1(Dy).

(ii) If in addition A € C*°(Dy), then F € C*°(Dy) under (8.9) and the weaker
conditionr —3/2 — /2> 5> 2. L

(iii) Fy(Xgz) are in the span of 07, ..., 0z and F(Dy) is strictly pseudoconvex.
@iv) The §,(Dgy) := fg is lower stable under a small C* perturbation of 3 D).

Proof. We may assume that 2 < s < 3.
(i) Let us first determine the constants «, y, and fy. Recall #, from Proposi-
tion where

fo :=1to(r, s, a0, B.d., k, C5, C*, C*, C¥, e(Dy), 8(po)) € (0,1/2).

Notice that r, C5, C*, C), e(Do), 8(po) have been specified before the proof of
Proposition 7.3. Choose «, y and (¢, 8, d, &) € D(k, y) such that (8.5) is satisfied.
Then £y that appeared in Proposition is determined by the constraints (7.13),
( ), ( ), and ( ). These constraints will be written down explicitly when
proving the stability of §,(D) in (iv).

By assumption, for 0 < 7y < fo, we have

|Aolpes <15, |Aolpyr <ty "

Consequently, Proposition 7.3 is now valid for such choices of # and Aj. More-
over,

a
[filp, e+1 = CelAjlp; e < Cetit,  ag>0

according to (5.1) and (8.7). ~
Consider the composition Fj | = Fjo F;j_jo---0 Fy, where F; =1+ f; for
j=>0.Letl =r —3/2+ c*. We use Lemma 3.2 to estimate

|Fjar = Filp, ey L = 1fjoFj—10---0Folp oy 1
< <ce)f{|f,<|”; + 2 (il filgyy + |fj|e+5|ﬁls)}
i

< (Cg)jC|fj|e+% < ert;.” for some a; > 0. (8.10)
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This shows that | F il — F 71Dt 1 is a Cauchy sequence since ) C) ;J“,l clearly
converges. We denote the limit mapping by F.

(i) The case r = oo needs a separate argument because the construction of
smoothing operator S; depends on the r in the finite smooth case.

We are going to use (7.8), ( ) from Proposition and convexity (3.8)
without the optimization process. Indeed, let

n(d), Nim,d) e N

be the same constants from (v) in Proposition 7.3. Then, for £ = (1 — 0)s + 6m,
j > N(m,d), we have
_ 1-6 0
il eey < Cnlfimly? il s < Gty

We have the convergence provided that (1-0)a— 817 > (, which can be achieved

. o . _ o
by choosing any 0 < 6 < Tt < 1. For instance, we can choose 6 = o

Then we can apply the same argument ( ) to see that F € A‘T1/2(Dy)
where

o
L+12=s+——(m—s5)+1/2>r9—1—1/2
/ 2(oz+n)( )+1/ 0 /

for m sufficiently large. Since m can be arbitrarily large and ¢ is independent of
m, we conclude that F € A¢(Dy) for all £. This implies that F' € C*°(Dy).

(iii) By part (iv) in Proposition 7.3, we see that F transforms the formally
integrable almost complex structure into the standard complex structure. By (ii)
in Proposition 7.3, we know that D := F(Dy) is a strictly pseudoconvex domain

with C2 boundary in C”.
Finally, we show that F is a diffeomorphism. Since F is A" —1 it suffices to
check the Jacobian of F(x) for x € Dy.

o0 o
IDF —I|p,0< Y IDFjs1 — DFjlp,0 < Z j+1 = Filpy.1 < 5,
j=0 =0

where the last inequality follows from (8.10).

(iv) Let e(Dg) be the size of second order perturbation of py such that we have
upper stability of C3(po), C5(po), C5™(po), C;*(po), €7 (po)-

Recall that 79 is determined by the constraints ( ), ( ), ( ), and ( ).
More specifically,

vemnf(e) (@) () ) ()
t()fmln ) ) ) s\ .
Crr Crr [ 2C7 4

Here C3(p0), C;*(00), C;*(po), Cy(po) are upper stable constants and §(p) is
given by (7.4) and satisfies the properties in Lemma 7.1. See also Section 3 for
details on upper stability.

Let us replace §(pg) by a smaller quantity §*(Dg) defined by

% .| e(Do) £(Do)
87 (Dy) = mln{ Yol ,3(,00, 5 ,2)},
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where C” is an absolute constant determined later. Then we have 0 < #y < #, for

_ 1 \%T /1 \F /8*Do)\e [ 1 \* [1\7T
t9(Dg) := min , , - , = .
Cr* CH* C3 2C* 4
Define 6, (Do) = t; (Do), that is,
3, (Do)

2 1 1 1 2
1 \ =T 1 \? /8%(Dp))\ = 1 \x /1\a@1)¢
Cr crr C3 2¢y) "\4

Finally, we show that §, (Do) is lower stable under C 2 perturbation. Let (5, X )
be a pair of strictly pseudoconvex domains and formally integrable complex struc-
tures that satisfy the conditions of the proposition. Let D = {z € U : p < 0} and
8r (D) be the corresponding stability constant to be determined.

Recall that we say 6, (Do) is lower stable under Cc? perturbation of pg if the
following holds. There exist

£*(po) >0, C(po) >0
such that if || — pollzs.2 < €*(po), then we can choose 8r(1~)) satisfying

8,(Do) < C(p0)8, (D). (8.12)
We start by choosing
(Do)
£%(p0) = =

where as mentioned above C” > 1 is an absolute constant to be determined.
Next, for the domain D, we define

8-(D) =1 (D)

1 2

() () (L) () ()T
= min , , , A= , (8.13)
Ci* Cr* C; 2Ck 4

where C3, C;*, C*, C) depend on D, and

5(D) = 5(;3, 8(12)0),2)

Note that the second argument of the last expression does not depend on D.
Notice that, by definition of upper stability, the reciprocal of an upper stable
constant is lower stable. It also follows from the definition that taking minimum of
lower stable constants or raising to certain fixed positive power does not change
lower stability.
Therefore, in order to prove that &, (Dy) is lower stable, it suffices to show that
if the initial domain D has a defining function p satisfying

16— pollur.2 < ¥ (Do),
then the following hold:
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(1) Proposition holds for the pair (5, )N() with 8(5), 3(p, 8(5),2) and 7o
being replaced by £(Dp)/2, (D) = 8(5, €(Dg)/2,2) and §(D)"/*, and the
rest of the statements remain unchanged.

(2) Let p1, p2, ..., be the sequence of defining funstions for domains obtained
in the previous assertion for the initial domain D with a defining function p
satisfying ||6 — pollzs,2 < €*(Dp). Then

16 — pollus,2 < &(Do), 16 — pollus,2 < €(Do).
Moreover, we get an embedding for (5, X ) with the given 8,(5) in ( ).
(3) We can use the same set of parameters «, d, « for initial defining functions

£0, -
(4) Finally, we have 8*(Dg) < §(D), that is,

5<p0, 8%”,2) §5<,5, 8(12)0),2) (8.14)

In other words, 8 (g, 8(4D 0) , 2) fulfills the requirements for §(p, @, 2). No-

tice here the difference in the domains (with different defining functions) and
the difference in the scales of perturbation. Clearly, ( ), ( ), and ( )
imply immediately (8.12).

These assertions follow in principle from the proofs. However, let us point out
how to achieve them.

To see the first assertion, we only need to argue that we can replace e(D) by
€(Do)/2. The rest of the changes are obvious. One way to see this is to give a
precise estimate of how &(D) depends on the defining function. However, we
give an alternative argument based on the proof of Proposition 7.3 itself.

Notice that the function 8(5), replacing €(Dy) in Proposition 7.3, is two fold.
On the one hand, we need to control the Levi forms of a sequence of domains. On
the other hand, in order to get convergence, we need to make sure that we can use
the same coefficients C3, C;, C*, C) in the estimates during the iteration despite
that the domains D ; are changing with D.

Let f; be the sequence of corrections in Proposition for D. Then they are
guaranteed to satisfy the requirements in Lemma when ( ) and ( ) are
satisfied. These two conditions are achieved by our choice of #y. Here Lemma
is applied to p, $ (5) and the sequence f;.

Consequently, by Lemma applied to Dande= s(ﬁ), we have

) 4 e*(Do) <&(Dy), (8.15)

- .. e(Do
loj —pollu2=110j =P+ P —poll2 <

provided we can verify
(Do)

16j = Pllus2 < 7 (8.16)

Therefore, the sequence of domains defined by p; is strictly pseudoconvex pro-
vided that e(Dy) is sufficiently small. Note also that by ( ) we have

C3(pj) = C(po)C3 (po).
Similar estimates hold for C}, C}*, C}.
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Thus we have verified the second assertion. However, strictly speaking, one
should check (8.15) by induction in j € N as we did in the original proof of
Proposition 7.3. However, since the ideas are the same, we leave the detail to the
interested reader. We will verify ( ) below and show how S (5), 8-(D) are
chosen.

For the third assertion, we note that the choices of «, d, « depend only on the
constraints ( ), ( ), ( ) and the optimization process. Therefore, they can
be chosen uniformly.

Finally, we will show that §*(Dg) < $ (5), that is,

8<p0, 8(;)0),2> sa(ﬁ, 8(—12)0)2>

which amounts to verifying that &(po, ‘9(?0),2) fulfills the requirements for

8(p, 220 2).

Indeed, let F; =1 + f; be the sequence of diffeomorphisms that satisfy the
condition of Lemma in which Dy, § are replaced by D, §*(Dg). Thus, we can
assume

8" (Do)

. <
13302 = s

Let ﬁj=I+.];j=FjoF0 and G]:I—i—gj:F]*l O...FO*I'Let |K|=
|K’|=2.Set,0j:,ooGj,ﬁj=,50Gj,,0’=,5—,0,and,0}=p’oGj.Wehave

18jlle2 < C28™(Dg) < Ca
and

15) — Allz < lloj — plluz+ 110 0 Gl + 10 2

R T D R T
< e(Do) +CJe* (Do) < 8(?0)_
Therefore, we have
I0; — Pl < e(Do)/2, loj — polles,2 < €(Do).

This completes the proof of assertion (4) and also assertion (2).

Having verified all four assertions, we conclude that §,.(Dy), 8,(5) defined
by ( ) and ( ) are lower stable at Dy under small C2 perturbation. This
completes the proof. U
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