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We construct homotopy formulas for the ∂-equation on convex domains of finite type 
that have optimal Sobolev and Hölder estimates. For a bounded smooth finite type 
convex domain Ω ⊂ Cn that has q-type mq for 1 ≤ q ≤ n, our ∂ solution operator Hq

on (0, q)-forms has (fractional) Sobolev boundedness Hq : Hs,p → Hs+1/mq ,p and 
Hölder–Zygmund boundedness Hq : C s → C s+1/mq for all s ∈ R and 1 < p < ∞. 
We also demonstrate the Lp-boundedness Hq : Hs,p → Hs,prq/(rq−p) for all s ∈ R
and 1 < p < rq, where rq := (n − q + 1)mq + 2q.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

In this paper, we aim to prove the following.

Theorem 1.1. Assume that Ω ⊂ Cn is a bounded smooth convex domain of finite type. Then, the opera-
tors Hq : S ′(Ω; ∧0,q) → S ′(Ω; ∧0,q−1) exist that map (0, q)-forms to (0, q − 1)-forms with distributional 
coefficients, for 1 ≤ q ≤ n (we set Hn+1 := 0), such that:

(i) (Homotopy formula) f = ∂Hqf +Hq+1∂f for all 1 ≤ q ≤ n and (0, q)-forms f ∈ S ′(Ω; ∧0,q).

Moreover, suppose that Ω has q-type mq (see Definition 3.1). Then, Hq has the following boundedness 
properties:
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(ii) (Sobolev and Hölder) For every s ∈ R and 1 < p < ∞, Hq : Hs,p(Ω; ∧0,q) → Hs+1/mq,p(Ω; ∧0,q−1)
and Hq : C s(Ω; ∧0,q) → C s+1/mq (Ω; ∧0,q−1).

(iii) (Lp-Lq estimates) For every s ∈ R and 1 < p < rq, Hq : Hs,p(Ω; ∧0,q) → Hs,prq/(rq−p)(Ω; ∧0,q−1). 
Here rq := (n − q + 1) ·mq + 2q.

For an open subset Ω ⊆ Cn, we use S ′(Ω) for the space of extendable complex-valued distributions on Ω
(see Notation 4.1 and Lemma 4.15) and C ∞(Ω) for the space of all bounded smooth complex functions on Ω
(see Definition 4.4). For s ∈ R and 1 < p <∞, we use Hs,p(Ω) for the Sobolev–Bessel space and C s(Ω) for 
the Hölder–Zygmund space (see Definitions 4.3 and 4.4). When 1 < p < ∞ and k ≥ 0, Hk,p = W k,p is the 
usual Sobolev space; and C s = Cs is the usual Hölder space when s > 0 is not an integer (see Remark 4.6).

In fact, we obtain a stronger estimate via Triebel–Lizorkin spaces (see Theorem 1.2). We also prove the 
corresponding Lp-Lq estimate for a strongly pseudoconvex domain in Section 7, which is new for negative 
Sobolev spaces (see Theorem 7.1).

For a bounded smooth convex domain Ω ⊂ Cn of finite type m, Diederich–Fischer–Fornæss [20] con-
structed a solution operator Hq for the ∂-equation from (0, q) closed forms to (0, q − 1)-forms, which has 
boundedness Hq : L∞ → C1/m. In particular, ∂Hqf = f for all L∞ ∂-closed (0, q)-forms f on Ω.

Based on their approach, subsequent authors obtained the following Lp and Ck-estimates.

• Fischer [23] proved that Hq : Lp ∩ ker ∂ → L
p(mn+2)
mn+2−p for 1 < p < mn + 2.

• Hefer [34] improved the previous two results [20,23] using multitypes: if Ω has q-type mq, then Hq : L∞∩
ker ∂ → C1/mq and Hq : Lp∩ker ∂ → L

p·rq
rq−p for 1 < p < (n −q+1) ·mq +2q, where rq = (n −q+1) ·mq +2q. 

Note that m = m1 ≥ mq, and mq is generally smaller.
• Alexandre [3] modified Hq to a new solution operator H̃q such that H̃q : Ck ∩ ker ∂ → Ck+1/m (H̃q

depends on k).

Our Theorem 1.1 implies all of the results above. In addition, we provide the following remarks.

• Our Hq is a solution operator to the Cauchy–Riemann equation on (0, q)-forms. When f is a ∂ closed 
(0, q)-form, then the (0, q− 1) form u = ∂Hqf solves ∂u = f . In addition, for estimates of Hq, we do not 
require the domains to be the subspace of closed forms, whereas those in previous studies [20,23,34,3]
were stated only on closed forms.

• Our estimates on C s-spaces imply that given by [20,3] because Ck � C k for k ≥ 1 and L∞ � C 0 (e.g., 
see [67, (2.5.7/11)]). For q ≥ 2, our result shows the gain of the 1

mq
derivative, whereas in the studies by 

[20,3], the gain was only 1
m = 1

m1
.

• When 1 < p < rq, by taking s = 0, we see that Theorem 1.1 (iii) contains the Lp-Lq estimate in [34, 
Theorem 1.3]. We also have the boundedness Hq : Lrq → BMO that recovers [23, Theorem 1.1 (ii)], see 
Remark 1.4.

• Even for a negative integer k, our operator Hq is defined on the distribution space Hk,p and has 1
m gain 

Hq : Hk,p → Hk+ 1
m ,p (in fact, to Hk+ 1

mq
,p).

• The operator Hq is a “universal solution operator” in the sense that we have one operator that has Hs,p

and C s boundedness for all s, rather than only a bounded range of s.

The estimates on Sobolev space of negative index were first achieved in [63] for the case of a smooth 
strongly pseudoconvex domain, where for each 1 ≤ q ≤ n, we obtained a solution operator with 1

2 -estimate 
Hs,p → Hs+ 1

2 ,p for all s ∈ R and 1 < p <∞.
In both [63] and the current paper, our solution operators are non-canonical because they do not come 

from the solutions of the ∂-Neumann problem. However, for canonical solutions, it is comparably more 
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difficult to discuss the boundedness (or even well-posedness) on negative function spaces because we need 
to use a version of a generalized trace to discuss the boundary value condition (see [56]), as mentioned by 
[28].

Note that the Lp-Lq estimates cannot be directly obtained from the 1
m -estimates since the classical 

Sobolev estimate only yields H 1
m ,p ↪→ L

2nmp
2nm−p , which is a larger space than L

p(mn+2)
mn+2−p .

Our solution operators follow from the construction of [20]. We recall that their solution operator Hq

from [20] has the form

(1.1) Hqf(z) :=
∫
Ω

Bq−1(z, ·) ∧ f −
∫
bΩ

Kq−1(z, ·) ∧ f.

The first integral is the Bochner–Martinelli integral operator (see (2.7) for the definition of Bq−1), which is 
known to gain one derivative. The second integral is the main term. The construction of Kq−1 is based on 
the Diederich–Fornæss support function S(z, ζ) (see (2.4) and (2.8)). We remark that a slight modification 
of K(z, ζ) is required in order to make it a bounded function for each ζ, as mentioned by [3]. See Lemma 2.2
and Remark 2.3.

Our solution operator replaces the boundary integral with integration of the commutator [∂, E ] on the 
exterior neighborhood. The commutator was introduced by [50] and used later by [48] and recently by [30]:

(1.2) Hqf(z) :=
∫
U

Bq−1(z, ·) ∧ f +
∫

U\Ω

Kq−1(z, ·) ∧ [∂, E ]f,

where U is a sufficiently small neighborhood of Ω and E is a suitably selected extension operator of Ω such 
that the extended functions are supported in U .

In [45,50], the authors used E for the Seeley’s half-space extension [59], which only works on smooth 
domains, and they extended Hs,p and C s functions for positive s. For the case of non-smooth domains, e.g., 
[30], the authors used E for the Stein’s extension [60, Chapter VI], which is defined on Lipschitz domains, 
and also extended Hs,p and C s for positive s.

In our case, we choose E as the Rychkov extension operator, which works on Lipschitz domains and 
extends Hs,p and C s for all s (including s < 0) (see (4.6) and (4.14). The Rychkov’s extension operator was 
first introduced to solve the ∂-equation by [62].

To prove the 1
m -estimates, in [20] and [23,34], the second integral in (1.1) was defined on the boundary, 

and thus we only need to consider the estimate of the tangential part of Kq−1 with respect to ζ-variable, 
which is as follows in our notation (see Definition 2.6):∫

bΩ

Kq−1(z, ·) ∧ f =
∫
bΩ

K�
q−1(z, ·) ∧ f.

Moreover, to estimate (1.2), we need to deal with the normal part K⊥
q−1 = Kq−1−K�

q−1, which contributes 
to the major loss of the kernel. In general, based on the estimates in [20, Section 5], K⊥

q−1 loses 1 more 
derivative than K�

q−1. Alexandre [3] gave a better control and showed that 1
2 −

1
m derivative is lost at most.

In this paper, we introduce the following decomposition (see Notation 2.7 and (2.12)), which simplifies 
Alexandre’s approach:

(1.3)
∫

Kq−1(z, ·) ∧ [∂, E ]f =
∫

K�
q−1(z, ·) ∧ [∂, E ]f +

∫
K⊥

q−1(z, ·) ∧ ([∂, E ]f)�.
U\Ω U\Ω U\Ω
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[∂, E ]f has one derivative less than f , and the 1
m -estimate of K�

q−1(z, ·) ∧ [∂, E ]f essentially follows 
from [20]. Although K⊥

q−1 loses one more derivative than K�
q−1, the tangential part of the commutator 

[∂, E ]�f := ([∂, E ]f)� has the same regularity to f , which compensates for the estimate that we need (see 
Proposition 5.1 and Remark 5.2 (ii)).

Note that (1.3) is not needed in the case of strongly pseudoconvex domains because for the Leray map 
Q̂(z, ζ) (see Proposition 7.3), we only need the trivial estimates (7.7) and (7.8). See Remark 3.8.

For the case where s < 1 in Theorem 1.1, the commutator [∂, E ]f may give a distribution rather than 
a classical function. In order to ensure that the integral operators make sense, we express the given forms 
as the derivatives of functions with positive index. For k ≥ 1, we constructed the anti-derivative operators 
{Sk,α}|α|≤k in [61] such that if a function g is supported outside Ω, then g =

∑
|α|≤k DαSk,αg with all 

summands also supported outside Ω. See Proposition 4.13. Therefore, by integrating by parts,∫
U\Ω

K
(�,⊥)
q−1 (z, ζ) ∧ [∂, E ](�)f(ζ)d Volζ =

∑
|α|≤k

∫
U\Ω

K
(�,⊥)
q−1 (z, ζ) ∧

(
DαSk,α ◦ [∂, E ](�)f

)
(ζ)d Volζ

=
∑

|α|≤k

(−1)|α|
∫

U\Ω

Dα
ζ K

(�,⊥)
q−1 (z, ζ) ∧

(
Sk,α ◦ [∂, E ](�)f

)
(ζ)d Volζ .

The method of trading derivatives between Kq−1 and [∂, E ]f was introduced by [63] for the estimates of 
strongly pseudoconvex domains.

The key step to prove Theorem 1.1 is to obtain the weighted estimates for Dk
z,ζ(K�

q−1)(z, ζ) and 
Dk

z,ζ(K⊥
q−1)(z, ζ). See Theorem 2.9. Note that we take derivatives after we take (⊥ and 
) projections. 

The reduction from Theorem 1.1 to Theorem 2.9 is achieved by using the Hardy–Littlewood lemma (see 
Proposition 5.3 and Corollary 5.5 (iii)).

In fact, by combining Theorem 2.9 and Corollary 5.5 (iii), we have a stronger estimate of Hq in terms of 
Triebel–Lizorkin spaces (see Definition 4.5):

Theorem 1.2. With Hq as in Theorem 1.1, the following boundedness properties hold for 1 ≤ q ≤ n − 1:

Hq : F s
p,∞(Ω;∧0,q) → F

s+ 1
mq

p,ε (Ω;∧0,q−1), ∀ ε > 0, 1 ≤ p ≤ ∞;(1.4)

Hq : F s
p,∞(Ω;∧0,q) → F s

prq
rq−p ,ε

(Ω;∧0,q−1), ∀ ε > 0, 1 ≤ p ≤ rq.(1.5)

Theorem 1.2 implies Theorem 1.1 (ii) and (iii) automatically for the case where 1 ≤ q ≤ n − 1 (see 
Remark 4.6).

Remark 1.3 (Boundedness on Besov spaces). Theorem 1.2 implies the 1
mq

-estimate and higher order Lp-Lq

estimates on Besov spaces via real interpolations.
By the elementary embedding (see Remark 4.6 (iii)), for every s ∈ R and t ∈ (0, ∞], we have Hq : F s

p,t →
F

s+1/mq

p,t for p ∈ [1, ∞] and Hq : F s
p,t → F s

prq
rq−p ,t

for p ∈ [1, rq]. In addition, we have real interpolations 
(e.g., see [66, Corollary 1.111]):

(F s0
p,t0

(Ω), F s1
p,t1

(Ω))θ,t = B
θs1+(1−θ)s0
p,t (Ω), ∀p ∈ [1,∞), t0, t1, t ∈ (0,∞], θ ∈ (0, 1) and s0 �= s1;

(F s0
∞,∞(Ω), F s1

∞,∞(Ω))θ,t = B
θs1+(1−θ)s0
∞,t (Ω), ∀t ∈ (0,∞], θ ∈ (0, 1) and s0 �= s1.

See [66, (1.368) and (1.369)]. Therefore (see [64, Definition 1.2.2/2 and Theorem 1.3.3] for example), 
for every s ∈ R and t ∈ (0, ∞], we have Hq : Bs

p,t(Ω; ∧0,q) → B
s+1/mq

p,t (Ω; ∧0,q−1) for p ∈ [1, ∞], and 
Hq : Bs

p,t(Ω; ∧0,q) → Bs
prq ,t

(Ω; ∧0,q−1) for p ∈ [1, rq].

rq−p
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Remark 1.4 (Boundedness on BMO). As a special case of (1.5), we recover the endpoint Lp-Lq boundedness 
Hq : Lr1(Ω; ∧0,q) → BMO(Ω; ∧0,q−1) from [23, Theorem 1.1 (ii)] (cf. [34, Theorem 1.3]). The definition of 
BMO(Ω) used by Fischer [23] comes from [49, Section 4, Definition 3]. We recall that for an arbitrary open 
subset U ⊂ RN , BMO(U) and bmo(U) (see [12, Definition 1.2]) are spaces consisting of f ∈ L1

loc(U) such 
that:

‖f‖BMO(U) := sup
B⊆U

1
|B|

∫
B

∣∣f − 1
|B|
∫

B
f
∣∣ <∞, ‖f‖bmo(U) := ‖f‖BMO(U) + sup

B⊆U

1
|B|

∫
B

|f | <∞,

where B denotes the balls in RN .
Clearly, bmo(U) ⊂ L1

loc(U), whereas BMO(U) = bmo(U)/{c ·1U : c ∈ C} ignores the constant functions.
By [12, Theorem 1.4] (since Ω is bounded smooth), we have bmo(Ω) = {f̃ |Ω : f̃ ∈ bmo(Cn)}, and by [67, 

Theorem 2.5.8/2], we have bmo(Cn) = F 0
∞2(Cn). Therefore, by Definition 4.5, for spaces on domains, we 

obtain bmo(Ω) = F 0
∞2(Ω).

In addition, by Remark 4.6 (iii) and (vi), we have F 0
∞,ε ⊂ F 0

∞,2 and F 0
rq,2 = Lrq ⊂ F 0

rq,∞. Therefore, we 
obtain the boundedness Hq : Lrq (Ω; ∧0,q) → bmo(Ω; ∧0,q−1). By taking the quotient of constant functions, 
we obtain a stronger one Hq : Lrq (Ω; ∧0,q) → BMO(Ω; ∧0,q−1). (Recall that r1 ≥ rq from Theorem 1.1 (iii) 
since m1 ≥ mq.)

Obtaining the estimates for the ∂-equation is a fundamental question in several complex variables. There 
are two major approaches can be applied. The first approach is the ∂-Neumann problem, which defines the 
canonical solutions, and it was proposed by [31]. The estimate originated as the Hörmander [40] L2-estimate 
and it was later developed by [42]. We refer the reader to [15] for a detailed discussion.

We use the second approach called integral representations, which yield non-canonical solutions but the 
expressions can be more explicit. This method was introduced for the ∂-equation by Henkin [37] and Grauert 
& Lieb [29] in the study of strongly pseudoconvex domains. We refer the reader to [53] and [44] for a general 
discussion.

We briefly review the estimates for convex domains of finite type in the following. Studies in complex or 
real pseudo-ellipsoids were conducted by Range [52], Diederich–Fornæss–Wiegerinck [21], Chen–Krantz–Ma 
[13], and Fleron [26], and in the domain of real-analytic boundaries by Range [51] and Bruna-Castillo [5]. 
These are all special cases for general convex domains of finite type. The 1

m -regularity was shown to be 
optimal by [13].

For the type conditions in convex domains, McNeal [47] introduced the ε-extremal basis and showed the 
equivalence between the line type and D’Angelo 1-type on convex domains, and it was later used to show 
the boundedness of ∂-Neumann solutions by [49] (also see [7] for a short proof). McNeal’s approach was used 
by Cumenge [16,17] and Wang [69] to obtain estimates for the ∂-equation. For the type where q ≥ 2, Yu [71]
introduced a different basis from that of McNeal called the ε-minimal basis, and showed the equivalence of 
the line q-type, D’Angelo q-type, and Catlin’s q-type (also see [35] for the connections between McNeal’s 
ε-extremal basis and Yu’s ε-minimal basis).

As mentioned in the beginning, the solution operators on convex domains of finite type are mainly 
derived from Diederich–Fischer–Fornæss [20] with the holomorphic supported function constructed by [18]. 
The Hölder estimate L∞ → C

1
m was obtained by [20], and the anisotropic version was later obtained by 

Fischer [24] and Diederich–Fischer [19] on lineally convex domains of finite type. The Lp-estimate was first 
obtained by Fischer [23] and later partial progress was made by [1,2] and [11]. The Ck → Ck+ 1

m estimate 
was obtained by Alexandre [3]. The multitype notion was used by Hefer [34] who showed that on (0, q)-
forms, the 1

m -estimate could be automatically improved to the 1
mq

-estimate if one considers the multitype 
of the domain (also see [4]).

The convex domains of infinite type were considered by studies by Range [55], Fornæss–Lee–Zhang 
[27], and Ha–Khanh–Raich [38], and recently by Ha [32,33]. Some of their constructions also used integral 
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representations. It should be possible to improve their results using the Rychkov’s extension operator, as 
applied in this paper.

For general finite type domains that are not necessarily convex, it is known that in C2, one can generally 
have the optimal 1

m -estimate (see [25] and [14]; and also see [54] for an approach using integral representa-
tions). In higher dimensions, Catlin [8–10] showed that the canonical solution has boundedness L2 → Hε,2

for some ε > 0 if and only if the domain has finite D’Angelo type. The general lower bounds for ε with re-
spect to type m generally remain unknown. For further discussions of finite types and subelliptic estimates, 
we refer the reader to the survey by [22].

The paper is organized as follows. In Section 2, we recall the construction of the Diederich–Fornæness 
support function and the corresponding integral kernel, and we introduce the tangential and vertical pro-
jections for dζ̄-forms. In Section 3, we review the ε-minimal basis and prove Theorem 2.9. In Section 4, 
we summarize the properties of function spaces and Rychkov’s construction of the extension operator. In 
Section 5, we prove the boundedness of the tangential commutator, Proposition 5.1, and strong Hardy–
Littlewood lemma, Proposition 5.3. In Section 6, we complete the proof of Theorems 1.1 and 1.2 using 
Theorem 2.9 and Corollary 5.5. In Section 7, we apply the proof techniques for Theorems 1.1 and 1.2 to the 
case of strongly pseudoconvex domains and prove Theorem 7.1.

In the following, we use N = {0, 1, 2, . . . } as the set of non-negative integers.
On a complex coordinate system (z1, . . . , zn), ∂α

z denotes the derivative on the holomorphic part 
∂|α|

∂z
α1
1 ...∂zαn

n
, where α ∈ Nn, and Dβ

z denotes the total derivative ∂|β|

∂z
β1
1 ...∂zβn

n ∂z̄
βn+1
1 ...∂z̄

β2n
n

, where β ∈ N2n.
We use the notation x � y to denote that x ≤ Cy, where C is a constant that is independent of x, y, and 

x ≈ y for “x � y and y � x.” We use x �ε y to emphasize the dependence of C on the parameter ε.
For a function class X and a domain U , we use X (U) = X (U ; C) as the space of complex-valued 

functions in U that have regularity X . We use X (U ; R) if the functions are restricted to being real-valued. 
We use X (U ; ∧p,q) for the space of (complex-valued) (p, q)-forms on U that have regularity X .

In the following, U1 = {−T1 < 	 < T1} denotes a fixed neighborhood of bΩ (see Lemma 2.2).

Acknowledgment

The author would like to thank Xianghong Gong and Kenneth Koenig for their valuable support and 
comments.

2. Construction of homotopy formulas

Let Ω ⊂ Cn be a smooth convex domain that has finite type m. We fix a defining function 	 ∈ C∞(Cn; R)
of Ω (i.e., Ω = {	 < 0} and ∇	(ζ) �= 0 for all ζ ∈ bΩ) such that the following holds.

(2.1) A T0 > 0 exists and for every −T0 < t < T0, the domain Ωt := {ζ : 	(ζ) < t} is convex and has the 
same complex affine q-type (see Definition 3.1) to Ω = Ω0 for all 1 ≤ q ≤ n.

This can be achieved by assuming that 0 ∈ Ω (which can be achieved by passing to a translation) and 
requiring 	 to have the homogeneity condition (also see [34, (2.1)]):

(2.2) 	(λζ) + 1 = λ(	(ζ) + 1) for all ζ ∈ bΩ and all λ ∈ R+ closed to 1.

In this setting, Ωt is simply the dilation of Ω, which shares the same (line, D’Angelo, or Catlin) type 
conditions.

We let U0 := {ζ : |	(ζ)| < T0} be a corresponding open neighborhood of bΩ.
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We recall the Diederich-F-ornæss holomorphic support function S ∈ C∞(Cn×U0; C) from [18], as follows.
Fix suitably large constants M1, M2, M3 > 1. For each ζ ∈ U0, we take a unitary matrix Φ(ζ) ∈ Cn×n

that is locally defined and smoothly dependent on ζ such that Φ(ζ) ∂�(ζ)
|∂�(ζ)| = [1, 0, . . . , 0]ᵀ. We define1 for 

ζ ∈ U0 and w = [w1, . . . , wn]ᵀ ∈ Cn(� Cn×1):

S
Φ(ζ)
ζ (ω) := 3ω1 + M1ω2

1 − 1
M2

m/2∑
j=1

M4j

3 (−1)j
∑

|α|=2j;α1=0

∂α	(ζ + Φ(ζ)† · w)
∂wα

∣∣∣∣
w=0

· ωα

α! ;(2.3)

S(z, ζ) := S
Φ(ζ)
ζ

(
Φ(ζ)(z − ζ)

)
z ∈ Ω.(2.4)

Lemma 2.1. In (2.4), S(z, ζ) with suitable constants M1, M2, M3 > 0 satisfies the following.

(i) ([20, Lemma 2.1]) S(z, ζ) is a smooth function, holomorphic in z, and does not depend on the choice 
of the family {Φ(ζ) : ζ ∈ U0}.

(ii) ([18, Corollary 2.4] and [23, Theorem 2.1]) An M4 > 1 exists such that
(2.5)

Re S(z, ζ) ≤M4 ·max(0, 	(z)− 	(ζ))− 1
M4
|z − ζ|m, ∀ζ ∈ U0, z ∈ Ω ∪ U0 such that |z − ζ| < 1

M4
.

As mentioned by [3], S(z, ζ) may have zeroes in 
(
Ω ×(U0\Ω)

)
∩{|z−ζ| ≥ 1

M4
}. We can make the following 

standard modification.

Lemma 2.2. Let S ∈ C∞
loc(Cn × U0; C) be as in (2.4). T1 ∈ (0, T0] exist that are associated with the neigh-

borhood U1 := {ζ : |	(ζ)| < T1} of bΩ, a constant M5 > 1, and a Ŝ ∈ C ∞(Ω × U1; C) such that:

(i) Ŝ(·, ζ) is holomorphic in z ∈ Ω for all ζ ∈ U1,
(ii) |Ŝ(z, ζ)| ≥ 1

M5
for all (z, ζ) ∈ Ω × (U1\Ω) such that |z − ζ| ≥ 1

2M4
;

(iii) An A ∈ C ∞(Ω × U1; C) exists such that Ŝ(z, ζ) = A(z, ζ) · S(z, ζ) and 1
M5
≤ |A(z, ζ)| ≤ M5 for all 

(z, ζ) ∈ Ω × (U1\Ω) such that |z − ζ| ≤ 1
2M4

.

Remark 2.3. Lemma 2.2 was not mentioned by [20], which might leave a gap when estimating the last 
integral in [20, Section 6]. There is a different modification Ŝ(z, ζ) in [34, Section 6] but it may not work in 
our situation.

Proof. We use the same construction from [39, Theorem 2.4.3].
Let δ1 := min

(
T0, (2M4)−m−2(1 + ‖∇	‖L∞(U0))−1) ∈ (0, 1). By (2.5), we see that

−Re S(z, ζ) > δ1, whenever 	(z), 	(ζ) ∈ (−δ1, δ1) and 1
2M4

≤ |z − ζ| ≤ 1
M4

.

Let χ1 ∈ C∞
c ((−δ1, δ1); [0, 1]) be such that χ1

∣∣
[− 1

2 δ1, 1
2 δ1] ≡ 1. Let U ′

1 := {ζ : |	(ζ)| < δ1}, and we define a 

(0, 1)-form f(z, ζ) =
∑n

j=1 fj(z, ζ)dz̄j for z ∈ Ωδ1 = {	 < δ1} and ζ ∈ U ′
1 by

f(z, ζ) :=
{

∂z

(
χ1(|z − ζ|) · log(−S(z, ζ))

)
, if 1

2M4
≤ |z − ζ| ≤ 1

M4

0, otherwise
.

Since S(z, ζ) is smooth and holomorphic in z, we see that f is bounded smooth in the domain Ωδ1 × U ′
1, 

and f(·, ζ) is ∂-closed for each ζ ∈ U ′
1.

1 For a complex matrix A, we use A† = A
ᵀ for the conjugate transpose. Thus, A† = A−1 when A is unitary.
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Therefore, either by applying [15, Theorem 11.2.7 and Lemma 11.2.6] since Ωδ1 is convex, or by applying 
[39, Theorem 2.3.5] since we can find a strongly convex domain Ω̃ such that Ω 1

2 δ1 ⊂ Ω̃ ⊂ Ωδ1 , a continuous 
solution operator T : C ∞(Ωδ1 ; ∧0,1) ∩ker ∂ → C ∞(Ω 1

2 δ1) exists such that ∂Tg = g in Ω 1
2 δ1 for every bounded 

smooth ∂-closed form g in Ωδ1 .
Now, for z ∈ Ω 1

2 δ1 and ζ ∈ U ′
1, we define

u(z, ζ) := (Tf(·, ζ))(z); A(z, ζ) := exp(−u(z, ζ));

Ŝ(z, ζ) :=
{

A(z, ζ)S(z, ζ), if |z − ζ| ≤ 1
2M4

− exp
(
χ1(|z − ζ|) log(−S(z, ζ))− u(z, ζ)

)
, if |z − ζ| ≥ 1

2M4

.

We see that Ŝ : Ω 1
2 δ1 × U ′

1 → C is holomorphic in z and bounded from below in {|z − ζ| ≥ 1
2M4

}.
By taking T1 := 1

2δ1, U1 := {|	| < T1} and M5 := max
(

1
δ1
· exp

(
sup

ΩT1 ×U1

u
)
, ‖S‖L∞(ΩT1 ×U1) ·

exp
(

sup
ΩT1 ×U1

(−u)
))

, we obtain the estimates in (ii) and (iii), which completes the proof. �

Now, we use Ŝ(z, ζ) to define the corresponding Leray map Q̂ = (Q̂1, . . . , Q̂n) ∈ C∞(Ω ×U1; Cn) by the 
following: for ζ ∈ U1,

(2.6)
Ŝ

Φ(ζ)
ζ (w) := Ŝ(ζ + Φ(ζ)† · w, ζ); Q̂

Φ(ζ)
ζ,j (w) :=

∫ 1
0

∂Ŝ
Φ(ζ)
ζ

∂wj
(tw)dt, 1 ≤ j ≤ n;

Q̂
Φ(ζ)
ζ (w) := [Q̂Φ(ζ)

ζ,1 (w), . . . , Q̂
Φ(ζ)
ζ,n (w)]ᵀ; Q̂(z, ζ) := Φ(ζ)ᵀ · Q̂Φ(ζ)

ζ

(
Φ(ζ) · (z − ζ)

)
.

By the same argument in [18, Lemma 2.1], Q̂ does not depend on the choice of unitary maps {Φ(ζ)}. In 
fact, we have Q̂j(z, ζ) =

∫ 1
0

∂Ŝ
∂zj

(ζ + t(z − ζ), ζ)dt, and thus Ŝ(z, ζ) =
∑n

j=1 Q̂j(z, ζ) · (zj − ζj).
Now, we identify the vector-valued function Q̂(z, ζ) with the 1-form 

∑n
j=1 Q̂j(z, ζ)dζj and we denote 

b(z, ζ) :=
∑n

j=1(ζ̄j − z̄j)dζj . The following notations for differential forms on (z, ζ) ∈ Ω × U1 are adapted 
from those used by [15]. In the following, ∂ = ∂z,ζ ,

B(z, ζ) := b ∧ (∂b)n−1

(2πi)n|z − ζ|2n
=:

n−1∑
q=0

Bq(z, ζ);(2.7)

K(z, ζ) := b ∧ Q̂

(2πi)n
∧

n−1∑
k=1

(−1)k (∂b)n−1−k ∧ (∂Q̂)k−1

|z − ζ|2(n−k)Ŝk
=:

n−2∑
q=0

Kq(z, ζ).(2.8)

B is an (n, n − 1) form where Bq is the component that has degree (0, q) in z and (n, n − 1 − q) in ζ; K is 
a (n, n − 2) form where Kq is the component that has degree (0, q) in z and (n, n − 2 − q) in ζ.

Lemma 2.4. Let E : C ∞(Ω) → C1
c (Ω ∪ U1) be an extension operator such that suppEf � Ω ∪ U1 for all 

functions f ∈ C ∞(Ω). Then, the following integral is pointwisely defined:

(2.9) Hqf(z) :=
∫

Ω∪U1

Bq−1(z, ·) ∧ Ef +
∫

U1\Ω

Kq−1(z, ·) ∧ [∂, E ]f, 1 ≤ q ≤ n, f ∈ C ∞(Ω;∧0,q), z ∈ Ω.

Moreover, f = ∂Hqf + Hq+1∂f for all f ∈ C ∞(Ω; ∧0,q).
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See [30, Proposition 2.1] or [15, Theorem 11.2.2] for a proof. Both references use the corresponding 
notation K = Ω01(b, Q̂). To integrate the bi-degree forms, we use the convention 

∫
x

u(x, y)dxI ∧ dyJ :=
(
∫

x
u(x, y)dxI)dyJ , which we note is different from [53, Section III.1.9].

Lemma (2.4) does not guarantee that f = ∂Hqf + Hq+1∂f holds for distributions since E may not be 
defined on the space of distributions.

Definition 2.5. We construct the operator Hq from (2.9) by taking E as Rychkov’s extension operator given 
in Definition 4.11.

Note that the Rychkov’s extension operator is defined on the space S ′(Ω) of all extensible distributions.
The boundedness of Hq follows from the weighted estimates of the derivatives of the tangential part and 

the vertical part of Kq−1(z, ζ) with respect to ζ-variable.

Definition 2.6. Let 	 : U1 → (−T1, T1) be a defining function of Ω with non-vanishing gradient and let 
bΩt = {	 = t} (for |t| < T1) be as given above. Let 1 ≤ p, q ≤ n and ζ0 ∈ U , and we define the ∂-vertical 
projection (−)⊥

ζ0
and ∂-tangential projection (−)�

ζ0
at ζ0 as the following surjective orthonormal projections:

(−)⊥
ζ0

:
∧p,q Cn �

∧p Cn ⊗C

(
Span〈∂	(ζ0)〉 ∧

∧q−1 Cn
)
, (−)�

ζ0
:
∧p,q Cn �

∧p Cn ⊗C
∧q

T ∗0,1
ζ0

(bΩ�(ζ0)).

For a (p, q)-form f : U1 →
∧p,q Cn, we define f⊥(ζ) := f(ζ)⊥

ζ and f�(ζ) := f(ζ)�
ζ for ζ ∈ U1 naturally.

For a real hypersurface M ⊂ Cn and a ζ ∈ M , T ∗0,1
ζ M := T ∗0,1

ζ Cn ∩ CT ∗
ζ M is the anti-holomorphic 

cotangent space of M at ζ.

Notation 2.7. For the bidegree form K(z, ζ), we use K�(z, ζ) and K⊥(z, ζ) for the projections with respect 
to ζ-variable but not to z-variable, i.e., K�

q (z, ζ) := Kq(z, ·)�(ζ) and K⊥
q (z, ζ) := Kq(z, ·)⊥(ζ) for each q.

Remark 2.8. Let θ1, . . . , θn be (0, 1)-forms defined on an open subset U ⊂ U1, which form an orthonormal 
frame such that θ1 = ∂	/|∂	|. Let (Z1, . . . , Zn) be the dual basis, which are (0, 1) vector fields on U . 
Therefore,

Span(θ2, . . . , θn) =
∐

ζ∈U T ∗0,1
ζ (bΩ�(ζ)) (⊂ T ∗0,1U), Span(Z2, . . . , Zn) =

∐
ζ∈U T 0,1

ζ (bΩ�(ζ)) (⊂ T 0,1U).

We see that Z1 is uniquely determined by 	 (which does not depend on (θ2, . . . , θn)) and is globally 
defined on U1:

(2.10) Z1 = 1
|∂	|

n∑
j=1

∂	

∂ζj

∂

∂ζj

.

Let f =
∑

|J|=p,|K|=q fJ,KθJ ∧ θ
K be a (p, q)-form on U , where fJ,K = 〈ZJ ∧ ZK , f〉, and we see that

f⊥ =
∑

|J|=p,|K′|=q−1 fJ,1K′θJ ∧ θ1 ∧ θ
K′

, f� =
∑

|J|=p,|K|=q; min K≥2 fJ,KθJ ∧ θ
K

.

Therefore, f⊥ and f� are still defined when f has distributional coefficients, and we have the following:

(2.11) f⊥ = θ1 ∧ ιZ1
f = (f⊥)⊥, f� = f − f⊥ = (f�)�.

Moreover, for a (p′, q′)-form g on U , one can see that

(2.12) (f ∧ g)� = f� ∧ g�, f⊥ ∧ g⊥ = 0, and thus f⊥ ∧ g = f⊥ ∧ g�.
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We leave the proof to the reader.

The weighted estimates that we need are as follows.

Theorem 2.9 (Weighted estimates for K(z, ζ)). Let dist(w) := dist(w, bΩ). Let 1 ≤ q ≤ n. Assume that Ω
has q-type mq <∞. Let rq := (n − q + 1) ·mq + 2q and γq = rq

rq−1 .
Then, for any k ≥ 2 and 0 < s < k − 1 − 1/mq, a C = C(Ω, U1, Ŝ, q, mq, k, s) > 0 exists such that:∫

U1\Ω

dist(ζ)s|Dk
z,ζ(K�

q−1)(z, ζ)|d Vol(ζ) ≤ C dist(z)s+1+ 1
mq

−k
, ∀z ∈ Ω;(2.13)

∫
Ω

dist(z)s|Dk
z,ζ(K�

q−1)(z, ζ)|d Vol(z) ≤ C dist(ζ)s+1+ 1
mq

−k
, ∀ζ ∈ U1\Ω;(2.14)

∫
U1\Ω

dist(ζ)s|Dk
z,ζ(K⊥

q−1)(z, ζ)|d Vol(ζ) ≤ C dist(z)s+ 2
mq

−k
, ∀z ∈ Ω;(2.15)

∫
Ω

dist(z)s|Dk
z,ζ(K⊥

q−1)(z, ζ)|d Vol(z) ≤ C dist(ζ)s+ 2
mq

−k
, ∀ζ ∈ U1\Ω;(2.16)

∫
U1\Ω

| dist(ζ)sDk
z,ζ(K�

q−1)(z, ζ)|γq d Vol(ζ) ≤ C dist(z)(s+1−k)γq , ∀z ∈ Ω;(2.17)

∫
Ω

| dist(z)sDk
z,ζ(K�

q−1)(z, ζ)|γq d Vol(z) ≤ C dist(ζ)(s+1−k)γq , ∀ζ ∈ U1\Ω;(2.18)

∫
U1\Ω

| dist(ζ)sDk
z,ζ(K⊥

q−1)(z, ζ)|γq d Vol(ζ) ≤ C dist(z)(s−k+ 1
mq

)γq , ∀z ∈ Ω;(2.19)

∫
Ω

| dist(z)sDk
z,ζ(K⊥

q−1)(z, ζ)|γq d Vol(z) ≤ C dist(ζ)(s−k+ 1
mq

)γq , ∀ζ ∈ U1\Ω.(2.20)

We use Dk
z,ζ = { ∂|α+β+γ+δ|

∂zα∂z̄β∂ζγ ∂γ̄δ : |α +β +γ + δ| ≤ k} for the total derivatives among all variables acting on 
their coordinate components. Note that we take derivatives after we take (⊥ and 
) projections. We prove 
Theorem 2.9 in Section 3.

The estimates (2.15), (2.16), (2.19), and (2.20) are all not optimal. In practice, to prove Theorems 1.1
and 1.2, it is sufficient to replace the 2

mq
-factors in (2.15) and (2.16) by any ε + 1

mq
, and the 1

mq
-factors in 

(2.19) and (2.20) by any ε, for all ε > 0. See Remark 3.10 (iii) for their improvements.
In Corollary 5.5 (iii), we show that [∂, E ]� does not lose derivative (also see Remark 5.2). This technique 

is not necessary for the estimates for strongly pseudoconvex domains (see Remark 3.8).
By expanding Kq−1(z, ζ) from (2.8), we see that its coefficients are the (constant) linear combinations of

(2.21)
b(z, ζ) ∧ Q̂(z, ζ) ∧

(
∂Q̂(z, ζ)

)k−1

Ŝ(z, ζ)k|z − ζ|2(n−k)
, 1 ≤ k ≤ n− q.

We start with the estimates of the components in (2.21) in Section 3.

3. Estimates via ε-minimal bases

We recall some notations and definitions from [47,71].
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Definition 3.1. Let Ω ⊂ Cn be an open set and let ζ ∈ bΩ. For 1 ≤ q ≤ n, the (complex affine) q-type of Ω
at ζ is

Lq(bΩ, ζ) := sup
{

m ∈ R+ : lim
w→0;w∈H

dist(ζ + w, bΩ)
|w|m = 0 for all q-dim C-linear subspace H ≤ Cn

}
.

The (affine) q-type of Ω is the minimum of Lq(bΩ, ζ) among all ζ ∈ bΩ, which we denote by mq.

As mentioned by [34, Theorem 2.1], on convex domains, the affine types, D’Angelo types, and regular 
D’Angelo types all coincide. Moreover, if Ω has affine q-type mq <∞ for 1 ≤ q ≤ n, then (mn, mn−1, . . . , m1)
is the Catlin’s multitype of Ω. See [47,7,71]. In particular, m1 ≥ · · · ≥ mn−1 ≥ 2 are all even integers and 
mn = 1.

To study the 1
mq

gain on (0, q)-forms, especially for q ≥ 2, we use the ε-minimal basis approach, which 
was introduced by [71] and used by [34].

Definition 3.2. Let Ω ⊂ Cn be a finite type convex domain where the defining function 	 is as given above. 
For ζ ∈ U1, v ∈ Cn, and ε > 0, let

τ(ζ, v, ε) := sup{c > 0 : |	(ζ + λv)− 	(ζ)| ≤ ε, ∀λ ∈ C, |λ| ≤ c}.

An ε-minimal basis (or a Yu-basis at the scale ε) (v1, . . . , vn) at ζ ∈ U1 is given recursively as follows: for 
1 ≤ k ≤ n, vk ∈ Cn is a unit vector that minimizes to the following quantity of v:

dist
(
ζ, {z ∈ (ζ + C · v) : 	(z) = 	(ζ) + ε}

)
, where |v| = 1 and v⊥ SpanC〈v1, . . . , vk−1〉.

For k = 1, we use SpanC ∅ = {0}.
For an ε-minimal basis (v1, . . . , vn) at ζ, we define τj(ζ, ε) := τ(ζ, vj , ε) for 1 ≤ j ≤ n, and the ellipsoid 

Pε(ζ) :=
{

ζ +
∑n

j=1 ajvj :
∑n

j=1
|aj |2

τj(ζ,ε)2 < 1
}
⊂ Cn. For c > 0, we set cPε(ζ) := {z ∈ Cn : ζ + z−ζ

c ∈ Pε(ζ)}
for a dilation of Pε(ζ) with the same center.

We use an ellipsoid rather than a rectangle to define Pε(ζ) (cf. [20, Section 3] for example). One can see 
that {τj(ζ, ε)}n

j=1 and Pε(ζ) do not depend on the choice of the ε-minimal basis.
We recall the following from [47,71,20,34]. Recall Lemma 2.2 for M5 > 0 and U1 ⊃ bΩ.

Lemma 3.3. Assume that the finite type convex domain Ω ⊂ Cn has q-type mq < ∞. Then, a C0 > 1 and 
an ε0 ∈ (0, 1

M5
) exist, and for every multi-index β = (β′, β′′) ∈ N2n, a Cβ > 0 exists such that:

(i) For every ζ ∈ {|	| < ε0}, we have Pε0(ζ) ⊆ U1. Moreover, for every 0 < ε ≤ ε0 and every ε-minimal 
basis (v1, . . . , vn) at ζ (recall that τj(ζ, ε) := τ(ζ, vj , ε)):

Pε(ζ ′) ⊆ C0Pε/2(ζ) and 2Pε(ζ ′) ⊆ PC0ε(ζ), ∀ζ ′ ∈ Pε(ζ);(3.1)

τ1(ζ, ε) ≤ τ2(ζ, ε) ≤ τ3(ζ, ε) ≤ · · · ≤ τn(ζ, ε);(3.2)

τ1(ζ, ε) ≥ 1
C0

ε, τ2(ζ, ε) ≥ 1
C0

ε
1
2 ;(3.3)

τq(ζ, ε) ≤ C0ε1/mn+1−q , ∀1 ≤ q ≤ n;(3.4)

(ii) For every ζ ∈ U1, 0 < ε ≤ ε0 and ε-minimal basis (v1, . . . , vn) at ζ,
(3.5) ∣∣∣ ∂|β|

∂wβ′∂w̄β′′ 	(ζ + w1v1 + . . . wnvn)
∣∣∣ ≤ Cβ

ε∏n
τj(ζ, ε)β′

j+β′′
j

, ∀w ∈ Cn such that
n∑ |wj |2

τj(ζ, ε)2 < 1.

j=1 j=1
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Remark 3.4.

(i) (3.4) is particularly useful for q ≥ 2. If we only consider (0, 1)-forms, we could use the ε-extremal 
basis (a.k.a. the McNeal-basis at the scale ε) to define τ1, . . . , τn, where (3.1) and (3.3) remain true, 
but (3.4) is replaced by ε1/mq−1 � τq � ε1/m1 (e.g., see [34, Theorem 2.3]).

(ii) In (3.5), 
∑n

j=1
|wj |2

τj(ζ,ε)2 < 1 is the same as stating that ζ + w1v1 + · · ·+ wnvn ∈ Pε(ζ). This estimate is 
only useful when 

∑n
j=1

1
mn+1−j

(β′
j + β′′

j ) < 1; otherwise, the right-hand side of (3.5) is bounded from 
below (or even tends to ∞ as ε → 0) whereas the left-hand side is always uniformly bounded.

To prove Theorem 2.9, we need to estimate |K�
q−1(z, ζ)| and |K⊥

q−1(z, ζ)| inside an ellipsoid Pε(ζ). Recall 
ε0 in Lemma 3.3 and Q̂ in (2.6).

Lemma 3.5. By retaining the notations in Lemma 3.3, a C1 > 0 exists that satisfies the following:

(i) |Ŝ(z, ζ)| ≥ 1
C1

ε, for every ζ ∈ U1, 0 < ε ≤ ε0 and z ∈ Ω�(ζ)\Pε(ζ).
(ii) Let ζ0 ∈ U1, 0 < ε ≤ ε0, and let Ψ0 ∈ Cn×n be a unitary matrix such that its n column vectors (with 

order) form an ε-minimal basis at ζ0. Let Q̂Ψ0(z, ζ) := Ψ0 · Q̂(Ψ0 · z, Ψ0 · ζ). Then,
(3.6)

|Q̂Ψ0,j(z, ζ0)| ≤ C1ε

τj(ζ0, ε) ,
∣∣∣ ∂

∂ζk

Q̂Ψ0,j(z, ζ0)
∣∣∣ ≤ C1ε

τj(ζ0, ε)τk(ζ0, ε) , for z ∈ Pε(ζ0), 1 ≤ j, k ≤ n.

Proof. See [20, Lemma 4.2] or [34, Proposition 4.1] for (i). Note that the modification from S to Ŝ in 
Lemma 2.2 ensures that |Ŝ(z, ζ)| is bounded from below when |z − ζ| is large.

For (3.6), since we fix the point ζ0 and the number ε, by passing to a unitary coordinate change, we can 
assume that Ψ0 = In. In particular, Q̂Ψ0 = Q̂.

(3.6) is a weaker version of [3, Lemma 8] where (under the assumption that Ψ0 = In) it was proved that 
|∂ζk

Q̂j(z, ζ0)| � ε
τjτ ′

k
. In the statement, τ ′

1 = ε
1
2 � ε ≈ τ1 and τ ′

k = τk for k ≥ 2. [3, Lemma 8] is stated 
with ε-extremal bases, but the result is still true if we replace it by ε-minimal bases. There is no additional 
change to the proof.

Alternatively, we define Q = [Q1, . . . , Qn]ᵀ as the Q̂ from (2.6) with Ŝ(z, ζ) replaced by S(z, ζ), i.e. 
Qj(z, ζ) =

∫ 1
0

∂S
∂zj

(ζ + t(z − ζ), ζ)dt. Then, we have

Q̂j = A ·Qj + ∂zj
A · S, and ∂ζk

Q̂j = A · Q̂j + ∂ζk
A · Q̂j + ∂zj

A · ∂ζk
S + ∂2

zjζk
A · S,

where A ∈ C∞ is as given in Lemma 2.2 (iii). By [20, Lemma 5.1], we have |Qj | � ε/τj and |∂ζk
Qj | �

ε/(τjτk), and thus (3.6) follows from the fact that A ∈ C2 and S(z, ζ) =
∑n

j=1 Qj(z, ζ)(zj − ζj). Again, [20, 
Lemma 5.1] is stated with ε-extremal bases but the result is still true if we replace it by ε-minimal bases. 
There is no additional change to the proof. �
Corollary 3.6. We retain the notations from Lemma 3.5 (ii), and we identify the column vector function 
Q̂Ψ0 = [Q̂Ψ0,1, . . . , Q̂Ψ0,n] with the (1, 0)-form Q̂Ψ0 =

∑n
j=1 Q̂Ψ0,j(z, ζ)dζj. Then, the estimates using (3.7)

and (3.8) imply the following.
A C ′

1 > 0 exists that does not depend on ζ0 ∈ U1 and 0 < ε ≤ ε0, such that for every a ∈ {0, 1}, 1 ≤ b ≤ n

and every z ∈ Pε(ζ0),

∣∣(Q̂Ψ0)a ∧ (∂Q̂Ψ0)b(z, ζ0) mod dζ̄1
∣∣ ≤ C ′

1
εa+b−1∏b+1 2

;(3.7)

l=2 τl(ζ0, ε)
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∣∣(Q̂Ψ0)a ∧ (∂Q̂Ψ0)b(z, ζ0)
∣∣ ≤ C ′

1
εa+b−2τb+1(ζ0, ε)∏b+1

l=2 τl(ζ0, ε)2
.(3.8)

By (3.7), we mean that if (Q̂Ψ0)a ∧ (∂Q̂Ψ0)b(z, ζ) =
∑

|J|=a+b;|K|=v fJK(z, ζ)dζJ ∧ dζ
K , then |fJK | �

εa+b−1/ 
∏b+1

l=2 τ2
l for all index sets J and K = (k1, . . . , kb) such that k1, . . . , kb ≥ 2.

Remark 3.7. This is essentially [20, Lemma 5.5] or [34, Lemma 4.2], which used the (1, 0)-form Q(z, ζ) (see 
the proof of Lemma 3.5) instead of the Q̂(z, ζ) in the statement.

Remark 3.8. In the case of strongly pseudoconvex domains, we informally have τ2 ≈ · · · ≈ τn ≈ ε
1
2 , which 

means that |(Q̂Ψ0)a ∧ (∂Q̂Ψ0)b mod dζ̄1| � εa−1 and |(Q̂Ψ0)a ∧ (∂Q̂Ψ0)b| � εa− 3
2 . Since εa−1, εa− 3

2 � 1, we 
recall from Remark 3.4 (ii) that these estimates become unnecessary.

Proof of Corollary 3.6. Again, we assume that Ψ0 = In. By writing Q̂a∧ (∂Q̂)b =
∑

|J|=a+b;|K|=v fJKdζJ ∧

dζ
K , we have fj1...ja+b,k1...kb

= ± 
∏b

p=1
∂Q̂jp

∂ζkp

∏a+b
q=b+1 Q̂jq

. By (3.6) we have

(3.9)
∣∣fj1...ja+b,k1...kb

∣∣ � εa+b∏b
p=1 τjp

τkp

∏a+b
q=b+1 τjq

.

In the differential form, (j1, . . . , ja+b) and (k1, . . . , kb) are two collections of distinct indices. Therefore, 
we can assume that (1 ≤)jb+1 < · · · < ja+b < j1 < · · · < jb and k1 < · · · < kb. In (3.10), we modular dζ1, 
where we only need the case of k1 ≥ 2.

By (3.2) and (3.3), ε ≈ τ1 ≤ · · · ≤ τn, and thus for the case where k1 ≥ 2,

|fj1...ja+b,k1...ka+b
| �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εb+1

τjb+1

∏b
p=1 τjp

τkp

∣∣∣ jb+1=1
jp=kp=p+1

≈ εb∏b+1
l=2 τ2

l

when a = 1

εb∏b
p=1 τjp

τkp

∣∣∣ jp=p
kp=p+1

≈ εb−1∏b
l=2 τ2

l · τb+1
when a = 0

≤ εa+b−1∏b+1
l=2 τ2

l

.

This proves (3.7).
Similarly, for the case where k1 ≥ 1,

|fj1...ja+b,k1...ka+b
| �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εb+1

τjb+1

∏b
p=1 τjp

τkp

∣∣∣ jb+1=1
jp=p+1

kp=p

≈ εb−1∏b
l=2 τ2

l · τb+1
when a = 1

εb∏b
p=1 τjp

τkp

∣∣∣
jp=kp=p

≈ εb−2∏b
l=2 τ2

l

when a = 0
≤ εa+b−2τb+1∏b+1

l=2 τ2
l

.

This proves (3.8). �
By taking pullback from ζ �→ Ψ0 · ζ, we have the following.

Lemma 3.9. For every j ≥ 0, a Cj > 0 exists such that for every 1 ≤ k ≤ n, 0 < ε ≤ ε0, ζ ∈ U1\Ω, and 
z ∈ Ω�(ζ) ∩ Pε(ζ)\Pε/2(ζ), ∣∣∣∣Dj

z,ζ

( Q̂ ∧ (∂Q̂)k

Ŝk+1

)�
(z, ζ)

∣∣∣∣ ≤ Cj
ε−1−j∏k+1

l=2 τl(ζ, ε)2
;(3.10)

∣∣∣∣Dj
z,ζ

( Q̂ ∧ (∂Q̂)k

Ŝk+1

)
(z, ζ)

∣∣∣∣ ≤ Cj
ε−2−jτk+1(ζ, ε)∏k+1

l=2 τl(ζ, ε)2
,(3.11)
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where Dj = {∂α
z ∂β

ζ ∂γ

ζ
}|α+β+γ|≤j is the collection of differential operators acting on the components.

Remark 3.10.

(i) There is no z̄-derivative since the fractions are holomorphic in z ∈ Ω�(ζ)(⊃ Ω).
(ii) In fact, (3.10) and (3.11) correspond to the terms ε−j∏k

i=0 τνi

∏k
i=1 τμi

and ε−j− 1
2∏k

i=0 τνi

∏k−1
i=1 τμi

in [3, Lemma 9], 
respectively. By obtaining a refined estimate on the normal direction, where [3] introduced a notion 
of τ ′

1 := ε
1
2 , we can improve (3.11) by a factor of ε 1

2 . However, (3.11) is sufficient for our proof.
(iii) If we consider the anisotropic estimates, we can show that for α, β, γ ∈ Nn, ζ ∈ U1\Ω and z ∈ Ω ∩Pε(ζ), 

if the standard coordinate basis is ε-minimal at ζ, then∣∣∣∣∂α
z ∂β

ζ ∂γ

ζ

( Q̂ ∧ (∂Q̂)k

Ŝk+1

)�
(z, ζ)

∣∣∣∣ �α,β,γ
ε−1−α1−β1− 1

2 γ1∏k+1
l=2 τl(ζ, ε)2

n∏
j=2

τj(ζ, ε)−αj−βj−γj ;

∣∣∣∣∂α
z ∂β

ζ ∂γ

ζ

( Q̂ ∧ (∂Q̂)k

Ŝk+1

)
(z, ζ)

∣∣∣∣ �α,β,γ
ε− 3

2 −α1−β1− 1
2 γ1

τk+1(ζ, ε)
∏k

l=2 τl(ζ, ε)2

n∏
j=2

τj(ζ, ε)−αj−βj−γj .

The proof requires Alexandre’s estimate for normal derivatives in [3, Section 2].

Proof of Lemma 3.9. For convenience, we write2 ∂
�

Q̂ := (∂Q̂)� throughout the proof.
By Lemma 3.5 (i) and Lemma 2.2 (iii), we have |Ŝ| � ε for z ∈ Ω�(ζ)\Pε/2(ζ). By applying the trivial 

estimate |Dj Ŝ| �j 1 for j ≥ 1, we see that

(3.12) |Dj(Ŝ−k)(z, ζ)| �j |Ŝ(z, ζ)|−k−j �j ε−k−j when z ∈ (Ω ∩ Pε(ζ))\Pε/2(ζ).

Therefore, by applying product rules, for z ∈ (Ω�(ζ) ∩ Pε(ζ))\Pε/2(ζ), we uniformly have

∣∣∣∣Dj
z,ζ

Q̂ ∧ (∂�
Q̂)k

Ŝk+1

∣∣∣∣ �j

k∑
q=0

∑
j0+···+jq+1=j

j2,...,jq≥1

∣∣∣Dj0
1

Ŝk+1

∣∣∣∣∣(Dj1Q̂) ∧ (∂�
Q̂)k−q

∣∣ q+1∏
p=2
|Djp(∂Q̂)|

�j

k∑
q=0

( j−q∑
j0=0

∣∣∣Dj0
1

Ŝk+1

∣∣∣ · ∣∣Q̂ ∧ (∂�
Q̂)k−q

∣∣+ ∑
1≤j1≤j−q
j0≤j−q−j1

∣∣∣Dj0
1

Ŝk+1

∣∣∣ · |Dj1Q̂| ·
∣∣(∂�

Q̂)k−q
∣∣),

(|Djp(∂Q̂)| �j 1)

�k,Ŝ

k∑
q=0

( j−q∑
j0=1

ε−k−j0−1∣∣Q̂ ∧ (∂�
Q̂)k−q

∣∣+ j−q−1∑
j0=1

ε−k−j0−1∣∣(∂�
Q̂)k−q

∣∣), (by (3.12) and |Dj1Q̂| �j 1).

Now, we fix ζ = ζ0 and ε. The left-hand side of (3.10) is invariant under a change of unitary coor-
dinate system, so we can assume that the standard basis is ε-minimal at ζ0, and thus ∂

�
Q̂j(z, ζ0) =∑n

k=2
∂Q̂j

∂ζk
(z, ζ0)dζk. By applying (3.7), we obtain

∣∣∣∣Dj
z,ζ

( Q̂ ∧ (∂�
Q̂)k

Ŝk+1

)∣∣∣∣ � k∑
q=0

( j−q∑
j0=1

ε−k−j0−1 εk−q∏k−q+1
l=2 τ2

l

+
j−q−1∑
j0=1

ε−k−j0−1 εk−q−1∏k−q+1
l=2 τ2

l

)
� ε−1−j∏k+1

l=2 τ2
l

.

2 On a (1, 0)-form f , we have (∂f)� = ∂bf on the boundary bΩ. For orthonormal (0, 1)-forms (θ1, . . . , θn), and its dual basis 
(Z1, . . . , Zn) in Remark 2.8, we have ∂b(fkdζk) = ∑n

j=2(Zjf)θj ∧ dζk. One can interpret ∂�|bΩt
as ∂b on each leaf bΩt ⊂ U1.
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This completes the proof of (3.10).
After replacing ∂

�
Q̂ by ∂Q̂ and (3.7) by (3.8), the above argument yields (3.11). �

The same estimates hold if we swap z and ζ.

Corollary 3.11. By enlarging the constant Cj > 0 in Lemma 3.9 if necessary, the estimates of (3.10) and 
(3.11) with τj(ζ, ε) replaced by τj(z, ε) hold for all z ∈ Ω and ζ ∈ Pε(z)\(Pε/2(z) ∪ Ω).

Proof. Indeed, we still have z ∈ Ω and ζ ∈ U1\Ω. By (3.1), ζ ∈ Pε(z)\Pε/2(z) implies z ∈
PC0ε(ζ)\Pε/(2C0)(ζ) and τj(ζ, ε) ≥ 1

C0
τj(z, ε), where C0 is as given in Lemma 3.3. The results then fol-

low from Lemma 3.9. �
Recall that Kq−1(z, ζ) in (2.8). Let rq := (n − q + 1)mq + 2q and γq := rq

rq−1 . Since m1 ≥ · · · ≥ mn−1 ≥
2 > mn = 1, we see that

(3.13) r1 ≥ r2 ≥ · · · ≥ rn, thus 1 < γ1 ≤ γ2 ≤ · · · ≤ γn.

We can now integrate Kq−1 on some ε-minimal ellipsoids.

Lemma 3.12. For every j ≥ 0, a Cj ≥ 0 exists such that for every 1 ≤ q ≤ n − 1, z ∈ Ω, ζ ∈ U1\Ω and 
0 < ε ≤ ε0, ∫

Ω∩Pε(ζ)\P ε
2

(ζ)

|Dj(K�
q−1)(w, ζ)|d Volw +

∫
Pε(z)\(P ε

2
(z)∪Ω)

|Dj(K�
q−1)(z, w)|d Volw ≤ Cjε

1
mq

+1−j ;(3.14)

∫
Ω∩Pε(ζ)\P ε

2
(ζ)

|DjK⊥
q−1(w, ζ)|d Volw +

∫
Pε(z)\(P ε

2
(z)∪Ω)

|DjK⊥
q−1(z, w)|d Volw ≤ Cjε

2
mq

−j ;(3.15)

∫
Ω∩Pε(ζ)\P ε

2
(ζ)

|DjK�
q−1(w, ζ)|γq d Volw +

∫
Pε(z)\(P ε

2
(z)∪Ω)

|DjK�
q−1(z, w)|γq d Volw ≤ (Cjε1−j)γq ;(3.16)

∫
Ω∩Pε(ζ)\P ε

2
(ζ)

|DjK⊥
q−1(w, ζ)|γq d Volw +

∫
Pε(z)\(P ε

2
(z)∪Ω)

|DjK⊥
q−1(z, w)|γq d Volw ≤ (Cjε

1
mq

−j)γq ,(3.17)

where Dj = {∂α′
z ∂α′′

z̄ ∂β′

ζ ∂β′′

ζ̄
: |α′| + |α′′| + |β′| + |β′′| ≤ j} is the collection of derivatives of all variables.

Proof. Since Kq−1 = K�
q−1 + K⊥

q−1 (see Remark 2.8) and the right-hand side of (3.14) is smaller than 
the right-hand side of (3.15), it is sufficient to estimate (3.15) with K⊥

q−1 replaced by Kq−1. The same 
replacement also works for (3.17).

From (2.8), we recall that Kq−1 are linear combinations of (2.21). From Definition 2.6 and Remark 2.8, we 

recall that K�
q−1 are also the linear combinations of (2.21) with ∂Q̂ replaced by ∂

�
Q̂ = (∂Q̂)�. Therefore, 

by Lemma 3.9 and Corollary 3.11, for z and ζ in the assumption, and w in the integrands (for z and ζ, 
respectively),

|DjK�
q−1(w, ζ)| �

n−q∑
k=1

ε−1−j∏k
l=2 τl(ζ, ε)2

1
|w − ζ|2n−2k−1 , |DjK�

q−1(z, w)| �
n−q∑
k=1

ε−1−j∏k
l=2 τl(z, ε)2

1
|w − z|2n−2k−1 ;

|DjKq−1(w, ζ)| �
n−q∑ ε−2−j∏k

τ (ζ, ε)2

τk+1(ζ, ε)
|w − ζ|2n−2k−1 , |DjKq−1(z, w)| �

n−q∑ ε−2−j∏k
τ (z, ε)2

τk+1(ζ, ε)
|w − z|2n−2k−1 .
k=1 l=2 l k=1 l=2 l
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By taking an ε-minimal basis at ζ and at z, respectively, Pε(ζ) and Pε(z) are mapped into the subset 
{u : |u1| < τ1, . . . , |un| < τn}, where τl = τl(ζ, ε) or τl(z, ε). By (3.4), we have τl � ε1/mn−l+1 . Recall that 
1 = mn < mn−1 ≤ · · · ≤ m1 from Definition 3.1.

Therefore, (3.14) and (3.15) are given by the following (also see [34, Section 3]):

(3.18)

∫
Pε(ζ)

n−q∑
k=1

d Vol(w)
|w − ζ|2n−2k−1∏k

l=2 τl(ζ, ε)2
+
∫

Pε(z)

n−q∑
k=1

d Vol(w)
|w − z|2n−2k−1∏k

l=2 τl(ζ, ε)2

≈
n−q∑
k=1

∫
|w1|<τ1,...,|wn|<τn

d Vol(w1, . . . , wn)(∏k
l=2 τ2

l

)
·
(∑n

l=1 |wl|
)2n−2k−1

�
n−q∑
k=1

τ2
1

∫
|wk+1|<τk+1,...,|wn|<τn

d Vol(wk+1, . . . , wn)(∑n
l=k+1 |wl|

)2n−2k−1

�ε2
n−q∑
k=1

τk+1∫
0

tdt

∞∫
0

s2n−2k−3ds

(t + s)2n−2k−1 (τ1 ≈ ε, t = |wk+1|, s = |(wk+2, . . . , wn)|)

�ε2
n−q∑
k=1

τk+1∫
0

dt = ε2
n−q∑
k=1

τk+1 � ε2
n−q∑
k=1

ε
1

mn−k ≈ ε
2+ 1

mq (by (3.4)).

By multiplying ε−1−j , we obtain (3.14). Note that by (3.4), ε−2−j max
1≤k≤n−q

τ2
k+1 � ε

2
mq

−2−j , and thus (3.15)
follows.

Similarly, (3.16) and (3.17) are given by the following (cf. the control of Lk in [34, Section 4]):

∫
Pε(ζ)

n−q∑
k=1

d Vol(w)
|w − ζ|(2n−2k−1)γq

∏k
l=2 τl(ζ, ε)2γq

+
∫

Pε(z)

n−q∑
k=1

d Vol(w)
|w − z|(2n−2k−1)γq

∏k
l=2 τl(ζ, ε)2γq

�
n−q∑
k=1

∫
|w1|<τ1,...,|wn|<τn

d Vol(w1, . . . , wn)(∏k
l=2 τ

2γq

l

)
·
(∑n

l=1 |wl|
)(2n−2k−1)γq

�ε2
n−q∑
k=1

k∏
l=2

1
τ

2(γq−1)
l

∫
|wk+1|<τk+1,...,|wn|<τn

d Vol(wl+1, . . . , wn)(∑n
l=1 |wl|

)(2n−2k−1)γq

�ε2
n−q∑
k=1

ε− 1
2 ·2(k−1)(γq−1)

τk+1∫
0

tdt

∞∫
0

s2n−2k−3ds

(t + s)(2n−2k−1)γq
(ε 1

2 � τ2 ≤ τ3 ≤ . . . )

(3.19)

�ε2γq

n−q∑
k=1

ε2−2γq−(k−1)(γq−1)

τk+1∫
0

t(2n−2k−1)(1−γq)dt

�ε2γq

n−q∑
k=1

ε(k+1)(1−γq)τ
(2n−2k−1)(1−γq)+1
k+1

�ε2γq

n−1∑
ε

(n−p+1)(1−γq)+ 1
mp

(2p−1)(1−γq)+ 1
mp (τk+1 � ε

1
mn−k , p = n− k)
p=q
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�ε2γq

n−1∑
p=q

ε
(n−p+1)(1−γp)+ 1

mp
(2p−1)(1−γp)+ 1

mp (by (3.13)).

The last inequality above equals ε2γq itself because for every 1 ≤ p ≤ n − 1,

(3.20) (n−p+1)(1−γp)+ 1
mp

(2p−1)(1−γp)+ 1
mp

= (n−p+1)mp+2p−1
mp

(1−γp)+ 1
mp

= − rp−1
mp(rp−1) + 1

mp
= 0.

Thus, by multiplying ε−(1+j)γq to (3.19), we obtain (3.16). Again, by (3.4), ε−1−j max
1≤k≤n−q

τk+1 � ε
−1−j+ 1

mq . 

By multiplying ε( 1
mq

−1−j)γq to (3.19), we obtain (3.17). �
We can now prove Theorem 2.9 by taking the sums over ε-minimal ellipsoids.

Proof of Theorem 2.9. Note that the constants ε0, C0 > 0 in Lemma 3.3 depend only on Ω, 	, and Ŝ, 
but not on z and ζ. We can replace the domains of the integrals (2.13) - (2.20) by z ∈ Ω ∩ Pε0(ζ) and 
ζ ∈ Pε0(z)\Ω. Indeed, by construction,

sup
z∈Ω,ζ∈U1\Ω; |z−ζ|≥ε0/C0

|Dk
z,ζK�

q−1(z, ζ)|+ |Dk
z,ζK⊥

q−1(z, ζ)| <∞, k ≥ 0.

The proofs of (2.13) and (2.14) both follow from the same argument, and similarly for the other equations, 
and thus we only need to prove (2.13), (2.15), (2.17), and (2.19).

Let z ∈ Ω with dist(z) < ε0. Let J ∈ Z be a unique number such that 2−Jε0 ≤ 	(z) < 21−Jε0. Therefore, 
P2−J ε0(z) ⊆ Ω and ζ ∈ Pε(z) ⇒ dist(ζ) � ε for all 0 < ε ≤ ε0.

By applying (3.14), we obtain (2.13):

(3.21)

∫
Pε0 (z)\Ω

dist(ζ)s|DkK�
q−1(z, ζ)|d Volζ �k

J∑
j=1

∫
P21−j ε0

(z)\(P2−j ε0
(z)∪Ω)

(2−jε0)s|DkK�
q−1(z, ζ)|d Volζ

�k

J∑
j=1

(2−jε0)s(2−jε0)
1

mq
+1−k �ε0 2−J(s+1+ 1

mq
−k) ≈ dist(z)s+1+ 1

mq
−k

.

By applying (3.16), we obtain (2.17):

(3.22)

∫
Pε0 (z)\Ω

| dist(ζ)sDkK�
q−1(z, ζ)|γq d Volζ �k

J∑
j=1

∫
P21−j ε0

(z)\(P2−j ε0
(z)∪Ω)

(2−jε0)sγq |DkK�
q−1(z, ζ)|γq d Volζ

�k

J∑
j=1

(2−jε0)sγq (2−jε0)(1−k)γq �ε0 2−J(s+1−k)γq ≈ dist(z)(s+1−k)γq .

Using (3.15) and (3.17), the same arguments show that∫
Pε0 (z)\Ω

dist(ζ)s|DkK⊥
q−1(z, ζ)|d Vol(ζ) � 2−J(s+ 2

mq
−k) ≈ dist(z)s+ 2

mq
−k;

∫
Pε0 (z)\Ω

| dist(ζ)sDkK⊥
q−1(z, ζ)|γq d Vol(ζ) � 2−J(s−k+ 1

mq
)γq ≈ dist(z)(s−k+ 1

mq
)γq .

These two equations give (2.15) and (2.19). The proof is now complete. �
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Theorem 2.9 implies the following weighted boundedness between Sobolev spaces.

Corollary 3.13. Let 1 ≤ q ≤ n − 1 and α ∈ N2n(= Nn
ζ × Nn

ζ̄
). We define integral operators K�

q,α, K⊥
q,α :

L1(U1\Ω; ∧0,q+1) → C0
loc(Ω; ∧0,q−1) by

(3.23) K�
q,αg(z) :=

∫
U1\Ω

(Dα
ζ (K�

q−1))(z, ·) ∧ g; K⊥
q,αg(z) :=

∫
U1\Ω

(Dα
ζ (K⊥

q−1))(z, ·) ∧ g.

Let dist(w) := dist(w, bΩ). Then, for every k ≥ 0 and 1 < s < k + |α| − 1
mq

(in particular, k + |α| ≥ 2),

K�
q,α : Lp(U1\Ω, dist1−s;∧0,q+1)→W k,p(Ω, distk+|α|− 1

mq
−s;∧0,q−1), ∀1 ≤ p ≤ ∞;(3.24)

K⊥
q,α : Lp(U1\Ω, dist

1
mq

−s;∧0,q+1)→W k,p(Ω, distk+|α|− 1
mq

−s;∧0,q−1), ∀1 ≤ p ≤ ∞;(3.25)

K�
q,α : Lp(U1\Ω, dist1−s;∧0,q+1)→W

k,
prq

rq−p (Ω, distk+|α|−s;∧0,q−1), ∀1 ≤ p ≤ rq;(3.26)

K⊥
q,α : Lp(U1\Ω, dist

1
mq

−s;∧0,q+1)→W
k,

prq
rq−p (Ω, distk+|α|−s;∧0,q−1), ∀1 ≤ p ≤ rq.(3.27)

Remark 3.14. Using integrating by parts, we obtain the relation

K(�,⊥)
q,α g = (−1)|α|K(�,⊥)

q,0 ◦Dαg, for all g ∈ C∞
c (U1\Ω;∧0,q+1).

Therefore, (3.24) - (3.27) can be restated as: for every k, l ≥ 0 and 1 < s < k + l − 1
mq

(in particular, 
k + l ≥ 2),

K�
q,0 : W̃ l,p(U1\Ω, dist1−s;∧0,q+1)→W k,p(Ω, distk+l− 1

mq
−s;∧0,q−1), ∀1 ≤ p ≤ ∞;

K⊥
q,0 : W̃ l,p(U1\Ω, dist

1
mq

−s;∧0,q+1)→W k,p(Ω, distk+l− 1
mq

−s;∧0,q−1), ∀1 ≤ p ≤ ∞;

K�
q,0 : W̃ l,p(U1\Ω, dist1−s;∧0,q+1)→W

k,
prq

rq−p (Ω, distk+l−s;∧0,q−1), ∀1 ≤ p ≤ rq;

K⊥
q,0 : W̃ l,p(U1\Ω, dist

1
mq

−s;∧0,q+1)→W
k,

prq
rq−p (Ω, distk+l−s;∧0,q−1), ∀1 ≤ p ≤ rq,

where W̃ l,p(U, ϕ) := {g ∈W l,p(RN , ϕ) : g|Uc = 0} follow the notations in Definition 4.5.

Corollary 3.13 follows almost immediately by Schur’s test.

Lemma 3.15 (Schur’s test). Let (X, μ) and (Y, ν) be two measure spaces. Let G ∈ L1
loc(X × Y, μ ⊗ ν), 

1 ≤ γ <∞, and A > 0, which satisfy

essup
y∈Y

∫
X

|G(x, y)|γdμ(x) ≤ Aγ ; essup
x∈X

∫
X

|G(x, y)|γdμ(y) ≤ Aγ .

Then, the integral operator Tf(y) :=
∫

X
G(x, y)f(x)dμ(x) has boundedness T : Lp(X, dμ) → Lq(Y, dν), 

with operator norm ‖T‖Lp→Lq ≤ A for all 1 ≤ p, q ≤ ∞ such that 1
q = 1

p + 1
γ − 1.

For example, see [53, Appendix B]. Note that the norm of Lp(X, μ) is (
∫

X
|f |pdμ)

1
p , and the norm of 

Lp(Ω, ϕ) in Definition 4.2 is (
∫
|ϕf |pd Vol)1/p. When p <∞, we have the correspondence dμ = |ϕ|p · d Vol.
Ω
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Proof of Corollary 3.13. For β ∈ N2n
z,z̄, we have Dβ

zK�
q,αg(z) =

∫
(Dβ

z Dα
ζ K�

q−1)(z, ·) ∧ g.
By applying Lemma 3.15 to (2.13) and (2.14) with (X, μ) = (U1\Ω, Volζ), (Y, ν) = (Ω, Volz), γ = 1

and G(ζ, z) = distΩc(z)|α|+k−s− 1
mq · (Dk

z Dα
ζ K�

q−1)(z, ζ) · distΩ(ζ)s−1, we see that for every k ≥ 0 and 
1 < s < k + |α| − 1/mq,

[
g �→ dist|α|+|β|−s− 1

mq ·
(
Dk

zK�
q,α(dists−1 ·g)

)]
: Lp(U1\Ω)→ Lp(Ω), ∀1 ≤ p ≤ ∞.

This is the same as stating that Dk
zK�

q,α : Lp(U1\Ω, dist1−s) → Lp(Ω, dist|α|+k−s−1/mq ). Thus, (3.24) follows.
Similarly, by applying Lemma 3.15 to (2.17) and (2.18) with (X, μ) = (U1\Ω, Volζ), (Y, ν) = (Ω, Volz), 

γ = rq

rq−1 and G(ζ, z) = distΩc(z)|α|+k−s · (Dk
z Dα

ζ K�
q−1)(z, ζ) · distΩ(ζ)s−1, we obtain (3.26).

After repeating the same arguments and replacing dist(ζ)s−1 by dist(ζ)s− 1
mq and K� by K⊥, we obtain 

(3.25) and (3.27). �
Remark 3.16. By keeping track of the proof, the implied constants in Theorem 2.9 and the operator norms 
in Corollary 3.13 depend only on C0 in Lemma 3.3, C1 in Lemma 3.5, and the upper bound of ‖	‖Cm+k+2 .

More generally, whenever the smooth holomorphic support function Ŝ(z, ζ) as well as the corresponding 
Leray map Q̂j(z, ζ) :=

∫ 1
0

∂S
∂zj

(ζ + t(z − ζ), ζ)dt (j = 1, . . . , n) satisfy the estimates in Lemma 3.5, then the 
kernel K(z, ζ) given by (2.8) would fulfill the same weighted estimates as in Theorem 2.9.

4. Function spaces and extension operators

In this section, we focus on the real domain RN � Cn where N = 2n.

Notation 4.1. We denote S ′(RN ) as the space of tempered distributions, and for an arbitrary open subset 
U ⊆ Rn, we denote S ′(U) := {f̃ |U : f̃ ∈ S ′(RN )} � D ′(U) as the space of distributions in U that can be 
extended to tempered distributions in RN (also see [58, (3.1) and Proposition 3.1]).

First, we recall the classical Sobolev and Hölder spaces. The characterizations in Definitions 4.3 and 4.4
are not used directly in this paper.

Definition 4.2 (Weighted Sobolev). Let U ⊆ RN be an arbitrary open set. Let ϕ : U → [0, ∞) be a non-
negative continuous function, and for k ≥ 0 and 1 ≤ p ≤ ∞, we define,

(4.1)

W k,p(U, ϕ) := {f ∈W k,p
loc (U) : ‖f‖W k,p(U,ϕ) <∞},

‖f‖W k,p(U,ϕ) :=
( ∑

|α|≤k

∫
U

|ϕ∂αf |p
) 1

p

1 ≤ p <∞; ‖f‖W k,∞(U,ϕ) := sup
|α|≤k

‖ϕ∂αf‖L∞(U).

We define W k,p(U) := W k,p(U, 1) where 1 = 1RN is the constant function.

Definition 4.3 (Sobolev-Bessel). Let s ∈ R. For 1 < p < ∞, we define the Bessel potential space Hs,p(RN )
as the set of all tempered distributions f ∈ S ′(RN ) such that

‖f‖Hs,p(RN ) := ‖(I −Δ) s
2 f‖Lp(RN ) <∞.

We use the standard (negative) Laplacian Δ =
∑N

j=1 ∂2
xj

.
On an open subset U ⊆ RN , we define Hs,p(U) := {f̃ |U : f̃ ∈ Hs,p(RN )} for s ∈ R, 1 < p < ∞ with 

norm ‖f‖Hs,p(U) := inf f̃ | =f ‖f̃‖Hs,p(RN ).
U
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Definition 4.4 (Hölder–Zygmund). Let U ⊆ RN be an open subset. We define the Hölder–Zygmund space 
C s(U) for s ∈ R as follows.

• For 0 < s < 1, C s(U) consists of all f ∈ C0(U) such that ‖f‖C s(U) := sup
U
|f | + sup

x,y∈U

|f(x)−f(y)|
|x−y|s <∞.

• C 1(U) consists of all f ∈ C0(U) such that ‖f‖C 1(U) := sup
U
|f | + sup

x,y∈U ; x+y
2 ∈U

|f(x)+f(y)−2f( x+y
2 )|

|x−y| < ∞.

• For s > 1 recursively, C s(U) consists of all f ∈ C s−1(U) such that ∇f ∈ C s−1(U ; CN ). We define 
‖f‖C s(U) := ‖f‖C s−1(U) +

∑N
j=1 ‖Djf‖C s−1(U).

• For s ≤ 0 recursively, C s(U) consists of all distributions that have the form g0 +
∑N

j=1 ∂jgj where 

g0, . . . , gN ∈ C s+1(U). We define ‖f‖C s(U) := inf{
∑N

j=0 ‖gj‖C s+1(U) : f = g0 +
∑N

j=1 ∂jgj ∈ D ′(U)}.
• We define C ∞(U) :=

⋂
s>0 C s(U) as the space of bounded smooth functions.

In this paper we consider a more general version of the function spaces: the Triebel–Lizorkin spaces.

Definition 4.5 (Triebel–Lizorkin). Let λ = (λj)∞
j=0 be a sequence of Schwartz functions that satisfy the 

following.

(4.2) The Fourier transform λ̂0(ξ) =
∫
Rn λ0(x)2−2πixξdx satisfies supp λ̂0 ⊂ {|ξ| < 2} and λ̂0|{|ξ|<1} ≡ 1.

(4.3) λj(x) = 2jnλ0(2jx) − 2(j−1)nλ0(2j−1x) for j ≥ 1.

Let 0 < p, q ≤ ∞ and s ∈ R, and we define the Triebel–Lizorkin norm ‖ · ‖Fs
pq(λ) as

‖f‖Fs
pq(λ) := ‖(2jsλj ∗ f)∞

j=0‖Lp(RN ;�q(N)) =
( ∫
RN

( ∞∑
j=0
|2jsλj ∗ f(x)|q

) p
q

dx

) 1
p

, p <∞;(4.4)

‖f‖Fs
∞q(λ) := sup

x∈RN ,J∈Z
2NJ 1

q ‖(2jsλj ∗ f)∞
j=max(0,J)‖Lq(B(x,2−J );�q), p = ∞.(4.5)

For q =∞ we take the usual modifications, where we replace the �q sum by the supremum over j.
We define F s

pq(RN ), with its norm given by a fixed choice of λ.
For an arbitrary open subset U ⊆ RN , we define

F s
pq(U) := {f̃ |U : f̃ ∈ F s

pq(RN )} with ‖f‖Fs
pq(U) := inf

f̃ |U =f
‖f̃‖Fs

pq(RN );

F̃ s
pq(U) := {f ∈ F s

pq(RN ) : f |Uc = 0} as a closed subspace of F s
pq(RN ).

Remark 4.6.

(i) When p or q < 1, (4.4) and (4.5) are only quasi-norms. For convenience, we still use the terminology 
“norms” to refer them.

(ii) Different choices of λ result in equivalent norms (see [67, Proposition 2.3.2] and [68, Propositions 1.3 
and 1.8]).

(iii) We have the embedding F s
pq1

(RN ) ↪→ F s
pq2

(RN ) ↪→ F s−δ
pq1

(RN ) for all 0 < p ≤ ∞, s ∈ R, q1 ≤ q2, 
δ > 0.
We have the embedding F s

p1q1
(RN ) ↪→ F

s−N( 1
p1

− 1
p2

)
p1q2 (RN ) for all p1 < p2 ≤ ∞, s ∈ R, 0 < q1, q2 ≤ ∞.

See [68, Corollary 2.7] for an illustration. By taking restrictions to an arbitrary open subset U , we 
have F s

pq1
(U) ↪→ F s

pq2
(U) ↪→ F s−δ

pq1
(U) for q1 ≤ q2 and δ > 0, and F s

p∞(U) ↪→ F s−1
rε (U) for ε > 0

and 0 < p ≤ r ≤ Np/ max(N − p, 0).
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(iv) When p = q = ∞, (4.5) can be written as ‖f‖Fs
∞∞(λ) = supj≥0 ‖2jsλj ∗ f‖L∞(RN ), which is more 

commonly referred to as the Besov norm Bs
∞∞ (also see [68, (1.15)] and [67, Remark 2.3.4/3]).

(v) For an arbitrary open subset U ⊆ RN , we have F s
pq(U c) = F s

pq(RN )/F̃ s
pq(U), or equivalently

F s
pq(U) = F s

pq(RN )/F̃ s
pq(U c) (also see [64, Remark 4.3.2/1]).

(vi) When Ω ⊆ RN is either a bounded Lipschitz domain or the total space, we have following (see [67, 
Sections 2.5.6 and 2.5.7] and [66, Theorem 1.122]),

• Hs,p(Ω) = F s
p2(Ω) for s ∈ R and 1 < p <∞;

• W k,p(Ω) = F k
p2(Ω) for k ∈ N and 1 < p <∞;

• C s(Ω) = F s
∞∞(Ω) for s ∈ R;

• C k+s(Ω) = Ck,s(Ω) for k ∈ N and 0 < s < 1.

We sketch the proof of C s = F s
∞∞ for s < 0 on RN and on bounded Lipschitz domains in the 

following.

Proof of C s = F s
∞∞ when s ≤ 0. We fix an s ≤ 0 as follows.

Let k > −s/2 be an integer. For an f ∈ F s
∞∞(RN ), we have f = (I − Δ)k(I − Δ)−kf , where by 

[67, Theorem 2.3.8], (I − Δ)−kf ∈ F s+2k
∞∞ (RN ) = C s+2k(RN ), and thus f ∈ C s(RN ). Conversely, for an 

f =
∑

|α|≤�−s�+1 Dαgα ∈ C s(RN ), where g ∈ C s+�−s�+1(RN ) = F
s+�−s�+1
∞∞ (RN ), by [67, Theorem 2.3.8], 

Dαgα ∈ F s
∞∞(RN ) thus f ∈ F s

∞∞(RN ).
For a bounded Lipschitz Ω, since we have C s+2k(Ω) = F s+2k

∞∞ (Ω) and C s+�−s�+1(Ω) = F
s+�−s�+1
∞∞ (Ω), 

then by taking restrictions on both sides, we obtain C s(Ω) = F s
∞∞(Ω). �

Remark 4.6 (vi) can be illustrated via the extension operator. Our convex domain Ω ⊂ Cn is smooth and 
we can use the so-called half-space extension (see e.g. Remark 5.2 and [67, Sections 2.9 and 3.3.4]). In our 
case, it is preferable to use the Rychkov’s extension, which can also work on Lipschitz domains.

Definition 4.7. Let ω ⊂ RN be a special Lipschitz domain,3 i.e., ω = {(x1, x′) : x1 > σ(x′)}, for some 
σ : RN−1 → R such that ‖∇σ‖L∞ < 1.

The Rychkov’s universal extension operator E = Eω for ω is given by the following:

(4.6) Eωf :=
∞∑

j=0
ψj ∗ (1ω · (φj ∗ f)), f ∈ S ′(ω),

where (ψj)∞
j=0 and (φj)∞

j=0 are families of Schwartz functions that satisfy the following properties:

(4.7) Scaling condition: φj(x) = 2(j−1)N φ1(2j−1x) and ψj(x) = 2(j−1)N ψ1(2j−1x) for j ≥ 2;
(4.8) Moment condition: 

∫
φ0 =

∫
ψ0 = 1, 

∫
xαφ0(x)dx =

∫
xαψ0(x)dx = 0 for all multi-indices |α| > 0, 

and 
∫

xαφ1(x)dx =
∫

xαψ1(x)dx = 0 for all |α| ≥ 0;
(4.9) Approximate identity: 

∑∞
j=0 φj =

∑∞
j=0 ψj ∗ φj = δ0 is the Dirac delta measure;

(4.10) Support condition: φj , ψj are all supported in the negative cone −K := {(x1, x′) : x1 < −|x′|}.

The family (φj , ψj)∞
j=0 exists (see [58, Theorem 4.1(b) and Proposition 2.1]).

Proposition 4.8. Let 0 < p, q ≤ ∞ and s ∈ R. Let (φj)∞
j=0 be as given in Definition 4.7.

3 In previous studies such as [66, Definition 1.103], the condition ‖∇σ‖L∞ < 1 was not required, which could be achieved through 
an invertible linear transformation.
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(i) ([58, Theorem 4.1]) Eω : F s
pq(ω) → F s

pq(RN ) is bounded provided that (p, q) /∈ {∞} × (0, ∞).
(ii) ([58, Theorem 3.2] and [70, Theorem 1]) There are intrinsic norms

‖f‖Fs
pq(ω) ≈p,q,s‖(2jsφj ∗ f)∞

j=0‖Lp(ω;�q(N)), provided p <∞;

‖f‖Fs
∞q(ω) ≈q,s sup

x∈RN ;J∈Z
2NJ 1

q ‖(2jsφj ∗ f)∞
j=max(0,J)‖Lq(ω∩B(x,2−J );�q), for p =∞.

(iii) ([61, Proposition 6.6] and [70, Theorem 2]) For every m ≥ 0, an equivalent norm exists via derivatives 
‖f‖Fs

pq(ω) ≈p,q,s,m

∑
|α|≤m ‖Dαf‖Fs−m

pq (ω).

In fact, Eω : F s
∞q(ω) → F s

∞q(RN ) is also bounded (see [72]). We do not need this result in this paper.
In our case, we work on the bounded domains instead of special type domains. For a bounded domain Ω, 

we define its extension operator EΩ via partition of unity. For completeness, we give the construction below.

Notation 4.9 (Objects for partition of unity). Let Ω ⊂ RN be a bounded Lipschitz domain and let U � Ω
be a fixed open neighborhood. We use the following objects, which can all be obtained by the standard 
partition of unity argument:

• (Uν)M
ν=0 are finitely many bounded smooth open sets in U ⊆ Rn;

• (Φν : RN → RN )M
ν=1 as invertible affine linear transformations;

• (χν)M
ν=0 are C∞

c -functions on RN that take values in [0, 1];
• (ων)M

ν=1 are special Lipschitz domains on RN .

They have the following properties:

(4.11) bΩ ⊂
⋃M

ν=1 Uν and U0 � Ω �
⋃M

ν=0 Uν � U ;
(4.12) χν ∈ C∞

c (Uν) for 0 ≤ ν ≤M , and 
∑M

ν=0 χ2
ν ≡ 1 in a neighborhood of Ω;

(4.13) For each 1 ≤ ν ≤ M , Uν = Φν(BN (0, 1)) and Uν ∩ Ω = Uν ∩ Φν(ων).

The partition of unity argument requires nothing other than the following fact.

Lemma 4.10. Let U ⊆ RN be an arbitrary open subset, let Φ be an invertible linear transform, and let 
χ ∈ C ∞(RN ) be a bounded smooth function.

Then, Tf(x) := χ(x)f(Φ(x)) defines a bounded linear map T : F s
pq(U) → F s

pq(Φ−1(U)) for all s ∈ R

and 0 < p, q ≤ ∞.

Proof. We have the boundedness [g �→ g ◦ Φ] : F s
pq(RN ) → F s

pq(RN ) from [68, Theorem 2.25] and [g �→
χg] : F s

pq(RN ) → F s
pq(RN ) from [68, Theorem 2.28]. For f ∈ F s

pq(U), let f̃ ∈ F s
pq(RN ) be an extension 

of f , and we see that χ · (f̃ ◦ Φ) is an extension to Tf with respect to the domain Φ−1(U). Therefore, by 
taking restrictions to U and Φ−1(U), respectively, we obtain the boundedness of T . �
Definition 4.11. Let Ω be a bounded Lipschitz domain and let U � Ω be an open subset. Let (χν)M

ν=0, 
(ων)M

ν=1 and (Φν)M
ν=1 be as given above. We define the extension operator E = EΩ for Ω as

(4.14) EΩf := χ2
0 · f +

M∑
ν=1

χν · (Eων
[(χνf) ◦ Φν ] ◦ Φ−1

ν ),

where Eων
is given by (4.6).
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Remark 4.12. By combining Proposition 4.8 and Lemma 4.10, EΩ : F s
pq(Ω) → F s

pq(RN ) is also bounded for 
all 0 < p, q ≤ ∞ and s ∈ R such that (p, q) /∈ {∞} × (0, ∞) (for the proof, see [61, Lemma 6.3] for example). 
The F s

∞q-boundedness is also true (see [72] and [70, Remark 20]), but we do not need it because we only 
require the extensions on F s

p∞ in applications.

Before doing the weighted estimates, if f has low regularity, then we need to express [∂, E ]f and ([∂, E ]f)�

as the sum of derivatives of good functions, and move those derivatives to Kq−1(z, ζ) via integration by 
parts. To ensure that there are no boundary terms when integrating by parts, we need the following.

Proposition 4.13 (Anti-derivatives with support). Let Ω ⊂ RN be a bounded Lipschitz domain, and for any 
k ≥ 1, the operators Sk,α

Ω : S ′(RN ) → S ′(RN ), |α| ≤ k exist such that

(i) Sk,α
Ω : F s

pq(RN ) → F s+k
pq (RN ) for all 0 < p, q ≤ ∞ and s ∈ R such that (p, q) /∈ {∞} × (0, ∞).

(ii) g =
∑

|α|≤k DαSk,αg for all g ∈ S ′(RN ).
(iii) If g ∈ S ′(RN ) satisfies g|Ω = 0, then Sk,αg|Ω = 0 for all |α| ≤ k.

In particular, Sk,α
Ω : F̃ s

pq(Ωc) → F̃ s+k
pq (Ωc).

See [61, Proposition 1.7] and its proof is in [61, Section 6.3].
In fact, the result is also true for F s

∞q-cases, which can be obtained by replacing [61, Theorem 1.5 (i)]
with [70, Proposition 17] in its proof. We do not need this result in this paper.

The condition (iii) is non-trivial here. If we only want conditions (i) and (ii) to be satisfied, we can 
consider the decomposition f = (I −Δ)m((I −Δ)−mf) =

∑
|γ|≤2m cγDγ((I −Δ)−mf) on RN .

Remark 4.14. In practice, we consider the composition Sk,α ◦ [∂, E ]f , where E is an extension operator of 
Ω such that supp Ef � U for some fixed open bounded (smooth) neighborhood U � Ω. Clearly, [∂, E ]f is 
supported in U\Ω, and thus supp(Sk,α

Ω ◦ [∂, E ]f) ⊆ Ωc. In order to obtain a better support condition,

supp(Sk,α ◦ [∂, E ]f) ⊆ U\Ω,

we can apply the proposition to the domain Ω ∪ (V\U), where V � U is a larger bounded smooth domain 
that makes V\U a bounded Lipschitz domain, and then take a smooth cutoff outside V.

Thus, {Sk,α}|α|≤k : F̃ s
pq(U\Ω) → F̃ s+k

pq (U\Ω) exist such that g =
∑

|α|≤k DαSk,αg.

In Theorem 1.1, we claim that Hq is defined on the large space S ′(Ω; ∧0,q), which can be implied by its 
definedness on all Hölder spaces with negative indices.

Lemma 4.15. Let Ω ⊂ RN be a bounded Lipschitz domain. Then, S ′(Ω) =
⋃

s<0 C s(Ω).

In fact, we can replace C s(Ω) by Hs,p(Ω) or even F s
pq(Ω) for 1 ≤ p, q ≤ ∞. Indeed, by Remark 4.6, we 

have C s(Ω) = F s
∞∞(Ω) and the embedding C s+1(Ω) ⊂ F s

pq(Ω) ⊂ C s−N (Ω).

Proof. By Remark 4.6, (vi) C s(Ω) = F s
∞∞(Ω) = F s

∞∞(RN )|Ω ⊂ S ′(RN )|Ω = S ′(Ω) for all s, and thus 
S ′(Ω) ⊇

⋃
s<0 C s(Ω).

Conversely, for an f ∈ S ′(Ω), we take an extension f̃ ∈ S ′(RN ). We can assume that f̃ has compact 
support, which can be shown by replacing f̃ with χf̃ , where χ ∈ C∞

c (RN ) satisfies χ|Ω ≡ 1. Now, by 
the structure theorem of distributions (e.g., see [57, Theorem 6.27]), M ≥ 0 and {gα}|α|≤M ⊂ C0

c (RN )
exist such that f̃ =

∑
|α|≤M Dαgα. Clearly, gα ∈ C 0(RN ), and thus f̃ ∈ C −M (RN ) and we see that 

f ∈ C −M (Ω) ⊂
⋃

C s(Ω). This completes the proof. �
s<0



24 L. Yao / J. Math. Anal. Appl. 538 (2024) 128238
5. Tangential commutator estimate and strong Hardy–Littlewood lemma

To reduce Theorem 1.1 to Theorem 2.9, we need the following two results: the Propositions 5.1 and 5.3.
We need to show that the tangential part of the commutator [∂, E ]�f = ([∂, E ]f)� does not lose derivative.

Proposition 5.1 (Tangential projection of commutator). Let ω = {x1 > σ(x′)} ⊂ RN be a special Lipschitz 
domain. Let E = Eω be the extension operator in Definition 4.7.

Let X =
∑N

ν=1 Xν ∂
∂xν

be a smooth vector field on RN such that X(x) ∈ Tx(bω) for almost every x ∈ bω

(in the sense of surface measure). Then, we have the following boundedness:

〈
X, [d, E]

〉
=

N∑
ν=1

Xν · [Dν , E] : F s
pp(ω) → F̃ s

pp(ωc), for every 1 ≤ p ≤ ∞, s ∈ R.

In particular, 〈X, [d, E]〉 : F s
p∞(ω) → F̃ s−δ

pε (ωc) for every ε, δ > 0.

Remark 5.2.

(i) There is a different kind of commutator estimate in [62, Theorem 4.1], where we prove a smoothing 
estimate [D, E] : F s

p∞(ω) → L1(RN ; CN ) for 1 ≤ p ≤ ∞ and s > 1 − 1
p .

(ii) In fact, 〈X, [d, E]〉 : F s
p∞(ω) → F̃ s

pε(ωc) is bounded, i.e., we can take δ = 0. In applications, a δ-loss 
is sufficient and the proof is simpler for F s

pp spaces.
(iii) Proposition 5.1 can be intuitively understood if we let E be the standard half-space extension for 

ω = RN
+ := {x1 > 0}. Recall that for an integer M ≥ 1, the half-space extension is given by

EM f(x1, x′) :=
{∑M

j=−M ajf(−bjx1, x′) x1 < 0
f(x) x1 > 0

,

where bj > 0 and
M∑

j=−M

aj(−bj)k = 1 for all |k| ≤M.

We have the boundedness EM : F s
pq(RN

+ ) → F s
pq(RN ) for all 1 ≤ p, q ≤ ∞ and −M < s < M (see 

[67, Theorem 2.9.2]). We can obtain the construction with M = ∞ and also have the boundedness 
E∞ : F s

pq(RN
+ ) → F s

pq(RN ) (see the recent paper by Lu and the current author [46]). It is clear that 
[Dν , E∞] ≡ 0 in the domain for all 2 ≤ ν ≤ N , and thus 〈X, [d, E∞]〉 ≡ 0 if X1 ≡ 0.

We can use E∞ with partition of unity (see (4.14)) or the method in [46, Theorem 26] to de-
fine the extension operator E for the smooth domain Ω ⊂ Cn. It is possible that a modification of 
Corollary 5.5 (iii) still holds.

We also need the Hardy–Littlewood type lemma, which gives the embeddings between the fractional 
Sobolev spaces (or more generally the Triebel–Lizorkin spaces for Theorem 1.2) and the weighted Sobolev 
spaces.

Proposition 5.3 (Strong Hardy-Littlewood lemma). Let ω ⊂ RN be a special Lipschitz domain. Let δ(x) :=
min(1, dist(x, bω)) for x ∈ RN . We have the following embeddings:

(i) F̃ s
p∞(ω) ↪→ Lp(ω, δ−s) for all 1 ≤ p ≤ ∞ and s > 0;

(ii) W m,p(ω, δm−s) ↪→ F s
pε(ω) for all ε > 0, 1 ≤ p ≤ ∞, m ∈ N and s < m.
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First, we prove Proposition 5.3 and then Proposition 5.1.

Remark 5.4. The proof of Proposition 5.3 is standard if we replace F s
pε and F s

p∞ by classical Sobolev or 
Hölder spaces (e.g., see [43]). Our result is stronger since from Remark 4.6, we have F s

pε � Hs,p = F s
p2 �

F s
p∞ for 1 < p <∞ and F s

∞ε � C s = F s
∞∞.

The result (i) is not new (see [41] for a more general version). We also refer the reader to [65, Chapter 5.8]
for a proof on smooth domains, which contains the discussion of the case where p < 1.

First, we give the application of Propositions 5.1 and 5.3 in our setting.

Corollary 5.5. Let Ω = {	 < 0} ⊂ Cn be a bounded Lipschitz domain and let U � Ω be a bounded open 
neighborhood such that 	 has a non-vanishing gradient in U\Ω. Let dist(z) := dist(z, bΩ) for z ∈ Cn and 
let E = EΩ be as given in Definition 4.11 and its images are supported in U . The following linear maps are 
bounded.

(i) F̃ s
p∞(U\Ω) ↪→ Lp(U\Ω, dist−s) for all 1 ≤ p ≤ ∞ and s > 0.

In particular, H̃s,p(U\Ω) ↪→ Lp(U\Ω, dist−s), C̃ s(U\Ω) ↪→ L∞(U\Ω, dist−s) for 1 < p < ∞, s > 0.
(ii) W k,p(Ω, distk−s) ↪→ F s

pε(Ω) for all ε > 0, 1 ≤ p ≤ ∞, k ∈ N, and s < k.
In particular, W k,p(Ω, distk−s) ↪→ Hs,p(Ω) and W k,∞(Ω, distk−s) ↪→ C s(Ω) for 1 < p <∞, s < k.

(iii) If Ω is a smooth domain, then [∂, E ]� : F s
pp(Ω) → F̃ s

pp(U\Ω; Cn) for all 1 ≤ p ≤ ∞, s ∈ R.
In particular, [∂, E ]� : Hs,p(Ω) → H̃s−δ,p(U\Ω; Cn) and [∂, E ]� : C s(Ω) → C̃ s(U\Ω; Cn) for p ∈
(1, ∞) and δ > 0.

H̃s,p(U) := {f ∈ Hs,p(RN ) : f |Uc = 0} ⊂ Hs,p(RN ) and C̃ s(U) := {f ∈ C s(RN ) : f |Uc = 0} ⊂ C s(RN )
follow the notations given in Definitions 4.3, 4.4 and 4.5.

Recall that Hs,p = F s
p2 ↪→ F

s−δ/2
pp ↪→ F s−δ

p2 = Hs−δ,p and C s = F s
∞∞ from Remark 4.6. The bounded-

ness holds immediately for Sobolev and Hölder spaces.

Proof. From Notation 4.9, recall that we have Uν ∩ Ω = Uν ∩ Φν(ων) for 1 ≤ ν ≤ M and f =
∑M

ν=0 χ2
νf . 

By Lemma 4.10, [f �→ χνf ] : F s
pq(Ω) → F s

pq(Uν ∩ Ω) are all bounded for 0 ≤ ν ≤M .
For each 1 ≤ ν ≤ M , by Proposition 5.3, we have F̃ s

p∞(Uν ∩ Ω) ↪→ Lp(Uν ∩ Ω, dist−s
bΩ ) for s > 0, and 

W m,p(Φν(ων), distm−s
bΩ ) (−)|Uν−−−−→ F s

pε(Uν ∩ Ω) for s < m.
For ν = 0, we have the trivial estimates [f �→ χ0f ] : F s

p∞(Ω) → Lp
c(U0) ↪→ Lp(Ω, dist−s) for s < m, and 

[f �→ χ0f ] : W m,p(Ω, distm−s) → W m,p
c (U0) ↪→ F s

pε(Ω) for s < m.
Therefore, for every 1 ≤ p ≤ ∞, m ∈ N, and ε > 0,

F̃ s
p∞(Ω) f �→(χνf)M

ν=0−−−−−−−−→
M⊕

ν=0
F̃ s

p∞(Uν ∩ Ω) ↪→
M⊕

ν=0
Lp(Uν ∩ Ω, dist−s

bΩ )

(gν)M
ν=0 �→

∑M
ν=0 χνgν−−−−−−−−−−−−−→ Lp(Ω, dist−s)

, s > 0;

W m,p(Ω, distm−s) f �→(χνf)ν−−−−−−−→
M⊕

ν=0
W m,p(Uν ∩ Ω, distm−s

bΩ )

↪→
M⊕

ν=0
F s

pε(Uν ∩ Ω)
(gν )ν �→

∑
ν χνgν−−−−−−−−−−→ F s

pε(Ω)

, s < m.

The second composition map gives W m,p(Ω, distm−s) ↪→ F s
pε(Ω), which completes the proof of (ii).
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By suitably shrinking U , we can assume that U is bounded Lipschitz, and thus U\Ω is also bounded 
Lipschitz. The first composition map then gives F̃ s

p∞(U\Ω) ↪→ Lp(U\Ω, dist−s
bΩ∪bU ) ↪→ Lp(U\Ω, dist−s

bΩ ) for 
s > 0, which completes the proof of (i).

To prove (iii), for convenience, we write Eνg := (Eων
[g ◦Φν ]) ◦Φ−1

ν , where g is defined on Φν(ων) (from 
(4.13), we recall that Uν ∩ Ω = Uν ∩ Φν(ων)), and thus E = χ2

0 +
∑M

ν=1 χν ◦ Eν ◦ χν , and we have

(5.1) [∂, E ] = 2(χ0∂χ0) +
M∑

ν=1

(
(∂χν) ◦ Eν ◦ χν + χν ◦ Eν ◦ (∂χν) + χν ◦ [∂, Eν ] ◦ χν

)
,

where the function χν is the linear map (pointwise multiplier) [g �→ χνg].
Since χν are smooth, by Proposition 4.8 (i) and Lemma 4.10, all terms in (5.1), except for χν ◦ [∂, Eν ] ◦χν , 

have the boundedness F s
pp(Ω) → F s

pp(Cn) for all 1 ≤ p ≤ ∞ and s ∈ R. It is sufficient to show that for 
1 ≤ ν ≤ M , we have χν ◦ [∂, Eν ] ◦ χν : F s

pp(Ω) → F s
pp(Cn).

From Remark 2.8, recall that by partition of unity, we can find M ′ ≥ n − 1, smooth (0, 1)-vector fields 
W 1, . . . , W M ′ and (0, 1)-forms η1, . . . , ηM ′ on U\Ω such that W μ(ζ) ∈ T 0,1

ζ (bΩ�(ζ)) for all 1 ≤ μ ≤ M ′ and 

ζ ∈ U\Ω, and α� =
∑M ′

μ=1〈, W μ, α〉 · ημ holds for all (0, 1)-form α on U\Ω.
Since T 0,1(bΩ) ⊂ CT (bΩ) and Tζ(Φν(bων)) = Tζ(bΩ) for ζ ∈ Uν∩bΩ, we have (χνWμ)(ζ) ∈ CTζ(Φν(bων))

for ζ ∈ Uν ∩ bΩ. By Proposition 5.1, 〈W μ, χν ◦ [d, Eν ]〉 = 〈χν · W μ, [∂, Eν ]〉 : F s
pp(Φν(ων)) →

F̃ s
pp(Φν(ων)c; Cn) is bounded. Therefore,

〈W μ, χν ◦ [∂, Eν ] ◦ χν〉 :F s
pp(Ω) χν−−→ F s

pp(Φν(ων)) 〈χν ·W μ,[∂,Eν ]〉−−−−−−−−−−→ F̃ s
pp(Φν(ων)c;Cn) (−)|Uν−−−−→ F s

pp(Ωc;Cn).

We obtain 〈W μ, χν ◦ [∂, Eν ] ◦ χν〉 : F s
pp(Ω) → F̃ s

pp(U\Ω; Cn) since supp χν � U , which gives (iii). �
Remark 5.6. Using the notations from Remark 2.8, for a (0, q)-form f =

∑
J fJdz̄J , we have

[∂, E ]�f =
∑

|K′|=q+1,|J|=q

〈ZK′ , [∂, E ](fJdz̄J )〉

=
n∑

j=1

n∑
k=2

∑
|J|=|K|=q;min K≥2

([∂j , E ]fJ)〈Zk, dz̄j〉〈ZK , dz̄J 〉θk ∧ θ
K

=
n∑

k=2

∑
|K|=q;min K≥2

(
〈Zk, [∂, E ]fJ〉

)
· 〈ZK , dz̄J 〉θk ∧ θ

K
.

Therefore, to estimate [∂, E ]�f , it is sufficient to estimate its components [∂, E ]�fJ .

We prove Proposition 5.3 first, but we only prove the case where ε = 1 for (ii) and leave the proof of 
ε < 1 to the appendix.

Proof of Proposition 5.3. Write ω = {x1 > σ(x′)}. We define the outer strips

(5.2) Sk = Sω
k := {(x1, x′) : −2 1

2 −k < x1 − σ(x′) < −2− 1
2 −k} ⊂ ωc for k ∈ Z+,

and S0 := {(x1, x′) : x1 − σ(x′) < −2− 1
2 }. Recall that δ(x) = min(1, dist(x, bω)) in the assumption. Recall 

that a special Lipschitz domain satisfies ‖∇σ‖L∞ < 1, and thus (also see [61, (5.3)])

(5.3) 2−1−k ≤ δ(x) ≤ 2 1
2 −k, ∀k ≥ 0, x ∈ Sk.
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Since {Sk}∞
k=0 is a partition of ωc up to zero measured sets, we have ‖g‖Lp(ω) = ‖(‖g‖Lp(Sk))∞

k=0‖�p(N).
By the assumption (4.10), we see that φ0, φ1 are supported in −K ∩ {x1 < −c1} for some c1 > 0. By the 

assumption (4.7), we obtain supp φj ⊂ −K ∩ {x1 < −c12−j} for all j ≥ 0. A simple calculation shows that 
(see [61, Lemma 5.3])

(5.4) ∃R ∈ Z+ such that supp φj + ωc ⊆ {x1 − σ(x′) < −2−j−R}.

Let f ∈ F̃ s
p∞(ωc). We have supp f ⊆ ωc. By (4.9), we have f =

∑∞
j=0 φj ∗ f . Using (5.4), we see that 

f(x) =
∑∞

j=k−R φj ∗ f(x) for k ≥ 0 and x ∈ Sk. Thus,

‖f‖Lp(ωc,δ−s) =
∥∥(‖f‖Lp(Sk,δ−s)

)∞
k=0

∥∥
�p(N) ≤

∥∥(2(k+1)s‖f‖Lp(Sk)
)∞

k=0

∥∥
�p(N)

≤
∥∥∥∥(∥∥∥2(k+1)s

∞∑
j=k−R

|φj ∗ f |
∥∥∥

Lp(Sk)

)∞

k=0

∥∥∥∥
�p(N)

=
∥∥∥∥(∥∥∥ ∞∑

j=k−R

2(k−j+1)s|2jsφj ∗ f |
∥∥∥

Lp(Sk)

)∞

k=0

∥∥∥∥
�p(N)

≤
∞∑

l=−R

2(1−l)s
∥∥∥(∥∥∥ sup

j≥k−R
|2jsφj ∗ f |

∥∥∥
Lp(Sk)

)∞

k=0

∥∥∥
�p(N)

�R,s

∥∥∥ sup
j∈N

|2jsφj ∗ f |
∥∥∥

Lp(ωc)
= ‖f‖Fs

p∞(φ).

We use the convention of φj ∗ f = 0 for j ≤ −1. By [58, Proposition 1.2 (i)], ‖f‖Fs
p∞(φ) is an equivalent 

norm for F s
p∞(RN ). This completes the proof of (i).

For (ii), we prove the case where ε = 1 by duality argument. We leave the proof of 0 < ε < 1 to the 
appendix, which is obtained as a direct proof without using duality.

Let F̊ s
pq(RN ) be the norm closure of C∞

c (RN ) in F s
pq(RN ) and let F̊ s

pq(ω) := {f ∈ F̊ s
pq(RN ) : f |ωc = 0}

be its subspace. Clearly, F̊ s
pq(ω) ⊆ F̃ s

pq(ω). We see that F̊ s
pq(ω) = C∞

c (ω)
Fs

pq(RN )
, and the proof follows 

according to the same argument for [64, Theorem 4.3.2/1 Proof Step 2] via partition of unity and translations.
In addition, by [68, Remark 1.5], we have F −s

p1 (RN ) = F̊ s
p′∞(RN )′ for all s ∈ R and 1 ≤ p ≤ ∞, where 

p′ = p
p−1 . Therefore, (also see [64, Theorem 2.10.5/1]) for s ∈ R and 1 ≤ p ≤ ∞,

F̊ s
p′∞(ω)′ =F −s

p1 (RN )/{f : 〈f, φ〉 = 0, ∀φ ∈ F̊ s
p′∞(RN ), φ|ωc = 0}

=F −s
p1 (RN )/{f : 〈f, φ〉 = 0, ∀φ ∈ C∞

c (ω)} = F −s
p1 (RN )/{f : f |ω = 0} = F −s

p1 (ω).

By result (i), we have F t
p′∞(ω) ↪→ Lp′(ω, δ−t) for t > 0. In particular, F̊ t

p′∞(ω) ↪→ C∞
c (ω)

Lp′
(ω,δ−t)

.

Clearly, C∞
c (ω)

Lp′
(ω,δ−t)

= Lp′(ω, δ−t) if 1 < p ≤ ∞, and by taking the adjoint, we obtain Lp(ω, δt) ↪→
F −t

p1 (ω) for 1 < p ≤ ∞, which is (ii) at m = 0 and s = −t < 0.

For p = 1, we have C∞
c (ω)

Lp′
(ω,δ−t)

= {f ∈ C0(ω) : limx→bω distbω(x)−tf(x) = 0 uniformly}. Thus, 
the adjoint gives the embedding {f ∈ Mloc(ω) : ‖δtf‖M < ∞} ↪→ F −t

11 (ω) from the space of locally 
finite Borel measures.4 Since L1(ω, δt) ⊂ {f ∈ Mloc(ω) : ‖δtf‖M < ∞} is a closed subspace, we obtain 
L1(ω, δt) ↪→ F −t

11 (ω), which is (ii) for m = 0, p = 1, and s = −t < 0.
For m ≥ 1, we recall that ‖f‖W m,p(ω,δs−m) ≈

∑
|α|≤m ‖Dαf‖Lp(ω,δs−m). Therefore, for every m ≥ 0

and s < m, we have 
∑

|α|≤m ‖Dαf‖Fs−m
p1 (ω) � ‖f‖Lp(ω,δs−m). In addition, by Proposition 4.8 (iii), we 

have ‖f‖Fs
p1(ω) ≈

∑
|α|≤m ‖Dαf‖Fs−m

p1 (ω). By combining them, we obtain (ii) for ε = 1 and the proof is 
complete. �

To prove Proposition 5.1, we use a version of the Heideman-type estimate [36].

4 We use Mloc(Ω) for the space of locally finite signed Borel measures, where the norm ‖ · ‖M is the total variation in a measure.
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Lemma 5.7. Let φ = (φj)∞
j=0 and ψ = (ψj)∞

j=0 be as given in Definition 4.7. Then, for any M > 0, α, β ∈ N, 
and g ∈ C ∞(RN ), a C = Cφ,ψ,M,α,β,g > 0 exists such that for every j, k ∈ N, 1 ≤ p ≤ ∞, and f ∈ Lp(RN ),

‖φj ∗ (g · (Dαψk ∗ f))− φj ∗Dαψk ∗ (gf)‖Lp(RN ) ≤ C2k|α|−M |j−k|−k‖f‖Lp(RN ).(5.5)

We can write the left-hand side of (5.5) as 
∥∥φj ∗

(
[g ·(−), Dαψk ∗(−)]{f}

)∥∥
Lp in terms of the commutator.

Proof. The direct computation yields

φj ∗ (g · (Dαψk ∗ f))(x)− φj ∗Dαψk ∗ (gf)(x)

=φj ∗
[
t �→

∫
f(y)(g(t)− g(y))Dαψk(t− y)dy

]
(x)

=
∫
RN

f(y)dy

∫
RN

(g(t)− g(y))Dαψk(t− y)φj(x− t)dt =:
∫
RN

Kjk(x, y)f(y)dy,

where Kjk(x, y) =
∫
RN (g(t) − g(y))Dαψk(t − y)φj(x − t)dt.

By Schur’s test Lemma 3.15 with γ = 1 and (X, μ) = (Y, ν) = (RN , dx), we need to prove that

sup
x

∫
|Kjk(x, y)|dy + sup

y

∫
|Kjk(x, y)|dx �φ,ψ,α,β,g,M 2k|α|−M |j−k|−k.

Let M ′ ≥ 0 be as selected later and by Taylor’s expansion, we can write

Kjk(x, y) =
∫ ( ∑

0<|γ|≤M ′

sγ

γ! Dγg(y) + RM ′(y, s)
)

Dαψk(s)φj(x− y − s)ds,

where RM ′(y, s) := g(y + s) −
∑

0≤|γ|≤M ′
sγ

γ! Dγg(y) is the Taylor’s remainder in s-variable. Therefore,

(5.6) |Kjk(x, y)| �M ′,g

∑
0<|γ|≤M ′

∣∣∣([s �→ sγDαψk(s)
]
∗ φj

)
(x− y)

∣∣∣+ ∣∣∣ ((RM ′(y, ·)Dαψk

)
∗ φj

)
(x− y)

∣∣∣.
In addition, note that for every γ ∈ NN , we have the scaling φk(x) = 2(k−1)N φ1(2k−1x) for k ≥ 1 and

(5.7) xγDαψk(x) = 2(k−1)(N+|α|−|γ|)(2k−1x)γDαψ1(2k−1x), k ≥ 1.

Both φk and xγDαψk have infinite moment vanishing for k ≥ 1, so by [6, Lemma 2.1] again (also see [62, 
Lemma 4.4] with l → +∞), for every M > 0 and |γ| > 0, we have,

‖φj ∗ (sγDαψk)‖L1 �φ,ψ,α,β,γ,M 2k(|α|−|γ|)−M |j−k| ≤ 2k(|α|−1)−M |j−k|, for all j, k ≥ 0.(5.8)

Moreover, by [6, Lemma 2.1] (also see [61, Proposition 3.5]), for every M > 0, we have,

‖φj ∗ h‖L1 �φ,α,M 2−jM sup
|γ|≤2M+N ;x∈RN

(1 + |x|2M+N )|Dγh(x)|, for all j ≥ 0, h ∈ S (RN ).(5.9)

By taking h = hM ′,y = RM ′(y, ·)Dαψk in (5.9) and applying Taylor’s theorem to RM ′(y, ·), we obtain

(5.10)

(1 + |s|2M+N )
∑

|γ|≤2M+N

|DγhM ′,y(s)| � (1 + |s|2M+N )
∑

|β|,|γ|≤2M+N

|Dβ
s RM ′(y, s)||Dα+γψk(s)|

� (1 + |s|2M+N )|s|M ′−2M−N
∑

|Dα+γψk(s)|,

|γ|≤2M+N
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uniformly in s, y ∈ RN whenever M ′ > 2M + N .
For k ≥ 1, by using the scaling property (5.7) and the fact that ψ1 is Schwartz, for every s and y, we 

uniformly have

(5.11)

(1 + |s|2M+N )|s|M ′−2M−N
∑

|γ|≤2M+N |Dα+γψk(s)|

�(1 + |s|2M+N )|s|M ′−2M−N
∑

|γ|≤2M+N 2kN+k|α+γ|(1 + |2ks|)−M ′

� 1+|s|2M+N

1+|2ks|2M+N · |s|M′−2M−N

1+|2ks|M′−2M−N 2k(2M+2N)+k|α| � 2−k(M ′−2M−N)2k(2M+2N+|α|).

In summary, by (5.9), (5.10), and (5.11),

(5.12) sup
y∈RN

∥∥(RM ′(y, ·)Dαψk

)
∗ φj

∥∥
L1(RN ) � 2−jM 2−kM ′

2k(4M+3N+|α|).

Therefore, by (5.8) and by taking M ′ = 4M + 3N + 1 in (5.12), we have

sup
x∈RN

∫
RN

(
|Kjk(x, t)|+ |Kjk(t, x)|

)
dt

�
∑

0<|γ|≤M ′

‖φj ∗ (sγDαψk)‖L1(RN ) + sup
y
‖φj ∗ (RM ′(y, ·)Dαψk)‖L1(RN )

�M 2k(|α|−1)−M |j−k| + 2−jM+k(4M+3N+|α|−M ′)

�M 2k(|α|−1)−M |j−k| + 2k(|α|−1)−M(j+k) � 2k(|α|−1)−M |j−k|.

This completes the proof. �
Proof of Proposition 5.1. First, we claim that X1ω =

∑N
ν=1 XνDν1ω = 0 holds in the sense of distributions. 

We use approximation. The assumption that X(x) ∈ CTx(bω) for almost every x ∈ bω gives

X1(σ(x′), x′) =
∑N

ν=2 Xν(σ(x′), x′) · ∂σ
∂xν

(x′), for almost every x′ ∈ RN−1.

For δ > 0, we define

hδ(x) := 0 when x1 ≤ σ(x′)− δ
2 ; hδ(x) := x1−σ(x′)

δ when |x1 − σ(x′)| ≤ δ
2 ;

hδ(x) := 1 when x1 ≥ σ(x′) + δ
2 .

Clearly, hδ → 1ω as δ → 0 in Lp
loc(RN ) for all 1 < p <∞.

Clearly, Xhδ(x) = 0 for |x1 − σ(x′)| > δ
2 . For |x1 − σ(x′)| < δ

2 ,

Xhδ(x) =
∑N

ν=1 Xν(x)Dνhδ(x) = δ−1X1(x)− δ−1∑N
ν=2 Xν(x)Dνσ(x′)

=X1(x)−X1(σ(x′),x′)
δ −

∑N
ν=2

Xν (x)−Xν (σ(x′),x′)
δ Dνσ(x′)

=(D1X1)(σ(x′), x′)−
∑N

ν=2(D1Xν)(σ(x′), x′)Dνσ(x′) + O(δ).

We conclude that Xhδ ∈ L∞(RN ) is uniformly bounded in δ and Xhδ = 0 outside a δ-neighborhood of 
bΩ. Therefore, Xhδ

Lp
loc−−→ 0 for all p <∞, and hence X1ω = limδ→0 Xhδ = 0 as distributions.
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Now, we can rewrite 〈X, [d, E]〉 as

〈X, [d, E]〉f =
N∑

ν=1

∞∑
k=0

Xν · (ψk ∗ ((Dν1ω) · (φk ∗ f)))

=
N∑

ν=1

∞∑
k=0

Xν · (ψk ∗ ((Dν1ω) · (φk ∗ f)))− ψk ∗ ((XνDν1ω) · (φk ∗ f))

=
N∑

ν=1

∞∑
k=0

(
Xν · (Dνψk ∗ (1ω · (φk ∗ f))−Dνψk ∗ ((Xν1ω) · (φk ∗ f))

−
(
Xν · (ψk ∗ (1ω · (Dνφk ∗ f)))− ψk ∗ ((Xν1ω) · (Dνφk ∗ f))

)
− ψk ∗ ((DνXν) · 1ω · (φk ∗ f))

)
=

N∑
ν=1

∞∑
k=0

(
[Xν , Dνψk ∗ (−)]

{
1ω(φk ∗ f)

}
− [Xν , ψk ∗ (−)]

{
1ω(Dνφk ∗ f)

}
+ ψk ∗ ((DνXν)1ω(φk ∗ f))

)
.

Note that (φj)∞
j=0 satisfies conditions (4.7), (4.8), and (4.9). By [58, Proposition 1.2], we have

(5.13) ‖〈X, [d, E]〉f‖Fs
pp(RN ) ≈

∥∥(2js‖φj ∗ (〈X, [d, E]〉f)‖Lp(RN )
)∞

j=0

∥∥
�p(N).

Moreover, by applying Lemma 5.7, we obtain

(5.14)
∥∥φj ∗

(
[Xν · (−), Dαψk ∗ (−)]

{
1ω(Dβφk ∗ f)

})∥∥
Lp(RN ) �M 2j|α|−M |j−k|−k‖Dβφk ∗ f‖Lp(ω).

By [6, Lemma 2.1] (also see [61, Corollary 3.6]), we have
(5.15)
‖φj ∗ ψk((DνXν)1ω(φk ∗ f))‖Lp(RN ) ≤ ‖φj ∗ ψk‖L1‖DνXν‖L∞‖φk ∗ f‖Lp(ω) �M 2−M |j−k|‖φk ∗ f‖Lp(ω).

By plugging (5.14) and (5.15) into (5.13), for every M > 0, we obtain

‖〈X, [d, E]〉f‖Fs
pp(RN )

�M

∥∥∥(2js
∞∑

k=0

(
2−M |j−k|+k−k‖φk ∗ f‖Lp(ω) + 2−M |j−k|−k‖Dφk ∗ f‖Lp(ω)

+ 2−M |j−k|‖φk ∗ f‖Lp(ω)
))∞

j=0

∥∥∥
�p(N)

�M

∥∥∥( ∞∑
k=0

2−(M−|s|)|j−k|2ks‖φk ∗ f‖Lp(ω)

)∞

j=0

∥∥∥
�p(N)

+
∥∥∥( ∞∑

k=0

2−(M−|s|)|j−k|2k(s−1)‖Dφk ∗ f‖Lp(ω)

)∞

j=0

∥∥∥
�p(N)

≤‖(2−(M−|s|)|j|)∞
j=−∞‖�1

(∥∥(2ks‖φk ∗ f‖Lp(ω)
)∞

k=0

∥∥
�p +

∥∥(2k(s−1)‖φk ∗Df‖Lp(ω)
)∞

k=0

∥∥
�p

)
.

The last inequality above is obtained by Young’s inequality on Z. Since M is arbitrary, by taking M > |s|, 
we have ‖(2−(M−|s|)|j|)∞

j=−∞‖�1 <∞.
By Proposition 4.8 (ii), we have 

∥∥(2ks‖φk∗f‖Lp(ω)
)∞

k=0

∥∥
�p≈‖f‖Fs

pp(ω) and 
∥∥(2k(s−1)‖φk∗Df‖Lp(ω)

)∞
k=0

∥∥
�p

≈ ‖Df‖ s−1 � ‖f‖Fs (ω). Therefore, ‖〈X, [d, E]〉f‖Fs (RN ) � ‖f‖Fs (ω) and the proof is complete. �
Fpp (ω) pp pp pp
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6. Proof of the theorems

We now consider the complex domain Cn and assume that Ω ⊂ Cn is a bounded smooth domain of 
finite type. Let U1 be a fixed neighborhood of bΩ obtained from Lemma 2.2, mq be the q-type of Ω, and 
rq := (n − q + 1) ·mq + 2q for 1 ≤ q ≤ n.

Recall the space F̃ s
p∞(U) in Definition 4.5. We recall that the Bochner–Martinelli kernels always gain 

one derivative.

Lemma 6.1. Let U ⊂ Cn be a bounded set. Then, the Bochner–Martinelli integral Bqg(z) =
∫

U Bq−1(z, ·) ∧ g

has boundedness Bq : F̃ s
pr(U ; ∧0,q) → F s+1

pr (U ; ∧0,q−1) for all 0 < p, r ≤ ∞ and s ∈ R such that (p, r) /∈
{∞} × (0, ∞).

The boundedness Bq : F̃ s
∞q → F s+1

∞q is also true by using [68, Theorem 1.22].

Proof. The proof is standard. We can see that Bq−1(z, ζ) is simply the linear combination of the derivatives 
of the Newtonian potential G(z−ζ) := − (n−2)!

4πn |z−ζ|2−2n. We need to prove [f �→ G ∗f ] : F̃ s
pr(U) → F s+2

pr (U)
for all 0 < p, r ≤ ∞ and s ∈ R such that (p, r) /∈ {∞} × (0, ∞).

Indeed, let χ ∈ S(R2n) be such that its Fourier transform has compact support. We define G0 := χ ∗G

and G∞ = G − G0. We see that the Fourier transform Ĝ∞(ξ) = (1 − χ̂(ξ))|ξ|−2 (ξ ∈ R2n) is a bounded 
smooth function. Therefore, by Hörmander–Mikhlin multiplier theorem (see [67, Theorem 2.3.7]), we have 
[f �→ (I −Δ)G∞ ∗ f ] : F s

pr(R2n) → F s
pr(R2n). Note that (I −Δ)−2 : F s

pr(R2n) → F s+2
pr (R2n) is bounded 

(see [67, Theorem 2.3.8]). Therefore, [f �→ G∞ ∗ f ] : F̃ s
pr(U) → F s+2

pr (U) is also bounded.
In addition, the Fourier support supp Ĝ0 ⊆ supp χ̂ is compact, so we see that G0 ∈ C∞

loc(R2n). U is 
a bounded set, so we have [f �→ G0 ∗ f ] : {f ∈ S ′(R2n) : supp f ⊆ U} → C∞

loc(R2n); in particular, 
[f �→ G0 ∗ f ] : F̃ s

pr(U) → F s+2
pr (U).

Now, [f �→ G ∗ f ] : F̃ s
pr(U) → F s+2

pr (U) is bounded. The boundedness of Bq : F s
pr → F s+1

pr follows from 
the fact that ∇ : F s+2

pr (R2n) → F s+1
pr (R2n; C2n) (see [67, Theorem 2.3.8]). �

Proof of Theorems 1.1 and 1.2. We prove the definedness of Hq on S ′(Ω; ∧0,q) and the homotopy formula 
f = ∂Hqf +Hq+1∂f for f ∈ S ′ after giving the proof of the boundedness of Hq on Triebel–Lizorkin spaces.

Recall the Rychkov’s extension operator E = EΩ in Definition 4.7 and the anti-derivative operators 
Sk,α = Sk,α

Ω in Proposition 4.13 (also see Remark 4.14). For k ≥ 0, we define Hk
q := Bq ◦ E +Hk,�

q +Hk,⊥
q

as follows, where Bq is given in Lemma 6.1 and K�
q,α, K⊥

q,α are in Corollary 3.13,

Hk,�
q f(z) :=

∑
|α|≤k

(−1)|α|K�
q,α ◦ Sk,α[∂, E ]f =

∑
|α|≤k

(−1)|α|
∫

U1\Ω

(Dα
ζ (K�

q−1))(z, ·) ∧ Sk,α[∂, E ]f ;

Hk,⊥
q f(z) :=

∑
|α|≤k

(−1)|α|K⊥
q,α ◦ Sk,α[∂, E ]�f =

∑
|α|≤k

(−1)|α|
∫

U1\Ω

(Dα
ζ (K⊥

q−1))(z, ·) ∧ Sk,α[∂, E ]�f.

Clearly, H0
q = Hq. We now prove Hk,(�,⊥)

q = H0,(�,⊥)
q for all k ≥ 0; in particular, that Hk

q = Hq holds.

By applying Lemma 6.1, for every 1 ≤ p, r ≤ ∞ and s ∈ R such that (p, r) /∈ {∞} × [1, ∞), we have

(6.1) Bq ◦ E : F s
pr(Ω;∧0,q) E−→ F̃ s

pr(U1 ∪ Ω;∧0,q) Bq−−→ F s+1
pr (U1 ∪ Ω;∧0,q−1) (−)|Ω−−−→ F s+1

pr (Ω;∧0,q−1).

When q = n, we have Hn = Bn ◦ E since Kn(z, ζ) ≡ 0. Therefore, by Remark 4.6 (vi), we obtain the 
boundedness Hn : Hs,p(Ω; ∧0,n) → Hs+1,p(Ω; ∧0,n−1) and Hn : C s(Ω; ∧0,n) → C s+1(Ω; ∧0,n−1) for all 
1 < p <∞ and s ∈ R, which is Theorem 1.1 (ii) when q = n.
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We have the Sobolev embedding Hs+1,p(Cn) ↪→ Hs, 2np
p−2n (Cn) for 1 < p < 2n (see [68, Corollary 2.7]). By 

taking restrictions on Ω, we have Hn : Hs,p(Ω; ∧0,n) → Hs, 2np
p−2n (Ω; ∧0,n−1). Since rn = 1 + 2n > 2n, then 

the embedding Hs, 2np
p−2n (Ω; ∧0,n−1) ↪→ Hs, prn

p−rn (Ω; ∧0,n−1) follows immediately, which proves Theorem 1.1
(iii) when q = n.

Now, we assume that q ≤ n − 1 in the following.
By applying Lemma 6.1, and Remarks 4.12 and 4.6 (iii) to (6.1), we see that

Bq ◦ E : F s
p∞(Ω;∧0,q)→ F̃ s

p∞(U1 ∪ Ω;∧0,q) → F s+1
p∞ (Ω;∧0,q−1)

↪→

⎧⎨⎩F
s+ 1

mq
pε (Ω;∧0,q−1) for all 1 ≤ p ≤ ∞

F s
prq

rq−p ,ε
(Ω;∧0,q−1) when 1 ≤ p ≤ rq

.

Note, that if we write f =
∑

|I|=q fIdζ
I , then [∂, E ]�f is the linear combination of [∂, E ]�fI . Therefore, 

by Corollary 5.5 (iii), we have [∂, E ]� : F s
p∞(Ω; ∧0,q) → F̃

s−1/mq
p∞ (U1\Ω; ∧0,q+1).

For every s > 1 −k and integer l > max(0, s +1), by applying Remarks 4.12 and 4.14, and Corollaries 5.5
and 3.13, for every 1 ≤ p ≤ ∞ and ε > 0, we have,

Hk,�
q : F s

p∞(Ω;∧0,q) [∂,E]−−−→ F̃ s−1
p∞ (U1\Ω;∧0,q+1)

Sk,α

−−−→ F̃ s−1+k
p∞ (U1\Ω;∧0,q+1) s>1−k

↪−−−−→ Lp(U1\Ω, dist1−k−s;∧0,q+1)

K�
q,α−−−→

⎧⎪⎨⎪⎩W l,p(Ω, distl− 1
mq

−s;∧0,q−1)
l>s+ 1

mq

↪−−−−−→ F
s+ 1

mq
pε (Ω,∧0,q−1) for all 1 ≤ p ≤ ∞

W
l,

prq
rq−p (Ω, distl−s;∧0,q−1) l>s

↪−−→ F s
prq

rq−p ,ε
(Ω,∧0,q−1) when 1 ≤ p ≤ rq

;

Hk,⊥
q : F s

p∞(Ω;∧0,q) ↪→ F
s− 1

mq
pp (Ω;∧0,q) [∂,E]�

−−−−→ F̃
s− 1

mq
pp (U1\Ω;∧0,q+1) ↪→ F̃

s− 1
mq

p∞ (U1\Ω;∧0,q+1)

Sk,α

−−−→ F̃
s+k− 1

mq
p∞ (U1\Ω;∧0,q+1)

s> 1
mq

−k

↪−−−−−−→ Lp(U1\Ω, dist
1

mq
−k−s;∧0,q+1)

K⊥
q,α−−−→

⎧⎪⎨⎪⎩W l,p(Ω, distl− 1
mq

−s;∧0,q−1)
l>s+ 1

mq

↪−−−−−→ F
s+ 1

mq
pε (Ω,∧0,q−1) for all 1 ≤ p ≤ ∞

W
l,

prq
rq−p (Ω, distl−s;∧0,q−1) l>s

↪−−→ F s
prq

rq−p ,ε
(Ω,∧0,q−1) when 1 ≤ p ≤ rq

.

In particular, we see that Hk,�
q , Hk,⊥

q are both defined on 
⋃

s>1−k;1≤p≤∞ F s
p∞(Ω; ∧0,q), which completes 

the proof of Theorem 1.2 after we show that Hq = Hk
q for all k.

By integrating by parts, for f ∈ C ∞(Ω; ∧0,q),

(6.2) Hk,�
q f(z) =

∑
|α|≤k

∫
U1\Ω

K�
q−1(z, ·) ∧DαSk,α[∂, E ]f = H0,�

q f(z).

There is no boundary term because of Proposition 4.13 (iii).
In the same manner, we obtain Hk,⊥

q f = H0,⊥
q f . Therefore, Hk

q f = H0
qf(= Hqf) for all f ∈ C ∞(Ω; ∧0,q).

For s > 1 − k, 1 ≤ p ≤ ∞ and f ∈ F s
p∞(Ω; ∧0,q), we can find a smooth sequence {fj}∞

j=0 ⊂ C ∞(Ω; ∧0,q)

such that fj

Fs′
p∞−−−→ f for some s′ ∈ (1 − k, s). Therefore, limj→∞Hqfj = limj→∞Hk

q fj = Hk
q f gives the 

definedness of Hqf , and we see that Hq = Hk
q for all k ≥ 0. This completes the proof of Theorem 1.2.

Moreover, for this (fj) ⊂ C ∞, by Lemma 2.4, we see that fj = ∂Hk+1
q fj +Hk+1

q+1∂fj = ∂Hqfj +Hq+1∂fj . 
Therefore, by taking the limit, we see that f = ∂Hqf +Hq+1∂f also holds.
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By Lemma 4.15, Hq is defined on 
⋃

s C s(Ω; ∧0,q) = S ′(Ω; ∧0,q). Therefore, f = ∂Hqf +Hq+1∂f holds 
for all f ∈ S ′(Ω; ∧0,q). Now, we prove Theorem 1.1 (i).

Theorems 1.1 (ii) and (iii) follow from the inclusions F s
p1(Ω) ↪→ Hs,p(Ω) = F s

p2(Ω) ↪→ F s
p∞(Ω) and 

F s
∞1(Ω) ↪→ C s(Ω) = F s

∞∞(Ω), as discussed in Remarks 4.6 (iii) and (vi). �
7. An additional result for smooth strongly pseudoconvex domains

We summarize the techniques from Sections 3 and 4. We see that the corresponding results for Theo-
rem 1.1 for bounded smooth strongly pseudoconvex domains also hold.

Theorem 7.1. Let Ω ⊂ Cn be a bounded smooth strongly pseudoconvex domain. The operators Hq :
S ′(Ω; ∧0,q) → S ′(Ω; ∧0,q−1) for 1 ≤ q ≤ n exist such that f = ∂Hqf +Hq+1∂f for all f ∈ S ′(Ω; ∧0,q) (we 
set Hn+1 = 0).

Moreover, for every 1 ≤ q ≤ n, s ∈ R, and ε > 0, Hq has the following boundedness:

Hq : F s
p,∞(Ω;∧0,q)→ F

s+ 1
2

p,ε (Ω;∧0,q−1), ∀ 1 ≤ p ≤ ∞;(7.1)

Hq : F s
p,∞(Ω;∧0,q)→ F s

(2n+2)p
2n+2−p ,ε

(Ω;∧0,q−1), ∀ 1 ≤ p ≤ 2n + 2.(7.2)

In particular, for every 1 ≤ q ≤ n and s ∈ R, we have the boundedness Hq : C s(Ω; ∧0,q) →
C s+ 1

2 (Ω; ∧0,q−1), Hq : Hs,p(Ω; ∧0,q) → Hs+ 1
2 ,p(Ω; ∧0,q−1) for all 1 < p < ∞, and Hq : Hs,p(Ω; ∧0,q) →

Hs, (2n+2)p
2n+2−p (Ω; ∧0,q−1) for all 1 < p < 2n + 2.

Remark 7.2. Theorem 7.1 improves the result in [63, Theorem 1.2], which proves Hq : Hs,p → Hs+ 1
2 ,p for 

all s ∈ R and 1 < p < ∞. For negative s, the boundedness Hq : Hs,p → Hs, (2n+2)p
2n+2−p is new. Recall that 

these two results are not comparable since the Sobolev embedding Hs+ 1
2 ,p ↪→ Hs, 4np

4n−p is not contained in 

Hs, (2n+2)p
2n+2−p .

By keeping check on the proof using regularized distance functions, we can show that the results for 
non-smooth domains are true, where if k ≥ 0 is an integer and bΩ ∈ Ck+2, then Hq : Hs,p → Hs, (2n+2)p

2n+2−p is 
still true for all 1 < p < 2n + 2 and s > 1

p − k. We refer the reader to [62,63].

To prove Theorem 7.1, we repeat the arguments used in Section 3. Note that for 1 ≤ q ≤ n − 1, the 
(D’Angelo or Catlin) q-type of Ω is always 2. Later in the proof, we show that the 
 and ⊥ projections are 
not needed for the estimates.

Recall that we can choose a smooth defining function for Ω such that it is plurisubharmonic in a neigh-
borhood of bΩ (e.g., see [15, Theorem 3.4.4]). In particular, a T0 > 0 exists such that Ωt := {	 < t} is 
smooth strongly pseudoconvex for all −T0 < t < T0.

We recall the standard Henkin–Ramírez function for strongly pseudoconvex domains.

Proposition 7.3. Let Ω ⊂ Cn be a smooth strongly pseudoconvex domain. We have a number T1 ∈ (0, T0]
associated with a neighborhood U1 := {|	| < T1} of bΩ, a c ∈ (0, 12T1), and a map Q̂ ∈ C ∞(Ω ×U1; Cn) that 
is holomorphic in z such that the associated support function Ŝ(z, ζ) := Q̂(z, ζ) · (z − ζ) satisfies:

|Ŝ(z, ζ)| ≥ 	(ζ)− 	(z) + 1
c |z − ζ|2, ∀z ∈ Ω, ζ ∈ U1\Ω such that |z − ζ| ≤ c;(7.3)

|Ŝ(z, ζ)| ≥ c, ∀z ∈ Ω, ζ ∈ U1\Ω such that |z − ζ| ≥ c.(7.4)

See [44, Theorem III.7.15], [39, Theorem 2.4.3], or [30, Proposition 5.1].
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For these Ŝ and Q̂, we still use K(z, ζ) from (2.8). We define our solution operators Hq in Definition 2.5, 
where the image function of the Rychkov’s extension operator E is always supported in U1 ∪ Ω. Thus,

(7.5) Hqf(z) =
∫

U1∪Ω

Bq−1(z, ·) ∧ Ef +
∫

U1\Ω

Kq−1(z, ·) ∧ [∂, E ]f.

We define a naive version of Pε(ζ) adapted to (Ω, 	) (cf. Definition 3.2), as follows.

Definition 7.4. For ζ ∈ Cn and ε > 0, we define

Pε(ζ) := {z ∈ B(ζ, ε
1
2 ) : |	(z)− 	(ζ)| < 2

c ε}.

Clearly, when ζ ∈ U1 and ε < 1
2T1, the set Pε(ζ) is non-empty. Moreover, the definition has symmetry 

(cf. (3.1)):

(7.6) z ∈ Pε(ζ) if and only if ζ ∈ Pε(z).

Informally, this is saying τ1(ζ, ε) := 2
c ε and τ2(ζ, ε) = · · · = τn(ζ, ε) := ε

1
2 . In the strongly pseudoconvex 

case, there is no difference between using the ε-extremal basis and ε-minimal basis.
Now, (7.3) implies that there an ε0 > 0 exists such that the corresponding result for Lemma 3.5 (i) holds:

|Ŝ(z, ζ)| � ε, for all 0 < ε ≤ ε0, ζ ∈ U1\Ω and z ∈ Ω\Pε(ζ).

We do not need the corresponding estimates in Lemma 3.5 (ii), and we see that the trivial estimates for 
Corollary 3.6 hold (also see Remark 3.8):

(7.7) |Q̂ ∧ (∂Q̂)k|+ |(∂Q̂)k| � 1.

Thus, a simpler version of Lemma 3.9 and Corollary 3.11 holds, where for ε ∈ (0, ε0], 1 ≤ k ≤ n, j ≥ 0, 
and for all (z, ζ) ∈ Ω × (U1\Ω) such that z /∈ Pε(ζ), we have 

∣∣Dj
z,ζ

( Q̂∧(∂Q̂)k−1

Ŝk

)
(z, ζ)

∣∣ �j ε−j−k. Therefore,

(7.8) |Dj
z,ζKq−1(z, ζ)| �

n−q∑
k=1

ε−j−k

|z − ζ|2n−2k−1 , ∀(z, ζ) ∈ Ω× (U1\Ω) such that z /∈ Pε(ζ).

Recall (7.6) and the statement above is the same as (z, ζ) ∈ Ω × (U1\Ω) such that ζ /∈ Pε(z).
By integrating on Pε(ζ) and Pε(z), we obtain the estimates corresponding to (3.14) and (3.15) (recall 

(3.18) with τ1 ≈ ε and τ2 = · · · = τn = ε
1
2 ):∫

Ω∩Pε(ζ)\P ε
2

(ζ)

|DjKq−1(w, ζ)|d Volw +
∫

Pε(z)\(P ε
2

(z)∪Ω)

|DjKq−1(z, w)|d Volw

�j

n−q∑
k=1

∫
|w1|<ε,|w2|<ε

1
2 ,...,|wn|<ε

1
2

d Vol(w1, . . . , wn)
εj+k

(∑n
l=1 |wl|

)2n−2k−1 � ε
3
2 −j .

In our case, the types for Ω are m1 = · · · = mn−1 = 2. Therefore, the numbers rq = (n − q + 1)mq + 2q, 
and γq = rq

rq−1 are indeed rq = 2n + 2 and γq = 2n+2
2n+1 for all 1 ≤ q ≤ n − 1. Using (3.19) and (3.20), we 

obtain the estimates corresponding to (3.16) and (3.17):
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∫
Ω∩Pε(ζ)\P ε

2
(ζ)

|DjKq−1(w, ζ)|
2n+2
2n+1 d Volw +

∫
Pε(z)\(P ε

2
(z)∪Ω)

|DjKq−1(z, w)|
2n+2
2n+1 d Volw

�j

n−q∑
k=1

∫
|w1|<ε,|w2|<ε

1
2 ,...,|wn|<ε

1
2

d Vol(w1, . . . , wn)(
εj+k

∑n
l=1 |wl|

)(2n−2k−1)γq
� ε(1−j)γq = ε(1−j) 2n+2

2n+1 .

Therefore, by integrating on the dyadic shells P21−jε(ζ)\P2−jε(ζ) or P21−jε(z)\P2−jε(z), and using (3.21)
and (3.22), we obtain the weighted estimates (cf. Theorem 2.9), that for every k ≥ 2, 0 < s < k − 3

2 , and 
1 ≤ q ≤ n − 1, ∫

U1\Ω

dist(ζ)s|Dk
z,ζKq−1(z, ζ)|d Vol(ζ) �k,s dist(z)s+ 3

2 −k, ∀z ∈ Ω;

∫
Ω

dist(z)s|Dk
z,ζKq−1(z, ζ)|d Vol(z) �k,s dist(ζ)s+ 3

2 −k, ∀ζ ∈ U1\Ω;

∫
U1\Ω

| dist(ζ)sDk
z,ζKq−1(z, ζ)|

2n+2
2n+1 d Vol(ζ) �k,s dist(z)(s+1−k) 2n+2

2n+1 , ∀z ∈ Ω;

∫
Ω

| dist(z)sDk
z,ζKq−1(z, ζ)|

2n+2
2n+1 d Vol(z) �k,s dist(ζ)(s+1−k) 2n+2

2n+1 , ∀ζ ∈ U1\Ω.

By Schur’s test (Lemma 3.15), for α ∈ N2n
ζ and 1 ≤ q ≤ n − 1, the integral operator

Kq,αg(z) :=
∫

U1\Ω

(Dα
z,ζKq−1)(z, ·) ∧ g

(
= (−1)|α|Kq,0 ◦Dαg(z)

)

has the boundedness (cf. Corollary 3.13), that for every k ≥ 0 and 1 < s < k + |α| − 1
2 (in particular, 

k + |α| ≥ 2),

Kq,α : Lp(U1\Ω, dist1−s;∧0,q+1) →W k,p(Ω, distk+|α|− 1
2 −s;∧0,q−1), ∀1 ≤ p ≤ ∞;(7.9)

Kq,α : Lp(U1\Ω, dist1−s;∧0,q+1) →W k, (2n+2)p
p−2n−2 (Ω, distk+|α|−s;∧0,q−1), ∀1 ≤ p ≤ 2n + 2.(7.10)

Recall the notations Bq in Lemma 6.1 and Sk,α in Proposition 4.13. By rewriting (7.5) and using the 
same argument in (6.2) we have

(7.11) Hqf = Bq ◦ Ef +
∑

|α|≤k

(−1)|α|Kq,α ◦ Sk,α ◦ [∂, E ]f, ∀k ≥ 0.

By Remark 4.12, Lemma 6.1, and Remark 4.6 (iii), for every 1 ≤ q ≤ n, s ∈ R, 1 ≤ p ≤ ∞, and ε > 0,

Bq ◦ E : F s
p∞(Ω;∧0,q) E−→ F̃ s

p∞(U1 ∪ Ω;∧0,q) Bq−−→ F s+1
p∞ (Ω;∧0,q−1)

↪→

⎧⎨⎩F
s+ 1

2
pε (Ω;∧0,q−1) ∀p ∈ [1,∞]

F s
(2n+2)p
2n+2−p ,ε

(Ω;∧0,q−1) ∀p ∈ [1, 2n + 2]
.

In particular, we have (7.1) and (7.2) for q = n since Kn,α ≡ 0.
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Choose integers k, l ≥ 0 such that k > 1 − s and l > s + 1
2 . By applying (7.9), (7.10), and Corollary 5.5

to the summands in (7.11), for 1 ≤ q ≤ n − 1, 1 ≤ p ≤ ∞, and ε > 0, we have,

F s
p∞(Ω;∧0,q) [∂,E]−−−→ F̃ s−1

p∞ (U1\Ω;∧0,q+1) Sk,α

−−−→ F̃ s−1+k
p∞ (U1\Ω;∧0,q+1) s>1−k

↪−−−−→ Lp(U1\Ω, distk−1−s;∧0,q+1)

Kq,α−−−→

⎧⎪⎨⎪⎩W l,p(Ω, distl− 1
2 −s;∧0,q−1)

l>s+ 1
2

↪−−−−→ F
s+ 1

2
pε (Ω,∧0,q−1) for all 1 ≤ p ≤ ∞

W l, (2n+2)p
2n+2−p (Ω, distl−s;∧0,q−1) l>s

↪−−→ F s
(2n+2)p
2n+2−p ,ε

(Ω,∧0,q−1) when 1 ≤ p ≤ 2n + 2
.

This completes the proofs of (7.1) and (7.2).
The Hölder bound Hq : C s → C s+ 1

2 and Sobolev bounds Hq : Hs,p → Hs+ 1
2 ,p, Hq : Hs,p → Hs, (2n+2)p

2n+2−p

follow from the inclusions F s
p1(Ω) ↪→ Hs,p(Ω) = F s

p2(Ω) ↪→ F s
p∞(Ω) and F s

∞1(Ω) ↪→ C s(Ω) = F s
∞∞(Ω), 

as discussed in Remarks 4.6 (iii) and (vi). �
Appendix A. Proof of Proposition 5.3 (ii) for ε < 1

Let ω = {x1 > σ(x′)} ⊂ RN be a special Lipschitz domain. To provide a direct proof of Proposition 5.3
(ii), we define the inner strips (cf. (5.2)) of ω, where we define P0 = P ω

0 := {(x1, x′) : x1−σ(x′) > 2− 1
2 } and

Pk = P ω
k := {(x1, x′) : 2− 1

2 −k < x1 − σ(x′) < 2 1
2 −k} ⊂ ωc for k ∈ Z+;(A.1)

P<k = P ω
<k := {(x1, x′) : x1 − σ(x′) > 2 1

2 −k} ⊂ ωc for k ∈ Z+.(A.2)

Now, {Pk}∞
k=0 is a partition of ω up to zero measured sets. Similar to (5.3) (recall that δ(x) =

min(1, dist(x, bω))),

(A.3) 2−1−k ≤ δ(x) ≤ 2 1
2 −k for all k ≥ 0, x ∈ Pk.

Similar to (5.4) (see [61, Lemma 5.3]), we can also find an R > 0 such that supp φj + Pk ⊆ ωc whenever 
k ≥ j + R. Thus,

(A.4) 1Pk
· (φj ∗ f) = 1ω · (φj ∗ (f · 1P<min(j+R,k))), ∀j ≥ 0.

The duality argument does not work for the case where ε < 1 since F s
pε is no longer a locally convex 

space. In the proof of the case where 1 ≤ p < ∞, we need a version of the locally constant principle.

Lemma 7.5 (Locally constant). Let φ = (φj)∞
j=0 ⊂ S (RN ) satisfy the scaling condition (4.7) (in Defini-

tion 4.7). Then, for any M > 0, a Cφ,M > 0 exists such that for every 1 ≤ p ≤ ∞ and f ∈ Lp(RN ),

(A.5) |φj ∗ f(x)| ≤ Cφ,M 2
Nj
p

∑
v∈ZN

1
(1 + |v|)M

‖f‖Lp(x+2−jv+[0,2−j ]N ), ∀j ≥ 0, x ∈ RN .

In particular, if φ also satisfies the support condition (4.10), then a Cφ > 0 exists, such that for every 
1 ≤ p ≤ ∞, j ≥ 0 and 0 ≤ k ≤ j + R,

(A.6) ‖φj ∗ f‖Lp(Pk) ≤ Cφ min(1, 2
j−k

p )‖f‖Lp(P<j+R), ∀f ∈ Lp(P<j+R),

where R > 0 is given in (A.4) and dist(x) = dist(x, bω).
In particular, ‖φj ∗ f‖L∞(Pk) � ‖f‖L∞(P<j+R).
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Proof. We denote Qj,v := 2−jv + [0, 2−j ]N for j ≥ 0 and v ∈ ZN . Therefore, for every x ∈ RN ,

φj ∗ f(x) =
∑

v∈ZN

φj ∗ (f · 1(x+Qj,v))(x) =
∑

v∈ZN

(φj · 1B(0,2−j max(0,|v|−
√

N))c) ∗ (f · 1(x+Qj,v))(x).

Therefore, by Hölder’s inequality, |φj ∗ f(x)| ≤
∑

v ‖φj‖Lp′ (B(0,2−j max(0,|v|−
√

N))c)‖f‖Lp(x+Qj,v).
Note that φ0, φ1 are Schwartz, so for j ∈ {0, 1} and l ∈ Z, we have 

∫
|x|>2l |φj(x)|dx �M 2−M max(0,l), 

and thus ‖φj‖Lp′ (B(0,2l)c) �M 2−M max(0,l) for j ∈ {0, 1}. Therefore, by the scaling condition (4.7), for every 
j ≥ 0, we have,

‖φj‖Lp′ (B(0,2−j max(0,|v|−
√

N))c) ≤ 2
Nj
p (‖φ0‖Lp′ (B(0,max(|v|−

√
N))c) + ‖φ0‖Lp′ (B(0, 1

2 max(|v|−
√

N))c))

�M
2Nj/p

(1+|v|)M .

Therefore, |φj ∗ f(x)| �M 2Nj/p
∑

v(1 + |v|)−M‖f‖Lp(x+Qj,v), which gives (A.5).
To prove (A.6), by Fubini’s theorem,

∫
Pk

|φj ∗ f |p =
∫

RN−1

2
1
2 −k∫

2− 1
2 −k

|φj ∗ f(t + σ(x′), x′)|pdtdx′

≤ 2−k sup
2−1/2−k<t<21/2−k

∫
RN−1

∣∣(φj ∗ f)(t + σ(x′), x′)
∣∣pdx′.

Therefore, by taking M > N ,

‖φj ∗ f‖Lp(Pk) ≤ 2− k
p sup

2−1/2−k<t<21/2−k

∥∥x′ �→
∣∣(φj ∗ f)(t + σ(x′), x′)

∣∣∥∥
Lp(RN−1

x′ )

≤2− k
p 2

j
p sup

2−1/2−k<t<21/2−k

∥∥u′ �→
∥∥φj ∗ (f1P<j+R

)
∥∥

Lp((t+σ(u′),u′)+B(0,2−j
√

N))

∥∥
�p(2−jZN−1

u′ )

≤2
j−k

p

∥∥u′ �→
∥∥φj ∗ (f1P<j+R

)
∥∥

Lp((σ(u′),u′)+B(0,21−j
√

N))

∥∥
�p(2−jZN−1

u′ )

�M 2
j−k

p 2
Nj
p

∑
v∈ZN

(1 + |v|)−M
∥∥u′ �→

∥∥f1P<j+R

∥∥
Lp((σ(u′),u′)+B(0,21−j

√
N)+Qj,v)

∥∥
�p(2−jZN−1

u′ )

≤2
j−k

p 2
Nj
p

∑
v∈ZN

(1 + |v|)−M
∥∥u �→ ∥∥f1P<j+R

∥∥
Lp(u+B(0,22−j

√
N)+Qj,v)

∥∥
�p(2−jZN

u )

�M 2
j−k

p 2
Nj
p

∣∣B(0, 22−j
√

N)
∣∣∥∥((1 + |v|)−M

)
v∈ZN

∥∥
�1(ZN )‖f1P<j+R

‖Lp(RN ) �M 2
j−k

p ‖f‖Lp(P<j+R).

This completes the proof of (A.6). �
Proof of Proposition 5.3 (ii). We only need to prove m = 0. Indeed, if the case when m = 0 is true, then 
by Proposition 4.8 (iii), for every s < m, we have

‖f‖Fs
pε(ω) ≈s,m,ε

∑
|α|≤m ‖Dαf‖Fs−m

pε (ω)

case m=0
�

∑
|α|≤m ‖Dαf‖Lp(ω,δm−s) ≈ ‖f‖W m,p(δm−s).

Now, assume that m = 0 and 0 < ε < 1. By Proposition 4.8 (ii), we have ‖f‖Fs
pε(ω) ≈ ‖(2jsφj ∗

f)∞
j=0‖Lp(ω;�ε) for 1 ≤ p < ∞ and ‖f‖Fs

∞ε(ω) ≈ supx,J 2NJ 1
ε ‖(2jsφj ∗ f)∞

j=max(0,J)‖Lε(ω∩B(x,2−J );�ε). We 
need to show that for every t > 0 and ε > 0,
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∥∥(2−jtφj ∗ f
)∞

j=0

∥∥
Lp(ω;�ε(N)) �φ,p,ε,t ‖δtf‖Lp(ω), 1 < p <∞;(A.7)

2NJ sup
x∈ω,J∈Z

∥∥(2−jtφj ∗ f
)∞

j=max(0,J)

∥∥ε

Lε(ω∩B(x,2−J );�ε(N)) �φ,ε,t ‖δtf‖ε
L∞(ω).(A.8)

First, we prove (A.7) using Lemma 7.5. For k ≥ 0, recall that Pk, P<k from (A.1):∥∥(2−jtφj ∗ f
)∞

j=0

∥∥
Lp(Pk;�ε(N)) =

∥∥(2−jtφj ∗ (f1P<min(j+R,k))
)∞

j=0

∥∥
Lp(Pk;�ε(N))

≤
∥∥(2−jtφj ∗ (f1P<min(j+R,k))

)∞
j=0

∥∥
�ε(N;Lp(Pk)) (by (A.9) below)

≤2 1
ε

(∥∥(2−jt‖φj ∗ (f1P<j+R
)‖Lp(Pk)

)k−R

j=0

∥∥
�ε +

∥∥(2−jt‖φj ∗ (f1P<k
)‖Lp(Pk)

)∞
j=max(0,k−R)

∥∥
�ε

)
�ε,φ,M

∥∥(2−jt2
j−k

p ‖f‖Lp(P<j+R)
)k−R

j=0

∥∥
�ε +

∥∥(2−jt‖f‖Lp(P<k)
)∞

j=max(0,k−R)

∥∥
�ε (by (A.6))

�R

∥∥(2 j−k
p 2−jt‖f‖Lp(P<j)

)k

j=1

∥∥
�ε + ‖(2ls)∞

l=−R‖�ε2−tk‖f‖Lp(P<k)

�ε,R,t

∥∥(2− |j−k|
p 2−jt‖f‖Lp(P<j)

)∞
j=1

∥∥
�ε .

The first inequality is a variant of Minkowski’s inequality and since we assume that 0 < ε ≤ 1,

(A.9) ‖(gj)j‖Lp(�ε) = ‖(|gj |ε)j‖
1
ε

Lp/ε(�1) = ‖(|gj |ε)j‖
1
ε

�1(Lp/ε) = ‖(gj)j‖�ε(Lp).

Therefore,

‖f‖F−t
pε (ω) ≈

∥∥(2−jtφj ∗ f
)∞

j=0

∥∥
Lp(ω;�ε(N)) =

∥∥(‖(2−jtφj ∗ f)∞
j=0‖Lp(Pk;�ε(N)

)∞
k=0

∥∥
�p(N)

�ε,p,t

∥∥(∑∞
j=0 2− ε

p |j−k|2−jtε‖f‖ε
Lp(P<j)

)∞
k=0

∥∥1/ε

�p/ε(N)

≤
∥∥(2− ε

p |j|)∞
j=−∞

∥∥1/ε

�1

∥∥(2−jtε‖f‖ε
Lp(P<j)

)∞
j=0

∥∥1/ε

�p/ε(N) (by Young’s inequality)

�ε,p

∥∥(2−jt‖f‖Lp(P<j)
)∞

j=0

∥∥
�p(N) =

∥∥(∑∞
j=k 2−jt‖f‖Lp(Pk)

)∞
k=0

∥∥
�p(N)

≈
∥∥(2−kt‖f‖Lp(Pk)

)∞
k=0

∥∥
�p(N) ≈

∥∥(‖δtf‖Lp(Pk)
)∞

k=0

∥∥
�p(N) = ‖f‖Lp(ω,δt). (by t > 0 and (A.3))

This completes the proof of (A.7).
To prove (A.8), let x ∈ ω and let k0 ≥ 0 be such that x ∈ Pk0 . We separate the discussion of the norm 

‖(2−jtφj ∗ f)j≥J‖Lε(ω∩B(x,2−J );�ε) between J ≤ k0 + 1 and J ≥ k0 + 2.
When J ≤ k0 + 1, we have |Pk ∩ B(x, 2−J)| � 2−k2−(N−1)J if k ≥ J − 2 and Pk ∩ B(x, 2−J) = ∅ if 

k ≤ J − 3. By (A.4) and (A.6), ‖φj ∗ f‖L∞(Pk) �φ,R 2t min(j+R,k)‖f‖L∞(ω,δt), and thus

2NJ
∑∞

j=max(0,J)
∫

ω∩B(x,2−J ) 2−jtε|φj ∗ f |ε = 2NJ
∑∞

j=max(0,J)
∑∞

k=J−2
∫

Pk∩B(x,2−J ) 2−jtε|φj ∗ f |ε

�2NJ‖f‖ε
L∞(ω,δt)

∑∞
k=J−2

∑∞
j=max(0,J) |Pk ∩B(x, 2−J)|2−jtε2tε min(j+R,k)

=2NJ‖f‖ε
L∞(ω,δt)

∑∞
k=J−2 2−k2(N−1)J

(
k − (J − 2) +

∑∞
j=k 2tε(k−j))

≈‖f‖ε
L∞(ω,δt)2tJε � ‖f‖ε

L∞(ω,δt)2tk0ε.

When J ≥ k0 + 2, we have B(x, 2−J) ⊂ P>k0+2, and thus

2NJ
∑∞

j=max(0,J)
∫

ω∩B(x,2−J ) 2−jtε|φj ∗ f |ε = 2NJ
∑∞

j=max(0,J)
∫

P>k0+2∩B(x,2−J ) 2−jtε|φj ∗ f |ε

�2NJ |B(x, 2−J)|
∑∞

j=k0+2 2−jtε2k0tε‖f‖ε
L∞(P>k0+2) � ‖f‖ε

L∞(ω,δt)2tk0ε.

This completes the proof of (A.8), and thus the whole proof. �
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