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1. Introduction

In this paper, we aim to prove the following.

Theorem 1.1. Assume that Q@ C C™ is a bounded smooth conver domain of finite type. Then, the opera-
tors Hq + (A% — F/(Q; A%Y) exist that map (0, q)-forms to (0,q — 1)-forms with distributional
coefficients, for 1 < q<n (we set Hnp11 :=0), such that:

(i) (Homotopy formula) f = 0H,f + He10f for all 1 < q <n and (0,q)-forms f € ' (Q; AO9).

Moreover, suppose that ) has q-type mg (see Definition 3.1). Then, H, has the following boundedness
properties:
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(ii) (Sobolev and Holder) For every s € R and 1 < p < 0o, Hy : H5P(QA%) — H5H/mapr(Q; \Oa—1)
and My €°5(QA0) — @5t/ ma(Q; A%a—1),

(iii) (LP-L9 estimates) For every s € R and 1 < p < rq, Hy : H¥P(QAD9) — HoPra/(ra=p) (Q; 001,
Here rg :=(n—q+1)-my + 2q.

For an open subset 2 C C™, we use .’(2) for the space of extendable complex-valued distributions on €
(see Notation 4.1 and Lemma 4.15) and €°°(Q2) for the space of all bounded smooth complex functions on €
(see Definition 4.4). For s € R and 1 < p < oo, we use H*P?(Q) for the Sobolev—Bessel space and €*(2) for
the Hélder-Zygmund space (see Definitions 4.3 and 4.4). When 1 < p < co and k > 0, H*? = WP is the
usual Sobolev space; and €° = C? is the usual Holder space when s > 0 is not an integer (see Remark 4.6).

In fact, we obtain a stronger estimate via Triebel-Lizorkin spaces (see Theorem 1.2). We also prove the
corresponding LP-L? estimate for a strongly pseudoconvex domain in Section 7, which is new for negative
Sobolev spaces (see Theorem 7.1).

For a bounded smooth convex domain @ C C”™ of finite type m, Diederich-Fischer-Fornzess [20] con-
structed a solution operator H, for the d-equation from (0,q) closed forms to (0,q — 1)-forms, which has
boundedness H, : L — C'/™ _1In particular, OH,f = f for all L O-closed (0, g)-forms f on Q.

Based on their approach, subsequent authors obtained the following LP and C*-estimates.

o Fischer [23] proved that H, : LP Nker 0 — L5 for 1 < p<mn-+2.

o Hefer [34] improved the previous two results [20,23] using multitypes: if 2 has g-type m,, then H, : L>N
ker 0 — C''/™a and H,: LPNkerd — L% for 1 < p < (n—g+1)-my+2q, where ry = (n—q+1)-my+2q.
Note that m = m; > mg, and m, is generally smaller.

+ Alexandre [3] modified H, to a new solution operator H, such that H, : C* Nkerd — CF+'/™ (H,
depends on k).

Our Theorem 1.1 implies all of the results above. In addition, we provide the following remarks.

o Our H, is a solution operator to the Cauchy-Riemann equation on (0, ¢)-forms. When f is a 0 closed
(0, g)-form, then the (0,g — 1) form u = OH, f solves du = f. In addition, for estimates of H,, we do not
require the domains to be the subspace of closed forms, whereas those in previous studies [20,23,34,3]
were stated only on closed forms.

« Our estimates on %*-spaces imply that given by [20,3] because C* C €% for k > 1 and L™ C %° (e.g.,
see [67, (2.5.7/11)]). For q > 2, our result shows the gain of the miq derivative, whereas in the studies by
[20,3], the gain was only - = mil

o When 1 < p < rg, by taking s = 0, we see that Theorem 1.1 (iii) contains the LP-L? estimate in [34,
Theorem 1.3]. We also have the boundedness H, : L™ — BMO that recovers [23, Theorem 1.1 (ii)], see
Remark 1.4.

o Even for a negative integer k, our operator H, is defined on the distribution space H*? and has % gain
H, : H*? — H¥50P (in fact, to Hlﬁmﬁ’p).

» The operator H, is a “universal solution operator” in the sense that we have one operator that has H*?
and ¢* boundedness for all s, rather than only a bounded range of s.

The estimates on Sobolev space of negative index were first achieved in [63] for the case of a smooth
strongly pseudoconvex domain, where for each 1 < ¢ < n, we obtained a solution operator with %—estimate
HsP — H"" 2P forall s € R and 1 < p < 0.

In both [63] and the current paper, our solution operators are non-canonical because they do not come
from the solutions of the -Neumann problem. However, for canonical solutions, it is comparably more
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difficult to discuss the boundedness (or even well-posedness) on negative function spaces because we need
to use a version of a generalized trace to discuss the boundary value condition (see [56]), as mentioned by
[28].

Note that the LP-L9 estimates cannot be directly obtained from the ——estimates since the classical
p(mn+2)
Sobolev estimate only yields Hwb s Loy P which is a larger space than Lz,

Our solution operators follow from the construction of [20]. We recall that their solution operator H,
from [20] has the form

(11) qu(z) = qul(za ) A f - qul(z ) A f
[P

The first integral is the Bochner—Martinelli integral operator (see (2.7) for the definition of B,_1), which is
known to gain one derivative. The second integral is the main term. The construction of K,_; is based on
the Diederich-Fornaess support function S(z, () (see (2.4) and (2.8)). We remark that a slight modification
of K(z,() is required in order to make it a bounded function for each ¢, as mentioned by [3]. See Lemma 2.2
and Remark 2.3.

Our solution operator replaces the boundary integral with integration of the commutator [0, €] on the
exterior neighborhood. The commutator was introduced by [50] and used later by [48] and recently by [30]:

(1.2) Haf @)= [ Bioaz)n g+ [ Koma(e) A B

u Uu\Q

where U is a sufficiently small neighborhood of Q and &£ is a suitably selected extension operator of €2 such
that the extended functions are supported in Y.

In [45,50], the authors used & for the Seeley’s half-space extension [59], which only works on smooth
domains, and they extended H*®? and %* functions for positive s. For the case of non-smooth domains, e.g.,
[30], the authors used £ for the Stein’s extension [60, Chapter VI|, which is defined on Lipschitz domains,
and also extended H*P and €* for positive s.

In our case, we choose £ as the Rychkov extension operator, which works on Lipschitz domains and
extends H*P and € for all s (including s < 0) (see (4.6) and (4.14). The Rychkov’s extension operator was
first introduced to solve the d-equation by [62].

To prove the --estimates, in [20] and [23,34], the second integral in (1.1) was defined on the boundary,
and thus we only need to consider the estimate of the tangential part of K,_; with respect to (-variable,
which is as follows in our notation (see Definition 2.6):

bqul(z,-)/\f:bgKT

Moreover, to estimate (1.2), we need to deal with the normal part Kq{I =Ky 1 —KqT 1

to the major loss of the kernel. In general, based on the estimates in [20, Section 5], KL 1 loses 1 more

which contributes

derivative than K, ;—_1. Alexandre [3] gave a better control and showed that % - % derivatlve is lost at most.
In this paper, we introduce the following decomposition (see Notation 2.7 and (2.12)), which simplifies
Alexandre’s approach:

(1.3) /Kq_l(z, N[O, Ef = / N[O, E)f + / A([0,E1N)T.

u\e u\a U\
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[0,€]f has one derivative less than f, and the -L-estimate of K, ;(z,-) A [0,€]f essentially follows
from [20]. Although K-, loses one more derwatlve than K, |, the tangential part of the commutator
0,617 f = ([0,€]f)T has the same regularity to f, which compensates for the estimate that we need (see
Proposition 5.1 and Remark 5.2 (ii)).

Note that (1.3) is not needed in the case of strongly pseudoconvex domains because for the Leray map
Q(z,¢) (see Proposition 7.3), we only need the trivial estimates (7.7) and (7.8). See Remark 3.8.

For the case where s < 1 in Theorem 1.1, the commutator [0, ]f may give a distribution rather than
a classical function. In order to ensure that the integral operators make sense, we express the given forms
as the derivatives of functions with positive index. For & > 1, we constructed the anti-derivative operators
{8"}aj<k in [61] such that if a function g is supported outside 2, then g = 37, ,,<, D*S"g with all
summands also supported outside 2. See Proposition 4.13. Therefore, by integrating by parts,

/ KD 0 A 0,8 D F(Q)d Vol = > / K (2,0 A (D88 0 [, )T £) (¢)d Vol
u\a lel<k g

_ _1\lel a7-(T,1) ka 3 e1(T)

-3 (-1 / DEETD(2,0) A (85 o 3,617 £) ()d Vol .

la|<k u\Q
The method of trading derivatives between K, ; and [0, &]f was introduced by [63] for the estimates of
strongly pseudoconvex domains.

The key step to prove Theorem 1.1 is to obtain the weighted estimates for D’;,C(K,;l)(z,() and
Dk (K L )(2,¢). See Theorem 2.9. Note that we take derivatives after we take (L and T) projections.
The reductlon from Theorem 1.1 to Theorem 2.9 is achieved by using the Hardy-Littlewood lemma (see
Proposition 5.3 and Corollary 5.5 (iii)).

In fact, by combining Theorem 2.9 and Corollary 5.5 (iii), we have a stronger estimate of #, in terms of
Triebel-Lizorkin spaces (see Definition 4.5):

Theorem 1.2. With H, as in Theorem 1.1, the following boundedness properties hold for 1 < q <n —1:

s+
(1.4) Hy T oo A9 — Z, T (Q ADITL, Ve>0, 1<p< oo
(1.5) Hy o T oo (A7) — ﬂ?%’s(Q;/\o’q_l), Ve>0, 1<p<r,.

Theorem 1.2 implies Theorem 1.1 (ii) and (iii) automatically for the case where 1 < ¢ < n — 1 (see
Remark 4.6).

Remark 1.3 (Boundedness on Besov spaces). Theorem 1.2 implies the ——-estimate and higher order LP-L?
q
estimates on Besov spaces via real interpolations.

By the elementary embedding (see Remark 4.6 (iii)), for every s € R and ¢ € (0, 00, we have H, : F;, —

gst+1/mg
Tt

(e.g., see [66, Corollary 1.111]):

for p € [1,00] and H, : . — F5 Sorg_ for p € [1,74]. In addition, we have real interpolations

,pa

(25, (Q), Fob ()g = BT, Wp e [1,00), to,t1,t € (0,00], 6 € (0,1) and so # 51;
(720 (), L (D)o, = BLFTED%(Q), Vit € (0,00], 0 € (0,1) and sg # s1.

See [66, (1.368) and (1.369)]. Therefore (see [64, Definition 1.2.2/2 and Theorem 1.3.3] for example),
for every s € R and t € (0,00], we have M, : %5 ,(Q;A"?) — %’;jl/mq(Q;/\o’q_l) for p € [1,00], and
Hy : By ((GAD) = Bopry (A7) for p e [1,7).
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Remark 1.4 (Boundedness on BMO). As a special case of (1.5), we recover the endpoint LP-L? boundedness
Hy o L™ (2 A%9) — BMO(Q; A%971) from [23, Theorem 1.1 (ii)] (cf. [34, Theorem 1.3]). The definition of
BMO(Q) used by Fischer [23] comes from [49, Section 4, Definition 3]. We recall that for an arbitrary open
subset U C RY, BMO(U) and bmo(U) (see [12, Definition 1.2]) are spaces consisting of f € L (U) such
that:

1 1
| fllBmo(wy == sup —/|f - ﬁfg f} <00, [ fllbmo() = Il fllBMO() + SUP —/|f| < o0,
Bcu |B] J Bcu |B| J

where B denotes the balls in RY.

Clearly, bmo(U) C L{, .(U), whereas BMO(U) = bmo(U)/{c- 1y : ¢ € C} ignores the constant functions.

By [12, Theorem 1.4] (since §2 is bounded smooth), we have bmo(2) = {f|q : f € bmo(C™)}, and by [67,
Theorem 2.5.8/2], we have bmo(C") = .Z2,(C™). Therefore, by Definition 4.5, for spaces on domains, we
obtain bmo(Q) = ZFL,(9).

In addition, by Remark 4.6 (iii) and (vi), we have Z{, . € .Z2, , and ﬁroqg =L" C ﬁroqm. Therefore, we
obtain the boundedness H, : L™ (Q; A®9) — bmo(Q; A%971). By taking the quotient of constant functions,
we obtain a stronger one H, : L (; A%9) — BMO(Q; A®971). (Recall that ry > r, from Theorem 1.1 (iii)

since m; > my.)

Obtaining the estimates for the d-equation is a fundamental question in several complex variables. There
are two major approaches can be applied. The first approach is the 0-Neumann problem, which defines the
canonical solutions, and it was proposed by [31]. The estimate originated as the Hérmander [40] L%-estimate
and it was later developed by [42]. We refer the reader to [15] for a detailed discussion.

We use the second approach called integral representations, which yield non-canonical solutions but the
expressions can be more explicit. This method was introduced for the d-equation by Henkin [37] and Grauert
& Lieb [29] in the study of strongly pseudoconvex domains. We refer the reader to [53] and [44] for a general
discussion.

We briefly review the estimates for convex domains of finite type in the following. Studies in complex or
real pseudo-ellipsoids were conducted by Range [52], Diederich—Forneaess—Wiegerinck [21], Chen—Krantz—Ma
[13], and Fleron [26], and in the domain of real-analytic boundaries by Range [51] and Bruna-Castillo [5].
These are all special cases for general convex domains of finite type. The %—regularity was shown to be
optimal by [13].

For the type conditions in convex domains, McNeal [47] introduced the e-extremal basis and showed the
equivalence between the line type and D’Angelo 1-type on convex domains, and it was later used to show
the boundedness of 9-Neumann solutions by [49] (also see [7] for a short proof). McNeal’s approach was used
by Cumenge [16,17] and Wang [69] to obtain estimates for the d-equation. For the type where ¢ > 2, Yu [71]
introduced a different basis from that of McNeal called the e-minimal basis, and showed the equivalence of
the line ¢-type, D’Angelo g-type, and Catlin’s ¢g-type (also see [35] for the connections between McNeal’s
g-extremal basis and Yu’s e-minimal basis).

As mentioned in the beginning, the solution operators on convex domains of finite type are mainly
derived from Diederich-Fischer—Fornzss [20] with the holomorphic supported function constructed by [18].
The Holder estimate L — C'w was obtained by [20], and the anisotropic version was later obtained by
Fischer [24] and Diederich-Fischer [19] on lineally convex domains of finite type. The LP-estimate was first
obtained by Fischer [23] and later partial progress was made by [1,2] and [11]. The C* — C** estimate
was obtained by Alexandre [3]. The multitype notion was used by Hefer [34] who showed that on (0, g)-
forms, the %—estimate could be automatically improved to the miq—estimate if one considers the multitype
of the domain (also see [4]).

The convex domains of infinite type were considered by studies by Range [55], Fornsess—Lee—Zhang
[27], and Ha—Khanh-Raich [38], and recently by Ha [32,33]. Some of their constructions also used integral
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representations. It should be possible to improve their results using the Rychkov’s extension operator, as
applied in this paper.

For general finite type domains that are not necessarily convex, it is known that in C2, one can generally
have the optimal L-estimate (see [25] and [14]; and also see [54] for an approach using integral representa-
tions). In higher dimensions, Catlin [8-10] showed that the canonical solution has boundedness L? — H®*?
for some ¢ > 0 if and only if the domain has finite D’Angelo type. The general lower bounds for ¢ with re-
spect to type m generally remain unknown. For further discussions of finite types and subelliptic estimates,

we refer the reader to the survey by [22].

The paper is organized as follows. In Section 2, we recall the construction of the Diederich—Fornzeness
support function and the corresponding integral kernel, and we introduce the tangential and vertical pro-
jections for d¢-forms. In Section 3, we review the e-minimal basis and prove Theorem 2.9. In Section 4,
we summarize the properties of function spaces and Rychkov’s construction of the extension operator. In
Section 5, we prove the boundedness of the tangential commutator, Proposition 5.1, and strong Hardy—
Littlewood lemma, Proposition 5.3. In Section 6, we complete the proof of Theorems 1.1 and 1.2 using
Theorem 2.9 and Corollary 5.5. In Section 7, we apply the proof techniques for Theorems 1.1 and 1.2 to the
case of strongly pseudoconvex domains and prove Theorem 7.1.

In the following, we use N = {0, 1,2, ...} as the set of non-negative integers.

On a complex coordinate system (z1,...,z,), 0% denotes the derivative on the holomorphic part
alel n B c ot ol 2n
EEE where o € N, and D7 denotes the total derivative P TR T where 8 € N7,

We use the notation = < y to denote that x < C'y, where C' is a constant that is independent of z,y, and
x =y for “z Syand y <z We use x <. y to emphasize the dependence of C on the parameter ¢.

For a function class 2" and a domain U, we use 2 (U) = 2 (U;C) as the space of complex-valued
functions in U that have regularity 2. We use 2 (U;R) if the functions are restricted to being real-valued.
We use 2 (U; AP?) for the space of (complex-valued) (p, ¢)-forms on U that have regularity 2 .

In the following, U; = {—T1 < ¢ < T1} denotes a fixed neighborhood of b2 (see Lemma 2.2).

Acknowledgment

The author would like to thank Xianghong Gong and Kenneth Koenig for their valuable support and
comments.

2. Construction of homotopy formulas

Let 2 C C™ be a smooth convex domain that has finite type m. We fix a defining function o € C*°(C"; R)
of Q (i.e., 2 = {0 < 0} and Vp(¢) # 0 for all ¢ € bQ) such that the following holds.

(2.1) A Tp > 0 exists and for every —Tp < t < T, the domain €, := {¢ : () < t} is convex and has the
same complex affine g-type (see Definition 3.1) to Q = Qg for all 1 < g < n.

This can be achieved by assuming that 0 € Q (which can be achieved by passing to a translation) and
requiring ¢ to have the homogeneity condition (also see [34, (2.1)]):

(2.2) o(A) +1=A(0(¢) +1) for all ¢ € b and all A € R closed to 1.

In this setting, €, is simply the dilation of €, which shares the same (line, D’Angelo, or Catlin) type
conditions.
We let Uy := {¢ : |0o(¢)]| < To} be a corresponding open neighborhood of b<2.
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We recall the Diederich-F-orngess holomorphic support function S € C*°(C" x Up; C) from [18], as follows.

Fix suitably large constants M;, My, M3 > 1. For each { € Uy, we take a unitary matrix ®(¢{) € C**"
that is locally defined and smoothly dependent on ¢ such that ®(¢) gzgg‘ = [1,0,...,0]T. We define' for
¢ €Upand w = [wy,...,w,]T € C*(= C"*1):

m/2 . o . .
23)  SEOW =t Mt ey Y LAl e

j=1 || =273001 =0 w =0 @
(24) S(2,¢) == STO(B(Q)(= ~ ) zeq

Lemma 2.1. In (2.4), S(z, () with suitable constants My, Mo, M5 > 0 satisfies the following.

(i) (|20, Lemma 2.1]) S(z,¢) is a smooth function, holomorphic in z, and does not depend on the choice
of the family {®(¢) : ¢ € Up}.
(#i) ([18, Corollary 2.4] and [23, Theorem 2.1]) An My > 1 exists such that
(2.5)
Re S(z,¢) < My - max(0, o(z) — 0(C)) — MLAZ —¢|™, Y¢eUy z€QUUp such that|z—(|< ML4

As mentioned by [3], S(z,¢) may have zeroes in (2 x (Up\Q)) N{|z—¢| > ML‘L} We can make the following
standard modification.

Lemma 2.2. Let S € C22(C™ x Up; C) be as in (2.4). Ty € (0,Tp] exist that are associated with the neigh-

loc

borhood Uy == {C : |o(C)| < T1} of b9, a constant Ms > 1, and a § € €°°(Q x Uy; C) such that:

(i) §(~,C) s holomorphic in z € Q for all { € Uy,
(ii) 1S(z,¢)| > MLO for all (z,¢) € Q x (Ul\ﬁ)Asuch that |z — (| > ﬁ’.
(ii) An A € € (Q x Uy; C) exists such that S(z,() = A(2,¢) - S(z,¢) and MLS < |A(z,¢)| < Ms for all
(2,¢) € Q x (U1 \Q) such that |z — (| < ﬁ

Remark 2.3. Lemma 2.2 was not mentioned by [20], which might leave a gap when estimating the last
integral in [20, Section 6]. There is a different modification S(z, () in [34, Section 6] but it may not work in
our situation.

Proof. We use the same construction from [39, Theorem 2.4.3].
Let 01 := min (Tp, (2M4) "™ 2(1 + || Vol L= (wy)) ") € (0,1). By (2.5), we see that

—ReS(z,¢) > 41, whenever o(z),0(¢) € (—d1,01) and ﬁ <|lz=(| < ML4

Let x1 € C°((—d1,01); [0, 1]) be such that x1|[7151 15 = 1. Let Uy := {C : |o(¢)]| < 01}, and we define a
(0,1)-form f(z,¢) = Z?Zl fi(z,Q)dz; for z € Qs, = {0 < 61} and ¢ € Uy by

0, otherwise

£ Q) = {EZ(XKZ—C) log(=5(2,¢))), if ;p <lz—¢ < 3 |

Since S(z, () is smooth and holomorphic in z, we see that f is bounded smooth in the domain s, x Uj,
and f(-,¢) is O-closed for each ¢ € Uj.

! For a complex matrix A, we use AT = AT for the conjugate transpose. Thus, At = A= when A is unitary.
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Therefore, either by applying [15, Theorem 11.2.7 and Lemma 11.2.6] since €5, is convex, or by applying
[39, Theorem 2.3.5] since we can find a strongly convex domain Q such that 9%61 cQc Qs, , a continuous
solution operator T': € (5,5 A%") Nker & — € (Q1,, ) exists such that 9Tg = g in Q1 , for every bounded
smooth O-closed form g in Qs, .

Now, for z € Q15 and ¢ € U{, we define

w(z, Q) = (Tf(O)=); Az Q) = exp(=u(z,());

§(2.0) = {A<z,c>s<z,<>, if |2 = (< o
’ —exp (xa(|z — ¢ log(=S(2,¢)) —u(2,0)), if |z = (| > 57

We see that S : Q15, x Uy = C is holomorphic in z and bounded from below in {[z — (| = 2M4}

By taking T := 161, Uy = {lo| < Ti} and M5 := max (% exp( sup ’U/)7||S||LOO(QT1><U1)'

T XU1

exp (qupU (—u))), we obtain the estimates in (ii) and (iii), which completes the proof. O
T XUz

Now, we use §(z, () to define the corresponding Leray map @ = (@1, ceey @n) € C*(2 x Uy;C™) by the
following: for ¢ € Us,

§2(0) . A2() 19S7©
(26) S ( ) (<+(I)(C) ><)a Q ( ) fO Ow;

~

QY w) = Q7P (w),...,QY 0w Qz,¢) = ()T QL (@(0) - (=~ ).

(tw)dt, 1<j<mn;

By the same argument in [18, Lemma 2.1], @ does not depend on the choice of unitary maps {®(¢)}. In
fact, we have @j(z,C) = 01 g—i(( +t(z — ¢),¢)dt, and thus §(z,§) = 2?21 @j(z7ﬁ) (25 — G)-

Now, we identify the vector-valued function @(Z,C) with the 1-form Z;;l @j (2,¢)d¢; and we denote
b(z, Q) = Z?Zl(g — Z;)d¢;. The following notations for differential forms on (z,¢{) € Q x Uy are adapted
from those used by [15]. In the following, 0 = 0. ¢,

b/ %nl !
_bAQ Rm k@) A <5@>k-1 5
(2:8) K0 = e A 2V — g = ;%Km,o.

Bis an (n,n — 1) form where B, is the component that has degree (0,¢) in z and (n,n—1—g¢) in (; K is
a (n,n — 2) form where K|, is the component that has degree (0,¢) in z and (n,n —2 — ¢) in ¢.

Lemma 2.4. Let £ : €°°() — CHQ U Uy) be an extension operator such that suppEf € QU Uy for all
functions f € €°°(2). Then, the following integral is pointwisely defined:

(2.9) H,f(2) == / By_1(z,- ) NEF + / K, 1(z, )AN[0,Elf, 1<q<n, fec&(QA"), zcQ.

QUU; Ui\Q

Moreover, f = OH,f + Hy410f for all f € €>(Q;\%9).
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See [30, Proposition 2.1] or [15, Theorem 11.2.2] for a proof. Both references use the corresponding
notation K = Q°1(b,Q). To integrate the bi-degree forms, we use the convention [ u(z,y)dz! A dy’ :=
([, w(z,y)da")dy”, which we note is different from [53, Section IIL.1.9].

Lemma (2.4) does not guarantee that f = 5qu + Hq+15f holds for distributions since £ may not be
defined on the space of distributions.

Definition 2.5. We construct the operator H, from (2.9) by taking £ as Rychkov’s extension operator given
in Definition 4.11.

Note that the Rychkov’s extension operator is defined on the space .7/ () of all extensible distributions.
The boundedness of H, follows from the weighted estimates of the derivatives of the tangential part and
the vertical part of Ky_1(z,() with respect to (-variable.

Definition 2.6. Let o : U; — (—T1,71) be a defining function of © with non-vanishing gradient and let
b = {o =t} (for |t| < T1) be as given above. Let 1 < p,q < n and ¢y € U, and we define the J-vertical
projection (—) é;) and O-tangential projection (7)2; at (o as the following surjective orthonormal projections:

(2)g : APIC - AP Cm @c (Span(@e(Co)) AN C™), (=) : AT NPC™ @ NI T (092(c))-
For a (p, g)-form f: Uy — A\"*C", we define f*(¢) := f(¢)¢ and f7(¢) := f(¢){ for ¢ € Uy naturally.

For a real hypersurface M C C™ and a ( € M, TZO’IM = TC*O’I(C" N CTFM is the anti-holomorphic
cotangent space of M at (.

Notation 2.7. For the bidegree form K(z, (), we use K ' (z,¢) and K*(z,() for the projections with respect
to (-variable but not to z-variable, i.e., K (z,¢) := Kq4(z,-) " (¢) and K- (2,¢) := K4(z,-)*=(¢) for each q.

Remark 2.8. Let 0,...,0, be (0,1)-forms defined on an open subset U C Uy, which form an orthonormal

frame such that 6; = do/|0g|. Let (Zi,...,Z,) be the dual basis, which are (0,1) vector fields on U.
Therefore,

Span(fa, ..., 0n) = [Leep T2 (092()) (CT*U),  Span(Za, ..., Zn) = [Ty T (092 c) (C TMU).

We see that Z; is uniquely determined by ¢ (which does not depend on (6s,...,0,)) and is globally
defined on Uj:

(2.10) 7, = LZQQ.

Let f = Z\J\:p,lKlzq frx07 AT be a (p, q)-form on U, where f; = (Z; A Zk, f), and we see that

— K’ =K
:Z|J|=p,‘K"=q—1 fJ,lK’oJ/\al/\o ) fT :Z\J|=p,\K|=q;minK22 nyKQJ/\Q
Therefore, f+ and fT are still defined when f has distributional coefficients, and we have the following:
(2.11) fr=0ng =D [T=F-rt=0UD"
Moreover, for a (p’, ¢’)-form g on U, one can see that

(2.12) (fA) =fTAgT, fragt=o0, and thus fTAg=ftAg'.
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We leave the proof to the reader.
The weighted estimates that we need are as follows.

Theorem 2.9 (Weighted estimates for K(z,()). Let dist(w) := dist(w, b82). Let 1 < q¢ < n. Assume that Q
has q-type mq < oo. Let rg := (n—q+ 1) -my + 2q and v, = —=

rg—1"

Then, for any k >2 and 0 < s<k—1—-1/mg, a C=C(Q, Ul,g,q,mq,k,s) > 0 exists such that:

(2.13) / dist(¢)*| D% (K, 1)(z,¢)|d Vol(¢) < O dist(z)* 1 ma 7k, Vz €
U\Q
(2.14) / dist(2)*|DE (K] ) (2, ¢)|d Vol(z) < C'dist(¢)" 7 ™", V¢ e U\Q;
Q
(2.15) / dist(C)*|DE (K- 1) (2, O)|dVol(¢) < Cdist(z)" e, Ve e
U\Q
(2.16) /dist(z)ﬂD’;C(K;l)(z,g)|dvol(z> < Odist(¢)* Tk, V¢ € U\
Q
(2.17) / | dist(C)* DY (KT 1)(z, O dVol(¢) < O dist(z)(*+1~F), Vs e O
U\Q
(2.18) / | dist(2)*DE (K_1)(2,¢)["d Vol(z) < Cdist(¢) T M, V¢ € U\
Q
(2.19) / | dist(¢)* DY (K= 1)(2,¢)["d Vol(¢) < C dist(z) " ma) Vz e Q;
U \Q
(2.20) / [dist()° DE (K- 1) (2. ) d Vol(z) < Cdist(Q)* ™7 v¢ e U\
Q

We use DZC = {8‘9'&%““‘ tla+B8+v+3d| <k} for the total derivatives among all variables acting on

9B OCT DR
their coordinate Comzp(?rzlefl%séﬁly\fote that we take derivatives after we take (L and T) projections. We prove
Theorem 2.9 in Section 3.

The estimates (2.15), (2.16), (2.19), and (2.20) are all not optimal. In practice, to prove Theorems 1.1
and 1.2, it is sufficient to replace the mlq—factors in (2.15) and (2.16) by any & + m%;v and the miq—factors in
(2.19) and (2.20) by any ¢, for all € > 0. See Remark 3.10 (iii) for their improvements.

In Corollary 5.5 (iii), we show that [0,&]T does not lose derivative (also see Remark 5.2). This technique
is not necessary for the estimates for strongly pseudoconvex domains (see Remark 3.8).

By expanding K,_1(z, () from (2.8), we see that its coefficients are the (constant) linear combinations of

bz Q) A Q=) A (0Q(=,0) "

(2.21)
Sz Ok |z — ¢[20

, 1<k<n-—gq

We start with the estimates of the components in (2.21) in Section 3.
3. Estimates via e-minimal bases

We recall some notations and definitions from [47,71].
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Definition 3.1. Let 2 C C™ be an open set and let ¢ € bQ. For 1 < g < n, the (complex affine) g-type of Q
at ( is

Ly (b82,¢) :=sup {m eRy:  lim M

= 0 for all ¢g-dim C-linear subspace H < (C"}.
w—0;weH |w|m

The (affine) g-type of Q is the minimum of L4 (b2, {) among all ¢ € bQ2, which we denote by m,.

As mentioned by [34, Theorem 2.1], on convex domains, the affine types, D’Angelo types, and regular
D’Angelo types all coincide. Moreover, if 2 has affine g-type my < oo for 1 < ¢ < n, then (my, mp_1,...,m1)
is the Catlin’s multitype of Q. See [47,7,71]. In particular, m; > -+ > m,_1 > 2 are all even integers and
m, = 1.

To study the m%, gain on (0, g)-forms, especially for ¢ > 2, we use the e-minimal basis approach, which
was introduced by [71] and used by [34].

Definition 3.2. Let Q2 C C™ be a finite type convex domain where the defining function p is as given above.
For ( € Uy, v € C™, and € > 0, let

(G v,e) i=sup{e > 0= Jo(C + M) —e(Q)| <&, VAEC, A <c}.

An e-minimal basis (or a Yu-basis at the scale €) (v1,...,v,) at ¢ € U is given recursively as follows: for
1 <k <n, v, €C™is a unit vector that minimizes to the following quantity of v:

dist (¢, {z € ((+C - v): 0(z) = 0(¢) +¢}), where [v| =1 and vl Spanc(vy,...,v5_1).

For k = 1, we use Spanc @ = {0}.

For an e-minimal basis (v1,...,vy) at {, we define 7;(¢, €) := 7(¢, v;,¢) for 1 < j < n, and the ellipsoid
n n a; 2 n n —
P.(¢) == {C+Zj=1 ajvj i i Tj‘(éls)z <1} CC™ For ¢ >0, weset cP.(¢) :={z € C :CJFZCC € P.(Q)}

for a dilation of P.(¢) with the same center.

We use an ellipsoid rather than a rectangle to define P.(¢) (cf. [20, Section 3] for example). One can see
that {7;(¢,e)}}—; and P-(¢) do not depend on the choice of the e-minimal basis.
We recall the following from [47,71,20,34]. Recall Lemma 2.2 for M5 > 0 and U; D bS2.

Lemma 3.3. Assume that the finite type convexr domain @ C C™ has g-type mq < 0o. Then, a Cy > 1 and
an gg € (0, MLS) exist, and for every multi-index B = (', 8") € N*", a Cs > 0 exists such that:

(i) For every ¢ € {|o| < 0}, we have P.,(¢) C Uy. Moreover, for every 0 < e < &g and every e-minimal
basis (v1,...,v,) at ¢ (recall that 7;((, ) := 7((,v5,¢€)):

(3.1) P:(¢") € CoP.2(¢) and 2P:(¢') € Poye(), V¢ € Pe(Q);
(32) Tl(Cag) < 7-2(C7€) < 7-3(<75) << Tn(<,5);
(3.3) n(Ge) > e, m((e) > Eery
(3.4) 74(¢r8) < Coet/Mmiina, V1< g <

(ii) For every ( € Uy, 0 < e < &g and e-minimal basis (vy,...,v,) at C,

(3.5)
918l € "L |w;l?

a7 0(C +Fwivr + .. wpvy)| < Cp—; —7, Vw e C" such that —L <1
ow?’ dw? || Py 75(¢,e)Piths ; (¢, €)?
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Remark 3.4.

(i) (3.4) is particularly useful for ¢ > 2. If we only consider (0,1)-forms, we could use the e-extremal
basis (a.k.a. the McNeal-basis at the scale €) to define 1,...,7,, where (3.1) and (3.3) remain true,
but (3.4) is replaced by e'/™a-1 < 7, < /™ (e.g., see [34, Theorem 2.3]).

(i) In (3.5), 227, Tll(uc ‘5)2 < 1is the same as stating that ( +wivy + -+ +wypv, € P-(¢). This estimate is
only useful when ijl mnﬂ,j (85 + B}) < 1; otherwise, the right-hand side of (3.5) is bounded from

below (or even tends to co as ¢ — 0) whereas the left-hand side is always uniformly bounded.

To prove Theorem 2.9, we need to estimate |K, ;(z,¢)| and |[K;-(z,¢)| inside an ellipsoid P-(¢). Recall
go in Lemma 3.3 and @ in (2.6).

Lemma 3.5. By retaining the notations in Lemma 3.3, a Cy1 > 0 exists that satisfies the following:

(i) 18(z,¢)| > C%E, for every ¢ € Uy, 0 < e < e and z € Qy)\P=()-
(ii) Let (o € Uy, 0 < e < e, and let Uy € C™*™ be a unitary matriz such that its n column vectors (with
order) form an e-minimal basis at Co. Let Qu,(2,¢) := W - Q(Vg - 2, ¥y - ¢). Then,
(3.6)

Cie Cie
Tj(CO,E‘:), 8(]@@\1[07-7( ’CO) = Tj(<0,€)7'k(<0,€)’

Quo,j(2:Co)| < for z € P(Co), 1<jk<n.

Proof. See [20, Lemma 4.2] or [34, Proposition 4.1] for (i). Note that the modification from S to S in
Lemma 2.2 ensures that |§(z, ¢)] is bounded from below when |z — (| is large.

For (3.6), since we fix the point (o and the number €, by passing to a unitary coordinate change, we can
assume that Wy = I,,. In particular, @q;o = @

(3 6)is a Weaker version of [3, Lemma 8] where (under the assumption that ¥y = I,,) it was proved that
|0z Q](z G) S = Tk [ —=e2 >en~m and 7, = 73 for k > 2. [3, Lemma 8] is stated
w1th e-extremal bases but the result is still true if we replace it by e-minimal bases. There is no additional

change to the proof.
Alternatively, we define Q@ = [Q1,...,Q,]T as the @ from (2.6) with S(z,() replaced by S(z,(), i.e
Qj(z,¢) = 01 g—fj(( +t(z — ¢),¢)dt. Then, we have

@j:A'Qj+GZjA’Sa and QJ*A QJ A QJ+8ZJA aZkSJraszkA.S’

where A € C* is as given in Lemma 2.2 (iii). By [20, Lemma 5.1], we have |Q;| < ¢/7; and |0 Q] <
e/(7j71), and thus (3.6) follows from the fact that A € C? and S(z,¢) = 327, Q;(2,¢)(2j — ;). Again, [20,
Lemma 5.1] is stated with e-extremal bases but the result is still true if we replace it by e-minimal bases.

There is no additional change to the proof. 0O

Corollary 3.6. We retain the notations from Lemma 3.5 (u), and we identify the column vector function
Qu, = [@%71, . .,@%m] with, the (1,0)-form Qg, = ZJ 1 Qq,w( ,0)dC;. Then, the estimates using (3.7)
and (3.8) imply the following.

A C1 > 0 exists that does not depend on (y € Uy and 0 < € < eq, such that for everya € {0,1}, 1 <b<n
and every z € P:({p),

R ) R _ , €a+b71
(3.7) (Quo)® A (BQu,)"(2,¢o) mod déy| < Clm;
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a+b—2
3.8 A a 5/\ b ou € TbJrl(COaE) )
( ) |(Q\I/0) /\( Q\IIO) (27C0)| < 1 ;,1_21 Tl(Co,E)Q

PN — K
By (3.7), we mean that if (Qu,)* A (0Qu,)’(2,¢) = 21| =atbi K |=v frr(z,Q)d¢” Ad(, then |frx| <
gatb=1/ H?igl 77 for all index sets J and K = (ki,...,ky) such that ki,..., ky > 2.

Remark 3.7. This is essentially [20, Lemma 5.5] or [34, Lemma 4.2], which used the (1, 0)-form Q(z, ) (see
the proof of Lemma 3.5) instead of the Q(z, () in the statement.

Remark 3.8. In the case of strongly pseudoconvex domains, we informally have 7 ~ -+ ~ 7, & sé, which

means that |(Qu,)* A (0Qw,)’ mod déi| < e ! and |(Qu,)* A (0Quw, )| < e 2. Since £~ 1,972 > 1, we

recall from Remark 3.4 (ii) that these estimates become unnecessary.

Proof of Corollary 3.6. Again, we assume that Uy = I,,. By writing Q% A (5@)b = ElJ‘:aer;‘K‘:v FrrdC? A
—K 80, ~ o~

dT", we have fi, . by = £ 100, 22 1240 Qj,. By (3.6) we have

p=1 3ka
_ catb
(3.9) |fj1.“ja+b,k1...kb‘ hS H2=1 — H;ZZH - }
In the differential form, (ji,...,jats) and (k1,..., k) are two collections of distinct indices. Therefore,

we can assume that (1 <)jpy1 < - < jorp < Jj1 < - < jp and k; < --- < kp. In (3.10), we modular d(;,
where we only need the case of k1 > 2.
By (3.2) and (3.3), e ® 7q < -+ < 7,, and thus for the case where k; > 2,

cbt1 b
b Jori=1 51 o when a =1 at+b—1
firos | < Tjp41 H;;:l TipTkyp jp=kp=p+1 1125 7 < £
JiJatviki kagu | S b b1 S e
— | i, N when a = 0 1=2 7]
b . Jp=P b 2
Hp:l TipThp kp=p+1 Hl:2 T To+1
This proves (3.7).
Similarly, for the case where k; > 1,
cbt1 b1
5 jrir=1 ® —p———— whena =1
< Tios1 Hle Tjp Thy j;;C:?iJrl Hl:2 T Tot+1 Ea+b—27_b+1
|fj1”'ja+bakl~~ka+b| ~ b p=P b2 < 1 o -
c < 1=2Ti

when a =0

HZ:I TjpThy Ip=HRo=P - H?:2 7
This proves (3.8). O
By taking pullback from ¢ +— ¥y - ¢, we have the following.

Lemma 3.9. For every j > 0, a C; > 0 exists such that for every 1 <k <mn, 0<e <eg, (€ Ui\Q, and
z€ QN PE(C)\P5/2(O7

QA @Q)\T e
. P (P55) ol <o
P S
(311) D1 (L2000 )| < 0 et )

k+1 ’
l:z Tl (Cv 6)2
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where DI = {6?8?8%}‘a+5+7|§j is the collection of differential operators acting on the components.

Remark 3.10.

(i) There is no z-derivative since the fractions are holomorphic in z € Q,¢)(D Q).

(ii) In fact, (3.10) and (3.11) correspond to the terms T Tf:lf[?:l - and T i:iﬂ;%;f - in [3, Lemma 9],
respectively. By obtaining a refined estimate on the normal direction, where [3] introduced a notion
of 7/ := £2, we can improve (3.11) by a factor of £2. However, (3.11) is sufficient for our proof.

(iii) If we consider the anisotropic estimates, we can show that for o, 3,7 € N, ¢ € U;\Q and z € QNP.((),

if the standard coordinate basis is e-minimal at ¢, then

wpfn (@1 O T LI
02 848g<w> (2,0)| SaBy k+1 ‘e U s
o QA (9Q a—%—al—ﬂl—ﬂ & o,
az 8?8'%( ]EJFI ) )( 7<)‘ So&,ﬁ,’y H C’ i—Bi— REN
S Thk+1 (Ca ) Hl 2Tl (Cv j=2

The proof requires Alexandre’s estimate for normal derivatives in [3, Section 2].

Proof of Lemma 3.9. For convenience, we write” 0 @ =
By Lemma 3.5 (i) and Lemma 2.2 (iii), we have |S| 2
estimate |[D7S] <; 1 for j > 1, we see that

(EQ)T throughout the proof.
e for z € Qy)\P:/2(¢). By applying the trivial

(3.12) 1D (S79)(2, Q)] S5 18(2, Q1 F 7 S5 €777 when z € (2N Po(Q)\Pe/(C).

Therefore, by applying product rules, for z € (Q,(¢) N P-(¢))\ Pz /2(¢), we uniformly have

QA0 Q) ) T,
LCLICRIE PSS SR S L G I (el
q=0 jo+-+jg+1=J p=2
J2,--dq 21
1 T oA
NQZ(ZI sl @ S ]l (@79 ),
Jo=0 1<j1<i—q
Jo<ji—q—j1
(1D @Q)] 55 1)
£ —k—jo—1|A A (BT A\k—a = —k—jo—1|(5 ' OYk—a 3.1 )
s (X e QA@ Qe + Y @R ), (by (312) and [DRQ] 55 1),
=0 " jo=1 do=1

Now, we fix ( = (o and e. The left-hand side of (3.10) is invariant under a change of unitary coor-

—T ~

dinate system, so we can assume that the standard basis is e-minimal at (p, and thus 0 Q,;(z,(o) =
9Q; = . . .

> ohes %(2, ¢o0)d(,- By applying (3.7), we obtain

~ —T k i 1 .
. k J—9q k—q J=a- k—qg—1 —1—j
Dj Q A (6 Q) < § E—k—jo—l + E E_k Jo—1 € < €
z,¢ §k+1 ~ Z k— q+1 k—q+1 k+1
=0 jo=1 1=2 Go=1 1=2 l 1=2 Tl
2 On a (1,0)-form f, we have (8f)' = 8, f on the boundary bQ2. For orthonormal (0,1)-forms (1, ...,0,), and its dual basis

Z1,...,Zy) in Remark 2.8, we have 9 (frdCx) = S."_(Z;f)0; A dCx. One can interpret o' va, as Op on each leaf by C Uj.
j=2\4j J ¢
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This completes the proof of (3.10).
After replacing ET@ by 9Q and (3.7) by (3.8), the above argument yields (3.11). O

The same estimates hold if we swap z and (.

Corollary 3.11. By enlarging the constant C; > 0 in Lemma 3.9 if necessary, the estimates of (3.10) and
(3.11) with 7;(C, €) replaced by 7;(z,€) hold for all z € Q and ¢ € P:(2)\(P-/2(2) UQ).

Proof. Indeed, we still have z € @ and ¢ € U;\Q. By (3.1), ( € P.(2)\P.j2(z) implies z €
Py (O\P:/2¢0)(¢) and 75(C,e) > CLOT]‘(Z,&‘), where Cy is as given in Lemma 3.3. The results then fol-
low from Lemma 3.9. O

Recall that K, 1(z,¢) in (2.8). Let r4 := (n — ¢+ 1)my + 2q and 7, := r:ql' Since m; > -+ > myp_1 >

2 > m, =1, we see that
(3.13) T > Ty > > Ty, thus 1 <y <7vp <o <y,
We can now integrate K,_; on some e-minimal ellipsoids.

Lemma 3.12. For every j > 0, a C; > 0 exists such that for every1 < q¢g<n—-1,2€Q, ¢ € Ul\ﬁ and
0<e<e,

(3.14) / DI ) (w, )|d Vol,, + / DI (KT ) (2 w)]d Vol,, < Cpe™a 7,
NP O\ P5 (0) PP (100)

(3.15) / |DIK = (w,¢)|d Vol, + / |DY K~ (z,w)|d Vol, < ngm%‘j;

NP (O\P5 (0) PP (109)

(3.16) / DK (w, ) [d Vol,, + / IDIKT (2 w)["d Vol,, < (Cjet=9)™;
PO\ P5 (0) PP (100)

(3.17) / |DIK_~ (w,{)|"d Vol, + / |D?Y K (z,w)["*d Vol,, < (cjgm%‘f)%,
NP (O\P5 (0) PP (100

where D7 = {ag/aguagﬁla?” dad| 4+ @ 4+ B+ 8" < 4} is the collection of derivatives of all variables.

Proof. Since K, 1 = K, ; + K, (see Remark 2.8) and the right-hand side of (3.14) is smaller than
the right-hand side of (3.15), it is sufficient to estimate (3.15) with K;-_l replaced by K,_i. The same
replacement also works for (3.17).

From (2.8), we recall that K, are linear combinations of (2.21). From Definition 2.6 and Remark 2.8, we

recall that K | are also the linear combinations of (2.21) with dQ replaced by ETQ\ = (9Q)T. Therefore,

by Lemma 3.9 and Corollary 3.11, for z and ¢ in the assumption, and w in the integrands (for z and ¢,

respectively),
n—q —1-j n—q —1—j
. € 1 . € 1
IDIKT (w,0)] < —i DK (zw)] S —r T
D T T e AP 3% FeTer Ter
n—q —2-j n—q —2-j
, € Ti+1(¢, €) ; 3 Te11(C,€)
|IDTKg—1(w, Q) S 1 D' Kg1(zw)] S T
q ; H;c:2 Tl(C,E)2 |’LU _ C|2n 2k—1" q ) ]; H;;Q TZ(Z7E)2 |’LU _ Z‘Zn 2k—1
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By taking an e-minimal basis at { and at z, respectively, P.({) and P.(z) are mapped into the subset
{u: |u] < 71,...,|un| < 7n}, where 7, = 71((, €) or 7(2,¢). By (3.4), we have 7; < e'/™n-1+1. Recall that
1l=m, <myu_1 <--- <mq from Definition 3.1.

Therefore, (3.14) and (3.15) are given by the following (also see [34, Section 3]):

d Vol(w) — d Vol(w)
/le =211y (¢, e)? Psé)kzzl —2kL

w = 2P [y (G, €)?

/ dVol(wy, ..., wy)
(TIFy ) - (0 )2

w1 | <71, |wn | <Tn
n—gq
d Vol S
(3.18) ST Mty o),
= (Xiggs [wnl)
k=1 |[We 41| <Thg 1, | Wn | <Tn I=k+1
n—a s 2n—2k—3
s ds
=53 tdt/ (t 1 5)2n—2k—1 (n~e, t=wppl, s = |[(Wrt2, ... wn)])
k=1 0
—q M n—q n—q
1 1
Y [ =Y s Y e et by 3.
k=1 { k=1 k=1

By multiplying e =177, we obtain (3.14). Note that by (3.4), e =277 e T S e ~277 and thus (3.15)
n—q
follows.

Similarly, (3.16) and (3.17) are given by the following (cf. the control of Ly, in [34, Section 4]):

. ol(w) ol(w)
/Z d Vol /Zw d Vol

Pe(C) ’LU C|(2n k= 1)’Yq1_[ 27-1 Cv P() _Z|(2n k= 17(1 Hl QTl(Ca )

Z dVol(wy, ..., wy)
(T 77 - (07 ) 2 0

k= |w1|<T1, olwn <y
k
) QanzH dVol(wiy1, ..., wy)
€ 2001 (> lw |)(2n72k71)%
k=11=2T] [ W1 | <Thg 1oy | Wi | <T 1=1 1%l
3.19
( ) g Thk+1 o0 2 2k—3
n=2k=3g 3
< 2 —%'2("’_1)(711_1) 5 35 < <
N2 Z € tdt (t+ S)(2n72k71)7q ESmens :
k=1 0 0
n—gq Tk+1
§€27q 282—2’7q—(k’—1)(’)’q_1) / +2n=2k=1)(1=7q) J4
k=1 0
n—q
<2 Z €(k*+1)(1*'Yq)7-,£2+nl*2k71)(17%)+1
k=1

n—1
1
5627‘7 E E(n7p+1)(17'yq)+ mp (2p—1)(1— 'Yq)+@

p=q

1
(Thyr Se™n -, p=n—k)
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n—1
<2 Z (=P (=7 + 5 2p= 1) (1=7p)+ 5 (by (3.13)).
pP=q

The last inequality above equals €27 itself because for every 1 < p <n — 1,

(3:20) (n—p+1)(1=7p)+ 7= (2p—1) (1 =)+ 70 = 2l () L = Bt g L,

mp mp(rp—1) myp
Thus, by multiplying e~ (197 to (3.19), we obtain (3.16). Again, by (3.4), e~'~J ] rl£1<ax Tea1 S 5_1_j+”+q
n—q
R
By multiplying '™ 7 to (3.19), we obtain (3.17). O

We can now prove Theorem 2.9 by taking the sums over e-minimal ellipsoids.

Proof of Theorem 2.9. Note that the constants €9,y > 0 in Lemma 3.3 depend only on 2, o, and §,
but not on z and (. We can replace the domains of the integrals (2.13) - (2.20) by z € QN P.,(¢) and
¢ € P.,(2)\Q. Indeed, by construction,

sup |DE K (2,0 + D Ky (2,0)] < 00, k>0.
z2€Q,(eUL\QY; |2—(|>e0/Co

The proofs of (2.13) and (2.14) both follow from the same argument, and similarly for the other equations,
and thus we only need to prove (2.13), (2.15), (2.17), and (2.19).

Let 2 € Q with dist(z) < ¢. Let J € Z be a unique number such that 277y < o(z) < 2177¢(. Therefore,
Py (2) CQand ¢ € P(z) = dist({) Seforall 0 <e < eq.

By applying (3.14), we obtain (2.13):

J
/ dist(¢)*|D¥ K, (2,¢)|d Vol <k Z / (277e0)*|D* K, (2,¢)|d Vol

(3.21) N\ Py NPy ()U9)

~E€0

Sk D@ eg)* (27 eg) ™ TR < 27 TR st (z) TR,

By applying (3.16), we obtain (2.17):

<

/ \dist(QsDquT,l(z,C)|‘quVol< <k Z / (Q_jEO)S’Yq \DkK;r,l(Z,C)quVOl(
_ —
(3.22) TolNE I=1 Py (N(Pymy (2)U)

(2770)*70(27Tgg) 1R < 27 (1R  dist(z) (S H R,

“M“

Using (3.15) and (3.17), the same arguments show that
/ dist(¢)® |D]c ~1(z,0)|dVol(¢) < 9= (ot R dist(z)s+%7k;
Py (2:)\Q

/ |dist(()sDquL_l(z’Q‘quvol(o —J(s=k+71-)7q ~ dist(z )(a ket )7
Pey (2)\@

These two equations give (2.15) and (2.19). The proof is now complete. O
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Theorem 2.9 implies the following weighted boundedness between Sobolev spaces.

1.
Koo

g,

Corollary 3.13. Let 1 < ¢ < n—1 and a € N?*(= Ng x Ng) We define integral operators K
LY UN\Q; A% 0H) — CP (Q; A%91) by

(3.23) KT a(z) = / DEE D)z Ag: Kioglz) = / (DE(KE1)(2,) A g.

Ul\Q Ul\ﬂ

Let dist(w) := dist(w, b2). Then, for every k>0 and 1 < s < k+ |a| — miq (in particular, k + |o| > 2),

(3.24) K], : LP(U\Q, dist' %5 A9y 5 WP (Q, dist" o1 ma o A1), V1 < p < oo
(3.25) KL, : LP(U\Q dist™a %5 A%9Y) o WRP(Q dist" T T A0yl < p < oo
(3.26) K., : LP(U\Q,dist'~*; A%FY) — Wh s (9, distP1el—s; A1), V1 <p<ry
(3.27)  Kg,: LP(U1\Q, dist™e % ALIHY) Ly RS (), disth el s, A0y, VI <p<r,

Remark 3.14. Using integrating by parts, we obtain the relation
IC,(JTo;l)g = (—1)“’|IC((ZIJ’J‘) oD%, forall g € C°(U;\Q; A%7T),

Therefore, (3.24) - (3.27) can be restated as: for every k,0l > 0and 1 < s < k41— 'm%] (in particular,
k+1>2),

’C;o : Wl’p(ﬁl\ﬂ,distl_s;/\O’q'H) — W’”’(Q,distk+l7#75;A0’q_1), V1 <p < oo
IC;O : Wl’p(Ul\Q,dist%qfs; Aty Wk’p(Q,distka%qfs; A1y, V1 < p < o0
/C;O : Wl’p(Ul\Q,distl_s; A&y Wk’%(ﬂ,distk+l_s; A1y, V1<p<rg
IC;O : Wl’p(Ul\Q,dist#qfs; N Wk%(Q, distF =5, AOa=1y, V1<p<rg

where W'P(U, @) := {g € W'P(RYN, ) : glge = 0} follow the notations in Definition 4.5.
Corollary 3.13 follows almost immediately by Schur’s test.

Lemma 3.15 (Schur’s test). Let (X,pu) and (Y,v) be two measure spaces. Let G € LL (X x Y, u® v),
1<~ < oo, and A > 0, which satisfy

essup/|G x,y)|Vdu(r) < A7, essup/ |G(z,y)["du(y) < A”.

Then, the integral operator T f(y) := [, G( (z)du(x) has boundedness T : LP(X,du) — LI(Y,dv),
with operator norm |T||Le—re < A for all 1 S D, q S oo such that % = ]—1) + % —1.

For example, see [53, Appendix B]. Note that the norm of LP(X, u) is ([ |f\”d,u)%, and the norm of
LP(, ¢) in Definition 4.2 is ([, |¢.f[Pd Vol)*/P. When p < oo, we have the correspondence dy = ||? - d Vol.
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Proof of Corollary 3.13. For 3 € N2”., we have DYK, ,g(z) = f(Dng‘K;l)(z, JAg.

By applying Lemma 3.15 to (2.173) and (2.14) with (X, u) = (U1\Q, Vol¢), (Y,v) = (2, Vol,), v = 1
1
and G(¢,z) = dis‘m%z)laHk*siW . (D’;DC‘*K;l)(z,C) - distq(¢)*~ !, we see that for every k > 0 and

1<s<k+lal—1/mg,
[g > st/ P17 750 (DT (dist™ )] : LP(U\Q) — LP(Q), V1<p< oo

This is the same as stating that D¥C; , : LP(U\£, dist! %) — LP(€, dist!®FF=s=1/ma) Thus, (3.24) follows.
Similarly, by applying Lemma 3.15 to (2.17) and (2.18) with (X, ) = (U1\, Vol¢), (Y,v) = (£, Vol,),

v= Tqrjl and G((, z) = distoe (2)1*TF=* . (DEDE K[ 1)(z,¢) - dista ()", we obtain (3.26).

After repeating the same arguments and replacing dist(¢)*~! by dist(C)Sf"%q and KT by K+, we obtain
(3.25) and (3.27). O

Remark 3.16. By keeping track of the proof, the implied constants in Theorem 2.9 and the operator norms
in Corollary 3.13 depend only on Cj in Lemma 3.3, C in Lemma 3.5, and the upper bound of ||g||gm+x+2.

More generally, whenever the smooth holomorphic support function S (z,¢) as well as the corresponding
Leray map @j(z, €)= 01 g—ZSj(C +t(z—(),¢)dt (j =1,...,n) satisfy the estimates in Lemma 3.5, then the
kernel K(z,() given by (2.8) would fulfill the same weighted estimates as in Theorem 2.9.

4. Function spaces and extension operators

In this section, we focus on the real domain RV ~ C™ where N = 2n.

Notation 4.1. We denote .7/ (R™) as the space of tempered distributions, and for an arbitrary open subset
U C R", we denote .7 (U) := {fly : f € .Z/(RN)} € 2'(U) as the space of distributions in U that can be
extended to tempered distributions in R (also see [58, (3.1) and Proposition 3.1]).

First, we recall the classical Sobolev and Holder spaces. The characterizations in Definitions 4.3 and 4.4
are not used directly in this paper.

Definition 4.2 (Weighted Sobolev). Let U C RY™ be an arbitrary open set. Let » : U — [0,00) be a non-
negative continuous function, and for £ > 0 and 1 < p < oo, we define,

WhP(U, @) = {f € WeP(U) : || lwer(up) < o0},
(4.1) LN
lwnsw = (5 [10071)" 15000 Uflhwesio =

sup [0 f|| Lo (v)-
lal<k{; o<k
We define W*P(U) := W*P(U,1) where 1 = 1g~ is the constant function.

Definition 4.3 (Sobolev-Bessel). Let s € R. For 1 < p < oo, we define the Bessel potential space H*?(RY)
as the set of all tempered distributions f € .#/(R”) such that

£l 0y = [I(I = A)2 fll oy < o0

We use the standard (negative) Laplacian A = Zjvzl 3£j.
On an open subset U C RN, we define H*?(U) := {f|y : f € H*?(RN)} for s € R, 1 < p < oo with

norm || |l gs» vy = infﬂU:f ||f||HSvP(]RN)~
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Definition 4.4 (Hélder-Zygmund). Let U C RY be an open subset. We define the Holder-Zygmund space
¢°(U) for s € R as follows.

F@=fw) o o

e For 0 <s<1,%°U) consists of all f € C°(U) such that || f| E=TE

() = Sup|f| + sup.
z,ye

« ¢'(U) consists of all f € C°(U) such that || f|l41 0y := sup | f| + sup lf(sz(yl 205 o,
U m,yGU;%EU o=yl
o For s > 1 recursively, ¢*(U) consists of all f € ¥* 1(U) such that Vf € €5~ 1(U;C"). We define
N
1 flles@wy = I flles—1wy + 22521 1D fllgs—2 vy
o For s < 0 recursively, €*(U) consists of all distributions that have the form go + Z 0;9; where
90s -GN € CHL(U). We define ||fll= () := inf{3" g llgjllw1() : £ = go + X5y 095 € 9/( )}
o We define €>°(U) := (1,5, €*(U) as the space of bounded smooth functions.

In this paper we consider a more general version of the function spaces: the Triebel-Lizorkin spaces.

Definition 4.5 (Triebel-Lizorkin). Let A = (\;)72, be a sequence of Schwartz functions that satisfy the
following.

(4.2) The Fourier transform Ao(€ = [gn Ao(2)27 2™ dz satisfies supp Ao C {l¢] < 2} and /\0|{|5|<1} =1
(4.3) \j(z) = 27" N\g(27 ) — 20~ 1)”>\ (271 )forj > 1.

Let 0 < p,q < o0 and s € R, and we define the Triebel-Lizorkin norm || - ||gz;q(>\) as

1
40 Wlsg = 12N ollmmcny = (| (Z\m @) a)’ p<o
Ry J=0
1 IS o
(45)  [flzs,0n = Sup ZQNJ‘IH(QJ Aj % )72 max(0,) | La(B (22~ 7):00). p=00.
xc ,Je

For ¢ = oo we take the usual modifications, where we replace the £¢ sum by the supremum over j.
We define ﬁz‘fq(]RN ), with its norm given by a fixed choice of .
For an arbitrary open subset U C RY, we define

FoaU) = {[flv : [ € Z5,RY)} with  |[fllzs, @) = inf [|fllz5,@);

flu=f

ﬁij(ﬁ) ={fe#; (].RN) flge =0} as a closed subspace of .7 (]RN)

Remark 4.6.

(i) When p or ¢ < 1, (4.4) and (4.5) are only quasi-norms. For convenience, we still use the terminology
“norms” to refer them.
(ii) Different choices of A result in equivalent norms (see [67, Proposition 2.3.2] and [68, Propositions 1.3

and 1.8]).

(iii) We have the embedding .75, (RY) — Z5 (RY) — Zs 9(RY) for all 0 < p < 00, s € R, q1 < go,
5> 0. N
We have the embedding .75, (RY) < ﬁ;:qg (Hiﬁ)(RN) forallp; < ps <o00,s€R,0< ¢qp,q2 < o0.

See [68, Corollary 2.7] for an illustration. By taking restrictions to an arbitrary open subset U, we

have ;. (U) — Z5.,(U) — ﬁzfq_l‘s(U) for g1 < go and § > 0, and Z; (U) — Z51(U) for € > 0

and 0 < p <r < Np/max(N —p,0).
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iv) When p = ¢ = oo, (4.5) can be written as Fs () = SUPisg [|27°A; * fl| e (ryy, which is more
Sooe(A) >0 J RN)
commonly referred to as the Besov norm %3, (also see [68, (1.15)] and [67, Remark 2.3.4/3]).

: N s (TTC) — s N s (TT :
(v) For an arbitrary open subset U C R™, we have .7 (U") = Z;, (RY)/Z; (U), or equivalently

F5,(U) = Z5,(RN) /. Z5 (U°) (also see [64, Remark 4.3.2/1)).
(vi) When ©Q C R¥ is either a bounded Lipschitz domain or the total space, we have following (see [67,

Sections 2.5.6 and 2.5.7] and [66, Theorem 1.122]),

o HP(Q)=.75%(Q) for se Rand 1 < p < o0;

p2
. WhP(Q) = 9;2“2) for k€ N and 1 < p < o0;
o T5(Q) =25 (Q) for s € R;

)
o EFH(Q)=CF(Q)forkeNand 0 < s < 1.

We sketch the proof of €* = #2 _ for s < 0 on RY and on bounded Lipschitz domains in the
following.

Proof of ¢° = .5 . when s <0. We fix an s < 0 as follows.

Let k > —s/2 be an integer. For an f € #3 _(RY), we have f = (I — A)*(I — A)~Ff, where by
[67, Theorem 2.3.8], (I — A)~Ff € FSZH(RY) = ¢*+2k(RY), and thus f € €*(RY). Conversely, for an
=2 a1<-s141 D%9a € ¢ (RY), where g € €5+ —s1+1(RN) = Zo 7S THH RN, by [67, Theorem 2.3.8],
D%g, € F5 (RY) thus f € 75 (RY).

For a bounded Lipschitz Q, since we have €*+2k(Q) = Z:£26(Q) and ¢*+[—s1+1(Q) = 221 (),
then by taking restrictions on both sides, we obtain °(Q2) = .5, (). O

Remark 4.6 (vi) can be illustrated via the extension operator. Our convex domain 2 C C™ is smooth and
we can use the so-called half-space extension (see e.g. Remark 5.2 and [67, Sections 2.9 and 3.3.4]). In our
case, it is preferable to use the Rychkov’s extension, which can also work on Lipschitz domains.

Definition 4.7. Let w C RY be a special Lipschitz domain,® i.e., w = {(z1,2") : &1 > o(2')}, for some
o :R¥=! — R such that |Vo||p~ < 1.
The Rychkov’s universal extension operator E = E,, for w is given by the following:

o0

(4.6) Bof =Y ¥ (Ly-(¢5% ), eI (W),

=0

where ()72, and (¢;)52, are families of Schwartz functions that satisfy the following properties:

(4.7) Scaling condition: ¢;(x) = 207N ¢, (207 2) and v (z) = 20~ DNy (277 1z) for j > 2;
(4.8) Moment condition: [ ¢o = [1o =1, [a*¢o(x)dz = [ x*¢o(x)dz = 0 for all multi-indices |a| > 0,
and [2%¢;(z)dz = [ 2“¢1(z)dz = 0 for all |a| > 0;
(4.9) Approximate identity: Z;io ¢; = Z;io 1 * ¢; = dg is the Dirac delta measure;
(4.10) Support condition: ¢;,1; are all supported in the negative cone —K := {(z1,2’) : 21 < —|2'|}.

The family (¢;,1;)32, exists (see [58, Theorem 4.1(b) and Proposition 2.1]).

Proposition 4.8. Let 0 < p,q < 0o and s € R. Let (qu)J‘?‘;O be as given in Definition 4.7.

3 In previous studies such as [66, Definition 1.103], the condition ||V |/ L= < 1 was not required, which could be achieved through
an invertible linear transformation.



22 L. Yao / J. Math. Anal. Appl. 538 (2024) 128238

(i) ([58, Theorem 4.1]) E,, : Z5 (w) — Z5,(RN) is bounded provided that (p,q) ¢ {oo} x (0,00).
(i) ([58, Theorem 3.2] and [70, Theorem 1]) There are intrinsic norms

1175, () pas (27705 % )3Z0l| Lo (wiea ) provided p < oo;
NJILy0j
||f||y§cq(w) Rq,s Rsll\llpj 7 2 4 ”(2]$¢J * f);‘;max(O,J)HL‘I(UJHB(m,Q_']);Z’I)a forp = Q.
e Je

(#ii) ([61, Proposition 6.6] and [70, Theorem 2]) For every m > 0, an equivalent norm exists via derivatives

”f”é’z;q(w) ~p,q,s,m Z\alﬁm ”Dang;q—m(w)

In fact, B, : 5 ,(w) = F5,(RY) is also bounded (see [72]). We do not need this result in this paper.
In our case, we work on the bounded domains instead of special type domains. For a bounded domain 2,
we define its extension operator £q via partition of unity. For completeness, we give the construction below.

Notation 4.9 (Objects for partition of unity). Let @ C RY be a bounded Lipschitz domain and let U 3
be a fixed open neighborhood. We use the following objects, which can all be obtained by the standard
partition of unity argument:

U,)M , are finitely many bounded smooth open sets in « C R";
¢, : RY — RM)M | as invertible affine linear transformations;
o )M, are C°-functions on RY that take values in [0, 1];
w,)M | are special Lipschitz domains on R¥.

(
(
(
(

They have the following properties:

(4.11) 52 c UM, U, and Uy chUM_OU € U;
(4.12) x, € C*(U,) for 0 <v < M, and ZV 0 X2 =1 in a neighborhood of ;
(4.13) For each 1 <v < M, U, = ®,(BN(0,1)) and U, NQ = U, NP, (w,).

The partition of unity argument requires nothing other than the following fact.

Lemma 4.10. Let U C RN be an arbitrary open subset, let ® be an invertible linear transform, and let
X € €°(RYN) be a bounded smooth function.

Then, Tf(x) := x(z)f(®(x)) defines a bounded linear map T :
and 0 < p,q < oo.

S (U) — Z: (0-Y(U)) for all s € R

P‘I pPq

Proof. We have the boundedness [g — go ®] : Z5 (RY) — Z5 (RY) from [68, Theorem 2.25] and [g —
xgl : Zp,RYN) — Z5 (RY) from [68, Theorem 2.28]. For f € .5 (U), let fe Z5,(RN) be an extension
of f, and we see that y - (f o ®) is an extension to T'f with respect to the domain ®~!(U). Therefore, by
taking restrictions to U and ®~1(U), respectively, we obtain the boundedness of T. O

Definition 4.11. Let 2 be a bounded Lipschitz domain and let & 3  be an open subset. Let (x, ),
(w, )M, and (®,)M ;| be as given above. We define the extension operator £ = £ for ) as

(414) 5Qf - XO f + ZXV . (Xuf) ] © CI);I);

v=1

where E,,, is given by (4.6).
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Remark 4.12. By combining Proposition 4.8 and Lemma 4.10, £q : Z5,(Q) — 75, (RY) is also bounded for
all 0 < p,q < oo and s € R such that (p, q) ¢ {o0} x (0,00) (for the proof, see [61, Lemma 6.3] for example).
The #5,,-boundedness is also true (see [72] and [70, Remark 20]), but we do not need it because we only
require the extensions on .7 in applications.

Before doing the weighted estimates, if f has low regularity, then we need to express [0, ] f and ([0, E]f) T
as the sum of derivatives of good functions, and move those derivatives to K,_1(z,() via integration by
parts. To ensure that there are no boundary terms when integrating by parts, we need the following.

Proposition 4.13 (Anti-derivatives with support). Let @ C RN be a bounded Lipschitz domain, and for any
k > 1, the operators Sé’a S (RN) = S (RY), |a| < k exist such that

(i) Sb F5,RY) = Z5FE(RN) for all 0 < p,q < 00 and s € R such that (p,q) ¢ {0} x (0,00).
(i) g = Z|a\§k¢ DaSkag for all g € 7' (RY).
(iii) If g € 7" (RN) satisfies gla = 0, then S¥%glg = 0 for all |a| < k.

In particular, S&° : eglfq(Qc) — f;;k(QC).

See [61, Proposition 1.7] and its proof is in [61, Section 6.3].

In fact, the result is also true for #5  -cases, which can be obtained by replacing [61, Theorem 1.5 (i)]
with [70, Proposition 17] in its proof. We do not need this result in this paper.

The condition (iii) is non-trivial here. If we only want conditions (i) and (ii) to be satisfied, we can
consider the decomposition f = (I = A)™((I = A)™"f) = 32|, j<am & DT (I = A)7™ f) on RV,

Remark 4.14. In practice, we consider the composition S¥ o [0, £]f, where £ is an extension operator of
Q such that suppEf € U for some ﬁxed open bounded (smooth) neighborhood U 3 Q. Clearly, [0, &]f is
supported in ¢\, and thus bupp( 0 [0,€]f) C Q°. In order to obtain a better support condition,

supp(S™* 0 9, €]f) CU\Q,

we can apply the proposition to the domain Q U (V\I), where V 3 U is a larger bounded smooth domain
that makes V\U a bounded Lipschitz domain, and then take a smooth cutoff outside V.
Thus, {85} 4 1<k : Fp (U\Q) — 5‘”’“(2/[\(2) exist such that g =3_, <, DeSkeg

In Theorem 1.1, we claim that H, is defined on the large space .#/(€; A®?), which can be implied by its
definedness on all Holder spaces with negative indices.

Lemma 4.15. Let Q@ C RY be a bounded Lipschitz domain. Then, &'(Q) = U ., €*(2).

In fact, we can replace ¢*(Q2) by H*P({2) or even .75 (2) for 1 < p,q < oo. Indeed, by Remark 4.6, we
have €%() = Z5,,,(Q) and the embedding €71(Q) C .75, (Q) € €5 N (Q).

Proof. By Remark 4.6, (vi) €°(Q) = 2 (Q) = Z5 (RN)|q C ' (RY)|q = #(Q) for all s, and thus
7(9) 2 U, € (). )

Conversely, for an f € .#7(Q), we take an extension f € ./(RV). We can assume that f has compact
support, which can be shown by replacing f with yf, where x € C®(RY) satisfies x|o = 1. Now, by
the structure theorem of distributions (e.g., see [57, Theorem 6.27]), M > 0 and {ga}jaj<m C CZ(RY)
exist such that f = Yaj<m D¥9a- Clearly, go € €°(RY), and thus f e € M®RN) and we see that
feeM(Q) c U, €*(). This completes the proof. O
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5. Tangential commutator estimate and strong Hardy-Littlewood lemma

To reduce Theorem 1.1 to Theorem 2.9, we need the following two results: the Propositions 5.1 and 5.3.
We need to show that the tangential part of the commutator [0, €] T f = ([0, €] f) " does not lose derivative.

Proposition 5.1 (Tangential projection of commutator). Let w = {z1 > o(z')} C RN be a special Lipschitz
domain. Let E = E,, be the extension operator in Definition 4.7.

Let X = Zf,v:l X”a%y be a smooth vector field on RN such that X (z) € T,(bw) for almost every x € bw
(in the sense of surface measure). Then, we have the following boundedness:

ZX” Dy, E]: Fp,(w) — ;;;p(wc), foreveryl1 <p<oo, seR.

In particular, (X,[d, E]) : F5..(w) = ﬁ“’ 3(we) for every e,6 > 0.
Remark 5.2.

(i) There is a different kind of commutator estimate in [62, Theorem 4.1], where we prove a smoothing
estimate [D, E] : Z5, (w) — L'(RN;CN) for 1 <p<ocands>1— 1.
(ii) In fact, (X, [d, E]) : e (w) — t;fv;g(wc) is bounded i.e., we can take 0 = 0. In applications, a d-loss
is sufficient and the proof is simpler for .77, spaces.
(iif) Proposition 5.1 can be intuitively understood if we let E be the standard half-space extension for

w = RY := {21 > 0}. Recall that for an integer M > 1, the half-space extension is given by

M A Zj* a]f( bjxluw/) 1 <0
EY f(xq,2) := {f(x) 5150
M

where b; > 0 and Z a;(—bj)* =1 for all |k| < M.
j=—M

We have the boundedness EM : Z5 (RY) — .75 (RY) for all 1 < p,q < 0o and —M < s < M (see
[67, Theorem 2.9.2]). We can obtain the construction with M = oo and also have the boundedness
B> Z5 (RY) — 75 (RY) (see the recent paper by Lu and the current author [46]). It is clear that
[D,, E*] = 0 in the domain for all 2 < v < N, and thus (X, [d, E*]) =0 if X! = 0.

We can use E*° with partition of unity (see (4.14)) or the method in [46, Theorem 26] to de-
fine the extension operator £ for the smooth domain 2 C C™. It is possible that a modification of
Corollary 5.5 (iii) still holds.

We also need the Hardy-Littlewood type lemma, which gives the embeddings between the fractional
Sobolev spaces (or more generally the Triebel-Lizorkin spaces for Theorem 1.2) and the weighted Sobolev
spaces.

Proposition 5.3 (Strong Hardy-Littlewood lemma). Let w C RN be a special Lipschitz domain. Let 6(z) :=
min(1, dist(z, bw)) for x € RYN. We have the following embeddings:

(1) Fpoo(@) = LP(w,67°) for all 1 <p < oo and s > 0;
(i) WP(w,6™m%) < Fj (w) foralle >0, 1 <p<oo,meN and s <m.
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First, we prove Proposition 5.3 and then Proposition 5.1.

Remark 5.4. The proof of Proposition 5.3 is standard if we replace #,. and #,, by classical Sobolev or
H('jlder spaces (e.g., see [43]). Our result is stronger since from Remark 4.6, we have Fpe G HYP = F5 C
w forl <p<ooand F5, C€° =F5

The result (i) is not new (see [41] for a more general version). We also refer the reader to [65, Chapter 5.8]
for a proof on smooth domains, which contains the discussion of the case where p < 1.

First, we give the application of Propositions 5.1 and 5.3 in our setting.

Corollary 5.5. Let Q = {o < 0} C C™ be a bounded Lipschitz domain and let U > Q be a bounded open
neighborhood such that o has a non-vanishing gradient in U\Q. Let dist(z) := dist(z,bQ) for = € C™ and

let £ = Eq be as given in Definition 4.11 and its images are supported in U. The following linear maps are
bounded.

(i) ,;OZV;OO(Z/{\Q) — LPU\Q,dist ™) for all 1 < p < oo and s > 0.
In particular, H*P(U\Q) — LP(U\S, dist™®), €°U\Q) — LU\, dist™) for 1 < p < o0, s > 0.
(i) WhP(Q,dist" ™) — F5.(Q) foralle >0, 1<p<oo, k€N, and s < k.
In particular, W5P(Q, dist*™*) < H*P(Q) and kaf(ﬂ, dist? %) < €5(Q) for 1 < p < 00, s < k.
(iii) If Q is a smootﬁ domain, then [0, S]TN: Fon(Q) = ﬁl‘fp(M\Q—;C") foralll1<p <00, 56 R.
In particular, [0,€]7 : HSP(Q) — H*2P(U\Q;C") and [0,€]" : €3(Q) — €*U\Q;C") for p €
(1,00) and § > 0.

HP(U) := {f € H>"(R"N): =0} c HP(RY) and €*(U) := {f € €*(RN) : flge = 0} C €*(RV)
follow the notations given in Definitions 4.3, 4.4 and 4.5

Recall that H*P = Z) — Fop 02 Fa S = g 5’17 and €° = o from Remark 4.6. The bounded-
ness holds immediately for Sobolev and Holder spaces.

Proof. From Notation 4.9, recall that we have U, NQ =U, N ®,(w,) for 1 <v < M and f = ZV o XS
By Lemma 4.10, [f = X, f] : #,,(Q2) — Z;,(U, N Q) are all bounded for 0 < v < M.
For each 1 < v < M, by PI‘OpOSlthH .3, we have .7 (U NQ) — LP(U, NQ,dist,) for s > 0, and

Wmp(@, (w,), distly*) 2% 3 (U, N1Q) for s < m.

For v = 0, we have the trivial estimates [f — xof] : Fpoo(?2) = LE(Up) — LP(S2,dist™*) for s < m, and
[f = xof] : WMP(Q,dist™™*) — WIP(Up) — F;.(Q) for s < m.

Therefore, for every 1 < p < oo, m € N, and € > 0,

o v M M
T (@) L2 Dm0, (3 5 ¢ ) = @ LP(U, N, dist;3)
v=0 =0 , §>0;
M
(9)0Lo= 2000 X090 LP(Q,diSt_s)
M
Wrr(Q, dist™ ") L2l (e (U, 0 Q, distyy )

=0 , s<m.

M
(_)@ 5 U ﬁQ (90)v =22, Xv9v g.;s(gn
v=0

The second composition map gives W™ P(Q,dist™ ") < 75 (), which completes the proof of (ii).
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By suitably shrinking U, we can assume that Z/I is bounded Lipschitz, and thus ¢\ is also bounded
Lipschitz. The first composition map then gives .73, (U\Q) — LP(U\S, dist; ) < LPU\Q, dist,;) for
s > 0, which completes the proof of (i).

To prove (iii), for convenience, we write E,g := (E,, [go ®,]) o ®, !, where g is defined on ®,(w,) (from
(4.13), we recall that U, N Q = U, N®,(w,)), and thus & = x& + Ziwzl Xv © E, 0 x,, and we have

M
(5.1) [53 &l = Q(Xogxo) + Z ((5)(”) oE,oxy+XxvoEy,o0 (EXV) + Xv o [5, E,]o Xv)a

v=1

where the function y, is the linear map (pointwise multiplier) [g — X, g].

Since y,, are smooth, by Proposition 4.8 (i) and Lemma 4.10, all terms in (5.1), except for x, 0[9, E,]ox,,
have the boundedness Jpp( ) — 9;1)(@") for all 1 < p < co and s € R. It is sufficient to show that for
1 <v <M, wehave x, 0 [0, E,] o x, : %,,(2) = F5,(C").

From Remark 2.8, recall that by partition of unity, we can find M’ > n — 1, smooth (0, 1)-vector fields
Wi,...,War and (0,1)-forms 7, ..., G on U\Q such that W,(¢) € T (b2,(¢)) for all 1 < pu < M’ and
CeU\Q, and " = ny:ll(,W#, ) -7, holds for all (0,1)-form o on U\Q.

Since T%(bQ) C CT(bSY) and Ty (P, (bw,)) = T¢(bS) for ¢ € U, NbLY, we have (x, W,)(¢) € CT (P, (bw,))
for ¢ € U, N bQ. By Proposition 5.1, (W,,x, o [d,E,]) = (x, - W,,[0,E,]) : Fop(@u(wy)) —
%sp@’y(wy)c; C™) is bounded. Therefore,

W, [0,E.])

Sy v ) S v S < v’ s c n (—)‘ v s c n
(Waixw 0 [0, B o xu) 2 F5) () X5 75 (D, (w,)) — T2 (@, (w5 C) 22 F3(Q5C).

We obtain (W, x, 0 [0, E,] o xu) : Z5,(Q) — %p(U\Q; C™) since supp x, € U, which gives (iii). O

Remark 5.6. Using the notations from Remark 2.8, for a (0, ¢)-form f =" f;dz’, we have

[5) g]Tf = Z <7K” [5’ 5](de2J)>
|K'|=q+1,].J|=q
-3y > ([0,1£2)(Zx, dz)(Zxc,dz")8" A"

j=1k=2|J|=|K|=¢;min K>2

3

=3 Y (Zn0.8f) - Zx.dz)E nE"

k=2 |K|=¢;min K >2
Therefore, to estimate [0,E]T £, it is sufficient to estimate its components [9,E] T f.

We prove Proposition 5.3 first, but we only prove the case where ¢ = 1 for (ii) and leave the proof of
€ < 1 to the appendix.

Proof of Proposition 5.3. Write w = {z1 > o(2’)}. We define the outer strips
(5.2) S =8y = {(x1,2') : 25k <y — o(z') < —2_%_’“} CwforkeZy,

and Sy := {(x1,2) : 1 — o(z') < —272}. Recall that §(z) = min(1, dist(z, bw)) in the assumption. Recall
that a special Lipschitz domain satisfies |Vo| L~ < 1, and thus (also see [61, (5.3)])

(5.3) 271k < §(x) <227k VE>0, z€S8;.
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Since {Sk}72, is a partition of w® up to zero measured sets, we have ||g||zr ) = (19l zr(s,)) o ler ()

By the assumption (4.10), we see that ¢g, ¢; are supported in —K N {z; < —¢;} for some ¢; > 0. By the
assumption (4.7), we obtain supp ¢; C —K N {z1 < —¢;277} for all j > 0. A simple calculation shows that
(see [61, Lemma 5.3])

(5.4) 3R € Z, such that supp ¢; + w® C {z; —o(2') < 27771}

Let f € ézvzfoo(wc). We have supp f C w®. By (4.9), we have f = Z;io ¢; * f. Using (5.4), we see that
flx) =372 @) * f(x) for k>0 and a € Sy. Thus,

[fllzr @< 6-2) = H(Hf”LP(Skﬁ*S));O:OHer(N) < H(2(k+1)sHf”LP(Sk))ZZOHeP(N)

(2 3 e

j=k—R

< i 2(171)5

I=—R

NS s

Lr( Sk) LP(Sk) )k:O

7 (N)

<gr
£ (N)

S

(] m, 2 fw

sup 276, 1, =175,

L?(Sy) )k 0

We use the convention of ¢; « f = 0 for j < —1. By [58, Proposition 1.2 (i)], [|f|[#;_ () is an equivalent
norm for .Z;. (RY). This completes the proof of (i).

For (ii), we prove the case where ¢ = 1 by duality argument. We leave the proof of 0 < ¢ < 1 to the
appendix, which is obtained as a direct proof without using duality.
Let j;q(RN) be the norm closure of C°(R™) in .Z5, (RY) and let ﬁ‘; (W) := {f € Fs S (RY) : flge =0}

be its subspace. Clearly, 7, (W) C %, (). We see that 7] (W) = C2(w) Tra (R ), and the proof follows

according to the same argument for [64, Theorem 4.3.2/1 Proof Step 2] via partition of unity and translations.
In addition, by [68, Remark 1.5], we have .Z,°*(RY) = Z5 (RV) for all s € R and 1 < p < oo, where
p = p%l. Therefore, (also see [64, Theorem 2.10.5/1]) for s € R and 1 < p < o0,

Foo@) = RY)/{f : (£.6) = 0.6 € Fog ®RY), dloe = 0}
:}*Z;S(]RN)/{JC:<f,¢>:0,V¢€C§°(w)}: SRS e =0} = 5 (w).

By result (i), we have 7, (@) — LP (w,67t) for ¢ > 0. In particular, ﬂe’;/oo(w) — C» (w)L (o

Clearly, 0 (w )L @) _ (w,d7%) if 1 < p < oo, and by taking the adjoint, we obtain LP(w, %) <
(w) for 1 < p < oo, which is (11) atm—Oand3—7t<0

L? (w,&

-
Jpl

For p = 1, we have C°(w) = {f € C'W) : limy_p, distp, ()t f(x) = 0 uniformly}. Thus,
the adjoint gives the embedding {f € Moc(w) : ||6'fll.e < 0o} — Z;'(w) from the space of locally
finite Borel measures.* Since L'(w,d') C {f € Moc(w) : ||6f].¢ < oo} is a closed subspace, we obtain
LY (w,6') — Z,"(w), which is (ii) for m =0, p=1, and s = —t < 0.

For m > 1, we recall that || f|lwm.»,s- m) ~ D laj<m 1D fllze(w,s:-m). Therefore, for every m = 0
and s < m, we have Zla\<m || D nys ) S S I fllze(w,65—m)- In addition, by Proposition 4.8 (iii), we

have ||f||gb1(w) Z\a|§m ||D= f||y;1 m (). BY combining them we obtain (ii) for £ = 1 and the proof is
complete. O

To prove Proposition 5.1, we use a version of the Heideman-type estimate [36].

4 We use A0 (R2) for the space of locally finite signed Borel measures, where the norm || - ||« is the total variation in a measure.
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Lemma 5.7. Let ¢ = (¢;)5 and ¢ = (¥;)32 be as given in Definition /.7. Then, for any M >0, a, 8 € N,
and g € €°(RN), a C = Cy.p M. > 0 exists such that for every j,k € N, 1 < p < oo, and f € LP(RY),
(5:5) 165 % (g - (D*9i * £)) = 6; % Dr * (9.) | Loy < C2VMITHH| £y vy,

We can write the left-hand side of (5.5) as ||¢; * ([g- (=), Dt * (=)]{f}) HLP in terms of the commutator.
Proof. The direct computation yields

¢ % (g9 (D%p x [)) (@) = ¢+ DYy (9f ) ()
o1 [t [ 1)0(®) ~ gDt - )y @)

=/f(y)dy/(g(t)—g(y))D%k(t—y)aﬁj(fv—t)dt =: /Kjk(x,y)f(y)dy,
]RN RN

RN

where K;,(x,y) fRN (¥))D*Yi(t — y)p,(x — t)dt.
By Schur’s test Lemma ?.],5 with v =1 and (X, ) = (Y,v) = (R¥,dx), we need to prove that

SUP/|Kjk(x’y)|dy+Sup/\Kjk(x’y)ldfﬂ SovpaB,g.nr 2FIITMITTH=R
r Yy

Let M’ > 0 be as selected later and by Taylor’s expansion, we can write

Kinlo) = [ (X 51D7000) + Bary,9)) D" (5)05 — y — s)d,

0<|y|< M’

where Rap (y, s) == g(y +8) = 2o<|yj<arr %D”g(y) is the Taylor’s remainder in s-variable. Therefore,

(5:6) Kn@ml Sarg D |([s 5D ()] 5 05) (@ — y)| + | (Barr (9, 1D 5 05) (@ = ).

0<|y|<M’
In addition, note that for every v € NV, we have the scaling ¢y (z) = 2*=UN ¢, (25~ 12) for k > 1 and
(5.7) 2 Dy, () = 2~ DWINFlal=lD (9k=1p)7 ey (26— 1y) k> 1.

Both ¢, and 27 D*1), have infinite moment vanishing for k£ > 1, so by [6, Lemma 2.1] again (also see [62,
Lemma 4.4] with | — 400), for every M > 0 and || > 0, we have,

(5.8) ;% (87 D)1 Spoipcv. oyt ok(lal=IyD=Mlj=kl < gk(lal=1)=Mlj=kl = for a1 j k > 0.
Moreover, by [6, Lemma 2.1] (also see [61, Proposition 3.5]), for every M > 0, we have,

(5.9 |loj* bl Spaar 279M sup (1 + |z|*M*N) D h(z)|, forall j >0, he.ZRYN).
[v|<2M+N;zeRN

By taking h = hap y = R (y, -) Dy in (5.9) and applying Taylor’s theorem to Ry (y, ), we obtain

L+ ST Doy () S A+ P ST IDERan(y, )| D k(s
|y|<2M+N [Bl,|v|<2M+N

S (L [sPMENs M 2MEN N [D ()],
ly|<2M+N

(5.10)
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uniformly in s,y € RY whenever M’ > 2M + N.
For k > 1, by using the scaling property (5.7) and the fact that 17 is Schwartz, for every s and y, we
uniformly have

(1 + [s[PMEN) || M —2M =N Piy<anrsn DT ()]

IM+NY|o|M'—2M—N EN+k|o+ ko\—M
(5.11) S+ s s o py<anrgn ZEVHHOTI(L 4 (2Rs))
Lp[sPMHEN [ MTEMN oM 42N ) k|l —k(M'—2M —N)ok(2M+2N+|a|)
§1+‘2ks|2M+N 1+‘2k3|M/72M—N2 /S 2 2 .

In summary, by (5.9), (5.10), and (5.11),

(5.12) o || (Bt (s YD) 05 gy S 27927 AN,
yeERN

Therefore, by (5.8) and by taking M’ =4M + 3N + 1 in (5.12), we have

sup / (Ko, 1)) + Kt ) )t
a:e]RNRN

S D N6y x (SYD) | a ey + sup |65 % (Rar (y, ) D) || £ rv)
Yy

0<|y[<M’
. . !
SM 2]6(‘(1'71)71\4‘]716‘ + 27jM+k(4M+3N+‘Ot|7M)

<y 2M(al=D=MIj=kl | gk(lal-1)=M(i+k) < gk(la|~1)=M|j~k|

This completes the proof. O

Proof of Proposition 5.1. First, we claim that X1, = 25:1 X"D,1, = 0holds in the sense of distributions.
We use approximation. The assumption that X (z) € CT,(bw) for almost every x € bw gives

XY (o(2"),2") = 2522 XV (o(2), ") - 88;” (2'), for almost every x’ € RN~

For § > 0, we define

hs(z) :=0 when x1 <o(z2') — hs(x) := xl%'(w/) when |21 — o(2')| < &;

hs(z) :=1 when 1 > o(2') +

e Nl

Clearly, hs — 1, as § — 0 in LI (R¥) for all 1 < p < oo.

Clearly, Xhs(z) = 0 for |z — o(2)| > 2. For |z1 — o(2')] < &,

Xhs(z) =0 X (@2)Dyhs(z) = 61X (z) — 6 N, X¥(2)D,o(a)
:Xl(x)—X;(U(ﬂc,)vﬁf/) . EN XY (x)—X" (tT(ilc )T )D (l‘/)

v=2

=(D1X")(o(a'),2") — Zyzz(DlX”)(U(:r );2")Dyo(z’) + O(9).

We conclude that X hs € L>°(RY) is uniformly bounded in § and Xhs = 0 outside a d-neighborhood of
bQ). Therefore, Xhs —> 0 for all p < oo, and hence X1, = lims_,o Xhs = 0 as distributions.
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Now, we can rewrite (X, [d, E]) as

ZZ (Yr o+ (Dulw) - (dr * f)))
v=1 k=0

XY (W x (Du1e) - (@k * f))) = ¥r * (XY Dy 1y) - (9k * )

Ebnﬂz
M 1M

M=

(X7 (Duthr (L (64 % ) = Duthr # (X*1) - (@ + )

S
I
—
~
Il
<

— (X7 (W (Lo - (Dot 1)) = i * (X710) - (Do 1)) = o * (DXY) - L+ (9% £)

M-
Mg

(17, Dot (){Ll6r % £)} = [X* 0% () {1a(Dudi % )} + g 5 (D X)L 5 £)) )

Il
-
£l
I
=

v

Note that (¢;)32, satisfies conditions (4.7), (4.8), and (4.9). By [58, Proposition 1.2], we have
(5.13) 14X, [d, B fll, @y = (2711 % (X, [y EDA) | Lo@n)) s ollomny
Moreover, by applying Lemma 5.7, we obtain
(5.14)  [lgy = (X7 - (=), D+ (D)L (D 1+ 1) }) | oy Sar 2107 MIHZF DB s £ 1oy

By [6, Lemma 2.1] (also see [61, Corollary 3.6]), we have
(5.15)
6 D ((Dy X)L (01 )o@y <195 % il 1D X o 6k # Fllzec) Sar 27V Ml fll o e)-

By plugging (5.14) and (5.15) into (5.13), for every M > 0, we obtain
(X, [d, EN) fll#s, o)

Sur| (2722 @M E gk fll g + 27Dy £ o
k=0

F 2 H gy x o))

oller (N)

<MH<Z2 (M—[sD]j— kl2ks||¢)k*f||[,v(w))

0ller(N)

+H(ZQ (M—|s])]i—k|gk(s— 1)||D¢k*f||Lv(w))

k=0

oller(N)
<@l (12508 = Fleo) ol + 15Dk Do) ollar )

The last inequality above is obtained by Young’s inequality on Z. Since M is arbitrary, by taking M > |s|,
we have H(2_(M_|SDU|)‘J?’;_OOH41 < 0.

By Proposition 4.8 (ii) we have || (2k5|\¢k*f||Lp(w));°:0 w2 fll7:, ) and | (21 ||¢k*Df||Lp(w))2.;0”ep
~ ||Df||§,,;~;1 S Ifll#s, (w)- Therefore, [[(X [d, E]>f||g;p(RN) S [Ifll#s, () and the proof is complete. O
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6. Proof of the theorems

We now consider the complex domain C” and assume that Q C C” is a bounded smooth domain of
finite type. Let U; be a fixed neighborhood of 02 obtained from Lemma 2.2, m, be the g-type of 2, and
rg:=Mm—q+1)-myg+2¢forl<qg<n.

Recall the space a/d};foo (U) in Definition 4.5. We recall that the Bochner-Martinelli kernels always gain
one derivative.

Lemma 6.1. Let U C C” be a bounded set. Then, the Bochner—Martinelli integral Byg(z) fu —1(2, )N g
has boundedness B, : y;T(u, AOT) — ZEEN U A1) for all 0 < p,r < 00 and s € R such that ( p,T) ¢
{00} x (0, 00).

The boundedness B, ﬁ S F34! is also true by using [68, Theorem 1.22].
Proof. The proof is standard. We can see that B,_1(z, () is simply the linear combinatioﬁn/ of the derivatives
of the Newtonian potential G(z—() := — (Z;f)l |z2—¢[*72". We need to prove [f — Gxf] : Z5.(U) — F52(U)
for all 0 < p,r < oo and s € R such that (p,r) ¢ {c0} x (0, 00).

Indeed, let x € S(R?") be such that its Fourier transform has compact support. We define G := x * G
and Goo = G — Gy. We see that the Fourier transform Goo(€) = (1 — %(€))|¢]72 (€ € R?™) is a bounded
smooth function. Therefore, by Hormander—Mikhlin multiplier theorem (see [67, Theorem 2.3.7]), we have
[f = (I = A)Goo * f] : F5,(R?") — F5 (R?*™). Note that (I — A)~2: .75 (R**) — .Z5F2(R?") is bounded
(see [67, Theorem 2.3.8]). Therefore, [f — Goo * f] : é\v;r(lj) — Z5F2(U) is also bounded.

In addition, the Fourier support supp Gy C suppx is compaé)t7 so we see that Go € C°(R*™). U is
a bounded set, so we have [f — Go* f] : {f € ' (R*) : suppf C U} — C=(R??); in particular,
[f = Gox f1: Z5,) — FP W),

Now, [f+— G f] : F 2:;‘; (U) — Z5F2(U) is bounded. The boundedness of By : .75, — F5+ follows from
the fact that V : Z5 2 (R*") — Z5F (R**; C*") (see [67, Theorem 2.3.8]). O

Proof of Theorems 1.1 and 1.2. We prove the definedness of H, on .#/(; A%?) and the homotopy formula
f= OHy,f +Hy10f for f € 7 after giving the proof of the boundedness of H, on Triebel-Lizorkin spaces.

Recall the Rychkov’s extension operator & = &g in Definition 4.7 and the anti-derivative operators
Sk = Sé’a in Proposition 4.13 (also see Remark 4.14). For k > 0, we define Hk =Byo&+ 'HI;’T + H’;’J‘

as follows, where B, is given in Lemma 6.1 and IC;'—Q,

IC o, are in Corollary 3.13,

HyTf(z):= Y (DIl o8P @,elf = Y (1) / (DE(Ky1))(z,-) ASH(D, €] f

la| <k la|<k UN\Q
HELf(2) = D (D)l 0 8P[0,8]Tf = D (—1)l /(DC(KL D)z ) NS0, €T f.
la| <k la|<k UG

k(T L) _

Clearly, 7-[ = H,. We now prove Hq H27(T’J') for all k£ > 0; in particular, that ’H’q“ = H4 holds.

By applying Lemma 6.1, for every 1 < p,r < oo and s € R such that (p,r) ¢ {oo} x [1,00), we have

(6.1)  Byo&: Z5(A%0) 5 F5 (T U0 A%9) B4 #ott (1, u g A0a-ty L gt n0a-1y

When ¢ = n, we have H,, = B, o & since K,(z,{) = 0. Therefore, by Remark 4.6 (vi), we obtain the
boundedness H,, : H¥P(;A"") — HFTLP(Q; AO"=1) and H,, @ €5(Q;A0") — €5HL1(Q; AOn—1) for all
1 <p < ooand s €R, which is Theorem 1.1 (ii) when ¢ = n.
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We have the Sobolev embedding H*T1P(C") — HS%((C") for 1 < p < 2n (see [68, Corollary 2.7]). By
taking restrictions on 2, we have H,, : H*?(Q; \O") — HS%(Q, A% Since r,, = 1+ 2n > 2n, then
the embedding HS’%(Q; AOm=1) oy H%5577 (Q; A%"1) follows immediately, which proves Theorem 1.1
(iii) when ¢ = n.

Now, we assume that ¢ <n — 1 in the following.
By applying Lemma 6.1, and Remarks 4.12 and 4.6 (iii) to (6.1), we see that
Byo&: Fo (A% — Fo (U UQA%) — ZoLH (A0

s+w+
Fpe (U AYTY) forall 1 < p < oo
F orq 6(Q;/\O’q’l) when 1 <p<r,

rq—p’

Note, that if we write f = lelzq fIdZI, then [0,&]" f is the linear combination of [0, ] T fr. Therefore,
by Corollary 5.5 (iii), we have [0, €]T : 75 (Q;A%7) — %501/mq (U1 \; A%+,

For every s > 1 —k and integer [ > max(0, s+ 1), by applying Remarks 4.12 and 4.14, and Corollaries 5.5
and 3.13, for every 1 < p < oo and € > 0, we have,

[0.£]

Hk T . . (Q’ /\O,q) 2z a‘\s I(U \Q /\07q+1>
o~ [ 1—k _
sty T3 U\ AT SZTN IP(UL\Q dist RS A0t
-1 g l>s+wiq
K:;I:a Wl;p(Q7diSt mgq ;/\an—1> SN ype 7"q (Q’ /\07(]—1) fOI' all 1 S P S 00 .
_Prq_ > ;
Wl,rqu (Q,distl_s;/\o’qfl) (_) ‘g\spi 8(Qv/\O,qfl) when 1 < p< Ty
qup’
s A mp— ke
H s T (@ A00) o Fy 70 (@ n00) LEL FT (TN A0 < T (U A0

Sk —~s+k 5

- s> —k o P
2 e O (Ul\Q;/\O’q+1) RN LP(U1\Q,distmlq k s;/\07q+1)

1 >+ gy 1
Kia JWhe(Q,dist'”7a % A0 5 Fpe " (A7) forall 1 <p< oo
l ! .

o
Wwhre=r (Q, dist!~*; A0a—1) <25 F g (€, A1) when 1 <p <,

rq—p’

In particular, we see that ’H’;’T’H?L are both defined on U, .1<p<oo Fpoo(§2 A%9), which completes
the proof of Theorem 1.2 after we show that H, = 7—[’; for all k.
By integrating by parts, for f € €°°(Q; A%9),

(6.2) HoTf(2) =Y [ K i(2) AD*SH[0,€]f = H) T f(2).
‘o‘lgkUl\ﬁ
There is no boundary term because of Proposition 4.13 (iii).

In the same manner, we obtain H}" J‘f Hot f. Therefore, HE f = MO f(= Hyf) for all f e € (Q;A%9).
Fors>1—k,1<p<ocand fe.75 (Q;A%9), we can find a smooth sequence {f;}52, C €>(Q; \"9)

s/

such that f; @) f for some s’ € (1 — k,s). Therefore, lim;_,oo Hofj = lim; o0 Hi f; = H’;f gives the
definedness of H,f, and we see that H, = "H’; for all £ > 0. This completes the proof of Theorem 1.2.

Moreover, for this (f;) C 4>, by Lemma 2.4, we sce that f; = OH! f; +H51115fj = OHyfj +Hqr10f;.
Therefore, by taking the limit, we see that f = 0H,f + Hq4+10f also holds.
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By Lemma 4.15, H, is defined on |J, € (S A7) = 7/ (Q; A\%9). Therefore, f = OH,f + Hq410f holds
for all f € %/ (Q; A%9). Now, we prove Theorem 1.1 (i).

Theorems 1.1 (ii) and (iii) follow from the inclusions 77 (Q) — H*P(Q) = F5(Q) < F,(2) and
F31(Q) = €°(Q) = .75 .(Q), as discussed in Remarks 4.6 (iii) and (vi). O

ool

7. An additional result for smooth strongly pseudoconvex domains

We summarize the techniques from Sections 3 and 4. We see that the corresponding results for Theo-
rem 1.1 for bounded smooth strongly pseudoconvex domains also hold.

Theorem 7.1. Let Q@ C C" be a bounded smooth strongly pseudoconver domain. The operators H, :
SN0 — F(Q A0 for 1 < g < n exist such that f = OHyf +Hg10f for all f € 7' (A\%) (we
set Hp+1 =0).

Moreover, for every1 < q<n, s € R, and e >0, H, has the following boundedness:

sl
(7.1) Hy o Fo oo (G A%0) = Fy L2 (0 0071, V1< p< oo
(7.2) Hy: Tpoo(GAY) = Flaniay (A7), V1<p<2n+2.
2n42—p?

In particular, for every 1 < ¢ < n and s € R, we have the boundedness H, : €*(Q;N\"7) —
Gsta (ALY M, o HOP(Q; A09) — H5F2p (A% 1) for all 1 < p < oo, and Hy : HSP(Q; A09) —

H 552 (A% forall 1 <p < 2n+2.

Remark 7.2. Theorem 7.1 improves the result in [63, Theorem 1.2], which proves H, : H*? — Hs+2P for
all s € R and 1 < p < oo. For negative s, the boundedness H, : H*P — HS% is new. Recall that
these two results are not comparable since the Sobolev embedding H s+32 <y H*%5 is not contained in
HS Sy

By keeping check on the proof using regularized distance functions, we can show that the results for
non-smooth domains are true, where if k& > 0 is an integer and bQ2 € C**2, then Hy: HP — Hsvéi'fzz—)ﬁ is

still true for all 1 < p < 2n+2 and s > % — k. We refer the reader to [62,63].

To prove Theorem 7.1, we repeat the arguments used in Section 3. Note that for 1 < ¢ < n — 1, the
(D’Angelo or Catlin) g-type of Q2 is always 2. Later in the proof, we show that the T and L projections are
not needed for the estimates.

Recall that we can choose a smooth defining function for €2 such that it is plurisubharmonic in a neigh-
borhood of b2 (e.g., see [15, Theorem 3.4.4]). In particular, a Ty > 0 exists such that Q; := {o < t} is
smooth strongly pseudoconvex for all =Ty < t < Ty.

We recall the standard Henkin—-Ramirez function for strongly pseudoconvex domains.

Proposition 7.3. Let Q C C™ be a smooth strongly pseudoconvex domain. We have a number Ty € (0, Tp]
associated with a neighborhood Uy = {|o| < T1} of b, a c € (0,3T1), and a map Q € €>(Q x Uy; C") that
is holomorphic in z such that the associated support function S(z,¢) := Q(z,¢) - (z — () satisfies:

(7.3) |
(7.4) |

(2,Q)] = 0(¢) — o(2) + L]z = ¢I?, Vz € Q, ¢ € U\Q such that |z — (| < ¢;
(z,0)] = ¢, Vz € Q, ¢ € U\Q such that |z — (| > c.

L)y W)

See [44, Theorem I11.7.15], [39, Theorem 2.4.3], or [30, Proposition 5.1].
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For these S and Q, we still use K (z,¢) from (2.8). We define our solution operators H, in Definition 2.5,
where the image function of the Rychkov’s extension operator £ is always supported in Uy U ). Thus,

(7.5) Hof(2) = / Byo1(z) AEF + / Kor(2-) A [3,€].
UuUQ Ui\Q

We define a naive version of P.(¢) adapted to (€2, ¢) (cf. Definition 3.2), as follows.

Definition 7.4. For ( € C™ and ¢ > 0, we define

P.(¢) == {z € B(¢,e7) : |o(2) — o(¢)| < 2e}.

Clearly, when ¢ € U; and € < %Tl, the set P.({) is non-empty. Moreover, the definition has symmetry

(cf. (3.1)):
(7.6) z € P.(¢) if and only if ¢ € P.(2).

Informally, this is saying 71((, ) := %E and 1o(C,e) = --- = 71,(C, ) = 2. In the strongly pseudoconvex
case, there is no difference between using the e-extremal basis and e-minimal basis.
Now, (7.3) implies that there an €9 > 0 exists such that the corresponding result for Lemma 3.5 (i) holds:

15(2,¢)| = e, forall0<e<e, ¢cUp\Qandze Q\P.(C).

We do not need the corresponding estimates in Lemma 3.5 (ii), and we see that the trivial estimates for
Corollary 3.6 hold (also see Remark 3.8):

(7.7) QA @QF| +1(0Q)* S 1.

Thus, a simpler version of Lemma 3.9 and Corollary 3.11 holds, where for € € (0,e¢], 1 < k <n, j >0,
and for all (z,¢) € Q x (U;\Q) such that z ¢ P.(¢), we have ‘D;C(%%)k_l)(z,(ﬂ <;j €797k, Therefore,

. Jj—k -
(7.8) D) Kyo1(2,0] S Z ; 502” T Y(2,0) € Qx (U1\Q) such that z ¢ P.(C).

Recall (7.6) and the statement above is the same as (z,¢) € Q x (U;\Q) such that ¢ ¢ P.(z).
By integrating on P.(¢) and P.(z), we obtain the estimates corresponding to (3.14) and (3.15) (recall
(3.18) with my e and 7 = -+ =7, = 2 ):

|DIK,—1(w,¢)|d Vol + / |D7 K1 (2, w)|d Vol,,

QNP (O)\Ps (€) P.(2)\(Pg (2)U)

Z / dVol(wy, ..., wy) < i
~ , (L |wl|)2” e
|w1\<s,|w2\<s2 Llwn|<e2

In our case, the types for 2 are m; = = my,—1 = 2. Therefore, the numbers r, = (n — g+ 1)m, + Qq,
and v, = 7:—31 are indeed rqy = 2n + 2 and v, = gZﬁ forall 1 < ¢ <mn—1. Using (3.19) and (3.20), w

obtain the estimates corresponding to (3.16) and (3.17):
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|DIK,_1(w,¢)| 21 d Vol,, + / |DIK,_(z,w)| 271 d Vol,,
2NP.(O\Pg (O) P.(2)\(Pg ()UQ)
dVol(wl, .o ,wn) (1—3) (1— ')2n+2
Si Z / p— 2n_2k—1)7, Se T =g
(5J >t |wl|)

1
|w1\<6,|wz\<52, slwn|<e2

Therefore, by integrating on the dyadic shells Pyi—;.({)\Py-i.(¢) or Pai—j.(2)\Pa-i.(2), and using (3.21)
and (3.22), we obtain the weighted estimates (cf. Theorem 2.9), that for every k > 2,0 < s < k— 2, and

ist(¢)° _1(z, o) ks dist(2)°T277, z e
dist (Q)*|D¥ ( Ky—1(2,¢)|d Vol(¢) s dist(z)*T2 7" VzeQ
U \Q
/ dist(2)°|D¥ (Ky_1(2,¢)|d Vol(z) S dist(()*T2 7%, V¢ e U\
dist(¢ Ky_1(2,0) |34 dVol(¢) < dist(z)ET R 55 Ve
ZC q ~k, )

| dist(2)* DL (K yo1(2, Q)| d Vol(2) Spe dist(Q)CHMEF | W¢ e UN\Q.

o
/

By Schur’s test (Lemma 3.15), for a € Ng” and 1 < ¢ <n — 1, the integral operator
K1ag@i= [ (D2, ()N (= (-D)K,00 Dg(2)
Ul\ﬁ

has the boundedness (cf. Corollary 3.13), that for every k > 0 and 1 < s < k + || — 3 (in particular,
k+ ol > 2),

(7.9)  Kgo: LP(U\Q, dist' ™5 A% Wk’p(Q,distkHa‘*%*S;/\O’qfl), V1 <p < o0;
(7.10) Ky : LP(U\G, dist? =% AGTHL) 5 w2525 (Q disthtlel=s, 001y vl <p<2n+2.

Recall the notations B, in Lemma 6.1 and S** in Proposition 4.13. By rewriting (7.5) and using the
same argument in (6.2) we have

(7.11) Hof =Byo&f+ ) (-1)1*Kyao8H0[0,€]f,  VE=>0.

le|<k

By Remark 4.12, Lemma 6.1, and Remark 4.6 (iii), for every 1 < ¢<mn, s € R, 1 <p < oo, and € > 0,

Y e B
Byo & T (5 100) S Fo (U700 A00) 25 Fith (0,007
s+ 1
FodF (@00 Ype[l,00]
Pl (BN Wpe[1,2n+2)
2nt2—p°

In particular, we have (7.1) and (7.2) for ¢ = n since K, o = 0.
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Choose integers k,l > 0 such that k > 1—sand | > s+ % By applying (7.9), (7.10), and Corollary 5.5
to the summands in (7.11), for 1 <¢<n-—1,1<p < oo, and £ > 0, we have,

I A p— B = e 1k o vkl
Frne (0 A00) 25y F 1 @R, A0+ S0 F TR @D A0 S 10U\ dist 1 A0
I>s+3 1
Kow | WHP(Q, dist! ™2 ~%; A1y 2 535;2 (Q, A0~ forall 1 <p< oo
(2n+2) 1 .
Whaisas (Q, dist! %5 A% 1) <=5 yés?%?)p (@A%Y) when 1< p < 2n+2
St p

This completes the proofs of (7.1) and (7.2).

The Holder bound H, : ©° — @**3 and Sobolev bounds Hy : H*P — H**32 H, : HoP — H*5:550%
follow from the inclusions 7, (Q) — H*P(Q) = F5,(Q2) — F;,,(Q) and F5,,(2) — €°(Q) = F5,.(),
as discussed in Remarks 4.6 (iii) and (vi). O

Appendix A. Proof of Proposition 5.3 (ii) for e < 1

Let w = {x; > o(2’)} C R be a special Lipschitz domain. To provide a direct proof of Proposition 5.3
(ii), we define the inner strips (cf. (5.2)) of w, where we define Py = Py := {(z1,2') : 21 —o(2') > 2*%} and

(A1) Po=P¢i={(x1,2): 272 F <ay —o(z') <27 F} Cw for k € Zy;

(A.2) Poj = Py o= {(x1,2) 1y —o(a)) >277F} Cwl for k€ Z.

Now, {Pp}32, is a partition of w up to zero measured sets. Similar to (5.3) (recall that d(z) =
min(1, dist(x, bw))),

(A.3) 271k < (@) <22 Fforall k>0, z€ Py

Similar to (5.4) (see [61, Lemma 5.3]), we can also find an R > 0 such that supp ¢; + P, C w® whenever
k > 7+ R. Thus,

(A.4) 1p, (5% f) =10 (95 * (f - 1P piisnm ) Vi 20.

The duality argument does not work for the case where ¢ < 1 since ﬁ;s is no longer a locally convex

space. In the proof of the case where 1 < p < 0o, we need a version of the locally constant principle.

Lemma 7.5 (Locally constant). Let ¢ = (¢;)52, C S (RYN) satisfy the scaling condition (4.7) (in Defini-
tion 4.7). Then, for any M >0, a Cy pr > 0 exists such that for every 1 < p < oo and f € LP(RY),

(A5) gy * f(@) < Con2® 3

1 .
AT Lo (zt2-s0t0,2-98), V>0, xeRN.
veZN

(1 + ol

In particular, if ¢ also satisfies the support condition (4.10), then a Cy > 0 exists, such that for every
1<p<o0,j>0and0<k<j+R,

D)

(A.6) 65 * fllzepy < Comin(1,277 )| fllope, p)s  Vf € LP(P<jir),

where R > 0 is given in (A.4) and dist(x) = dist(x, bw).

In particular, H¢j * f”LOO(Pk) S ||f||L°°(P<j+R)'
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Proof. We denote Q;,, :=277v +[0,279]" for j > 0 and v € Z". Therefore, for every z € RV,

¢ flx) = Z ¢ * (f - 1(z+Qj,v))(x) = Z (¢ 13(0,271 maX(O,\v|f\/ﬁ))C) «(f - 1(ac+Qj,u))($)-

veZN veZN

Therefore, by Holder’s inequality, |¢; * f(z)| < >, 5]l 1o (5(0,2-7 max(0,jo)—v&)) 1 1| L7 (@45 ) -

Note that ¢, ¢1 are Schwartz, so for j € {0,1} and [ € Z, we have f‘x|>2l |pj(z)|de Sp 9= M max(0,0)
and thus [|¢;] Lo (5(0,21ye) SM 2~ Mwmax(0.) for j € {0,1}. Therefore, by the scaling condition (4.7), for every
7 > 0, we have,
<2 (

195112 (0,2~ max(0, 1ol —v/A))) 120ll o' (B0 .max(tel—vw)e) T 190l (50,3 max(ui—vANe))

oNi/p
SM TR
Therefore, [¢; + f(2)] Sar 2¥9/7 5, (1 + [0) || f | o+, )» Which gives (A.5).
To prove (A.6), by Fubini’s theorem,

93—k
Jioretr = [ [ty ste+o@).apanas
Py, RN-1 -1k
<2t s [ @i o))
2—1/2—k<t<21/2—k
RN-1
Therefore, by taking M > N,
_k
Iy % Flimy <275 s |l (65 % £+ 0 ()0 ey
2-1/2—k <t<21/2—k !

<2 525 / 1
= 271/27k33f<21/2—k ||u ~ ||¢] “(f P<HR)HLp((t+ff(u’)’u')+3(0;2_j\/ﬁ))||f”(2_jzf/_l)

ik
<2%7 [’ = [| 5 (f1P<J'+R)HLP((a(u’),u’)+B(0,21*j\/ﬁ))HZP(Z*J'Zf,_l)

j—k NG _
SMQ%Q P Z (L4 v]) MHuI = HflP<j+R||Lp((o'(u’),u’)+B(O,21_j\/ﬁ)«‘er’,u)
veEZN

<2'7 2% 3 (o) M
veZN

27 25 [BO, 22V + o)™, e s g 1 1P el o@yy St 277 1 lecpe, )

er(2-3Z71)

||f1P<j+RHLP(u-l—B(O,ZZ*J\/N)—i-QjJ,) ep(2-3ZN)

This completes the proof of (A.6). O

Proof of Proposition 5.3 (ii). We only need to prove m = 0. Indeed, if the case when m = 0 is true, then
by Proposition 4.8 (iii), for every s < m, we have

ase m

¢ =0
[fl#s. @) Rsme 2jarem 1P flzszmwy S Xiajam 1P fllew,sm-s) & L fllwmnegn-s).

Now, assume that m = 0 and 0 < e < 1. By Proposition 4.8 (ii), we have | f|lzs () ~ (2756, *

[ee) ~ 1 | S [e’e)
NZollr(uesy for 1 < p < oo and |[fllzs w) = sup, s 2V (2770 * £)3 a0, |lLe (wnB(.2-7)e)- We
need to show that for every ¢ > 0 and € > 0,
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(A.7) 12776 f);ioHLP(w;EE(N)) Sépe, L<p <oo;
(A.8) 2% sup [|(277"0; « f)jimax(07J)| ie(wﬁB(o:,Q—J);éa(N)) Soet H5tf||EL°°(w)'

r€w,JEZL

First, we prove (A.7) using Lemma 7.5. For k > 0, recall that Py, P<j from (A.1):

H(2 jt¢] )j:()HLP P02 (N)) = H(Q_jt¢j * (f1P<min(j+R,k>));io|‘LP(Pk;£E(N))
oo

<[l(2” Tg; (fLPpinisn, k>))3 =0lle=(N;Lp(Py))
<2t (|75 (FLreyun)liren) o e + 112770105 % (FLra)lliney) 2
WMH(z TS TN o peyom) oo e + 1@ F o (pany) 3o
NRH( 5o JtHf||LP(P<])) et ||(2ls)?i—R”2527tk”f||LP(P<k)

=kl
7279 fllecp ) e

(by (A.9) below)

)

(by (A.6))

Serl|(
The first inequality is a variant of Minkowski’s inequality and since we assume that 0 < e <1,
1 1
(A.9) 1) illzoery = 109519051 Ee ey = 1051 1oy = 1)1l escam.

Therefore,

||f||y,;t(w) ~ H (2_jt¢j * f);iOHLP (wiee(N)) — ||(H(2_jt¢j * f)?ionLP(Pk;@f(N)):io||ep(N)

Sepall (520 277572 1115, o ) 1ot vy

S 2"“‘)]_ OOH”EH N N (ps)) ol ety (by Young’s inequality)
Senl @7 N o) jZollwany = 102526 277 e (P) ol ew ey

2l 27Nl zr p) poller ey 2 TS Flzo o) ol ooy = 1 120 o50)- (by ¢ > 0 and (A.3))

This completes the proof of (A.7).
To prove (A.8), let z € w and let kg > 0 be such that z € Py,. We separate the discussion of the norm
||(27jt¢j * f)jZJHLE(me(I)27J);ZE) between J < ko +1and J > ]f() + 2.
When J < kg + 1, we have |P, N B(z,277)| < 27k2-WN=-DJ if k > J — 2 and P, N B(x,277) = @ if
k<J—3.By (A4)and (A.6), [[¢; * fllLe(py) Se.r 2tmin(j+R7k)HfHLoc(w’ljt), and thus
2NJ Z;imax(O,J) fwﬂB(m,Q*J) 2_jt8|¢j * flE = 2NJ Z;imax(o,,]) ZzO:J72 kaﬂB(x,Q*J) 2_jt6|¢j * f‘e
SQNJ”inOO(wﬁt) ZZO:JfZ Z]O'imax(O,J) |Pk n B((L‘, 2_J>|2_jt52t‘E min(j+R,k)
=2 F 1Sty g2 272D (B = (] = 2) + 3572, 2 0D)

R FllT o0 (w5027 ST 00 (0,502
When J > ko + 2, we have B(x,277/) C Psy, 12, and thus
oNJ Z;imax(o,J) fme(I72f‘]) 279t x flF = 2N/ Z;imax((u) fP>ko+gﬁB(z,2*J) 279 x fI°
SO B, 27 E 52 2R ey ) S I 2

This completes the proof of (A.8), and thus the whole proof. O
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