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ABSTRACT

A major challenge in molecular systems biology is to understand how proteins work to
transmit external signals to changes in gene expression. Computationally reconstructing
these signaling pathways from protein interaction networks can help understand what is
missing from existing pathway databases. We formulate a new pathway reconstruction
problem, one that iteratively grows directed acyclic graphs (DAGs) from a set of starting
proteins in a protein interaction network. We present an algorithm that provably returns
the optimal DAGs for two different cost functions and evaluate the pathway reconstruc-
tions when applied to six diverse signaling pathways from the NetPath database. The
optimal DAGs outperform an existing k-shortest paths method for pathway reconstruction,
and the new reconstructions are enriched for different biological processes. Growing DAGs is a
promising step toward reconstructing pathways that provably optimize a specific cost
function.

Keywords: directed acyclic graphs, graph algorithms, pathway reconstruction, signaling pathways.

1. MOTIVATION

INTRACELLULAR SIGNALING PATHWAYS describe the molecules and interactions that convert a particular
external signal (such as growth, proliferation, movement, or death) to the change of expression of one or
more genes, culminating in a cellular response through transcriptional regulation. Many signaling pathway
databases such as Reactome (Fabregat et al, 2018), the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al, 2007), and NetPath (Kandasamy et al, 2010) document the interactions associated with
signaling pathways, and efforts such as WikiPathways (Pico et al, 2008) and Pathway Commons (Cerami
et al, 2010) have unified these databases by combining dozens of pathway resources.
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However, even pathways that describe fundamental biological processes or pathways implicated in
commonly studied diseases are not complete: they are likely missing canonical proteins and protein
interactions. Further, it is difficult to use these pathway databases to study less well-known signaling
events. Computationally reconstructing a signaling pathway of interest from experimental data would
be a huge help for the (mostly manual) curation of pathway databases such as Reactome and KEGG,
and it would provide a new lens to investigate signaling pathways that are not yet cataloged in these
databases.

We and others have made use of large protein—protein interaction datasets as well as the annotated
pathway databases to construct an interactome—a graph representation of physical interactions among all
proteins in the organism under study. Since some interactions (especially those from existing databases)
represent post-translational modifications where a direction of signal is clear, we consider an interactome as
a weighted, directed graph G=(V, E) where the edges are weighted according to the supporting evidence.

1.1. Pathway reconstruction problem

In an earlier work (Ritz et al, 2016), we formulated the following Pathway Reconstruction Problem:
Given a weighted, directed interactome G=(V, E), a set R C V of membrane-bound receptors specific to a
pathway of interest, and a set T C V of transcriptional regulators specific to a pathway of interest, return a
subgraph G’ C G that corresponds to the signaling pathway that connects nodes in R to nodes in 7. We
showed that a k-shortest paths (KSP) approach, PathLinker, outperformed existing methods for connecting
nodes within a network to reconstruct pathways in pathway databases.

There are two main reasons why a KSP approach such as PathLinker reconstructed pathways bet-
ter than other methods. First, a KSP approach has a parameter to smoothly ““grow’’ the network. Many
existing algorithms return a small reconstruction because they aim at minimizing the number of ex-
traneous edges [such as Steiner forests (Tuncbag et al, 2013) and network flow (Lan et al, 2011)]. In
KSP, we can increase the number of paths & to return iteratively larger reconstructions, capturing more
of the pathway.

Second, a KSP approach is guaranteed to connect nodes in R to nodes in 7. Although some methods such
as Random Walks with Restarts (RWR) (Haveliwala, 2003) have a parameter that “‘grows’’ the network,
they are not guaranteed to connect the nodes from R to 7. In a KSP approach, all paths start and end within
the pathway by construction. Finally, reconstructions that comprised the shortest paths are useful for
generating hypotheses for follow-up validation.

For example, we experimentally validated a path (Ryk-CFTR-Dab2) from PathLinker’s reconstruction of
the Wnt signaling pathway and showed that Cystic Fibrosis Transmembrane Conductance Regulation
(CFTR) is associated with Wnt signaling through interactions between Ryk, a non-canonical receptor, and
Dab2, an inhibitor of canonical Wnt signaling (Ritz et al, 2016).

Despite PathLinker’s success, calculating the first 20,000 shortest paths from receptors to transcriptional
regulators for each signaling pathway in the NetPath databases captured only about 70% of the known
signaling interactions (Ritz et al, 2016), leaving much room for improvement. Extensions of PathLinker
have used auxiliary data such as protein localization information (Youssef et al, 2019) or additional
downstream processing (Rubel and Ritz, 2020) to accurately reconstruct ground truth pathways. Other
extensions have constrained the paths from R to 7 to follow regular expression patterns (Wagner et al,
2019).

1.2. Contributions

Inspired by the success of KSP approaches, we reframe the Pathway Reconstruction Problem to directly
optimize an objective function related to path cost on directed acyclic graphs (DAGs). We acknowledge
upfront that cycles (in the form of feedback loops) are important in signaling pathways, so this problem
formulation is narrower in scope than the original Pathway Reconstruction Problem. Next, we present two
pathway reconstruction methods that solve this new variant of the problem and apply them to six signaling
pathways from the NetPath database (Kandasamy et al, 2010).

We show that DAG reconstructions exhibit different topologies; they often outperform a previous
reconstruction method in recovering annotated proteins and interactions, and the predicted nodes are
enriched for different biological processes. Finally, we highlight our method’s ability to reconstruct
pathways starting from a larger seed DAG, such as a DAG constructed from known pathway interactions.
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2. METHODS

Let the interactome G=(V, E) be directed with edge weights w,, for every edge (u,v) € E. Given
R, T C V denoting the set of receptors and set of transcription factors for a particular pathway of interest,
we first modify the graph by Equation (1) introducing a super source node s to G, adding directed edges
with 0 edge weight from s to each node in R, and removing all other incoming edges to nodes in R and
Equation (2) introducing a super sink node ¢ to G, adding directed edges with 0 edge weight from each node
in T to ¢, and removing all other outgoing edges from nodes in 7.

We now focus on finding s— paths in G, which corresponds to finding paths from any receptor in R to
any transcriptional regulator in T that have the same cost as the original path lengths from receptors to
transcriptional regulators. Further, nodes in R and 7 will only start and end the paths (they will never be
internal nodes on paths). KSP approaches are parameterized by k, the number of shortest paths from s to 7.
KSP approaches iteratively “‘grow’ a subgraph G, of G by taking the union of the first KSP from s to #:
Gi,Gs, ..., Gj, ..., G In this way, KSP approaches iteratively ‘“‘grow’ a subgraph of G. Our goal is to
grow DAGs from a graph G.

2.1. A problem formulation for growing DAGs

We now formulate an optimization problem to grow DAGs from a graph G. Let Gy C G be any DAG
that connects s and ¢ (e.g., the shortest s— path). We will also keep track of all paths in a DAG: Let Pj(s, 1)
be the set of paths from s to # in DAG G;. Finally, we define the new edges added to G; to be Ex =E;\E; _;
and the set of new paths added to be Px=P;(s, )\P;-1(s, ).

2.1.1. The growing DAG problem. Given a weighted, directed graph G=(V, E, w) modified with
super-source and super-sink nodes s and ¢, a DAG G( C G that connects s and ¢, and a parameter k. For
j=1,2, ...k, find a DAG G;=(V}, E;, w;) where G;_; C G; C G such that

1. P # @ (there exists at least one new s—¢ path).

2. UPA =E, (all new edges in G; are on some s—t path).

3. G; minimizes some cost function ¢ : G;— R, which may be one of the following:
min_edge_cost: ¢1(G))= >, ,)cg, Wu-

min_paths_cost: c2(Gj, 5, )= 3 ,cp s, 1) 2w, vyep Wav-

Cost function min_edge_cost is simply the cost of the edges in the subgraph G;, whereas cost function
min_paths_cost computes the cost of all paths in G;. An example iteration is shown in Figure 1; note that
the G, that minimizes the two costs functions are quite different in (C) and (D), though they both add at
least one new path and all new edges are on some s—t path.

Cost Fctn ¢; Cost Fctn ¢,

FIG. 1. The growing DAG problem. (A) Input graph G, which may contain cycles and bidirected edges. Node s is
connected to three receptors ry, r», r3; three transcription factors #f], tf>, tf3 are connected to node ¢. In this example,
all edges have unit cost. (B) An example DAG Gy C G. (C) An example G; that minimizes min_edge_cost by adding
a single edge to Gy. (D) An example G, that minimizes min_paths_cost by adding a path of length 4 to G,. DAG,
directed acyclic graph.
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The shortest-path aspect of this problem comes from minimizing the cost functions. Note that, although
KSP approaches will always calculate the jth shortest s— path in G, this path may comprise edges already in
G;_ and thus fail the first condition cited earlier. The KSP approaches are also not guaranteed to produce a
DAG at each iteration.

2.2. Calculating cost functions

To implement the Growing DAG Problem, we must show that we can efficiently determine whether a
DAG G; satisfies the properties listed and that we can efficiently identify such a DAG from the previous
iteration. We first show that, given a DAG G;, we can efficiently calculate the cost functions. Given Gj_
and G;, we can efficiently calculate the cost functions described earlier. Calculating min_edge_cost is
straightforward: simply sum the edge weights in G;. However, calculating min_paths_cost requires an
enumeration of all paths in G;. To calculate min_paths_cost, we want to compute the cost of all s— paths
Pj(s, 1) in G; without having to enumerate all paths. It can be rewritten to calculate, for each edge in E;, the
number of s—¢ paths that contain that edge. Let f,, be the number of paths in P;(s, t) that contain edge (u, v):

CZ(Gj,s’t)= Z Z Wyy = Z fukuv~ (D

PEP;(s, 1) (u, v)EP (u, v)EE;

Although counting the number of s— paths in a general graph is #P-complete* (Valiant, 1979), we can
efficiently count the number of s— paths in a DAG. Further, the dynamic program to count the number of
s—t paths in a DAG will also compute the number of s— paths f,, that pass through every edge (u,v) € E;.
Supplementary Section S1.1 describes the PathCounter() algorithm, which returns f,, for every edge (u, v)
in a graph. Once we have f from the PathCounter() algorithm, calculating min_paths_cost is straight-
forward using Equation (1).

2.3. Properties of an optimal G;

Now that we have shown that we can efficiently calculate the cost functions given a DAG G;, we will
describe how to identify the possible extensions of G;_; that guarantee that at least one new s—t path is
added to G;. There may be multiple edges that are added to grow G; from G;_;; let Ga=(V;\V;_1, E;\E;j_1)
be the difference of G; and G;_;. Since G;j_; and G; are DAGs, the graph G, will also be a DAG
(which may be disconnected). We first prove some properties of G that hold for either of the cost functions
listed.

Lemma 1. Given Gj_, and G; that satisfy the Growing DAG problem, let Gy =G;\Gj_\. The Gy that
minimizes any of the cost functions will be exactly one path.

Proof. G4 is a non-empty DAG, since at least one new s—¢ path must exist in G;. If G, is not exactly one
path, then G, must be composed of multiple paths. Since all new edges in G; must be on some s— path,
then every maximal path in G, must start and end on some node from G;_; (which may include s and 7).
Let P={py, p2, ...} be the set of distinct maximal paths from Gj.

If one path p; € P establishes a new s—f path in G;, then other paths are unnecessary. Let p; start at some
node vy and end at some node v; p; establishes a new s—¢ path if (s ~>vg~> v ~>1) is in G;. The other paths in
P will add extraneous edges that are not necessary to establish a new path, which increases cost function
min_edge_cost.

Further, the other paths in P will add additional s— paths in G;, which increases the cost function
min_paths_cost. Since maximal paths can be dropped from P to minimize either cost function, G, is not
optimal.

Suppose instead that multiple paths are needed to establish a new s—t path in G;. Without loss of
generality, let two paths from P be vo~>v; and ug~>u;, and let a new s— path in G; be

82V~ Vg~ X~ X~ Yy~ U~ T

*#P (Sharp-P) problems are the counting problems associated with decision problems in NP.
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where x~>x" is a path in G;_,. There must be at least one edge from G;_; between v, and u, because
otherwise p; and p; would form a single maximal path in Ga. Since G;_; is a connected DAG, then x~>x'
must be upstream of ¢ and/or downstream of s in a topological ordering of V;_;. Therefore, at least one of
the following paths must exist:

1. s~>vg~>vg~>x~>x"~>1if x is upstream of 7. In this case, p; is used but p; is extraneous and only
increases the cost functions (by adding extra edges for min_edge_cost and adding extra s—¢ paths for
min_paths_cost), so G, is not optimal.

2. s~ x~>x ~>uy~v;~tif x is downstream of s. In this case, p; is used but p; is extraneous and only
increases the cost functions (by adding extra edges for min_edge_cost and adding extra s—¢ paths for
min_paths_cost), so G is not optimal. O

Lemma 2. G, that minimizes the cost functions defines a path that starts at some node in G;_ and ends
at some node in Gj_y. All internal nodes on the path are in G; but not in G;_.

Proof. Gy is a single path p=(vo, v, ..., V) by Lemma 1. We need to show that v, and vy are in V;_y,
and all other nodes are not in V;_;. First observe that there must be at least two nodes in G, that are in G;_;
for an s— path to include new edges in G; (which may include s and/or 7); call these nodes x and y. Consider
the path in G; s~>x~>y~>t where x~>y is a path in Ga.

1. There are exactly two nodes x,y € V;_; in the path p=(vo, vy, ..., vx). Suppose there was a third
node, z € V;_, in the path such that x~>z~>y. Since G;_; is a connected DAG, then z must be up-
stream of ¢ and/or downstream of s. Therefore, at least one of the following paths must exist:

a. s~x~>z~>tif z is upstream of ¢. In this case, z~>y is extraneous and increases the cost functions
(by adding extra edges for min_edge_cost and adding extra s—¢ paths for min_paths_cost), so G
is not optimal.

b. s~>z~>y~>t if z is downstream of s. In this case, x~>z is extraneous and increases the cost
functions (by adding extra edges for min_edge_cost and adding extra s—t paths for min_-
paths_cost), so G, is not optimal.

2. x=vp. Suppose x is some node on the path p that is not vy; call it v;. The path from (vg, ..., vi-1)
could be dropped, because s~>x will bypass these nodes.
3. y=v;. Same argument as for x=vj. O

Together, Lemmas 1 and 2 prove the following theorem:

Theorem 1. Given G;_ and G; that satisfy the Growing DAG problem, G;_ and G; differ by exactly one
path that starts and ends in G;_| and contains no other nodes from G;_;.

2.4. The growing DAG algorithm

At each iteration j, we keep track of candidate paths for DAG G; using a modified Dijkstra’s algorithm.
We rely on topologically sorting the nodes in a DAG, which results in a partial ordering of the nodes. Let
a(G) denote the partial ordering of a DAG G, with the position of each node v denoted by ¢,. For a node v
in a DAG, its ancestors are all nodes u where ¢, < o, and its descendants are all nodes x where o, < oy.
Note that there may also be the node y that is neither an ancestor nor a descendant of v (e.g., where ¢, =0,);
we say that v and y are incomparable.

Algorithm 1 takes as input a directed, weighted graph G, an initial DAG G, the number of iterations k, and a
cost function ¢ (either min_edge_cost or min_paths_cost). It returns a list of length & that denotes the min-cost
paths for each iteration according to the specified cost function. To track the set of candidate paths, we use the
distances dictionary that stores the cost of the best paths between topologically sorted nodes in the DAG. We
assume that we also have the predecessors so we can determine the path u~>v from dist [u][v] as well.

Lines 3-8 initialize the dist dictionary for the nodes in G. First, we build a G¢uyq graph that removes the
existing DAG from G. Then, for every node u in G, we consider, we must also remove any node that is an
ancestor of u to prevent paths that would induce cycles. Once we have the graph, we call a slightly modified
Dijkstra’s algorithm called MultiTargetDijkstra() to find the shortest path from a source node s to each
target node, ensuring that a node in G; is never considered an internal node on a path and returning early if
all target nodes are reached (Supplementary Section S1.2).
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Algorithm 1: GrowDAGs(G=(V, E), Go=(Vy, Ep), num iters k, cost function ¢)

: paths <[]

s dist «{}

: # Initialize distances

Gcand « G\G()

:for u € Vy do

Gg‘,;)nd<— Remove any node v from G, Where o, > o, in a(Gp)

dist[u] = MultiTargetDijkstra(G\) ,,Vo.u,{v : 7, < a,} in a(Gy))

: end for

:forj=1,2, ...,k do

10:  # Get the min cost path according to cost function ¢

11:  if c=c; then

12: paths[j] < the path u~>v from dist[u][v] such that min, ,
dist[x][y] =dist[u][v]

13:  else if c=c, then

I I

Ne)

14: C—{}

15: for u, v such that ¢, < 0, in o(G)) do

16: G' — Add the path u~>v from dist[u][v] to Gi_1

17: f < PathCounter (G,s,)

18: C[M] [V] = Z(u, V)gE/fquuv

19: end for

20: paths[j] < the path u~>v from dist[u][v] such that min, , C[x][y]=C[u][v]
21:  end if

22:  # Make G; and update distances
23:  Gj< Add paths[j] to G;_,

24 Geand < G\G;

25: forucV;do

26: Ggﬁld@ Remove any node v from Gcyng Where o, > 0, in 6(G;)
27: dist[u] =MultiTargetDijkstra(G¥) ..V, u,{v : 6, < ¢,} in a(G)))
28:  end for

29: end for

30: return paths

Once the distances are initialized, we iteratively grow G; for j from 1 to k. First, we identify the min-cost
path from dist according to cost function ¢ (Lines 10-21). This is simple for min_edge_cost, when we
select the path u~»v with the lowest cost in dist. For min_paths_cost, we need to calculate the cost of all
s—t paths for every possible choice of valid u~»v path in dist. We can call the PathCounter() algorithm
(Supplementary Algorithm S1) on a graph G’ that contains the path we are checking to calculate the all-
paths-cost C[u][v] (Lines 16-18).

We select the path u~>v with the lowest all-paths-cost C[u][v], add the selected path to Gj_; to make the
G; DAG, and update the distances dictionary.

We implemented a number of speedups to improve the runtime of Algorithm 1, two of which are notable.
First, in the MultiTargetDijkstra() function call, we can set the target nodes 7 to be only the nodes v for
which u~>v needs to be recalculated (Supplementary Section S1.2). In practice, this dramatically reduced
the number of target nodes that MultiTargetDijkstra() needed to find, re-running between 0.2% and 14% of
the possible number of target nodes across all runs.

A second speedup comes from avoiding re-computations when minimizing min_paths_cost. Lines 16—
18 generate a new DAG G, calls PathCounter() on this new graph, and uses these values to compute the
min_paths_cost for every ordered node pair u, v. In practice, we first calculate f for G; as the first step in
the main for loop, and we use functions to update f as if we have added the path u~>v (without needing to
create a new graph G’). These update functions, similar to determining the upstream and downstream
dictionaries in the PathCounter() algorithm, adjust all paths from s to u and all paths from v to ¢ assuming
that path u~>v has been added.
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3. RESULTS

We ran GrowDAGs for both cost functions to reconstruct six diverse signaling pathways from the
NetPath database (Kandasamy et al, 2010). We identified receptors and transcriptional regulators for each
pathway using previously established resources of these protein types (Almén et al, 2009; Ravasi et al,
2010; Vaquerizas et al, 2009). The six networks range in size, density, and the number of receptors and
transcriptional regulators (Table 1).

We used an interactome G with 17,513 nodes and 577,617 directed edges weighted by experimental
evidence (Youssef et al, 2019). This interactome is built from a combination of molecular interaction data
(BioGrid, DIP, InnateDB, IntAct, MINT, PhosphositePlus) and annotated signaling pathway databases
(KEGG, NetPath, and SPIKE). Since NetPath nodes and edges are part of the interactome, we can use these
pathways as ground truth networks to assess reconstruction methods [similar to the analyses in previous
work (Ritz et al, 2016; Youssef et al, 2019)]. The edge weights are negative log transformed to become
edge costs, which we aim at minimizing.

3.1. Topological differences between DAG reconstructions

We first provide some examples of reconstructed pathways using GrowDAGs by examining the topo-
logical differences between DAG reconstructions of the Wnt signaling pathway. We grew DAGs from each
pathway-specific G, defined as the shortest s— path in G, where super source node s is connected to the
pathway’s receptors and the pathway’s transcriptional regulators are connected to super sink ¢ (Fig. 1A).

As expected, min_edge_cost tended to produce DAGs whose paths reuse the same nodes whereas
min_paths_cost tended to produce DAGs with more non-overlapping s—t paths (Fig. 2 shows k=75 for the
Wnt pathway reconstructions). Network visualizations of all pathways up to k=200 are available on
GraphSpace (Bharadwaj et al, 2017).f

We also compared the resulting GrowDAGSs reconstructions with those from PathLinker, the KSP
approach (Ritz et al, 2016). We ran the GrowDAGs methods (starting from the shortest-path G,) and
PathLinker on each of the six pathways until the reconstruction contained the same number of nodes or
edges as the ground truth pathway (or until £ =1000). We call these size-matched reconstructions, and they
depend on whether the reconstructions are matched by the number of nodes or the number of edges.

Supplementary Table S1 shows the k values needed for size-matched reconstructions for all six path-
ways; two node-based reconstructions and three edge-based reconstructions from the BCR pathway and the
EGFRI1 pathway did not reach the ground truth number of nodes or edges by k= 1000, so these comparisons
are not necessarily size-matched.

The Wnt size-matched reconstruction for min_paths_cost took fewer iterations than min_edge_cost or
PathLinker for both nodes and edges, indicating that min_paths_cost tends to add new nodes and edges to
reconstructions rather than reusing existing nodes and edges (Fig. 3A). This observation about min_-
paths_cost holds across size-matched reconstructions for all six pathways, though Wnt tends to be an
outlier when comparing min_edge_cost with PathLinker (Supplementary Figs. S2 and S3). For all other
pathway reconstructions, min_edge_cost takes the most iterations to reach size-matched reconstructions
for nodes, and PathLinker falls between the two DAG methods.

3.2. Comparison to ground truth pathways

We then evaluated how well the GrowDAG pathways captured annotated proteins and interactions from
the six NetPath pathways. For this analysis, we considered the NetPath pathways ground truth nodes and
edges, though it is widely acknowledged that signaling pathway databases are incomplete. For each of the
six pathways, we calculated the precision and recall for size-matched reconstructions for nodes and edges
(Fig. 3B; Supplementary Figs. S4 and S5).

When computing precision and recall of edges, we compare undirected edges with undirected ground
truth edges, which is consistent with previous evaluations (Ritz et al, 2016). Overall, the methods achieve
relatively low recall (e.g., 0.15-0.5 recall for nodes) despite relatively high precision (Supplementary
Figs. S4 and S5). The GrowDAG reconstructions have a higher area under the precision-recall (AUPRC)

Thttp://graphspace.org/graphs/?query=tags: DAG#
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TABLE 1. SIGNALING PATHWAYS CHOSEN FOR THIs STUDY (KANDASAMY ET AL, 2010)

Name Abbreviations Nodes Edges Receptors TRs
B cell receptor pathway BCR 137 456 1 18
Epidermal growth factor receptor pathway EGFR1 231 1456 6 33
Interleukin 1 pathway IL1 43 178 3 5
T cell receptor pathway TCR 154 504 7 20
Transforming growth factor B pathway TGFp 209 863 5 77
Wnt pathway Wnt 106 428 14 14

TRs, transcriptional regulators.

than PathLinker in all but one case (T cell receptor), whose max AUPRC is an order of magnitude smaller
than any other case (Table 2). Of the GrowDAG cost functions, min_paths_cost has the highest AUPRC
for seven cases compared with four cases for min_edge_cost.

Although the methods have low recall, overall size matched-sized reconstructions are often too large for
visual exploration (e.g., the networks visualized in Fig. 2 are only a subset of the matched-sized recon-
structions). Instead, considering the precision for the top 50 predictions (e.g., the first 50 nodes or first 50
edges in a reconstruction) is a complementary assessment in terms of reconstruction usefulness. When
considering the first 50 predictions, DAG min_paths_cost no longer consistently outperforms the other
two methods, though one of the GrowDAG reconstructions has the highest precision for five of the node
reconstructions and five of the edge reconstructions (Table 3).

One of the reasons for the low precision, especially for edges, is that the number of negative examples
is vastly larger than the number of positive examples for a single pathway. Thus, previous evaluation
frameworks have subsampled the negative examples from the interactome to ensure a 50:1 ratio of neg-
atives to positives (Ritz et al, 2016). This not only inflates the precision but can also more clearly separate
performances of different approaches.

A DAG c¢; (min edge cost) B DAG ¢, (min paths cost)

e sox Fn e LAL x o i
[} ‘, ——— la !

f' 0 RORA

P

FEOR

ol

W
N/ s

|\

Aty
1A TR

FIG. 2. Wnt pathway GrowDAGs reconstructions (k=75) for (A) min_edge_cost and (B) min_paths_cost. The
shortest path from any receptor to any transcriptional regulator was used as Gy (shown as the thick edge).
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FIG. 3. (A) Number of nodes and edges at each iteration of the Wnt pathway reconstructions. Horizontal dashed line
indicates the number of nodes and edges in the Wnt NetPath pathway. (B) Precision-recall curves for size-matched
reconstructions from the Wnt pathway. c;: min_edge_cost; c,: min_paths_cost.

We conducted the same precision-recall analysis by subsampling negatives in a 50:1 ratio and repeating
for 10 iterations—the GrowDAG reconstructions outperform PathLinker even when subsampling nega-
tives, though more min_edge_cost reconstructions have the highest AUPRC across methods (Supple-
mentary Figs. S6 and S7 and Supplementary Table S2).

3.3. Reconstructions capture diverse biological processes

Next, we evaluated whether the three pathway reconstruction methods recover different biological
processes. Here, we considered the nodes in the sized-matched reconstructions and found that, for five of

TABLE 2. AREA UNDER THE PRECISION-RECALL VALUES FOR NODES (LEFT)
AND EDGES (RIGHT) FOR SIZE-MATCHED RECONSTRUCTIONS

Node AUPRC Edge AUPRC

Name DAG ¢, DAG c, PL DAG ¢, DAG ¢, PL
BCR 0.179 0.242* 0.132 0.018 0.029 0.003
EGFR1 0.275 0.249* 0.234 0.132° 0.013* 0.012*
1IL1 0.148 0.259 0.225 0.020 0.047 0.030
TCR 0.130 0.187 0.176 0.003 0.003 0.006
TGFp 0.397 0.377 0.355 0.052 0.060 0.036
Wnt 0.274 0.276 0.272 0.057 0.030 0.028

c;: min_edge_cost; c,: min_paths_cost. Largest AUPRC values are shown in bold; asterisks (*) denote reconstructions that did not
reach the number of ground truth nodes or edges by k=1000 (see Supplementary Table S1).
AUPRC, area under the precision-recall; DAG, directed acyclic graphs; PL, PathLinker.
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TABLE 3. PRECISION OF THE FIRST 50 PREDICTIONS (NODES ON THE LEFT, EDGES
ON THE RIGHT) FOR THE RECONSTRUCTIONS

Node precision @50 Edge precision @50

Name DAG ¢, DAG ¢, PL DAG ¢, DAG ¢, PL

BCR 0.580 0.720 0.392 0.040 0.231 0.040
EGFR1 0.880 0.725 0.660 0.120 0.180 0.100
IL1 0.380 0.320 0.120 0.137 0.157
TCR 0.480 0.615 0.640 0.120 0.020 0.118
TGFp 0.960 0.860 0.640 0.360 0.440 0.255
Whnt 0.660 0.627 0.640 0.240 0.200 0.220

c;: min_edge_cost; c,: min_paths_cost. Largest values are shown in bold; missing entries denote that 50 unique predictions weren’t
reached at the specified value of k for sized-matched reconstructions.

the six pathways, each method contains distinct nodes not found in the other reconstructions (Supple-
mentary Fig. S8). For example, only 17% of the predicted nodes for Wnt size-matched reconstructions are
predicted by all methods (Fig. 4).

We performed gene function enrichment using PantherDB (Mi and Thomas, 2009; Mi et al, 2019) on the
uniquely-predicted nodes for each method (e.g., 54 DAG min_edge_cost nodes, 46 DAG min_paths_cost
nodes, and 48 PathLinker nodes in Fig. 4) to determine whether any Panther pathways are enriched in each
of these unique sets. Specifically, we ran the PANTHER Over-representation Test (version 17.0) using
Fisher’s exact test and an FDR correction of 0.05.

We found that each set of unique nodes was enriched for at least three Panther pathways (tables in
Fig. 4). The DAG min_paths_cost has 24 enriched Panther pathways; the full table is in Supplementary
Table S3. All three reconstructions contain nodes that are enriched in Wnt signaling (DAG min_paths_cost
captures three nodes with an adjusted p-value of 3.62x 10~2; Supplementary Table S3), each capturing
different aspects of the Wnt pathway that is separate from the other two methods.

The DAG min_paths_cost and PathLinker reconstructions are also enriched for Parkinson Disease,
which has a known connection to Wnt signaling through inflammatory pathways (L’Episcopo et al, 2014).
The DAG min_paths_cost also appears to be enriched in many signaling pathways that are known to cross-
talk with Wnt, including T cell signaling (Li et al, 2019), B cell signaling (Ma and Hottiger, 2016), and
EGFR signaling (Hu and Li, 2010), among others.

3.4. Gy as NetPath DAGs

One of the powerful aspects of GrowDAGs is the ability to begin the reconstruction with any DAG. For
example, using the ground truth pathways as input DAGs, our methods will propose new nodes and edges
that are not currently annotated to that pathway. To illustrate this potential, we converted each ground truth
pathway from NetPath into a Gy DAG by considering only the nodes and edges in the ground truth network
(Table 1) after connecting super source node s to all receptors and super sink node ¢ to all transcriptional
regulators (similar to the modifications made to the full interactome).

We calculated up to 1000 shortest s— paths in the ground truth network (e.g., by running PathLinker) and
built Gy by adding each path only if it did not introduce a cycle in Gy. Since the NetPath edges are used
to build the interactome, each ground truth DAG conversion Gy is, by construction, a subgraph of the
interactome. The total number of nodes and edges in the DAG conversion of Gy were correlated with
the overall size of the ground truth pathway (Table 4). We ran GrowDAGs for k=25 to be able to visualize
the newly-added nodes and edges.

Running GrowDAGs on the six signaling pathways with the ground truth DAGs G, produced similar
trends in network topology for min_edge_cost and min_paths_cost that were shown in Section 3.1. For the
25 new paths added to the NetPath DAGs, we also counted the number of directed edges that were present
in Netpath or KEGG pathway databases, indicating that a known signaling interaction was recovered.

We found that, on average, 16.9 & 3.4 directed edges from DAGs generated by min_edge_cost
and 13.2 4 3.0 directed edges from DAGs generated by min_paths_cost that were present in the databases.
An example reconstruction for interleukin (IL)-1, the smallest pathway, is shown in Figure 5. These
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TABLE 4. THE GROUND TRUTH PATHWAYS CONVERTED TO DIRECTED ACYCLIC GRAPHS,

WHICH ARE USED AS G IN SECTION 3.4

PathLinker Nodes in Edges in
Name Paths DAG conversion DAG conversion
BCR 958 58 131
EGFR1 >1000 105 461
1IL1 713 22 55
TCR 952 57 139
TGFp 70 33 70
Wnt 984 40 89
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The total number of PathLinker paths are also reported.

reconstructions potentially suggest new proteins and interactions that should be considered in the annotated
pathways, and the percentage of interactions from signaling pathway databases are a promising sign of
identifying signaling edges in these DAGs.

4. DISCUSSION

We have described the Growing DAG Problem, a pathway reconstruction formulation that directly adds
paths to a DAG that explicitly optimizes one of two cost functions (minimizing edge costs or minimizing
s—t path costs). We presented the GrowDAGs algorithm that iteratively finds the most optimal DAG G;.
Applying this algorithm to six diverse NetPath pathways, we show that min_edge_cost and
min_paths_cost admit DAGs with different network topologies that often outperform a KSP approach
compared with the annotated proteins and interactions in NetPath.

A DAG ¢,

>

o s

FIG. 5. IL-1 reconstructions for (A) min_edge_cost and (B) min_paths_cost for k=25 starting from a ground truth
Gy. Here, G is shown in thin gray edges. Dark green edges appear in the NetPath database; light green edges appear in
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. IL, interleukin.

|IKBKG} |IKBKB|
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Further, the reconstructions return proteins that are enriched for different biological processes. We also
demonstrate that we can begin with a larger DAG G, such as a DAG converted from the NetPath ground
truth. To our knowledge, this is the first pathway reconstruction algorithm that can grow a network based on
a seeded subnetwork (rather than a set of nodes).

In our analysis of GrowDAGs and PathLinker reconstructions from six pathways, the GrowDAGs
methods outperformed PathLinker for size-matched reconstructions in all scenarios except one. Between
the two cost functions, DAG min_paths_cost had a higher AUPRC for more scenarios than DAG min_
edge_cost (Table 2). It is worth noting, however, that DAG min_edge_cost performed the best on the
EGFR1 reconstructions, which is the largest ground truth network we tested. DAG min_edge_cost
also performed better than the other reconstructions for TFGff when reconstructing size-matched nodes
(Table 2).

Both EGFR1 and TGFf node reconstructions have a high overlap between DAG min_paths_cost and
PathLinker (as evidenced by the Venn diagrams in Supplementary Fig. S8). This suggests that, when DAG
min_paths_cost and PathLinker produce similar reconstructions, DAG min_edge_cost may better reflect
nodes in the ground truth pathway.

The GrowDAG formulations rely on a parameter k, which determines how large to grow the pathway
reconstruction. The choice of k dramatically changes the size of the reconstructions, and this user-defined
parameter should be chosen carefully with the user’s goal in mind. For example, we calculated up to
k=1000 iterations to assess how well entire pathways could be reconstructed. When looking for potentially
new proteins and interactions that are missing from an annotated pathway, the first few predictions (e.g.,
the top 50 predictions shown in Table 3) may be more appropriate. For visualization purposes, k=200
begins to reach the limit of useful network visualization (see, e.g., the reconstructions available at http://
graphspace.org/graphs/?query=tags:DAG#). In general, larger values of k will provide a better sense of how
much of the pathway is captured in a reconstruction, whereas looking at the top predictions for small values
of k will provide a ranked list of potentially new proteins and interactions that are missing from the
annotated pathway.

The Growing DAG Problem and subsequent algorithms are limited by the DAG constraints—namely,
that reconstructions will never contain cycles. Feedback loops are an integral part of signaling (Alon,
2007), and many of the signaling pathways in NetPath, KEGG, and other pathway databases have docu-
mented examples of these cycles.

Our reasons for starting with DAGs were twofold: first, intracellular signaling that begins at a cell
membrane and ends with transcriptional regulation has a general direction; and second, DAGs provide a
reduced search space when growing networks. Beyond the search space for optimal subgraphs at each
iteration, the min_paths_cost optimization criterion could not be efficiently computed on a subgraph with
cycles, though there may very well be another optimization function that would be useful to consider in
general graphs. Generalizing the computational problem and the general framework to graphs with cycles
would be an important future step in pathway reconstruction.

Although the GrowDAGs framework is a promising way to reconstruct signaling pathways with certain
topologies, a few limitations remain that prohibit its widespread use for large pathway reconstructions.
First, the algorithm is still slow in practice, namely due to having to check all pairs of topologically sorted
nodes of G;_ at each iteration.

Runtimes for k=100 averaged 2.1 hours, ranging from 11 minutes to 16 hours (a full table of runtimes
is available in Supplementary Table S4). However, computing the next iterations for k=101, ..., 200
averaged 19.6 hours, ranging from 44 minutes to nearly 52 hours. While we mention a few speedups
in Section 2.4, more improvements are needed to reconstruct pathways at the scale of PathLinker
(which calculated reconstructions up to k=20,000). Second, other cost functions may produce different
topologies than those reconstructed here; for example, minimizing the average cost of new paths or taking a
weighted average of min_edge_cost and min_paths_cost. However, Lemma 2 does not hold for such cost
functions.

Despite these challenges, the Growing DAG Problem presents a first step toward explicitly optimizing a
cost function related to pathway reconstruction. Existing pathway reconstruction methods will always
return networks with the same topologies—KSP, Steiner forests, random walks, etc.—and the proposed
cost functions provide control over the topologies of the GrowDAG reconstructions. This work opens the
door for improved cost functions that reflect ground truth pathways and provides a framework for designing
algorithms to grow networks.
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