
Open camera or QR reader and

scan code to access this article

and other resources online.

Growing Directed Acyclic Graphs:

Optimization Functions for Pathway

Reconstruction Algorithms

TUNÇ BASxAR KÖSE,1,*,{ JIARONG LI,1,{,* and ANNA RITZ2

ABSTRACT

A major challenge in molecular systems biology is to understand how proteins work to

transmit external signals to changes in gene expression. Computationally reconstructing

these signaling pathways from protein interaction networks can help understand what is

missing from existing pathway databases. We formulate a new pathway reconstruction

problem, one that iteratively grows directed acyclic graphs (DAGs) from a set of starting

proteins in a protein interaction network. We present an algorithm that provably returns

the optimal DAGs for two different cost functions and evaluate the pathway reconstruc-

tions when applied to six diverse signaling pathways from the NetPath database. The

optimal DAGs outperform an existing k-shortest paths method for pathway reconstruction,

and the new reconstructions are enriched for different biological processes. Growing DAGs is a

promising step toward reconstructing pathways that provably optimize a specific cost

function.

Keywords: directed acyclic graphs, graph algorithms, pathway reconstruction, signaling pathways.

1. MOTIVATION

Intracellular signaling pathways describe the molecules and interactions that convert a particular

external signal (such as growth, proliferation, movement, or death) to the change of expression of one or

more genes, culminating in a cellular response through transcriptional regulation. Many signaling pathway

databases such as Reactome (Fabregat et al, 2018), the Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa et al, 2007), and NetPath (Kandasamy et al, 2010) document the interactions associated with

signaling pathways, and efforts such as WikiPathways (Pico et al, 2008) and Pathway Commons (Cerami

et al, 2010) have unified these databases by combining dozens of pathway resources.

Departments of 1Computer Science and 2Biology, Reed College, Portland, Oregon, USA.
*These authors contributed equally to this work.
{Current affiliation: Microsoft Corporation, Mountain View, California, USA.
{Current affiliation: School of Science, Aalto University, Espoo, Finland.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 30, Number 7, 2023

Mary Ann Liebert, Inc.

Pp. 814–828

DOI: 10.1089/cmb.2022.0376

814

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t

0
6
/1

8
/2

4
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

However, even pathways that describe fundamental biological processes or pathways implicated in

commonly studied diseases are not complete: they are likely missing canonical proteins and protein

interactions. Further, it is difficult to use these pathway databases to study less well-known signaling

events. Computationally reconstructing a signaling pathway of interest from experimental data would

be a huge help for the (mostly manual) curation of pathway databases such as Reactome and KEGG,

and it would provide a new lens to investigate signaling pathways that are not yet cataloged in these

databases.

We and others have made use of large protein–protein interaction datasets as well as the annotated

pathway databases to construct an interactome—a graph representation of physical interactions among all

proteins in the organism under study. Since some interactions (especially those from existing databases)

represent post-translational modifications where a direction of signal is clear, we consider an interactome as

a weighted, directed graph G = (V‚E) where the edges are weighted according to the supporting evidence.

1.1. Pathway reconstruction problem

In an earlier work (Ritz et al, 2016), we formulated the following Pathway Reconstruction Problem:

Given a weighted, directed interactome G = (V‚E), a set R � V of membrane-bound receptors specific to a

pathway of interest, and a set T � V of transcriptional regulators specific to a pathway of interest, return a

subgraph G0 � G that corresponds to the signaling pathway that connects nodes in R to nodes in T. We

showed that a k-shortest paths (KSP) approach, PathLinker, outperformed existing methods for connecting

nodes within a network to reconstruct pathways in pathway databases.

There are two main reasons why a KSP approach such as PathLinker reconstructed pathways bet-

ter than other methods. First, a KSP approach has a parameter to smoothly ‘‘grow’’ the network. Many

existing algorithms return a small reconstruction because they aim at minimizing the number of ex-

traneous edges [such as Steiner forests (Tuncbag et al, 2013) and network flow (Lan et al, 2011)]. In

KSP, we can increase the number of paths k to return iteratively larger reconstructions, capturing more

of the pathway.

Second, a KSP approach is guaranteed to connect nodes in R to nodes in T. Although some methods such

as Random Walks with Restarts (RWR) (Haveliwala, 2003) have a parameter that ‘‘grows’’ the network,

they are not guaranteed to connect the nodes from R to T. In a KSP approach, all paths start and end within

the pathway by construction. Finally, reconstructions that comprised the shortest paths are useful for

generating hypotheses for follow-up validation.

For example, we experimentally validated a path (Ryk-CFTR-Dab2) from PathLinker’s reconstruction of

the Wnt signaling pathway and showed that Cystic Fibrosis Transmembrane Conductance Regulation

(CFTR) is associated with Wnt signaling through interactions between Ryk, a non-canonical receptor, and

Dab2, an inhibitor of canonical Wnt signaling (Ritz et al, 2016).

Despite PathLinker’s success, calculating the first 20,000 shortest paths from receptors to transcriptional

regulators for each signaling pathway in the NetPath databases captured only about 70% of the known

signaling interactions (Ritz et al, 2016), leaving much room for improvement. Extensions of PathLinker

have used auxiliary data such as protein localization information (Youssef et al, 2019) or additional

downstream processing (Rubel and Ritz, 2020) to accurately reconstruct ground truth pathways. Other

extensions have constrained the paths from R to T to follow regular expression patterns (Wagner et al,

2019).

1.2. Contributions

Inspired by the success of KSP approaches, we reframe the Pathway Reconstruction Problem to directly

optimize an objective function related to path cost on directed acyclic graphs (DAGs). We acknowledge

upfront that cycles (in the form of feedback loops) are important in signaling pathways, so this problem

formulation is narrower in scope than the original Pathway Reconstruction Problem. Next, we present two

pathway reconstruction methods that solve this new variant of the problem and apply them to six signaling

pathways from the NetPath database (Kandasamy et al, 2010).

We show that DAG reconstructions exhibit different topologies; they often outperform a previous

reconstruction method in recovering annotated proteins and interactions, and the predicted nodes are

enriched for different biological processes. Finally, we highlight our method’s ability to reconstruct

pathways starting from a larger seed DAG, such as a DAG constructed from known pathway interactions.

GROWING DAGS 815

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t

0
6
/1

8
/2

4
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

2. METHODS

Let the interactome G= (V‚E) be directed with edge weights wuv for every edge (u‚ v) 2 E. Given

R‚ T � V denoting the set of receptors and set of transcription factors for a particular pathway of interest,

we first modify the graph by Equation (1) introducing a super source node s to G, adding directed edges

with 0 edge weight from s to each node in R, and removing all other incoming edges to nodes in R and

Equation (2) introducing a super sink node t to G, adding directed edges with 0 edge weight from each node

in T to t, and removing all other outgoing edges from nodes in T.

We now focus on finding s–t paths in G, which corresponds to finding paths from any receptor in R to

any transcriptional regulator in T that have the same cost as the original path lengths from receptors to

transcriptional regulators. Further, nodes in R and T will only start and end the paths (they will never be

internal nodes on paths). KSP approaches are parameterized by k, the number of shortest paths from s to t.

KSP approaches iteratively ‘‘grow’’ a subgraph Gk of G by taking the union of the first KSP from s to t:

G1‚G2‚ . . . ‚Gj‚ . . . ‚Gk. In this way, KSP approaches iteratively ‘‘grow’’ a subgraph of G. Our goal is to

grow DAGs from a graph G.

2.1. A problem formulation for growing DAGs

We now formulate an optimization problem to grow DAGs from a graph G. Let G0 � G be any DAG

that connects s and t (e.g., the shortest s–t path). We will also keep track of all paths in a DAG: Let Pj(s‚ t)

be the set of paths from s to t in DAG Gj. Finally, we define the new edges added to Gj to be ED =EjnEj - 1

and the set of new paths added to be PD =Pj(s‚ t)nPj - 1(s‚ t).

2.1.1. The growing DAG problem. Given a weighted, directed graph G = (V‚E‚w) modified with

super-source and super-sink nodes s and t, a DAG G0 � G that connects s and t, and a parameter k. For

j = 1‚ 2‚ . . . ‚ k, find a DAG Gj = (Vj‚Ej‚wj) where Gj - 1 � Gj � G such that

1. PD 6¼ Ø (there exists at least one new s–t path).

2.
S

PD
=ED (all new edges in Gj are on some s–t path).

3. Gj minimizes some cost function c : Gj1R, which may be one of the following:

min_edge_cost: c1(Gj) =
P

(u‚ v)2Ej
wuv.

min_paths_cost: c2(Gj‚ s‚ t) =
P

p2Pj(s‚ t)

P
(u‚ v)2p wuv.

Cost function min_edge_cost is simply the cost of the edges in the subgraph Gj‚ whereas cost function

min_paths_cost computes the cost of all paths in Gj. An example iteration is shown in Figure 1; note that

the G1 that minimizes the two costs functions are quite different in (C) and (D), though they both add at

least one new path and all new edges are on some s–t path.

s

t

r1 r3r2

tf1 tf2 tf3

e

d

i

hg

c

b

f

a

Graph G

s

t

r2

tf2 tf3

hg

c

b

DAG G0

s

t

r1 r3r2

tf1 tf2 tf3

e

d

i

hg

c

b

f

a

 Cost Fctn c1

s

t

rr11r r3r2

tftt 1ff tf2 tf3

e

d

i

hg

c

b

f

a

 Cost Fctn c2

A B C D

FIG. 1. The growing DAG problem. (A) Input graph G, which may contain cycles and bidirected edges. Node s is

connected to three receptors r1‚ r2‚ r3; three transcription factors tf1‚ tf2‚ tf3 are connected to node t. In this example,

all edges have unit cost. (B) An example DAG G0 � G. (C) An example G1 that minimizes min_edge_cost by adding

a single edge to G0. (D) An example G1 that minimizes min_paths_cost by adding a path of length 4 to G0. DAG,

directed acyclic graph.

816 KÖSE ET AL.

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t

0
6
/1

8
/2

4
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

The shortest-path aspect of this problem comes from minimizing the cost functions. Note that, although

KSP approaches will always calculate the jth shortest s–t path in G, this path may comprise edges already in

Gj - 1 and thus fail the first condition cited earlier. The KSP approaches are also not guaranteed to produce a

DAG at each iteration.

2.2. Calculating cost functions

To implement the Growing DAG Problem, we must show that we can efficiently determine whether a

DAG Gj satisfies the properties listed and that we can efficiently identify such a DAG from the previous

iteration. We first show that, given a DAG Gj, we can efficiently calculate the cost functions. Given Gj - 1

and Gj, we can efficiently calculate the cost functions described earlier. Calculating min_edge_cost is

straightforward: simply sum the edge weights in Gj. However, calculating min_paths_cost requires an

enumeration of all paths in Gj. To calculate min_paths_cost, we want to compute the cost of all s–t paths

Pj(s‚ t) in Gj without having to enumerate all paths. It can be rewritten to calculate, for each edge in Ej, the

number of s–t paths that contain that edge. Let fuv be the number of paths in Pj(s‚ t) that contain edge (u‚ v):

c2(Gj‚ s‚ t) =
X

p2Pj(s‚ t)

X

(u‚ v)2p

wuv =

X

(u‚ v)2Ej

fuvwuv: (1)

Although counting the number of s–t paths in a general graph is #P-complete* (Valiant, 1979), we can

efficiently count the number of s–t paths in a DAG. Further, the dynamic program to count the number of

s–t paths in a DAG will also compute the number of s–t paths fuv that pass through every edge (u‚ v) 2 Ej.

Supplementary Section S1.1 describes the PathCounter() algorithm, which returns fuv for every edge (u‚ v)

in a graph. Once we have f from the PathCounter() algorithm, calculating min_paths_cost is straight-

forward using Equation (1).

2.3. Properties of an optimal Gj

Now that we have shown that we can efficiently calculate the cost functions given a DAG Gj, we will

describe how to identify the possible extensions of Gj - 1 that guarantee that at least one new s–t path is

added to Gj. There may be multiple edges that are added to grow Gj from Gj - 1; let GD = (VjnVj - 1‚EjnEj - 1)

be the difference of Gj and Gj - 1. Since Gj - 1 and Gj are DAGs, the graph GD will also be a DAG

(which may be disconnected). We first prove some properties of GD that hold for either of the cost functions

listed.

Lemma 1. Given Gj - 1 and Gj that satisfy the Growing DAG problem, let GD =GjnGj - 1. The GD that

minimizes any of the cost functions will be exactly one path.

Proof. GD is a non-empty DAG, since at least one new s–t path must exist in Gj. If GD is not exactly one

path, then GD must be composed of multiple paths. Since all new edges in Gj must be on some s–t path,

then every maximal path in GD must start and end on some node from Gj - 1 (which may include s and t).

Let P= fp1‚ p2‚ . . .g be the set of distinct maximal paths from GD.

If one path pi 2 P establishes a new s–t path in Gj, then other paths are unnecessary. Let pi start at some

node v0 and end at some node vk; pi establishes a new s–t path if (s,v0,vk,t) is in Gj. The other paths in

P will add extraneous edges that are not necessary to establish a new path, which increases cost function

min_edge_cost.

Further, the other paths in P will add additional s–t paths in Gj, which increases the cost function

min_paths_cost. Since maximal paths can be dropped from P to minimize either cost function, GD is not

optimal.

Suppose instead that multiple paths are needed to establish a new s–t path in Gj: Without loss of

generality, let two paths from P be v0,vk and u0,ul, and let a new s–t path in Gj be

s,v0,vk,x,x0,u0,ul,t‚

*#P (Sharp-P) problems are the counting problems associated with decision problems in NP.

GROWING DAGS 817

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t

0
6
/1

8
/2

4
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

where x,x0 is a path in Gj - 1. There must be at least one edge from Gj - 1 between vk and u0 because

otherwise pi and pj would form a single maximal path in GD. Since Gj - 1 is a connected DAG, then x,x0

must be upstream of t and/or downstream of s in a topological ordering of Vj - 1. Therefore, at least one of

the following paths must exist:

1. s,v0,vk,x,x0,t if x is upstream of t. In this case, pi is used but pj is extraneous and only

increases the cost functions (by adding extra edges for min_edge_cost and adding extra s–t paths for

min_paths_cost), so GD is not optimal.

2. s,x,x0,u0,vl,t if x is downstream of s. In this case, pj is used but pi is extraneous and only

increases the cost functions (by adding extra edges for min_edge_cost and adding extra s–t paths for

min_paths_cost), so GD is not optimal. ,

Lemma 2. GD that minimizes the cost functions defines a path that starts at some node in Gj - 1 and ends

at some node in Gj - 1. All internal nodes on the path are in Gj but not in Gj - 1.

Proof. GD is a single path p = (v0‚ v1‚ . . . ‚ vk) by Lemma 1. We need to show that v0 and vk are in Vj - 1,

and all other nodes are not in Vj - 1. First observe that there must be at least two nodes in GD that are in Gj - 1

for an s–t path to include new edges in Gj (which may include s and/or t); call these nodes x and y. Consider

the path in Gj s,x,y,t where x,y is a path in GD.

1. There are exactly two nodes x‚ y 2 Vj - 1 in the path p = (v0‚ v1‚ . . . ‚ vk). Suppose there was a third

node, z 2 Vj - 1, in the path such that x,z,y. Since Gj - 1 is a connected DAG, then z must be up-

stream of t and/or downstream of s. Therefore, at least one of the following paths must exist:

a. s,x,z,t if z is upstream of t. In this case, z,y is extraneous and increases the cost functions

(by adding extra edges for min_edge_cost and adding extra s–t paths for min_paths_cost), so GD

is not optimal.

b. s,z,y,t if z is downstream of s. In this case, x,z is extraneous and increases the cost

functions (by adding extra edges for min_edge_cost and adding extra s–t paths for min_-

paths_cost), so GD is not optimal.

2. x = v0. Suppose x is some node on the path p that is not v0; call it vi. The path from (v0‚ . . . ‚ vi - 1)

could be dropped, because s,x will bypass these nodes.

3. y = vk. Same argument as for x = v0. ,

Together, Lemmas 1 and 2 prove the following theorem:

Theorem 1. Given Gj - 1 and Gj that satisfy the Growing DAG problem, Gj - 1 and Gj differ by exactly one

path that starts and ends in Gj - 1 and contains no other nodes from Gj - 1.

2.4. The growing DAG algorithm

At each iteration j, we keep track of candidate paths for DAG Gj using a modified Dijkstra’s algorithm.

We rely on topologically sorting the nodes in a DAG, which results in a partial ordering of the nodes. Let

r(G) denote the partial ordering of a DAG G, with the position of each node v denoted by rv. For a node v

in a DAG, its ancestors are all nodes u where ru < rv and its descendants are all nodes x where rv < rx.

Note that there may also be the node y that is neither an ancestor nor a descendant of v (e.g., where rv = ry);

we say that v and y are incomparable.

Algorithm 1 takes as input a directed, weighted graph G, an initial DAG G0, the number of iterations k, and a

cost function c (eithermin_edge_cost ormin_paths_cost). It returns a list of length k that denotes the min-cost

paths for each iteration according to the specified cost function. To track the set of candidate paths, we use the

distances dictionary that stores the cost of the best paths between topologically sorted nodes in the DAG. We

assume that we also have the predecessors so we can determine the path u,v from dist [u][v] as well.

Lines 3–8 initialize the dist dictionary for the nodes in G0. First, we build a Gcand graph that removes the

existing DAG from G. Then, for every node u in G0 we consider, we must also remove any node that is an

ancestor of u to prevent paths that would induce cycles. Once we have the graph, we call a slightly modified

Dijkstra’s algorithm called MultiTargetDijkstra() to find the shortest path from a source node s to each

target node, ensuring that a node in Gj is never considered an internal node on a path and returning early if

all target nodes are reached (Supplementary Section S1.2).

818 KÖSE ET AL.

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t

0
6
/1

8
/2

4
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

Algorithm 1: GrowDAGs(G = (V‚E), G0 = (V0‚E0), num iters k, cost function c)

1: paths)[]

2: dist)fg
3: # Initialize distances

4: Gcand)GnG0

5: for u 2 V0 do

6: G
(u)
cand) Remove any node v from Gcand where ru > rv in r(G0)

7: dist[u] = MultiTargetDijkstra(G(u)
cand,V0,u,fv : ru � rvg in r(G0))

8: end for

9: forj = 1‚ 2‚ . . . ‚ k do

10: # Get the min cost path according to cost function c

11: if c = c1 then

12: paths[j]) the path u,v from dist[u][v] such that minx‚ y
dist[x][y] = dist[u][v]

13: else if c = c2 then

14: C)fg
15: for u‚ v such that ru � rv in r(Gj) do

16: G0
) Add the path u,v from dist[u][v] to Gj - 1

17: f) PathCounter (G0,s,t)

18: C[u][v] =
P

(u‚ v)2E0 fuvwuv

19: end for

20: paths[j]) the path u,v from dist[u][v] such that minx‚ y C[x][y] =C[u][v]

21: end if

22: # Make Gj and update distances

23: Gj) Add paths[j] to Gj - 1

24: Gcand)GnGj

25: for u 2 Vj do

26: G
(u)
cand) Remove any node v from Gcand where ru > rv in r(Gj)

27: dist[u] =MultiTargetDijkstra(G(u)
cand,Vj,u,fv : ru � rvg in r(Gj))

28: end for

29: end for

30: return paths

Once the distances are initialized, we iteratively grow Gj for j from 1 to k. First, we identify the min-cost

path from dist according to cost function c (Lines 10–21). This is simple for min_edge_cost, when we

select the path u,v with the lowest cost in dist. For min_paths_cost, we need to calculate the cost of all

s–t paths for every possible choice of valid u,v path in dist. We can call the PathCounter() algorithm

(Supplementary Algorithm S1) on a graph G0 that contains the path we are checking to calculate the all-

paths-cost C[u][v] (Lines 16–18).

We select the path u,v with the lowest all-paths-cost C[u][v], add the selected path to Gj - 1 to make the

Gj DAG, and update the distances dictionary.

We implemented a number of speedups to improve the runtime of Algorithm 1, two of which are notable.

First, in the MultiTargetDijkstra() function call, we can set the target nodes T to be only the nodes v for

which u,v needs to be recalculated (Supplementary Section S1.2). In practice, this dramatically reduced

the number of target nodes that MultiTargetDijkstra() needed to find, re-running between 0.2% and 14% of

the possible number of target nodes across all runs.

A second speedup comes from avoiding re-computations when minimizing min_paths_cost. Lines 16–

18 generate a new DAG G0, calls PathCounter() on this new graph, and uses these values to compute the

min_paths_cost for every ordered node pair u‚ v. In practice, we first calculate f for Gj as the first step in

the main for loop, and we use functions to update f as if we have added the path u,v (without needing to

create a new graph G0). These update functions, similar to determining the upstream and downstream

dictionaries in the PathCounter() algorithm, adjust all paths from s to u and all paths from v to t assuming

that path u,v has been added.

GROWING DAGS 819

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t

0
6
/1

8
/2

4
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

3. RESULTS

We ran GrowDAGs for both cost functions to reconstruct six diverse signaling pathways from the

NetPath database (Kandasamy et al, 2010). We identified receptors and transcriptional regulators for each

pathway using previously established resources of these protein types (Almén et al, 2009; Ravasi et al,

2010; Vaquerizas et al, 2009). The six networks range in size, density, and the number of receptors and

transcriptional regulators (Table 1).

We used an interactome G with 17,513 nodes and 577,617 directed edges weighted by experimental

evidence (Youssef et al, 2019). This interactome is built from a combination of molecular interaction data

(BioGrid, DIP, InnateDB, IntAct, MINT, PhosphositePlus) and annotated signaling pathway databases

(KEGG, NetPath, and SPIKE). Since NetPath nodes and edges are part of the interactome, we can use these

pathways as ground truth networks to assess reconstruction methods [similar to the analyses in previous

work (Ritz et al, 2016; Youssef et al, 2019)]. The edge weights are negative log transformed to become

edge costs, which we aim at minimizing.

3.1. Topological differences between DAG reconstructions

We first provide some examples of reconstructed pathways using GrowDAGs by examining the topo-

logical differences between DAG reconstructions of the Wnt signaling pathway. We grew DAGs from each

pathway-specific G0 defined as the shortest s–t path in G, where super source node s is connected to the

pathway’s receptors and the pathway’s transcriptional regulators are connected to super sink t (Fig. 1A).

As expected, min_edge_cost tended to produce DAGs whose paths reuse the same nodes whereas

min_paths_cost tended to produce DAGs with more non-overlapping s–t paths (Fig. 2 shows k = 75 for the

Wnt pathway reconstructions). Network visualizations of all pathways up to k = 200 are available on

GraphSpace (Bharadwaj et al, 2017).{

We also compared the resulting GrowDAGs reconstructions with those from PathLinker, the KSP

approach (Ritz et al, 2016). We ran the GrowDAGs methods (starting from the shortest-path G0) and

PathLinker on each of the six pathways until the reconstruction contained the same number of nodes or

edges as the ground truth pathway (or until k = 1000). We call these size-matched reconstructions, and they

depend on whether the reconstructions are matched by the number of nodes or the number of edges.

Supplementary Table S1 shows the k values needed for size-matched reconstructions for all six path-

ways; two node-based reconstructions and three edge-based reconstructions from the BCR pathway and the

EGFR1 pathway did not reach the ground truth number of nodes or edges by k = 1000, so these comparisons

are not necessarily size-matched.

The Wnt size-matched reconstruction for min_paths_cost took fewer iterations than min_edge_cost or

PathLinker for both nodes and edges, indicating that min_paths_cost tends to add new nodes and edges to

reconstructions rather than reusing existing nodes and edges (Fig. 3A). This observation about min_-

paths_cost holds across size-matched reconstructions for all six pathways, though Wnt tends to be an

outlier when comparing min_edge_cost with PathLinker (Supplementary Figs. S2 and S3). For all other

pathway reconstructions, min_edge_cost takes the most iterations to reach size-matched reconstructions

for nodes, and PathLinker falls between the two DAG methods.

3.2. Comparison to ground truth pathways

We then evaluated how well the GrowDAG pathways captured annotated proteins and interactions from

the six NetPath pathways. For this analysis, we considered the NetPath pathways ground truth nodes and

edges, though it is widely acknowledged that signaling pathway databases are incomplete. For each of the

six pathways, we calculated the precision and recall for size-matched reconstructions for nodes and edges

(Fig. 3B; Supplementary Figs. S4 and S5).

When computing precision and recall of edges, we compare undirected edges with undirected ground

truth edges, which is consistent with previous evaluations (Ritz et al, 2016). Overall, the methods achieve

relatively low recall (e.g., 0.15–0.5 recall for nodes) despite relatively high precision (Supplementary

Figs. S4 and S5). The GrowDAG reconstructions have a higher area under the precision-recall (AUPRC)

{http://graphspace.org/graphs/?query=tags:DAG#

820 KÖSE ET AL.

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t

0
6
/1

8
/2

4
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

than PathLinker in all but one case (T cell receptor), whose max AUPRC is an order of magnitude smaller

than any other case (Table 2). Of the GrowDAG cost functions, min_paths_cost has the highest AUPRC

for seven cases compared with four cases for min_edge_cost.

Although the methods have low recall, overall size matched-sized reconstructions are often too large for

visual exploration (e.g., the networks visualized in Fig. 2 are only a subset of the matched-sized recon-

structions). Instead, considering the precision for the top 50 predictions (e.g., the first 50 nodes or first 50

edges in a reconstruction) is a complementary assessment in terms of reconstruction usefulness. When

considering the first 50 predictions, DAG min_paths_cost no longer consistently outperforms the other

two methods, though one of the GrowDAG reconstructions has the highest precision for five of the node

reconstructions and five of the edge reconstructions (Table 3).

One of the reasons for the low precision, especially for edges, is that the number of negative examples

is vastly larger than the number of positive examples for a single pathway. Thus, previous evaluation

frameworks have subsampled the negative examples from the interactome to ensure a 50:1 ratio of neg-

atives to positives (Ritz et al, 2016). This not only inflates the precision but can also more clearly separate

performances of different approaches.

DAG c1 (min edge cost) DAG c2 (min paths cost)A B

FIG. 2. Wnt pathway GrowDAGs reconstructions (k = 75) for (A) min_edge_cost and (B) min_paths_cost. The

shortest path from any receptor to any transcriptional regulator was used as G0 (shown as the thick edge).

Table 1. Signaling Pathways Chosen for This Study (Kandasamy et al, 2010)

Name Abbreviations Nodes Edges Receptors TRs

B cell receptor pathway BCR 137 456 1 18

Epidermal growth factor receptor pathway EGFR1 231 1456 6 33

Interleukin 1 pathway IL1 43 178 3 5

T cell receptor pathway TCR 154 504 7 20

Transforming growth factor b pathway TGFb 209 863 5 77

Wnt pathway Wnt 106 428 14 14

TRs, transcriptional regulators.

GROWING DAGS 821

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t

0
6
/1

8
/2

4
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

We conducted the same precision-recall analysis by subsampling negatives in a 50:1 ratio and repeating

for 10 iterations—the GrowDAG reconstructions outperform PathLinker even when subsampling nega-

tives, though more min_edge_cost reconstructions have the highest AUPRC across methods (Supple-

mentary Figs. S6 and S7 and Supplementary Table S2).

3.3. Reconstructions capture diverse biological processes

Next, we evaluated whether the three pathway reconstruction methods recover different biological

processes. Here, we considered the nodes in the sized-matched reconstructions and found that, for five of

0.00 0.05 0.10 0.15 0.20

Recall

0.00

0.25

0.50

0.75

1.00

P
re

c
is

io
n

Wnt Edges

DAG c1

DAG c2

PathLinker

0.1 0.2 0.3

Recall

0.00

0.25

0.50

0.75

1.00

P
re

c
is

io
n

Wnt Nodes

DAG c1

DAG c2

PathLinker

0 100 200 300

Iteration k

0

25

50

75

100
#

N
o
d
e
s

Wnt Nodes

PathLinker (k=300)

DAG c1 (k=301)

DAG c2 (k=102)

Ground Truth

0 200 400

Iteration k

0

100

200

300

400

#
E
d
g
e
s

Wnt Edges

PathLinker (k=531)

DAG c1 (k=342)

DAG c2 (k=250)

Ground Truth

A

B

FIG. 3. (A) Number of nodes and edges at each iteration of the Wnt pathway reconstructions. Horizontal dashed line

indicates the number of nodes and edges in the Wnt NetPath pathway. (B) Precision-recall curves for size-matched

reconstructions from the Wnt pathway. c1: min_edge_cost; c2: min_paths_cost.

Table 2. Area Under the Precision-Recall Values for Nodes (Left)

and Edges (Right) for Size-Matched Reconstructions

Name

Node AUPRC Edge AUPRC

DAG c1 DAG c2 PL DAG c1 DAG c2 PL

BCR 0:179 0:242� 0:132 0:018 0:029 0:003

EGFR1 0:275 0:249� 0:234 0:132� 0:013� 0:012�

IL1 0:148 0:259 0:225 0:020 0:047 0:030

TCR 0:130 0:187 0:176 0:003 0:003 0:006

TGFb 0:397 0:377 0:355 0:052 0:060 0:036

Wnt 0:274 0:276 0:272 0:057 0:030 0:028

c1: min_edge_cost; c2: min_paths_cost. Largest AUPRC values are shown in bold; asterisks (*) denote reconstructions that did not

reach the number of ground truth nodes or edges by k = 1000 (see Supplementary Table S1).

AUPRC, area under the precision-recall; DAG, directed acyclic graphs; PL, PathLinker.

822 KÖSE ET AL.

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t

0
6
/1

8
/2

4
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

the six pathways, each method contains distinct nodes not found in the other reconstructions (Supple-

mentary Fig. S8). For example, only 17% of the predicted nodes for Wnt size-matched reconstructions are

predicted by all methods (Fig. 4).

We performed gene function enrichment using PantherDB (Mi and Thomas, 2009; Mi et al, 2019) on the

uniquely-predicted nodes for each method (e.g., 54 DAG min_edge_cost nodes, 46 DAG min_paths_cost

nodes, and 48 PathLinker nodes in Fig. 4) to determine whether any Panther pathways are enriched in each

of these unique sets. Specifically, we ran the PANTHER Over-representation Test (version 17.0) using

Fisher’s exact test and an FDR correction of 0.05.

We found that each set of unique nodes was enriched for at least three Panther pathways (tables in

Fig. 4). The DAG min_paths_cost has 24 enriched Panther pathways; the full table is in Supplementary

Table S3. All three reconstructions contain nodes that are enriched in Wnt signaling (DAGmin_paths_cost

captures three nodes with an adjusted p-value of 3:62 · 10 - 2; Supplementary Table S3), each capturing

different aspects of the Wnt pathway that is separate from the other two methods.

The DAG min_paths_cost and PathLinker reconstructions are also enriched for Parkinson Disease,

which has a known connection to Wnt signaling through inflammatory pathways (L’Episcopo et al, 2014).

The DAGmin_paths_cost also appears to be enriched in many signaling pathways that are known to cross-

talk with Wnt, including T cell signaling (Li et al, 2019), B cell signaling (Ma and Hottiger, 2016), and

EGFR signaling (Hu and Li, 2010), among others.

3.4. G0 as NetPath DAGs

One of the powerful aspects of GrowDAGs is the ability to begin the reconstruction with any DAG. For

example, using the ground truth pathways as input DAGs, our methods will propose new nodes and edges

that are not currently annotated to that pathway. To illustrate this potential, we converted each ground truth

pathway from NetPath into a G0 DAG by considering only the nodes and edges in the ground truth network

(Table 1) after connecting super source node s to all receptors and super sink node t to all transcriptional

regulators (similar to the modifications made to the full interactome).

We calculated up to 1000 shortest s–t paths in the ground truth network (e.g., by running PathLinker) and

built G0 by adding each path only if it did not introduce a cycle in G0. Since the NetPath edges are used

to build the interactome, each ground truth DAG conversion G0 is, by construction, a subgraph of the

interactome. The total number of nodes and edges in the DAG conversion of G0 were correlated with

the overall size of the ground truth pathway (Table 4). We ran GrowDAGs for k = 25 to be able to visualize

the newly-added nodes and edges.

Running GrowDAGs on the six signaling pathways with the ground truth DAGs G0 produced similar

trends in network topology formin_edge_cost andmin_paths_cost that were shown in Section 3.1. For the

25 new paths added to the NetPath DAGs, we also counted the number of directed edges that were present

in Netpath or KEGG pathway databases, indicating that a known signaling interaction was recovered.

We found that, on average, 16:9� 3:4 directed edges from DAGs generated by min_edge_cost

and 13:2� 3:0 directed edges from DAGs generated bymin_paths_cost that were present in the databases.

An example reconstruction for interleukin (IL)-1, the smallest pathway, is shown in Figure 5. These

Table 3. Precision of the First 50 Predictions (Nodes on the Left, Edges

on the Right) for the Reconstructions

Name

Node precision @50 Edge precision @50

DAG c1 DAG c2 PL DAG c1 DAG c2 PL

BCR 0:580 0:720 0:392 0:040 0:231 0:040

EGFR1 0:880 0:725 0:660 0:120 0:180 0:100

IL1 0:380 0:320 0:120 0:137 0:157

TCR 0:480 0:615 0:640 0:120 0:020 0:118

TGFb 0:960 0:860 0:640 0:360 0:440 0:255

Wnt 0:660 0:627 0:640 0:240 0:200 0:220

c1:min_edge_cost; c2:min_paths_cost. Largest values are shown in bold; missing entries denote that 50 unique predictions weren’t

reached at the specified value of k for sized-matched reconstructions.

GROWING DAGS 823

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t

0
6
/1

8
/2

4
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

D
A
G

c
1

D
A
G

c
2

P
a
th

L
in

k
e
r

W
n
t

..
.

F
IG

.
4
.

V
en
n
d
ia
g
ra
m

o
f
p
re
d
ic
te
d
n
o
d
es

fo
r
G
ro
w
D
A
G

m
et
h
o
d
s
an
d
P
at
h
L
in
k
er

fo
r
si
ze
-m

at
ch
ed

W
n
t
re
co
n
st
ru
ct
io
n
s.
T
ab
le
s
sh
o
w

g
en
e
fu
n
ct
io
n
en
ri
ch
m
en
t
o
f
u
n
iq
u
el
y
p
re
d
ic
te
d

n
o
d
es

u
si
n
g
P
an
th
er
D
B
p
at
h
w
ay
s.
n
:
n
u
m
b
er

o
f
p
ro
te
in
s
in

th
e
P
an
th
er

p
at
h
w
ay
;
k
:
n
u
m
b
er

o
f
p
re
d
ic
te
d
p
ro
te
in
s
in

th
e
P
an
th
er

p
at
h
w
ay
;
c
1
:
m
in
_
ed
g
e_
co
st
;
c
2
:
m
in
_
p
a
th
s_
co
st
.
F
u
ll
ta
b
le

fo
r
D
A
G

m
in
_
p
a
th
s_
co
st

is
sh
o
w
n
in

S
u
p
p
le
m
en
ta
ry

T
ab
le

S
3
.

824

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t

0
6
/1

8
/2

4
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

reconstructions potentially suggest new proteins and interactions that should be considered in the annotated

pathways, and the percentage of interactions from signaling pathway databases are a promising sign of

identifying signaling edges in these DAGs.

4. DISCUSSION

We have described the Growing DAG Problem, a pathway reconstruction formulation that directly adds

paths to a DAG that explicitly optimizes one of two cost functions (minimizing edge costs or minimizing

s–t path costs). We presented the GrowDAGs algorithm that iteratively finds the most optimal DAG Gj.

Applying this algorithm to six diverse NetPath pathways, we show that min_edge_cost and

min_paths_cost admit DAGs with different network topologies that often outperform a KSP approach

compared with the annotated proteins and interactions in NetPath.

Table 4. The Ground Truth Pathways Converted to Directed Acyclic Graphs,

Which Are Used as G0 in Section 3.4

Name

PathLinker Nodes in Edges in

Paths DAG conversion DAG conversion

BCR 958 58 131

EGFR1 >1000 105 461

IL1 713 22 55

TCR 952 57 139

TGFb 70 33 70

Wnt 984 40 89

The total number of PathLinker paths are also reported.

DAG c1 DAG c2A B

FIG. 5. IL-1 reconstructions for (A) min_edge_cost and (B) min_paths_cost for k = 25 starting from a ground truth

G0. Here, G0 is shown in thin gray edges. Dark green edges appear in the NetPath database; light green edges appear in

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. IL, interleukin.

GROWING DAGS 825

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t

0
6
/1

8
/2

4
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

Further, the reconstructions return proteins that are enriched for different biological processes. We also

demonstrate that we can begin with a larger DAG G0 such as a DAG converted from the NetPath ground

truth. To our knowledge, this is the first pathway reconstruction algorithm that can grow a network based on

a seeded subnetwork (rather than a set of nodes).

In our analysis of GrowDAGs and PathLinker reconstructions from six pathways, the GrowDAGs

methods outperformed PathLinker for size-matched reconstructions in all scenarios except one. Between

the two cost functions, DAG min_paths_cost had a higher AUPRC for more scenarios than DAG min_

edge_cost (Table 2). It is worth noting, however, that DAG min_edge_cost performed the best on the

EGFR1 reconstructions, which is the largest ground truth network we tested. DAG min_edge_cost

also performed better than the other reconstructions for TFGb when reconstructing size-matched nodes

(Table 2).

Both EGFR1 and TGFb node reconstructions have a high overlap between DAG min_paths_cost and

PathLinker (as evidenced by the Venn diagrams in Supplementary Fig. S8). This suggests that, when DAG

min_paths_cost and PathLinker produce similar reconstructions, DAG min_edge_cost may better reflect

nodes in the ground truth pathway.

The GrowDAG formulations rely on a parameter k, which determines how large to grow the pathway

reconstruction. The choice of k dramatically changes the size of the reconstructions, and this user-defined

parameter should be chosen carefully with the user’s goal in mind. For example, we calculated up to

k = 1000 iterations to assess how well entire pathways could be reconstructed. When looking for potentially

new proteins and interactions that are missing from an annotated pathway, the first few predictions (e.g.,

the top 50 predictions shown in Table 3) may be more appropriate. For visualization purposes, k = 200

begins to reach the limit of useful network visualization (see, e.g., the reconstructions available at http://

graphspace.org/graphs/?query=tags:DAG#). In general, larger values of k will provide a better sense of how

much of the pathway is captured in a reconstruction, whereas looking at the top predictions for small values

of k will provide a ranked list of potentially new proteins and interactions that are missing from the

annotated pathway.

The Growing DAG Problem and subsequent algorithms are limited by the DAG constraints—namely,

that reconstructions will never contain cycles. Feedback loops are an integral part of signaling (Alon,

2007), and many of the signaling pathways in NetPath, KEGG, and other pathway databases have docu-

mented examples of these cycles.

Our reasons for starting with DAGs were twofold: first, intracellular signaling that begins at a cell

membrane and ends with transcriptional regulation has a general direction; and second, DAGs provide a

reduced search space when growing networks. Beyond the search space for optimal subgraphs at each

iteration, the min_paths_cost optimization criterion could not be efficiently computed on a subgraph with

cycles, though there may very well be another optimization function that would be useful to consider in

general graphs. Generalizing the computational problem and the general framework to graphs with cycles

would be an important future step in pathway reconstruction.

Although the GrowDAGs framework is a promising way to reconstruct signaling pathways with certain

topologies, a few limitations remain that prohibit its widespread use for large pathway reconstructions.

First, the algorithm is still slow in practice, namely due to having to check all pairs of topologically sorted

nodes of Gj - 1 at each iteration.

Runtimes for k = 100 averaged 2.1 hours, ranging from 11 minutes to 16 hours (a full table of runtimes

is available in Supplementary Table S4). However, computing the next iterations for k = 101‚ . . . ‚ 200

averaged 19.6 hours, ranging from 44 minutes to nearly 52 hours. While we mention a few speedups

in Section 2.4, more improvements are needed to reconstruct pathways at the scale of PathLinker

(which calculated reconstructions up to k = 20,000). Second, other cost functions may produce different

topologies than those reconstructed here; for example, minimizing the average cost of new paths or taking a

weighted average of min_edge_cost and min_paths_cost. However, Lemma 2 does not hold for such cost

functions.

Despite these challenges, the Growing DAG Problem presents a first step toward explicitly optimizing a

cost function related to pathway reconstruction. Existing pathway reconstruction methods will always

return networks with the same topologies—KSP, Steiner forests, random walks, etc.—and the proposed

cost functions provide control over the topologies of the GrowDAG reconstructions. This work opens the

door for improved cost functions that reflect ground truth pathways and provides a framework for designing

algorithms to grow networks.

826 KÖSE ET AL.

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t

0
6
/1

8
/2

4
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

ACKNOWLEDGMENTS

The authors thank Layla Oesper, Ibrahim Youssef, and Tobias Rubel for feedback on early versions of

this manuscript.

AUTHORS’ CONTRIBUTIONS

T.B.K. and J.L.: Methodology, software, formal analysis, and writing—original draft. A.R.: Con-

ceptualization, methodology, software, formal analysis, writing—original draft, writing—review and

editing, supervision, and funding acquisition.

DATA AND CODE AVAILABILITY

All code and data related to Growing DAGs are available on GitHub: https://github.com/Reed-CompBio/

growing-dags. Pathway reconstruction visualizations for the six pathways and k = 200 are available on

GraphSpace (Bharadwaj et al, 2017): http://graphspace.org/graphs/?query=tags:DAG#

AUTHOR DISCLOSURE STATEMENT

The authors declare they have no conflicting financial interests.

FUNDING INFORMATION

This work was supported by the National Science Foundation (DBI-1750981) and the M.J. Murdock

Charitable Trust (Lynwood W. Swanson Promise for Scientific Research Award).

SUPPLEMENTARY MATERIAL

Supplementary Figure S1

Supplementary Figure S2

Supplementary Figure S3

Supplementary Figure S4

Supplementary Figure S5

Supplementary Figure S6

Supplementary Figure S7

Supplementary Figure S8

Supplementary Table S1

Supplementary Table S2

Supplementary Table S3

Supplementary Table S4

Supplementary Data

REFERENCES

Almén MS, Nordström KJ, Fredriksson R, et al. Mapping the human membrane proteome: A majority of the human

membrane proteins can be classified according to function and evolutionary origin. BMC Biol 2009;7(1):1–14.

Alon U. Network motifs: Theory and experimental approaches. Nat Rev Genet 2007;8(6):450–461.

Bharadwaj A, Singh DP, Ritz A, et al. Graphspace: Stimulating interdisciplinary collaborations in network biology.

Bioinformatics 2017;33(19):3134–3136.

GROWING DAGS 827

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t

0
6
/1

8
/2

4
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

Cerami EG, Gross BE, Demir E, et al. Pathway commons, a web resource for biological pathway data. Nucleic Acids

Res 2010;39(suppl_1):D685–D690.

Fabregat A, Jupe S, Matthews L, et al. The reactome pathway knowledgebase. Nucleic Acids Res 2018;46(D1):D649–

D655.

Haveliwala TH. Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Trans Know

Data Eng 2003;15(4):784–796.

Hu T, Li C. Convergence between wnt-b-catenin and egfr signaling in cancer. Mol Cancer 2010;9(1):1–7.

Kandasamy K, Mohan SS, Raju R, et al. Netpath: A public resource of curated signal transduction pathways. Genome

Biol 2010;11(1):1–9.

Kanehisa M, Araki M, Goto S, et al. Kegg for linking genomes to life and the environment. Nucleic Acids Res

2007;36(suppl_1):D480–D484.

Lan A, Smoly IY, Rapaport G, et al. Responsenet: Revealing signaling and regulatory networks linking genetic and

transcriptomic screening data. Nucleic Acids Res 2011;39(suppl_2):W424–W429.

L’Episcopo F, Tirolo C, Caniglia S, et al. Targeting wnt signaling at the neuroimmune interface for dopaminergic

neuroprotection/repair in Parkinson’s disease. J Mol Cell Biol 2014;6(1):13–26.

Li X, Xiang Y, Li F, et al. Wnt/b-catenin signaling pathway regulating t cell-inflammation in the tumor microenvi-

ronment. Front Immunol 2019;10:2293.

Ma B, Hottiger MO. Crosstalk between wnt/b-catenin and nf-jb signaling pathway during inflammation. Front Im-

munol 2016;7:378.

Mi H, Muruganujan A, Huang X, et al. Protocol update for large-scale genome and gene function analysis with the

panther classification system (v. 14.0). Nat Protoc 2019;14(3):703–721.

Mi H, Thomas P. Panther Pathway: An Ontology-Based Pathway Database Coupled with Data Analysis Tools. In:

Protein Networks and Pathway Analysis; Nikolsky Y, Bryant J (eds). Springer. 2009; pp. 123–140. doi: 978-1-60761-

17s-2_7

Pico AR, Kelder T, Van Iersel MP, et al. Wikipathways: Pathway editing for the people. PLoS Biol 2008;6(7):e184.

Ravasi T, Suzuki H, Cannistraci CV, et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell

2010;140(5):744–752.

Ritz A, Poirel CL, Tegge AN, et al. Pathways on demand: Automated reconstruction of human signaling networks. NPJ

Syst Biol Appl 2016;2(1):1–9.

Rubel T, Ritz A. Augmenting signaling pathway reconstructions. In Proceedings of the 11th ACM International

Conference on Bioinformatics, Computational Biology and Health Informatics. Association for Computing Ma-

chinery, New York, NY, USA. 2020; pp. 1–10.

Tuncbag N, Braunstein A, Pagnani A, et al. Simultaneous reconstruction of multiple signaling pathways via the prize-

collecting Steiner Forest Problem. J Comput Biol 2013;20(2):124–136.

Valiant LG. The complexity of enumeration and reliability problems. SIAM J Comput 1979;8(3):410–421.

Vaquerizas JM, Kummerfeld SK, Teichmann SA, et al. A census of human transcription factors: Function, expression

and evolution. Nat Rev Genet 2009;10(4):252–263.

Wagner MJ, Pratapa A, Murali T. Reconstructing signaling pathways using regular language constrained paths.

Bioinformatics 2019;35(14):i624–i633.

Youssef I, Law J, Ritz A. Integrating protein localization with automated signaling pathway reconstruction. BMC

Bioinformatics 2019;20(16):1–15.

Address correspondence to:

Dr. Anna Ritz

Biology Department

Reed College

3203 SE Woodstock Blvd.

Portland, OR 97202

USA

E-mail: aritz@reed.edu

828 KÖSE ET AL.

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t

0
6
/1

8
/2

4
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

