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Abstract

The blackstripe livebearer Poeciliopsis prolifica is a live-bearing fish belonging to the family Poeciliidae with high level of post-

fertilization maternal investment (matrotrophy). This viviparous matrotrophic species has evolved a structure similarly to the 

mammalian placenta. Placentas have independently evolved multiple times in Poeciliidae from nonplacental ancestors, which 

provide an opportunity to study the placental evolution. However, there is a lack of high-quality reference genomes for the 

placental species in Poeciliidae. In this study, we present a 674 Mb assembly of P. prolifica in 504 contigs with excellent con-

tinuity (contig N50 7.7 Mb) and completeness (97.2% Benchmarking Universal Single-Copy Orthologs [BUSCO] complete-

ness score, including 92.6% single-copy and 4.6% duplicated BUSCO score). A total of 27,227 protein-coding genes were 

annotated from the merged datasets based on bioinformatic prediction, RNA sequencing and homology evidence. 

Phylogenomic analyses revealed that P. prolifica diverged from the guppy (Poecilia reticulata) ∼19 Ma. Our research provides 

the necessary resources and the genomic toolkit for investigating the genetic underpinning of placentation.

Key words: long-read sequencing, genome assembly, genome annotation, Poeciliidae.

Significance

Placentas have independently evolved multiple times in the fish family Poeciliidae, which is ideal for investigating the 

evolution of placenta. However, there is no high-quality reference genome of placental species in Poeciliidae. Here, 

we generated a high-quality and well-annotated genome of Poeciliopsis prolifica, which is crucial for the evolutionary 

and comparative genomic studies in genus Poeciliopsis.
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Introduction

Animals exhibit various reproductive strategies, from ovi-

parity to viviparity, linked to the different levels of parental 

investment (Clutton-Brock 1991). Oviparity is known to be 

an ancestral reproductive mode in which females spawn 

eggs, and the nutrition for offspring is totally derived 

from the yolk provisioned before the egg is fertilized 

(lecithotrophy) (Wake 1992). In contrast, viviparity is a re-

productive mode in which females give birth to live young. 

Viviparity may still be lecithotrophic, meaning that mothers 

may fully provision eggs before fertilization, but mothers 

may instead continue to provision the embryo after the 

egg is fertilized (matrotrophy) (Wourms et al. 1988; Pollux 

et al. 2009). Matrotrophic viviparity is not unique to therian 
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mammals. It is also found in some teleost fishes (Thibault 

and Schultz 1978; Wourms et al. 1988), reptiles (Guillette 

1993; Braz et al. 2016), and amphibians (Wake 2015; 

Furness and Capellini 2019). All of these other taxa lack a 

uterus. Eggs are fertilized, and embryos develop in the ovar-

ian cavity (Amoroso 1968; Kaye 1971; Wourms 1981; 

Rothchild 2003; Uribe et al. 2019). There are considerable 

variations among viviparous vertebrates in how much nutri-

tion the pregnant female delivers to offspring during devel-

opment. Some embryos of viviparous species receive 

nutrition entirely from the yolk (lecithotrophy), whereas 

others can acquire nutrition from pregnant females 

throughout development (matrotrophy). The mechanism 

of delivery can be through skin, gut, gill, oviduct, or pla-

centa (Wake and Dickie 1998; Stewart and Thompson 

2000; Exbrayat 2006; Uribe et al. 2021).

The placenta, an apposition of maternal and embryonic 

tissue, is a specialized form of matrotrophy (Mossman 

1991), providing nutrient transport and gas exchange for 

embryo development and participating in physiological, 

endocrine, and immune interactions at the maternal–fetal 

interface (Faber et al. 1992; Moffett and Loke 2006; 

Dimasuay et al. 2016). In the live-bearing fish family 

Poeciliidae, the placenta has independently evolved mul-

tiple times from nonplacental ancestors. Placental species 

exhibit various degrees of postfertilization maternal provi-

sioning (Reznick et al. 2002; Pollux et al. 2014). The genus 

Poeciliopsis alone includes more than 20 species that vary in 

maternal provisioning from lecithotrophy to extensive 

matrotrophy. There are three independent origins of pla-

centation (Reznick et al. 2002), which makes the genus 

ideal for investigating placental evolution. However, 

there is no high-quality reference genome available for fa-

cilitating studies of the genomic basis of placentation in 

Poeciliopsis. Blackstripe Livebearer (Poeciliopsis prolifica) 

is a species with extensive matrotrophy (Wourms et al. 

1988; Reznick et al. 2002). Our preliminary transcriptome 

sequencing in P. prolifica revealed that only 30–40% of 

the RNA-seq reads could be mapped to the guppy 

(Poecilia reticulata) genome, the closest species with a 

high-quality reference genome (Kunstner et al. 2016; 

Fraser et al. 2020) in Poeciliids.

van Kruistum et al. (2021), as part of a comparative study 

of live-bearing fish, assembled the P. prolifica genome 

using Illumina short-read sequencing, but the size and con-

tinuity were not ideal (593 Mb in 74,755 scaffolds with an 

N50 of 38.6 kb), with a Benchmarking Universal 

Single-Copy Orthologs (BUSCO) genome completeness 

score of 83.1%. Thus, a better reference genome of 

P. prolifica is needed for further transcriptome analyses. 

In this research, we reported a well-assembled and anno-

tated genome of P. prolifica using the PacBio long-read 

sequencing and 10× Genomics linked-read sequencing. 

This high-quality genome provides the essential genetic 

toolkit for evolutionary and comparative genomic studies 

in P. prolifica and its closely related species and will facilitate 

the research of the placenta evolution.

Results and Discussion

Genome Assembly and Assessment

The total length of the estimated P. prolifica genome is 

624,973,420 bp based on the K-mer distribution (K = 25; 

supplementary fig. S1, Supplementary Material online). 

The genome heterozygosity is 0.276%. A total of 99.1 

Gb of PacBio Sequel CLS data and 39.4 Gb of Illumina 

linked-read data were generated for P. prolifica genome as-

sembly (supplementary table S1, Supplementary Material

online). Using PacBio long-reads alone, 721 contigs were 

assembled by CANU (see Materials and Methods), resulting 

in a 681,568,254 bp assembly with a contig N50 of 

6,458,394 bp. BUSCO analysis revealed a genome com-

pleteness of 93.8%, with 88.9% single-copy and 4.9% du-

plicated BUSCOs. The 10× Genomics linked-reads scaffolds 

were generated and merged into the long-read assembly, 

resulting in 504 contigs in 415 scaffolds (Table 1). After 

merging, the final size of P. prolifica assembled genome is 

674,152,735 bp, which a ∼1% reduction in genome size. 

The contig N50 is 7.7 Mb, and the BUSCO completeness 

score is improved to 97.2%, with fewer duplicated 

BUSCOs (4.6%, see Table 1).

Compared with the reference guppy (GCA_904066995), 

the duplicated BUSCO is significantly higher in blackstripe 

livebearer (4.6% vs. 0.8%), which raises the concern 

whether the quickmerge procedure introduced duplicated 

regions. This is not the case because when BUSCO scores 

were checked for PacBio-only assembly, short-read assem-

blies from us and van Kruistum et al. (2021), we found 

that merging actually reduced the number of duplicated 

BUSCOs (from 4.9% to 4.6%), rather than introducing 

them (supplementary table S2, Supplementary Material on-

line). In fact, well-assembled fish genomes may have variable 

duplicated BUSCOs, such as West African lungfish 

(Protopterus annectens; 94% completeness with 2.1% du-

plicated BUSCOs; GCF_019279795), and Japanese puffer 

(Takifugu rubripes; 98.3% completeness with 3.7% dupli-

cated BUSCOs). Teleost experienced multiple rounds of 

whole-genome duplications, and taxa-specific gene loss 

and neofunctionalization may have occurred during evolu-

tionary history. In this case, P. prolifica is from a distantly re-

lated genus compared with the reference guppy (Poecilia), so 

it is plausible for a higher duplicated BUSCO score (4.6% vs. 

0.8%), given a higher total BUSCO score (97.2% vs. 93.9%; 

Table 1).

We aligned 16 RNA-seq data of P. prolifica samples from 

two independently and artificially inbred lines (Line A and 

Line B), and the average unique alignment rate was more 
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than 90% (supplementary table S3, Supplementary 

Material online). The assembly and mapping statistics indi-

cate both excellent contiguity and completeness.

Genome Annotation

A total of 176 Mb repetitive regions, accounting for 26.2% 

of P. prolifica genome, were annotated (supplementary 

table S4, Supplementary Material online, supplementary 

data S1 and S2, Supplementary Material online), which is 

similar to Poecilia reticulata (27.9%). DNA transposons sub-

family Tc1-IS630-Pogo (Gao et al. 2020) is the most abun-

dant class of transposable elements in both genomes. 

Poecilia reticulata has more than 2-fold greater abundance 

of RTE/Bov-B retrotransposons, whereas L1/CIN4 elements 

are more abundant in P. prolifica (supplementary table S4, 

Supplementary Material online). Noticeably, rolling circles 

are absent in the Poecilia reticulata genome, but 118 kb 

is found in the P. prolifica genome (supplementary table 

S4, Supplementary Material online). Based on the repeat- 

masked genome, 28,799 protein-coding genes were 

annotated by the MAKER pipeline. In addition, 24,714 

protein-coding gene models were identified based on the 

Poecilia reticulata genome (GCA_000633615) using 

GeMoMa (Keilwagen et al. 2019). After merging the two 

gene sets, a total of 28,632 gene models with the best sup-

port were retained as the final gene models (supplementary 

data S3, Supplementary Material online). Among these, 

27,227 (95.1%) genes are complete with a start codon 

and a stop codon, of which 23,515 genes (86.4%) were 

assigned to orthogroups by OrthoFinder, and 21,526 

orthologs (79.1%) were shared with Poecilia reticulata 

(94.2%). In addition, a total of 5,549 noncoding RNAs 

(ncRNAs) were annotated in P. prolifica genome 

(supplementary table S5, Supplementary Material online). 

The P. prolifica genome is also annotated using the NCBI 

Eukaryotic Genome Annotation Pipeline (version 10.1). A 

total of 23,101 protein-coding genes and 3,820 noncoding 

genes were identified and characterized in RefSeq 

(GCF_027474105.1-RS_2023_04), and 22,700 (98.3%) 

protein-coding genes among these were assigned to 

orthogroups.

Synteny Analysis between P. prolifica and 
Poecilia reticulata

Of the 415 P. prolifica scaffolds, the top 55 largest scaffolds 

(520 Mb in 674 Mb) were mapped to the 23 chromosomes 

in Poecilia reticulata (Fraser et al. 2020), accounting for 

77.2% of the total genome length in P. prolifica. The results 

showed a high level of synteny between the genome of the 

two species, and each of the Poecilia reticulata chromo-

somes corresponds to P. prolifica scaffolds (fig. 1). A small 

number of translocation and inversion events can be de-

tected and visualized in the Circos plot (fig. 1), suggesting 

a moderate level of genome rearrangement between the 

two species. The Poecilia reticulata sex chromosome 

(Wright et al. 2017) corresponds to SCAFFOLD15 and 

SCAFFOLD35 in P. prolifica (chromosome 12 in the guppy 

genome).

Table 1 

Summary Statistics of Poeciliopsis prolifica and the Reference Guppy Poecilia reticulata Genome Assemblies

Genome assembly P. prolifica Poecilia reticulata (female) Poecilia reticulata (male)

(this assembly) (GCA_000633615) (GCA_904066995)

Sequencing data and coverage

PacBio sequencing data 99.1 Gb PacBio Sequel CLS reads N/A 50.3 Gb PacBio RS II CLS reads

Illumina sequencing data 39.4 Gb NovaSeq 89.9 Gb GAII 40.7 Gb HiSeq reads

Genome coverage PacBio: 147×; Illumina: 58× Illumina: 110× PacBio: 72×; Illumina: 58×

Assembly statistics

Total contig length 674,107,802 bp 664,638,573 bp 696,229,266 bp

Number of contigs 504 40,144 171

% of gap 0.007% 9.16% 0.212%

Contig N50 7.7 Mb 0.042 Mb 8.2 Mb

Contig L50 25 4,424 27

Maximum contig length 26.3 Mb 0.374 Mb 25.6 Mb

Completeness (actinopterygii_odb10)

BUSCO completeness 97.2% 96.1% 93.9%

Single-copy BUSCO 92.6% 95.5% 93.1%

Duplicated BUSCO 4.6% 0.6% 0.8%

Fragmented BUSCO 0.5% 1.5% 1.4%

Missing BUSCO 2.3% 2.4% 4.7%

Annotation statistics

Number of protein-coding genes 27,227 22,842

N/A, not available.
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Phylogenomic Analysis with Other Teleost Species

To understand the phylogenetic relationship among 

P. prolifica and other 14 Actinopterygii species, 4,301 

single-copy orthologs shared by 15 species were exploited 

to construct the phylogenetic tree. The results showed 

that the species in the fish family Poeciliidae were clustered 

in the same clade, and P. prolifica has a closer evolutionary 

relationship with the southern platyfish Xiphophorus 

maculatus rather than the guppy Poecilia reticulata 

(supplementary fig. S2, Supplementary Material online), 

which is consistent with the results of previous multige-

nome alignment studies (Van Kruistum et al. 2021).

Materials and Methods

Sample Collection

Poeciliopsis prolifica (NCBI Taxonomy ID 188132) Line A 

and Line B used in this study were collected from the Rio 

El Palillo (Sinaloa State, Mexico) by Dr David Reznick and 

have been developed in laboratory by mating siblings for 

up to 12 generations (Line A) or 9 generations (Line B) of 

sib-sib matings. All procedures were approved by the 

University of California, Riverside Institutional Animal 

Care and Use Committee with protocol number 

20170006. The blood samples and whole body of juvenile 

fish were collected after euthanasia using 100 mg/L buf-

fered MS-222 (tricaine methanesulfonate, Syndel Inc., 

Ferndale, WA, USA).

Genomic DNA Extraction and Genome Sequencing

High molecular weight DNA samples were extracted using 

the Qiagen Genomic-Tip 20/G kit (Qiagen, Redwood 

City, CA, USA) from blood samples of a single male fish 

(P. prolifica line A). The quality, size distribution, and DNA 

integrity were determined by TapeStation 4200 using the 

Genomics ScreenTape (Agilent Technologies, Santa Clara, 

CA, USA). PacBio single-molecule real-time (SMRT) library 

was prepared on 20 μg male P. prolifica HMW genomic 

DNA using SMRTbell prep kit (Pacific Biosciences, Menlo 

Park, CA, USA) and sequenced in a total of eight SMRT cells 

(supplementary table S1, Supplementary Material online) 

on PacBio Sequel at the HudsonAlpha Genome 

Sequencing Center (Huntsville, AL, USA). A 10× Genomics 

linked-read library was performed on 1.1 ng of genomic 

DNA from the same male sample, using the Chromium 

Genome Reagent Kit v2 and Chromium Genome Library & 

Gel Bead Kit version 2 on a 10× Genomics Chromium 

Controller (10× Genomics, Inc., San Francisco, CA, USA). 

The final library concentration was measured on a Qubit 

3.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, 

USA). The library size distribution was determined by 

LabChip GX Touch HT Nucleic Acid Analyzer (PerkinElmer, 

Hopkinton, MA, USA).

Total RNA Extraction and RNA-Seq

Total RNA samples were extracted from the whole body of 

juvenile P. prolifica (n = 3 for Line A and n = 3 for Line B), 

embryos and placenta (n = 1 for Line A and n = 1 for Line 

B), using the RNeasy Mini Plus kit (Qiagen, Redwood City, 

CA, USA). Standard double-strand RNA-seq libraries were 

constructed using the Illumina TruSeq RNA Library Prep 

Kit (Illumina, San Diego, CA, USA) and the NEXTFLEX 

Rapid RNA-Seq Kit for Illumina Sequencing (PerkinElmer, 

Hopkinton, MA, USA). To obtain information on the direc-

tion of transcription, single-strand RNA-seq libraries were 

prepared using the NEXTFLEX Rapid Directional RNA-Seq 

Kit (PerkinElmer, Hopkinton, MA, USA) and TruSeq 

Stranded mRNA Library Prep kit (Illumina, San Diego, CA, 

USA). The libraries were sequenced in a 2 × 100 bp 

paired-end (PE) setting on an Illumina HiSeq2000 machine 

(supplementary table S3, Supplementary Material online).

Genome Assembly

The reads sequenced by Illumina were trimmed by 

Trimmomatic (version 0.36; Bolger et al. 2014) and used 

for genome size, heterozygosity, and repeat length esti-

mated using GenomeScope (Vurture et al. 2017) based 

on K-mer (Marcais and Kingsford 2012) frequency distribu-

tions with default parameters. A de novo assembly of 10× 

Genomics linked-reads was generated using Supernova 

version 2.1.1 with default parameters (Weisenfeld et al. 

2017). The trimmed PacBio reads were assembled using 

CANU version 2.0 (Koren et al. 2017). The PacBio long-read 

and 10× Genomics linked-read libraries were combined 

using quickmerge version 0.3.0 with default parameters 

(Chakraborty et al. 2016) to obtain the scaffold assembly, 

and a final high-quality assembly was generated by Pilon 

(version 1.24); Walker et al. 2014) using 58× of Illumina 

150-bp PE reads. The contigs were aligned and inspected 

for overlap using the Geneious software version 11.1.15 

using the most stringent de novo assembly option (Kearse 

et al. 2012), and assembly summary statistics were com-

puted by the stats.sh script in BBMap (Bushnell; Table 1). 

The completeness of the P. prolifica assembly was deter-

mined with BUSCO version 5.3.2 (Seppey et al. 2019) 

against the actinopterygii_odb10 database. The BUSCO 

scores were also evaluated on the reference guppy 

(Poecilia reticulata) genome assemblies GCA_000633 

615.2 (Kunstner et al. 2016) and GCA_904066995.1 

(Fraser et al. 2020).

Gene Prediction and Annotation

Repetitive elements annotation in our P. prolifica assembly 

was performed using RepeatModeler version 2.0.1 (Flynn 

et al. 2020), and the interspersed repeats sequences and 

low-complexity DNA sequences were masked with 
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RepeatMasker version 4.0.6 (Tarailo-Graovac and Chen 

2009). To assemble a set of prior transcript models from 

RNA-seq data, RNA-seq reads from Line A and Line B 

(supplementary table S3, Supplementary Material online) 

were trimmed by Trimmomatic (version 0.36) (Bolger 

et al. 2014) and then mapped to repeat-masked assembly 

with Tophat version 2.1.1 (Kim et al. 2013). Transcript iso-

form information was extracted using cufflinks version 

2.2.1 (Trapnell et al. 2012) and inferred from de novo tran-

script assembly by Trinity version 2.4.0 (Haas et al. 2013). 

De novo gene prediction was performed by MAKER anno-

tation pipeline version 2.31.9 (Cantarel et al. 2008) based 

on the transcriptome evidence from our RNA-seq assembly 

and homology evidence of annotated teleost protein se-

quences in the OrthoDB database v10 (Zdobnov et al. 

2017). For homology-based gene prediction, Gene Model 

FIG. 1.—Genome comparisons between Poeciliopsis prolifica and the reference guppy Poecilia reticulata based on orthologous genes. A total of 55 largest 

scaffolds in the P. prolifica genome assembly showed a one-to-one relationship with 23 chromosomes in the Poecilia reticulata genome. The chromosomes on 

the left of the circle represent Poecilia reticulata chromosomes, and the scaffolds on the right of the circle represent P. prolifica scaffolds.
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Mapper (GeMoMa) annotation pipeline version 1.8 

(Keilwagen et al. 2019) was applied to identified P. prolifica 

protein-coding genes based on the guppy genome 

(GCA_000633615.2). Finally, MAKER and GeMoMa gene 

sets were merged, and the genes with a start codon and 

a stop codon were selected to generate the final gene mod-

el (supplementary data S3, Supplementary Material online). 

For noncoding gene annotation, rRNAs were predicted 

using Barrnap version 0.9 with default parameters 

(Seemann 2013) and INFERNAL version 1.1.2, tRNAs were 

predicted by using tRNAscan-SE version 2.0.9 (Chan and 

Lowe 2019), and miRNAs, snoRNAs, and snRNAs were 

identified by Rfam/INFERNAL version 1.1.2 based on Rfam 

database version 14.7 (Kalvari et al. 2021; supplementary 

data S4, Supplementary Material online).

Orthologs Identification and Comparative Genomic 
Analysis

OrthoFinder (version 2.5.4; Emms and Kelly 2019) was em-

ployed to identify the orthologs shared by P. prolifica and 

the guppy genome (Kunstner et al. 2016). To analyze 

chromosome structural changes, MCScanX was used to 

identify the homologous regions of P. prolifica genome 

and Poecilia reticulata genome with default parameters. 

The putative gene pairs and linked relationships were visua-

lized by Circos with required configuration files (Krzywinski 

et al. 2009). Phylogenetic relationships were analyzed for 

P. prolifica and five species in the family Poeciliidae, as 

well as nine additional species of teleost fish. The protein 

sequences of 4,301 single-copy orthologs shared in all 15 

genomes were aligned by MAFFT (Katoh and Standley 

2013), and concatenated sequences were used to construct 

a phylogenetic tree using the maximum-likelihood method 

in FastTree (Price et al. 2010) with 1,000 bootstraps. The 

phylogenetic tree was rerooted and visualized in FigTree 

version 1.4.4 (Rambaut).

Supplementary Material

Supplementary data are available at Genome Biology and 

Evolution online (http://www.gbe.oxfordjournals.org/).
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