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Abstract. In this paper, we consider an inverse shape problem coming from
electrical impedance tomography (EIT) with a generalized Robin transmission
condition. We will derive an algorithm in order to detect whether two materials
that should be in contact are separated or delaminated. More precisely, we
assume that the undamaged material or background state is known and shares
an interface or boundary with the damaged subregion. The Robin transmission
condition on this boundary asymptotically models delamination. We assume
that the Dirichlet-to-Neumann (DtN) operator is given from measuring the
current on the surface of the material from an imposed voltage. We show that
this mapping uniquely recovers the boundary parameters. Furthermore, using
this electrostatic Cauchy data as physical measurements, we can determine if
all of the coe�cients from the Robin transmission condition are real-valued
or complex-valued. We study these two cases separately and show that the
regularized factorization method can be used to detect whether delamination
has occurred and recover the damaged subregion. Numerical examples will be
presented for both cases in two dimensions in the unit circle.

1. Introduction. In this paper, we consider an inverse shape problem in elec-
trostatic imaging. The problem is motivated by electrical impedance tomography
(EIT) where the goal is to reconstruct unknown interior defects from the measured
electrostatic data on the surface of an object. We apply a qualitative method to
recover said regions where the knowledge of the solution to a boundary value prob-
lem is used in their detection. We are interested in the scenario of reconstructing a
subregion where a generalized Robin transmission condition is imposed. The gener-
alized Robin condition we consider models the delamination of a subregion within
a known material. This generalized Robin condition has that there is a jump in the
normal derivative of the electrostatic potential across the delaminated subregion’s
boundary (i.e., the boundary between the healthy region and the unknown defective
subregion) and is quasi-proportional to the electrostatic potential itself. This is a
generalization to the boundary condition of the inverse shape problem studied in
[21] and [27]. In non-invasive and non-destructive testing, one wishes to recover the
location of all possible subregions of interest in a given material using data on the
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material’s surface. For other works on non-destructive testing based on electromag-
netic imaging we refer to [6, 15, 30]. For related problems in medical imaging we
refer to [19, 36]. The delamination corresponds to defects in the material that one
wishes to recover without corrupting the integrity of a possibly healthy material.
See [4, 5, 11, 22, 35] for more discussion on the theory and applications of EIT. We
also refer to [3, 16] to see recent results for related problems.

We will derive an algorithm for recovering the defective subregions with little a
priori information. One of the strengths of applying qualitative methods is that one
does not need to know the number of defective regions or have an estimate for the
boundary parameters. On the contrary, many iterative methods are locally con-
vergent, i.e., they require a “good” initial estimate for the unknown region and/or
parameters to insure convergence to the solution of the inverse problem. Qualita-
tive methods allow one to reconstruct regions by deriving an “indicator” function
from the measured data operator. This idea was first introduced in [14] and is done
by connecting the region of interest to the range of the measured data operator.
We assume that voltage is applied to the known exterior boundary of the mate-
rial, and the induced current is measured also on the exterior boundary. Thus, we
assume that we have full knowledge of the Dirichlet-to-Neumann (DtN) mapping
on the exterior boundary for Laplace’s equation in the domain with a delaminated
subregion. In [25, 24, 32], the authors studied the inverse parameter problem for
the EIT problem with a Robin transmission condition. In the aforementioned pa-
pers, the authors studied the uniqueness, stability and numerical reconstruction
for the inverse parameter problem using the Neumann-to-Dirichlet mapping. In
[7], the authors analyzed this problem in R2 via a system of non-linear boundary
integral equations. Also, see [10] for the factorization method applied to inverse
obstacle scattering with a similar boundary condition. Here, we study the inverse
shape problem and prove that the DtN mapping uniquely determines the boundary
coe�cients as well as uniquely recovers the region of interest.

To this end, we consider the regularized factorization method, which is a type of
sampling method, for solving the inverse shape problem. This regularized variant of
the factorization method was initially studied in [26] for a similar problem coming
from di↵use optical tomography. See [28] for stability. This method is based on
the analysis in [1, 2, 20, 31]. The analysis we present here works in both R2 and
R3, making these methods robust in their applications. By connecting the region
of interest to the range of the measured DtN mapping, one can characterize the un-
known region D by the singular-value decomposition of the measured data operator.
This makes the numerical implementation computationally inexpensive, whereas an
iterative method would require solving multiple adjoint problems at each iteration.

The rest of the paper is structured as follows. In Section 2, we rigorously formu-
late the direct and inverse problem under consideration. We will use a variational
method to prove well-posedness for the direct problem and derive the appropriate
functional settings. We also define the current-gap operator (⇤ � ⇤0) that will be
used to derive a regularized factorization method to recover the damaged subregion.
In Section 3, we discuss the uniqueness of the inverse impedance problem by show-
ing the injectivity of the mapping of the boundary coe�cients to the DtN operator.
We continue in Section 4.1 and Section 4.2 where we analyze (⇤ � ⇤0) to derive
a suitable factorization for the case when the boundary parameters are complex-
valued and real-valued, respectively. This will allow us to develop a reconstruction
algorithm, which will depend on range-based identities, to recover D. In Section 5,
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numerical examples are presented in R2 for the unit circle to validate the analysis
of the reconstruction algorithm. Finally, we give a brief summary and conclusion
of the results in Section 6.

2. The direct and inverse problems. We begin by considering the direct prob-
lem associated with the electrostatic imaging of a defective region with a generalized
Robin transmission condition on its boundary. Assume that ⌦ ⇢ Rd is a simply
connected open set with C2-boundary (or polygonal with no reentrant corners) @⌦.
Let D ⇢ ⌦ be a (possibly multiple) connected open set with class C2-boundary
(or polygonal with no reentrant corners) @D. Throughout the paper, we will as-
sume that dist(@⌦, D) > 0. For the material with defective region(s), we define
u 2 H

1(⌦) as the solution to

��u = 0 in ⌦\@D with u
��
@⌦

= f and [[@⌫u]]
��
@D

= B(u) on @D (1)

where

[[@⌫u]]
��
@D

:= (@⌫u
+ � @⌫u

�)
��
@D

for a given f 2 H
1/2(@⌦). For the rest of the paper, we let ⌫ denote the unit outward

normal on the boundaries @D and @⌦. The “+” notation represents the trace taken
from ⌦ \ D, and the “�” notation represents the trace taken from D. Here, the
function u is the electrostatic potential for the defective material which satisfies the
boundary condition with the general Laplace-Beltrami boundary operator

B(u) = �r@D · µr@Du+ �u. (2)

In the R2 case, the operator r@D · µr@D is replaced by the operator d
dsµ

d
ds where

d/ds is the tangential derivative, and s is the arc-length. The generalized Robin
condition in (1) models the delamination of the defective region D ⇢ ⌦ on its
boundary @D and states that the jump in current across this boundary is quasi-
proportional to the electrostatic potential u. The analysis in this paper holds for
dimensions d = 2 and d = 3.

We consider the two cases when the boundary parameters � 2 L
1(@D) and

µj 2 L
1(@D) are complex- and real-valued where j = 1, · · · , d � 1. Due to the

generalized Robin transmission condition (2), we consider finding the solution u 2
eH1(⌦) to (1) for a given f 2 H

1/2(@⌦) where the solution space is the Hilbert space
defined as

eH1(⌦) =
�
u 2 H

1(⌦) such that u
��
@D

2 H
1(@D)

 

equipped with the norm

k'k2eH1(⌦)
= k'k2

H1(⌦) + k'k2
H1(@D).

Since we assume that u 2 eH1(⌦) ⇢ H
1(⌦), it is known that [[u]]

��
@D

= 0. This comes
from the fact that any function in H

1(⌦) has equal interior trace “�” and exterior
trace “+” on any subdomain of ⌦. We begin by showing that the boundary value
problem (1) is well-posed for the case when the parameters � 2 L

1(@D,C) and
µ 2 L

1(@D,C(d�1)⇥(d�1)) for any given f 2 H
1/2(@⌦). For analytical purposes of

well-posedness of the direct problem and the analysis of the inverse problem of this
case in Section 3, we assume that there exist positive constants ⇣1, ⇣2 > 0 such that
the real part and imaginary part of the coe�cient � satisfy

Re(�) � ⇣1 > 0 and � Im(�) � ⇣2 > 0 (3)
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for almost every x 2 @D. We also assume that the real and imaginary parts of µ
are Hermitian definite matrices where there exist positive constants �1,�2 > 0 such
that

⇠ · Re(µ)(x)⇠ � �1|⇠|2 and � ⇠ · Im(µ)(x)⇠ � �2|⇠|2 > 0 (4)

for all ⇠ 2 Cd�1 \ {0} for almost every x 2 @D. We now consider Green’s 1st
Theorem on the region ⌦\D

Z

⌦\D
ru ·r' dx =

Z

@⌦
'@⌫u ds�

Z

D

'@⌫u
+ ds

as well as Green’s 1st Theorem on the region D
Z

D

ru ·r' dx =

Z

@D

'@⌫u
� ds

for any test function ' 2 eH1(⌦). The variational formulation for (1) is given by
adding these two equations,

Z

⌦
ru ·r' dx =

Z

@⌦
'@⌫u ds+

Z

@D

'r@D · µr@Du ds�
Z

@D

'�uds, (5)

where we have used the generalized Robin transmission condition on @D (2). In
order to proceed, we let u0 2 H

1(⌦) be the harmonic lifting of the Dirichlet data
such that

��u0 = 0 in ⌦ with u0

��
@⌦

= f. (6)

We make the ansatz that the solution can be written as u = v+u0 with the function
v 2 eH1

0 (⌦) where we define the space as

eH1
0 (⌦) =

n
' 2 eH1(⌦) such that '

��
@⌦

= 0
o

with the same norm as eH1(⌦). Thus, the variational formulation of (1) with respect
to v is given by

A(v,') = �A(u0,') for all ' 2 eH1
0 (⌦) (7)

where the sesquilinear form A(·, ·) : eH1
0 (⌦)⇥ eH1

0 (⌦) 7! C is given by

A(v,') =

Z

⌦
rv ·r' dx+

Z

@D

µr@Dv ·r@D' ds+

Z

@D

� v ' ds.

It is clear that the sesquilinear form is bounded, whereas the coercivity on eH1
0 (⌦)

can be shown by the assumptions on µ and � as well as the Poincaré inequality.
We also have that A(u0,') is a conjugate linear and bounded functional acting on
eH1
0 (⌦), and using the Trace Theorem just as in [27], we have that

|A(u0,')|  CkfkH1/2(@⌦)k'k eH1(⌦).

By the Lax-Milgram lemma, there is a unique solution v to (7) satisfying

kvk eH1(⌦)  CkfkH1/2(@⌦).

Using the sesquilinear form A(· , ·), we can show that the solution u for equation (1)
is unique just as in [27], which implies that equation (1) is well-posed. The above
analysis gives the following result.

Theorem 2.1. The solution operator corresponding to the boundary value problem
(1) f 7! u is a bounded linear mapping from H

1/2(@⌦) to eH1(⌦).
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We assume that the voltage f is applied to the outer boundary @⌦, and the
measured data is given by the current @⌫u. From the knowledge of the measured
currents, we wish to derive a qualitative sampling algorithm to determine the de-
fective region D without the knowledge of the boundary parameters µ and � and
with little to no prior knowledge on the number of regions. To this end, we de-
fine the data operator that will be studied in the following sections to derive our
algorithms. Note that the function u0 is the electrostatic potential for the healthy
material and is known since the outer boundary is known. By the linearity of the
partial di↵erential equation and boundary conditions on @⌦ and @D, we have that
the voltage to electrostatic potential mappings

f 7�! u and f 7�! u0

are bounded linear operators from H
1/2(@⌦) to eH1(⌦). Note that u0 2 eH1(⌦) by

interior elliptic regularity. We now define the Dirichlet-to-Neumann (DtN) map-
pings as

⇤ and ⇤0 : H1/2(@⌦) �! H
�1/2(@⌦)

where
⇤f = @⌫u

��
@⌦

and ⇤0f = @⌫u0

��
@⌦

.

By appealing to Theorem 2.1 and the well-posedness of (6), we have that the DtN
mappings are bounded linear operators by Trace Theorems. Our main goal is to
solve the inverse shape problem of recovering the boundary @D from the knowledge
of the di↵erence of the DtN mapping. That is, we want to determine the boundary
@D from the di↵erence of all possible measurements (f, @⌫u) and (f, @⌫u0). The
di↵erence of the normal derivatives @⌫u and @⌫u0 on the outer boundary @⌦ is the
current gap imposed on the system by the presence of the defective region D. By
analyzing the data operator (⇤ � ⇤0), we wish to solve the inverse shape problem
by deriving a computationally simple algorithm to detect the defective region(s)
via the regularized factorization method. Furthermore, we examine the cases where
the interior boundary parameters are real-valued and complex-valued. However, we
first show how the DtN mapping ⇤ uniquely determines the boundary coe�cients.

3. Uniqueness of the inverse impedance problem. In this section, we study
the uniqueness of the inverse impedance problem of determining the boundary pa-
rameters µ and � provided that the boundary @D is given. We refer to [8, 9] for
some results on the uniqueness of the of the inverse impedance problem for other
models. We will establish the uniqueness of the boundary parameters µ and � based
on the knowledge of the DtN operator ⇤. To this end, we first consider the following
density result.

Theorem 3.1. The set

U =
n
u
��
@D

2 H
1(@D) such that u 2 eH1(⌦) solves (1) for any f 2 H

1/2(@⌦)
o

is dense in H
1(@D).

Proof. The set U is a linear subspace of H1(@D) since the mapping f 7! u from
H

1/2(@⌦) to H
1(⌦) is linear. To show the density of U in H

1(@D), it su�ces to
show that U ? is trivial. To this end, let � 2 U ? and v 2 eH1

0 (⌦) be the unique
solution to

��v = 0 in ⌦\@D with [[@⌫v]]
��
@D

� B(v) = � on @D,
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where the complex conjugation of B is given by B(v) = �r@D ·µr@Dv+ �v. Then,
for any f 2 H

1/2(@⌦) we have that the u being the unique solution to (1) satisfies

0 =

Z

@D

u� ds. (8)

Here (8) is understood as the dual-pairing of u 2 H
1(@D) and � 2 U ? ✓ H

�1(@D)
with L

2(@D) acting as the Hilbert-Pivot Space. Applying Green’s 2nd Theorem in
⌦ \D and D, respectively, we have that

0 =

Z

@⌦
v@⌫u� u@⌫v ds +

Z

@D

u[[@⌫v]]� v[[@⌫u]] ds.

Using the boundary conditions on @D and @⌦, we have that
Z

@⌦
f@⌫v ds =

Z

@D

u
�
B(v) + �

�
� vB(u) ds.

By appealing to the symmetry of the boundary operator B(·), we obtain that
Z

@⌦
f@⌫v ds = 0 for any f 2 H

1/2(@⌦)

by equation (8). Thus, we have that @⌫v
��
@⌦

= 0. Furthermore, since v
��
@⌦

= 0, by

Holmgren’s Theorem (see, e.g., [29]), we have that v = 0 in ⌦ \D. Note that since

�v = 0 in D with v
���
@D

= 0, then v vanishes in D. From the boundary condition,
we conclude that � = 0, which proves the result.

Now, we can prove that the DtN mapping ⇤ uniquely determines the coe�cients
µ and � from the above theorem. Here, we assume that µ is a continuous function on
@D in addition to our assumptions in Section 2. The following theorem is valid for
the coe�cient parameters µ and � that can be either real-valued or complex-valued.

Theorem 3.2. Assume that µ and � satisfy the assumptions (3)-(4). In addition,
assume that µ 2 C(@D). Then, the mapping (µ, �) 7�! ⇤ is injective.

Proof. Given f 2 H
1/2(@⌦), let ui be the solution to (1) with boundary parameters

(µi, �i) and ⇤i be the corresponding DtN operator for each i = 1, 2. Assume that
the DtN operators ⇤1 and ⇤2 coincide. Then, @⌫u1 = @⌫u2, and u1 = u2 on @⌦,
which implies that u1 = u2 in ⌦ \D from Holmgren’s Theorem. Moreover, due to
the fact the ui is Harmonic in D, we have that u1 = u2 in D. From the boundary
conditions on @D, we obtain

0 = (r@D · µ1r@Du1 � �1u1)� (r@D · µ2r@Du2 � �2u2) .

Since there are no jumps of the trace of ui across the boundary @D, we have that

0 = r@D · (µ1 � µ2)r@Du1 � (�1 � �2)u1.

For any � 2 H
1(@D), consider a function  in the dual space of H�1(@D) such that

 := r@D · (µ1 � µ2)r@D�� (�1 � �2)�.

Then,
Z

@D

 u1 ds =

Z

@D

(r@D · (µ1 � µ2)r@Du1 � (�1 � �2)u1)� ds = 0.

Therefore,  2 U ?, and from Theorem 3.1, we have  = 0. That is,

r@D · (µ1 � µ2)r@D�� (�1 � �2)� = 0, 8� 2 H
1(@D). (9)
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If we take � = 1, we have �1 = �2 a.e. on @D.
It remains to show that µ1 = µ2. From (9), we have that for any � 2 H

1(@D),

0 =

Z

@D

� (r@D · (µ1 � µ2)r@D�) ds = �
Z

@D

r@D� · (µ1 � µ2)r@D� ds. (10)

If µ1(x0) 6= µ2(x0) for some x0 2 @D, without loss of generality, we have that

�⇠ · Re(µ1 � µ2)(x0)⇠ � �0|⇠|2, 8⇠ 2 Cd�1

for some positive constant �0. Since µ1 and µ2 are continuous, there exists a ball
B"(x0) of radius " > 0 centered at x0 such that

�⇠ · Re(µ1 � µ2)(x)⇠ � �0/2|⇠|2 8x 2 @D \ B"(x0).

Consider a smooth function � compactly supported in @D \ B"(x0). By taking the
real part of (10), we have that

0 =

Z

@D

�r@D� · Re(µ1 � µ2)r@D� ds �
Z

@D\B✏(x0)
�0/2|r@D�|2,

which implies that r@D� = 0 on @D \ B✏(x0). Therefore, � is a constant on
@D \B✏(x0), which is a contradiction. Thus, µ1 = µ2 on @D.

In the following section, we consider two separate cases where the interior bound-
ary coe�cients are real-valued and complex-valued. In both instances, we rigorously
demonstrate a factorization of an operator derived from ⇤. With these factoriza-
tions, we develop range-based identities in order to recover the unknown, extended
region D.

4. Reconstruction for the inverse shape problem.

4.1. Complex-valued boundary coe�cients. In this section, we study the case
when the boundary parameters µ and � are complex-valued. The methodology used
here is influenced by the work in [27]. The analysis is based on the factorization
of the current-gap operator (⇤ � ⇤0). The goal is to derive an imaging functional
using the singular value decomposition of the known current-gap operator.

We begin by defining the auxiliary operator that will be used to derive our
sampling method. To this end, for a given h 2 H

�1(@D), we define w 2 eH1
0 (⌦) to

be the unique solution of the adjoint problem to (1) given by

��w = 0 in ⌦\@D with [[@⌫w]]
��
@D

= B(w) + h on @D, (11)

where the overline denotes complex conjugation of the coe�cients. Just as in the
previous section, one can show that (11) is well-posed by appealing to a variational
argument. Thus, we can define the bounded linear operator

F : H�1(@D) ! H
�1/2(@⌦) given by Fh = @⌫w

��
@⌦

, (12)

where w is the unique solution to (11). We proceed by studying some important
properties of the operator F which will be useful in our sampling algorithm.

Theorem 4.1. The operator F defined in (12) is compact and injective.

Proof. We begin by showing compactness. Since dist(@⌦, D) > 0, there exists
a region ⌦⇤ such that D ⇢ ⌦⇤ ⇢ ⌦ where ⌦⇤ is C2-smooth. By standard elliptic
regularity results (see, e.g., [18]), we have that the solution w to (11) is in H

2(⌦\⌦⇤)
for any h 2 H

�1(@D). The Trace Theorem implies that Fh 2 H
1/2(@⌦). Thus, the

compact embedding of H1/2(@⌦) into H
�1/2(@⌦) proves that F is compact.
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To prove injectivity, assume that h 2 Null(F ). This implies that the solution w

to (11) with boundary data h on @D has zero Cauchy data on @⌦. By Holmgren’s
Theorem, we have that w = 0 in ⌦\D. This implies that w

+
��
@D

= w
�
��
@D

= 0
and that �w = 0 in D. Therefore, we have that w = 0 in D, which implies that
[[@⌫w]]

��
@D

= B(w) = 0 on @D, proving h = 0.

To proceed, we define the sesquilinear dual-product on the closed curve/surface
� as

h', i� =

Z

�
' ds for all ' 2 H

p(�) and  2 H
�p(�) (13)

between the Hilbert Space Hp(�) and its dual space H�p(�) for p > 0 where L2(�)
is the Hilbert pivot space. Recall, we have the following:

H
1(�) ⇢ H

1/2(�) ⇢ L
2(�) ⇢ H

�1/2(�) ⇢ H
�1(�)

with dense inclusions. In this paper, we are particularly interested in the cases
when � = @D and � = @⌦. These dual-products will also be used in the upcoming
sections. In the analysis of this section, we will need the adjoint operator of F with
respect to the sesquilinear forms h·, ·i@⌦ and h·, ·i@D, which is given by the following
theorem.

Theorem 4.2. The adjoint operator

F
⇤ : H1/2(@⌦) ! H

1(@D) is given by F
⇤
f = u

��
@D

.

Moreover, F ⇤ is injective, i.e., F has dense range.

Proof. We begin by applying Green’s second theorem to the solution u of (1) and
the solution w to the adjoint problem (11) on the regions ⌦\D and D in order to
obtain

0 =

Z

@⌦
w@⌫u� u@⌫w ds+

Z

@D

u[[@⌫w]]� w[[@⌫u]] ds.

By applying the boundary conditions on @⌦ and @D, we obtain
Z

@⌦
f@⌫w ds =

Z

@D

u
�
h+ B(w)

�
� wB(u) ds =

Z

@D

uh ds.

The above equality implies that F ⇤
f = u

��
@D

since (13) implies that
Z

@⌦
f@⌫w ds = hf, Fhi@⌦ = hF ⇤

f, hi@D =

Z

@D

uh ds,

which proves the first part of our result.
To show that F

⇤ is injective, suppose that f 2 Null(F ⇤). Then, we have that
B(u) = 0, which implies that u is the unique solution to the Dirichlet problem on
D with zero Dirichlet data. Thus, u = 0 in D. Furthermore, the generalized Robin
boundary condition

[[@⌫u]]
��
@D

= B(u) on @D implies that @⌫u
��+
@D

= u
��+
@D

= 0.

Note that u is harmonic on ⌦\D with zero Cauchy data on @D. Using Holmgren’s
Theorem and the Trace Theorem, we have that f = 0. Thus, F ⇤ is injective, which
implies that F has dense range (see, e.g., [34]).
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Sampling methods typically connect the region of interest to an ill-posed equation
involving the data operator. In the two cases we are considering, we will use a
singular solution with the background problem, i.e., the equation where the region
of the interest is not present. Using the singularity of the solution to the background
problem, one can show that an associated ill-posed problem is solvable if and only
if the singularity is contained in the region of interest. To this end, we define the
Dirichlet Green’s function for the negative Laplacian for the known domain ⌦ as
G(·, z) 2 H

1
loc

(⌦\{z}), for z 2 ⌦, be the unique solution to the boundary value
problem

��G(·, z) = �(·, z) in ⌦ and G(·, z)
��
@⌦

= 0.

The following result shows that Range(F ) uniquely determines the region D.

Theorem 4.3. The operator F defined in (12) is such that

@⌫G(·, z)
��
@⌦

2 Range(F ) if and only if z 2 D.

Proof. To prove the claim, we first assume that z 2 ⌦\D. Suppose by contradiction
that @⌫G(·, z) 2 Range(F ), i.e., there exists hz 2 H

�1(@D) such that Fhz =
@⌫G(·, z)

��
@⌦

. This implies that there exists vz 2 eH1
0 (⌦) such that

��vz = 0 in ⌦\@D with [[@⌫vz]]
��
@D

= B(vz) + hz on @D.

Furthermore, @⌫vz
��
@⌦

= @⌫G(·, z)
��
@⌦

, and we have that vz satisfies

��vz = 0 in ⌦\@D with vz

��
@⌦

= 0 and @⌫vz

��
@⌦

= @⌫G(·, z)
��
@⌦

.

So, we define Vz = vz �G(·, z) and note that

��Vz = 0 in ⌦\(D [ {z}) with Vz

��
@⌦

= 0 and @⌫Vz

��
@⌦

= 0.

By Holmgren’s Theorem [29], we can conclude that vz = G(·, z) in ⌦\(D [ {z}).
By interior elliptic regularity, vz is continuous at z 2 ⌦\D. However, G(·, z) has a
singularity at z, which proves the claim by contradiction due to the fact that

|vz(x)| < 1 whereas |G(·, z)| ! 1 as x ! z.

Conversely, we now assume that z 2 D and let ⌘ 2 H
1(D) be the solution to the

following Dirichlet problem in D:

��⌘ = 0 in D with ⌘
���
@D

= G(·, z)
��+
@D

.

Now, define vz such that

vz =

(
G(· , z) in ⌦nD

⌘ in D

and we will show that vz satisfies (11) for some hz 2 H
�1(@D). By definition, we

have that vz is harmonic in ⌦\@D. Note that since z 2 D, G(·, z) 2 H
2(⌦\D), which

implies that vz 2 eH1
0 (⌦). By construction, we have that @⌫vz

��
@⌦

= @⌫G(·, z)
��
@⌦

.
Now, we need to prove that

hz = [[@⌫vz]]
��
@D

� B(vz) on @D

is in H
�1(@D). Notice that

[[@⌫vz]]
��
@D

= @⌫G(·, z)
��+
@D

� @⌫⌘
���
@D

.
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Therefore, we have that G(·, z)
��+
@D

2 H
3/2(@D), which implies that ⌘ 2 H

2(D) by
appealing to elliptic regularity. By the Neumann Trace Theorem, we obtain that

[[@⌫vz]]
��
@D

2 H
1/2(@D) ⇢ H

�1(@D).

Also, it is clear that B(vz) 2 H
�1(@D) since the trace of vz on @D is in H

1(@D).
Thus, we can conclude that hz 2 H

�1(@D). By the definition of the operator F ,
we have that Fhz = @⌫G(·, z)

��
@⌦

, proving the claim.

We have shown that the operator F uniquely determines the region of interest D.
Our next task is to connect the range of F to the range of an operator derived from
(⇤ � ⇤0). The following result will provide important properties of the Direchlet-
to-Neumann mapping which will be used in our sampling method.

Theorem 4.4. The current-gap operator defined by (⇤ � ⇤0)f = @⌫(u � u0)
��
@⌦

where u and u0 are solutions to (1) and (6), respectively, is compact. Moreover, we
have the identity

hf, (⇤� ⇤0)fi@⌦ =

Z

⌦
|ru|2 dx+

Z

@D

µ|r@Du|2 + �|u|2 ds�
Z

⌦
|ru0|2 dx

Proof. To show compactness, we follow a similar procedure from the proof of The-
orem 4.1, and it is omitted to avoid repetition.

To prove the identity, we have that, by definition,

hf, (⇤� ⇤0)fi@⌦ =

Z

@⌦
f@⌫u ds�

Z

@⌦
f@⌫u0 ds =

Z

@⌦
u@⌫u ds�

Z

@⌦
u0@⌫u0 ds.

By Green’s first identity on the regions ⌦\D and D, we have that

hf, (⇤� ⇤0)fi@⌦ =

Z

⌦
|ru|2 dx+

Z

@D

u[[@⌫u]] ds�
Z

⌦
|ru0|2 dx.

From the general Robin boundary condition on @D, we obtain that

hf, (⇤� ⇤0)fi@⌦ =

Z

⌦
|ru|2 dx+

Z

@D

µ|r@Du|2 + �|u|2 ds�
Z

⌦
|ru0|2 dx,

which proves the claim.

In order to prove the main result of this section, we define the imaginary part of
the current-gap operator as

Im(⇤� ⇤0) =
1

2i

⇥
(⇤� ⇤0)� (⇤� ⇤0)

⇤⇤
.

By Theorem 4.4, we have that

Imhf, (⇤� ⇤0)fi@⌦ =

Z

@D

Im(µ)|r@Du|2 + Im(�)|u|2 ds

Recall our assumption that the boundary parameters satisfy�⇠·Im(µ)⇠ � ⇣2|⇠|2 > 0
for all ⇠ 2 Cd�1 \ {0} as well as �Im(�) � �2 > 0 a.e. on @D. Thus, we have that
there are constants C1, C2 > 0 such that

C1kF ⇤
fk2

H1(@D)  Imhf, (⇤� ⇤0)fi@⌦  C2kF ⇤
fk2

H1(@D).

The compactness of Im(⇤ � ⇤0) and injectivity of F ⇤ further imply that Im(⇤ �
⇤0) is a positive compact operator. Thus, there exists a compact operator Q :
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H
1/2(@⌦) ! L

2(@⌦) such that the imaginary part of the data operator has the
following symmetric factorization:

Im(⇤� ⇤0) = Q
⇤
Q.

Therefore, we have that

C1kF ⇤
fk2

H1(@D)  kQ⇤
fk2

H�1/2(@⌦)  C2kF ⇤
fk2

H1(@D)

for all f 2 H
1/2(@⌦). In order to finish proving the main result of this section, we

state an important lemma connecting the ranges of Q and F which is required by
our sampling method. For the proof of the following result we refer to [17] and [23],
where the arguments for real Hilbert spaces can be generalized to Banach spaces.

Lemma 4.5. Let Aj be bounded linear operators mapping Xi ! Y where Xi and
Y are Banach spaces for i = 1, 2. If

9 c1, c2 > 0 such that c1kA⇤
1fkX⇤

1
 kA⇤

2fkX⇤
2
 c2kA⇤

1fkX⇤
1

for all f 2 Y
⇤, then Range(A1) = Range(A2).

By the above inequalities and Lemma 4.5, we have the following result.

Theorem 4.6. If the boundary coe�cients � and µ satisfy (3) and (4), respectively,
then

Range(F ) = Range(Q).

This allows one to uniquely recover the defective region D from the knowledge
of the DtN mapping ⇤. Recall that Q is determined from the imaginary part of
the measured current-gap operator. By all of the theorems of this section and the
results of Theorem 2.3 of [26], we create an explicit characterization that will allow
us to detect the delaminated region. In our case, we have

` 2 Range(Q) if and only if lim inf
↵!0

hf↵, Im(⇤� ⇤0)f↵i@⌦ < 1

where f↵ is the regularized solution to Im(⇤�⇤0)f = `. By appealing to Theorem
4.3 and Lemma 4.5, we have that

@⌫G(·, z)
��
@⌦

2 Range(Q) if and only if z 2 D. (14)

With this, equation (14) and the results of [26], we are able to finally provide the
main result of this section.

Theorem 4.7. The imaginary part of the current-gap operator Im(⇤�⇤0) : H
1/2(@⌦) !

H
�1/2(@⌦) uniquely determines D such that for any z 2 ⌦,

z 2 D if and only if lim inf
↵!0

hfz

↵
, Im(⇤� ⇤0)f

z

↵
i@⌦ < 1,

where f
z

↵
is the regularized solution to Im(⇤� ⇤0)fz = @⌫G(·, z)

��
@⌦

.

Note that a regularized solution is required since Im(⇤�⇤0) is compact. However,
since the operator is injective with dense range, we may utilize any regularization
technique such as Tikhonov or Spectral cut-o↵. With our main result, we are able
to successfully characterize every point in the known domain ⌦ as either inside or
outside the region of interest D for the case where the boundary coe�cients µ and
� are complex-valued. Furthermore, we show that the DtN mapping ⇤ uniquely
determines the damaged region D. In other words, one is able to reconstruct the
region D from physical measurements on the accessible boundary @⌦.
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4.2. Real-valued boundary coe�cients. In this section, we study the case when
the interface parameters µ and � are strictly real-valued. Note that the well-
posedness argument in this case is identical to the one provided in Section 2 since we
are synonymously assuming Im(�) = 0 and Im(µ) = 0. We will derive a symmetric
factorization for the current-gap operator (⇤�⇤0) as similarly done in Section 4.1,
where the theory was developed in [26]. Thus, we will provide another algorithm
for recovering the unknown region D from the measurements operator given by the
current-gap operator (⇤� ⇤0) for real-valued parameters.

Inspired by the current-gap operator (⇤ � ⇤0), we note that (u � u0) 2 eH1
0 (⌦)

solves

��(u� u0) = 0 in ⌦\@D with [[@⌫(u� u0)]]
��
@D

= B(u) on @D.

So, we define w 2 eH1
0 (⌦) to be the unique solution to the auxiliary problem

��w = 0 in ⌦\@D with [[@⌫w]]
��
@D

= B(h) on @D. (15)

for any given h 2 H
1(@D). One can show that (15) is well-posed by appealing to a

variational formulation argument as in Section 2. Thus, we can define the bounded
linear Source-to-Neumann operator

G : H1(@D) ! H
�1/2(@⌦) given by Gh = @⌫w

��
@⌦

where w is the unique solution to (15). In order to understand the connection
between the operators G and (⇤� ⇤0), note that by the well-posedness of (15) we
have that

@⌫w
��
@⌦

= (⇤� ⇤0)f provided that h = u
��
@D

.

From this, we define the solution operator for the electrostatic potential u such that

S : H1/2(@⌦) ! H
1(@D) given by Sf = u

��
@D

.

Therefore, we obtain the initial factorization (⇤ � ⇤0)f = GSf for any f 2
H

1/2(@⌦). In order to further factorize the operator (⇤ � ⇤0), we need to de-
compose G. In order to do so, we will compute and analyze the adjoint of the
solution operator S. The adjoint operator S⇤ is detailed in the following result.

Theorem 4.8. The adjoint operator S
⇤ : H

�1(@D) ! H
�1/2(@⌦) is given by

S
⇤
g = @⌫v

��
@⌦

where v 2 eH1
0 (⌦) satisfies

��v = 0 in ⌦n@D with [[@⌫v]]
��
@D

= B(v) + g on @D. (16)

Moreover, the operator S is injective.

Proof. Notice that by using a variational argument we can establish that the solu-
tion v 2 eH1

0 (⌦) exists, is unique, and continuously depends on g 2 H
�1(@D). Using

a similar technique used in the proof of Theorem 4.2, we have that

0 =

Z

@⌦
v @⌫u� u @⌫v ds�

Z

@D

v[[@⌫u]] ds+

Z

@D

u[[@⌫v]] ds.

Thus, by the boundary conditions on @⌦ we have that
Z

@⌦
f @⌫v ds =

Z

@D

u[[@⌫v]] ds�
Z

@D

v[[@⌫u]] ds.

By the boundary condition on @D for u and v, we have that
Z

@D

u[[@⌫v]] ds�
Z

@D

v[[@⌫u]] ds =

Z

@D

u(g + B(v)) ds�
Z

@D

vB(u) ds
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=

Z

@D

ug ds

With the dual-product on the boundaries @D and @⌦ as defined in (13), we have
that

hSf, gi@D =

Z

@D

ug ds =

Z

@⌦
f@⌫v ds = hf, S⇤

gi@⌦

for all f 2 H
1/2(@⌦) and g 2 H

�1(@D), which implies that S⇤
g = @⌫v

��
@D

.
To prove injectivity, we let Sf = 0, which implies that u = 0 in D̄. By our

boundary condition, we have that [[@⌫u]]
��
@D

= B(u) = 0 on @D. Thus, @⌫u
��+
@D

= 0.
Using Holmgren’s Theorem, we have that u = 0 in ⌦. Then, by the Trace Theorem,
we have that f = 0 on @⌦, proving that S is injective.

In order to complete the factorization of the current-gap operator, we need to
define a middle operator T . Recall that w is the unique solution to equation (15),
which implies that w is harmonic in ⌦\@D, and

[[@⌫w]]
��
@D

= B(w) + B(h� w) on @D.

Therefore, we have that

@⌫w
��
@⌦

= Gh as well as @⌫w
��
@⌦

= S
⇤B(h� w).

by the well-posedness of (16) and Theorem 4.8. Motivated by this, we define the
operator

T : H1(@D) ! H
�1(@D) given by Th = B(h� w)

By the well-posedness of (15), T is a bounded linear operator. Recall that we had
already established that (⇤ � ⇤0) = GS and observe that we have factorized the
operator G such that G = S

⇤
T . This gives the following result.

Theorem 4.9. The di↵erence of the DtN mappings (⇤ � ⇤0) : H
1/2(@⌦) !

H
�1/2(@⌦) has the symmetric factorization (⇤� ⇤0) = S

⇤
TS.

In order to apply Theorem 2.3 from [26] to solve the inverse problem of recovering
D from the current-gap operator (⇤ � ⇤0), we need to prove that T is coercive as
well as characterize the region D by the range of S⇤. The following two results
will allow us to prove some useful properties of the current-gap operator using the
symmetric factorization from the previous theorem. We now prove the coercivity
of the operator T .

Theorem 4.10. The operator T : H1(@D) ! H
�1(@D) defined by

Th = B(h� w) (17)

is coercive on H
�1(@D), where h 2 H

1(@D) and w 2 eH1
0 (⌦) satisfy (15).

Proof. Using the generalized Robin transmission condition on @D in equation (15),
we have that

hh, Thi@D =

Z

@D

hB(h� w) ds

=

Z

@D

B(h)(h� w) ds by the symmetry of B(·)

=

Z

@D

hB(h) ds�
Z

@D

w[[@⌫w]] ds by equation (15)
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=

Z

@D

µ|r@Dh|2 + �|h|2 ds�
Z

@D

w[[@⌫w]] ds.

Following a similar technique used to derive (5), we have that
Z

⌦\D
|rw|2 dx = �

Z

@D

w@⌫w
+ ds and

Z

D

|rw|2 dx =

Z

@D

w@⌫w
� ds.

Adding both equations above and using the boundary condition on @D yields
Z

⌦
|rw|2 dx = �

Z

@D

w[[@⌫w]] ds.

This yields the following:

hh, Thi@D =

Z

@D

µ|r@Dh|2 + �|h|2 ds+
Z

⌦
|rw|2 dx

� min{⇣1,�1}
Z

@D

|r@Dh|2 + |h|2 ds,

which proves the claim.

The following two results are critical in allowing us to prove the main theorem of
this section and characterize the analytical properties of the current-gap operator.

Theorem 4.11. The di↵erence of the DtN mappings (⇤ � ⇤0) : H
1/2(@⌦) !

H
�1/2(@⌦) is compact and injective and has dense range.

Proof. To prove compactness follows from Theorem 4.4, we prove that the current-
gap operator (⇤ � ⇤0) is injective and has dense range using a similar argument
as in [21]. That is, we show that the set of annihilators for Range(⇤ � ⇤0) and
Null(⇤� ⇤0) is trivial. To this end, note that for all f, g 2 H

1/2(@⌦),

hg, (⇤� ⇤0)fi@⌦ =

Z

@⌦
g @⌫u(· , f)� g @⌫u0(· , f) ds

=

Z

@⌦
u(· , g) @⌫u(· , f)� u0(· , g) @⌫u0(· , f) ds,

where the pairs (u(·, f), u(·, g)) and (u0(·, f), u0(·, g)) are solutions to (1) and (6)
with Dirichlet boundary conditions f and g in H

1/2(@⌦), respectively. With this,
we can use Green’s 1st Theorem, which implies that,

hg, (⇤� ⇤0)fi@⌦ =

Z

⌦
ru(· , g) ·ru(· , f) dx�

Z

⌦
ru0(· , g) ·ru0(· , f) dx

+

Z

@D

B (u(· , g)) u(· , f) ds

by the boundary value problems (1) and (6). To prove the claim, suppose f 2
H

1/2(⌦) is an annihilator for Range(⇤ � ⇤0) or that f 2 Null(⇤ � ⇤0). In either
case, we have that

0 = hf, (⇤� ⇤0)fi@⌦

=

Z

⌦
|ru(· , f)|2 dx�

Z

⌦
|ru0(· , f)|2 dx+

Z

@D

µ|r@Du(·, f)|2 + �|u(· , f)|2 dx

�
Z

@D

µ|r@Du(·, f)|2 + �|u(· , f)|2 dx
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where we have used that the harmonic function u0(·, f) minimizes the Dirichlet
energy. By Theorem 4.8, S is injective, which implies that f = 0, proving both
claims.

All of the theorems of this section imply that the current-gap operator (⇤�⇤0)
satisfies all of the conditions of Theorem 2.3 of [26]. Similarly, as in Section 4.1, we
have that

` 2 Range(S⇤) if and only if lim inf
↵!0

hf↵, (⇤� ⇤0)f↵i@⌦ < 1

where f↵ is the regularized solution to (⇤�⇤0)f = `. Since (⇤�⇤0) is compact and
injective with a dense range, we can apply any regularization scheme. In a similar
way, we show the connection between the domain D and the range of the operator
S
⇤. We once again use the Dirichlet Green’s function for the negative Laplacian for

the known domain ⌦, G(·, z) 2 H
1
loc

(⌦ \ {z}) for any fixed z 2 ⌦. Recall that the
idea of the following result is to show that due to the singularity at z, the normal
derivative of the Green’s function is not contained in the range of S⇤ unless the
singularity is contained within the region of interest D.

Theorem 4.12. The operator S
⇤ is such that for any z 2 ⌦

@⌫G(·, z)
��
@D

2 Range(S⇤) if and only if z 2 D.

Proof. Notice since the coe�cients µ and � are real valued, we have that equation
(11) and the equation in Theorem 4.8 to define S

⇤ are the same. This implies that
the operator F defined by (12) and S

⇤ given by Theorem 4.8 coincide. Therefore,
we have that

Range(F ) = Range(S⇤)

which gives the result by appealing to Theorem 4.3.

With Theorem 4.12, we can conclude that the regularized factorization method
can be used to recover an unknown region D from the knowledge of the di↵erence
of the DtN mappings (⇤� ⇤0).

Theorem 4.13. The di↵erence of the DtN mappings (⇤ � ⇤0) : H
1/2(@⌦) !

H
�1/2(@⌦) uniquely determines D such that for any z 2 ⌦

z 2 D if and only if lim inf
↵!0

hfz

↵
, (⇤� ⇤0)f

z

↵
i@⌦ < 1

where f
z

↵
is the regularized solution to (⇤� ⇤0)fz = @⌫G(·, z)

��
@⌦

.

This concludes the shape reconstruction problem for an extended region for the
case when the boundary coe�cients are strictly real-valued. In the following section,
we provide some numerical experiments for reconstructing D.

5. Numerical validation. In this section, we present numerical examples for the
regularized factorization method developed in Sections 4.1 and 4.2 for solving the
inverse shape problem. Our numerical experiments are done in MATLAB 2020a. For
simplicity, we will consider the problem in R2 where ⌦ is the unit disk. Notice that

the trace spaces H±1/2(@⌦) can be identified with H
±1/2
per [0, 2⇡]. To apply Theorem

4.7 and Theorem 4.13, we need the normal derivative of Green’s function G(·, z)
with zero Dirichlet condition on the boundary of the unit disk. In polar coordinates,
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it is well known that the normal derivative of Green’s function for the unit disk is
given by the Poisson kernel

@⌫G
�
· , z

���
@⌦

= � 1

2⇡


1� |z|2

|z|2 + 1� 2|z|cos(· � ✓z)

�

where ✓z is the polar angle of the sampling point z 2 ⌦ in polar coordinates.

We now let the matrix A 2 CN⇥N represent the discretized operator (⇤ � ⇤0)

and the vector bz =
⇥
@⌫G

�
✓j , z

�⇤N
j=1

. In our numerical experiments, we add random

noise to the discretized operator A such that

A� =
⇥
Ai,j

�
1 + �Ei,j

�⇤N
i,j=1

where kEk2 = 1.

Here, the matrix E is taken to have random entries uniformly distributed in the
range [�1, 1], and � is the relative noise level added to the data in the sense that
kA� �Ak2  �kAk2.

When the boundary parameters µ and � are complex-valued, recall that the
we use the imaginary part of the current-gap operator to recover the region D.
To this end, we denote the matrix Im(A�) as the discretization of the operator
Im(⇤ � ⇤0) with random noise. We now define the discretized imaginary part of
the data operator as

Im(A�) =
1

2i

⇥
A� � (A�)⇤

⇤

Hence, to compute the indicator associated with Theorem 4.7, we solve

Im(A�)fz = bz.

As specified in Theorem 4.4, the current-gap operator is compact, which implies
that the matrix A is ill-conditioned. Hence, one needs to employ a regularization
technique to find an approximate solution to the discretized equation. In our ex-
periments, we use the Spectral cut-o↵ as the regularization scheme and follow a
similar procedure demonstrated in [27] where f↵

z
represents the regularized solution

to Im(A�)fz = bz, and ↵ > 0 denotes the regularization parameter. To define the
imagining functional, we follow [26] to have the following:

�
f↵
z
, Im(A�)f↵

z

�
=

NX

j=1

�
2(�j ;↵)

�j

��(uj ,bz)
��2.

Here, �j and uj denote the singular values and left singular vectors of the matrix
Im(A�), respectively. Also, �(t;↵) corresponds to the filter function defined by the
regularization scheme used to solve Im(A�)fz = bz. The filter function used in our
examples is given by

�(t;↵) =

8
<

:

1, t
2 � ↵,

0, t
2
< ↵,

(18)

which corresponds to Spectral cut-o↵. Using the above expressions, we can recover
the unknown region for the case when the boundary parameters are complex-valued
by defining

Wreg(z) =
�
f↵
z
, Im(A�)f↵

z

��1
.
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For the case when the boundary parameters µ and � are real-valued, then we
use discretized operator A. By Theorem 4.11, the data operator (⇤ � ⇤0) is com-
pact, which implies that A is ill-conditioned also in this case. We follow a similar
procedure from the previous case to define

�
f↵
z
,A�f↵

z

�
=

NX

j=1

�
2(�j ;↵)

�j

��(uj ,bz)
��2.

In this case, �j and uj denote the singular values and left singular vectors of the
matrix A�, respectively. We also use the same filter function �(t;↵) to apply the
Spectral cut-o↵ regularization scheme to solve A�fz = bz. With the above expres-
sions, we can recover the unknown region for the case when the boundary parameters
are real-valued by defining

Wreg(z) =
�
f↵
z
,A�f↵

z

��1
.

In either case, we plot

W (z) =

����
Wreg(z)

kWreg(z)k1

����
p

where Theorem 4.7 and Theorem 4.13 both imply that W (z) ⇡ 1 provided that
z 2 D as well as W (z) ⇡ 0 provided that z /2 D. In our calculations p > 0 is a
fixed chosen parameter to sharpen the resolution of the imaging functional. In the
following examples we use the function W (z) to visualize the defective region.

Numerical reconstruction of a circular region:
In polar coordinates, we assume @D is given by ⇢(cos(✓), sin(✓)) for some constant
⇢ 2 (0, 1). As similarly demonstrated in [21], since ⌦ is taken to be the unit disk
in R2, we make the ansatz that the electrostatic potential u(r, ✓) has the following
series representation:

u(r, ✓) = a0 + b0 ln r +
1X

|n|=1

h
anr

|n| + bnr
�|n|

i
ein✓ in ⌦\D, (19)

whereas

u(r, ✓) = c0 +
1X

|n|=1

cnr
|n|ein✓ in D.

Note that the electrostatic potential u(r, ✓) is harmonic in both the annular and
circular regions, which are separated by the interior boundary @D.

Recall that the boundary parameters � and µ satisfy (3) and (4), respectively.
Furthermore, for simplicity, we assume that � and µ are constant. Thus, we are able
to determine the Fourier coe�cients an and bn by using the boundary conditions
at r = 1 and r = ⇢ given by

u(1, ✓) = f(✓), u
+(⇢, ✓) = u

�(⇢, ✓),

and @ru
+(⇢, ✓)� @ru

�(⇢, ✓) =

✓
� µ

⇢2

@
2

@✓2
+ �

◆
u(⇢, ✓).

We let fn for n 2 Z denote the Fourier coe�cients for the voltage f . Note, that the
boundary condition at r = 1 above gives that

a0 = f0 and an + bn = fn for all n 6= 0.
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The first boundary conditions at r = ⇢ give that

b0 =
�⇢

1� �⇢ln ⇢
f0 and bn = ⇢

2|n|(cn � an).

Using the generalized Robin transmission condition, and after some calculations we
get that

an =


�⇢

2|n| + 2|n|⇢|n| + µ|n|2

µ|n|2 + 2|n|⇢|n| + �⇢2|n|(1� ⇢2|n|)� µ|n|2⇢2|n|

�
fn

and

bn =


�⇢2|n|(�⇢2|n| + µ|n|2)

µ|n|2 + 2|n|⇢|n| + �⇢2|n|(1� ⇢2|n|)� µ|n|2⇢2|n|

�
fn for all n 6= 0.

Plugging the sequences into (19) gives that the corresponding current on the bound-
ary of the unit disk is given by

@ru(1, ✓) = �0f0 +
1X

|n|=1

|n|�nfnein✓ (20)

where

�0 =
�⇢

1� �⇢ln ⇢
and �n =

2|n|⇢|n| + (µ|n|2 + �⇢
2|n|)(1 + ⇢

2|n|)

2|n|⇢|n| + (µ|n|2 + �⇢2|n|)(1� ⇢2|n|)
for all n 6= 0.

It is clear that the electrostatic potential and subsequent current for the material
without a defective region are given by

u0(r, ✓) = f0 +
1X

|n|=1

fnr
|n|ein✓ and @ru0(1, ✓) =

1X

|n|=1

|n|fnein✓. (21)

Subtracting equation (21) from (20) gives a series representation of the current-gap
operator. By interchanging summation with integration we obtain

(⇤� ⇤0)f =
1
2⇡

Z 2⇡

0

K(✓,�)f(�) d� where K(✓,�) = �0 +
1X

|n|=1

|n|(�n � 1)ein(✓��)
.

This representation allows one to easily construct synthetic data for numerical
experiments. We now introduce a theorem regarding the convergence of the trun-
cated series approximation for the above integral operator.

Theorem 5.1. Let (⇤�⇤0)N : H1/2(0, 2⇡) ! H
�1/2(0, 2⇡) be the truncated series

approximation of (⇤� ⇤0). Then, we have that in the operator norm

k(⇤� ⇤0)� (⇤� ⇤0)Nk  C⇢
2(N+1)

where C > 0 is independent of N .

Proof. To prove the claim, consider

⇥
(⇤� ⇤0)� (⇤� ⇤0)N

⇤
f =

1X

|n|=N+1

|n|fn(�n � 1)ein✓.

By the Cauchy-Schwarz inequality in `2 we have that

���
⇥
(⇤� ⇤0)� (⇤� ⇤0)N

⇤
f

���
2


0

@
1X

|n|=N+1

|�n � 1|2|n||ein✓|2
1

A

0

@
1X

|n|=N+1

|n||fn|2
1

A
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 kfk2
H1/2(0,2⇡)

0

@
1X

|n|=N+1

|�n � 1|2|n|

1

A

After some calculations, we obtain that |� � 1|2|n|  Cµ,�,⇢|n|⇢4|n|, where Cµ,�,⇢ is
a positive constant that depends on µ, �, and ⇢, but independent of n and N . This
gives that

k[(⇤� ⇤0)� (⇤� ⇤0)N ]fk1  Cµ,�,⇢kfkH1/2(0,2⇡)⇢
2(N+1)

.

We obtain our result by using the fact that the H
�1/2(0, 2⇡)-norm is bounded by

the L
1(0, 2⇡)-norm.

Theorem 5.1 demonstrates that the convergence for the approximation is geo-
metric. Thus, we do not need many terms in the kernel function to approximate
the data operator in order to obtain desirable results. In the following examples,
we approximate the kernel function K(✓,�) given above by truncating the series for
|n| = 1, . . . , 10. With this, we then discretize the truncated integral operator by 64
equally spaced grid squares on [0, 2⇡) using a collocation method.

Example 1: complex coe�cients
For numerical reconstructions here, we set the decay parameter p = 1. In Figure
1, we take ⇢ = 0.2 and � = 0.05, which corresponds to 5% relative random noise
added to the data. The boundary coe�cients are � = 2� 0.5i and µ = 0.1� i. Here
the Spectral cut-o↵ regularization parameter is taken to be ↵ = 10�17. The dotted
lines are the boundaries of @⌦ and @D with the solid line being the approximation
via the level curve, which is chosen where the contour plot goes from red to black.

Figure 1. Reconstruction of a circular region with ⇢ = 0.2 via
the regularized factorization method. Boundary coe�cients are
� = 2� 0.5i and µ = 0.1� i. Contour plot of W (z) on the left and
level curve when W (z) = 0.2 on the right.

In Figure 2, we take ⇢ = 0.7 and increase error to � = 0.1, which corresponds to
10% relative random noise added to the data. The boundary coe�cients are taken
to be � = 2� 3i and µ = 1� 4i. Here, the Spectral cut-o↵ regularization parameter
is set to ↵ = 10�4. The dotted lines are the boundaries of @⌦ and @D with the
solid line being the approximation via the level curve.
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Figure 2. Reconstruction of a circular region with ⇢ = 0.7 via
the regularized factorization method. Boundary coe�cients are
� = 2 � 3i and µ = 1 � 4i. Contour plot of W (z) on the left and
level curve when W (z) = 0.2 on the right.

Example 2: Real coe�cients
For numerical reconstructions here, we let the decay parameter p = 4. In the fol-
lowing numerical experiments, we consider cases where the boundary coe�cients of
@D are strictly real-valued. We also continue using the Spectral cut-o↵ regulariza-
tion scheme. In Figure 3, we take ⇢ = 0.25 and � = 0.05, which corresponds to
5% relative random noise added to the data. The Spectral cut-o↵ regularization
parameter ↵ = 10�15. The dotted lines are the boundaries of @⌦ and @D with the
solid line being the approximation via the level curve.

Figure 3. Reconstruction of a circular region with ⇢ = 0.25 via
the regularized factorization method. Boundary coe�cients are
� = 1.2 and µ = 0.5. Contour plot of W (z) on the left and level
curve when W (z) = 0.1 on the right.

In Figure 4, we take ⇢ = 0.75 and � = 0.1, which corresponds to 10% relative
random noise added to the data. Here, the Spectral cut-o↵ regularization parameter
is ↵ = 10�5. Once again, the dotted lines are the boundaries of @⌦ and @D.

6. Conclusions. In this paper, we have studied the Regularized Factorization
Method for recovering an inclusion from electrostatic data. The factorization of the
data operator depends on whether the interior boundary parameters are complex-
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Figure 4. Reconstruction of a circular region with ⇢ = 0.75 via
the regularized factorization method. Boundary coe�cients are
� = 0.6 and µ = 1.6. Contour plot of W (z) on the left and level
curve when W (z) = 0.07 on the right.

or real-valued. Since we employ a qualitative method instead of an iterative method,
we do not require a priori knowledge about the region of interest or boundary condi-
tion. We reduced the regularity assumptions from previous works by requiring the
full knowledge of the DtN mapping. We note that the analysis provided here can be
used to study this inverse shape problem in Rd for d = 2, 3. Our algorithm allows
for fast and accurate reconstruction with little a priori knowledge of the region of
interest D. We also showed the uniqueness of the inverse impedance problem. A
future direction for this project can be to study the inverse parameter problem and
derive a non-iterative method for recovering the boundary coe�cients µ and �. One
could also study the error stability as our numerical experiments suggest that our
algorithm is stable with respect to noise in Cauchy data. Lastly, one could also
consider studying the direct sampling method (see, [12, 13, 33]) for this problem.
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