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Abstract. In this paper, we consider the inverse shape problem of recovering
isotropic scatterers with a conductive boundary condition. Here, we assume
that the measured far-field data is known at a fixed wave number. Motivated by
recent work, we study a new direct sampling indicator based on the Landweber
iteration and the factorization method. Therefore, we prove the connection be-
tween these reconstruction methods. The method studied here falls under the
category of qualitative reconstruction methods where an imaging function is
used to recover the absorbing scatterer. We prove stability of our new imaging
function as well as derive a discrepancy principle for recovering the regulariza-
tion parameter. The theoretical results are verified with numerical examples to
show how the reconstruction performs by the new Landweber direct sampling
method.

1. Introduction. In this paper, we provide the analytical framework for recovering
extended isotropic scatterers using a new direct sampling imaging function based on
the Landweber regularization method. The isotropic scatterers have a conductive
boundary condition that models an object that has a thin layer covering the exterior
(such as an aluminum sheet). For a fixed wave number we will assume that the so-
called far-field pattern is measured. With this, we will use qualitative reconstruction
methods to recover the unknown scatterer from the far-field pattern. Qualitative
methods have been used in many inverse scattering problems [1, 2, 4, 16, 17, 27,
29, 30] (and many more) due to the fact that they serve for nondestructive testing.
The main advantage for using qualitative methods is the fact that little a priori
information about the scatterer is needed. For many applications such as medical
imaging this is very useful since one does not have much a priori knowledge of the
unknown scatterer.

We consider reconstructing extended scatterers using an analogous method to
the Direct Sampling Method (DSM). Here, we assume that we have the far-field

2020 Mathematics Subject Classification. Primary: 35R30; Secondary: 78A46.
Key words and phrases. Inverse scattering, sampling methods, conductive boundary.
The authors R. Ceja Ayala and I. Harris are supported in part by the NSF DMS grant [2107891].
⇤Corresponding author: Isaac Harris.

1



2 RAFAEL CEJA AYALA, ISAAC HARRIS AND ANDREAS KLEEFELD

operator i.e. we have the measured far-field pattern for all sources and receivers
along the unit circle/sphere. See for e.g. [8, 18, 19, 20, 22, 21, 28, 31, 32] for the
application of the direct sampling method for other inverse shape problems from
scattering theory as well as [9] for an application to di↵use optical tomography. In
order to analyze the corresponding imaging function for the new Landweber direct
sampling method, we will need a factorization of the far-field operator. Then by a
similar analysis as is done in [14, 29] we use the factorization and the Funk–Hecke
integral identity to prove that the new imaging function will accurately recover the
scatterer. This project was motivated by the works of [14] where a similar imaging
function was introduced and analyzed for the behavior of the far-field operator
associated with a non-absorbing scatterer. One of the main contributions is to
connect the well known factorization method [6, 24, 23] and the direct sampling
method via the Landweber iteration. In addition, we provide a direction on how to
choose the regularization parameter as well as a stability result for the new imaging
function. In this paper, we will analyze the imaging function corresponding to a
polynomial approximate of the Landweber iteration solution operator associated
with factorization method. This expands the ideas in [14] to also be valid when the
scatterer has complex–valued coe�cients.

The rest of the paper is organized as follows. In the next section, we state
the direct and inverse problem under consideration. We discuss the scattering
by an isotropic scatterers with a conductive boundary condition and set up the
assumption for the scatterer. We then, study and derive a Lippmann-Schwinger
integral equation for the scattered field. Then, we consider the factorization of the
far-field operator and present some of the properties that the factors of it give us. As
a consequence, we then derive a Landweber iteration method that will establish the
resolution analysis for the imaging function. Lastly, we present numerical examples
based on the new sampling method based on the Landweber iteration. This shows
that this method is analytically rigorous and computationally simple.

2. Statement of the problem. In this section, we formulate the direct scattering
problem in Rd for extended isotropic scatterers with a conductive boundary con-
dition where d = 2, 3. We assume that the scattering obstacle may be composed
of multiple simply connected regions. For our model, we take an incident plane
wave denoted u

i to illuminate the scatterer. To this end, we let u
i(x, ŷ) = eikx·ŷ

where the incident direction ŷ 2 Sd�1(i.e. unit circle/sphere) and the point x 2 Rd.
Notice, that the incident field u

i satisfies

�u
i + k

2
u
i = 0 in Rd

.

The interaction of the incident field and the scatterer denoted by D produces the
radiating scattered field u

s(x, ŷ) 2 H
1
loc(Rd) that satisfies

�u
s + k

2
n(x)us = k

2
�
1� n(x)

�
u
i in Rd

\@D (1)

u
s
� � u

s
+ = 0 and @⌫u

s
� � @⌫u

s
+ = ⌘(x)

�
u
s + u

i
�

on @D. (2)

Along with the Sommerfeld radiation condition

@ru
s
� ikus = O

✓
1

r(d+1)/2

◆
as r ! 1 (3)

where @⌫� := ⌫ ·r� for any � and r := |x|. The radiation condition (3) is satisfied
uniformly in all directions x̂ := x/|x|. Here � and + corresponds to taking the
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trace from the interior or exterior of D, respectively. Note, that ui and its normal
derivative are continuous across the boundary of @D.

We assume here that the scatterer D ⇢ Rd has a boundary that is C
2 where ⌫

denotes the unit outward normal vector to @D. For the material parameters, we
assume that the refractive index satisfies n 2 L

1(D) such that supp(n � 1) = D

where
Im(n(x)) � 0 for a.e. x 2 D

and that the conductivity ⌘ 2 L
1(@D) satisfies that

Im(⌘(x)) � 0 for a.e. x 2 @D.

Here, the wave number k > 0 is fixed and under the above assumptions we have
that (1)–(3) is well-posed by [4]. Recall, the fundamental solution to the Helmholtz
equation in Rd given by

�(x, y) =

8
><

>:

i
4H

(1)
0 (k|x� y|) d = 2

eik|x�y|

4⇡|x�y| d = 3

(4)

where H(1)
0 denotes the first kind Hankel function of order zero. In our analysis, we

will use the following asymptotic formula

�(x, y) = �
eik|x|

|x|(d�1)/2

⇢
e�ix̂·y +O

✓
1

|x|

◆�

as |x| �! 1 uniformly with respect to x̂. Here, the parameter

� =
ei⇡/4
p
8⇡k

in R2 and � =
1

4⇡
in R3

.

Due to the fact that u
s is a radiating solution to the Helmholtz equation on the

exterior of D, similarly we have that (see for e.g. [5, 6])

u
s(x, ŷ) = �

eik|x|

|x|(d�1)/2

⇢
u
1(x̂, ŷ) +O

✓
1

|x|

◆�
as |x| �! 1.

Again, we have that the asymptotic formula holds uniformly with respect to x̂. The
function u

1(x̂, ŷ) denotes the far-field pattern of the scattered field for observa-
tion direction x̂ and incident direction ŷ on Sd�1. We can now define the far-field
operator denoted F given by

(Fg)(x̂) =

Z

Sd�1

u
1(x̂, ŷ)g(ŷ) ds(ŷ) for g 2 L

2(Sd�1) (5)

mapping L
2(Sd�1) into itself.

We are interested in using the known and measured far-field pattern to recover
the unknown absorbing scatterer D. Now, we note that the fundamental solution
satisfies

��(x, ·) + k
2�(x, ·) = ��(x� ·) in Rd

along with the Sommerfeld radiation condition (3). Using Green’s 2nd Theorem in
D for a fixed x 2 BR gives that

u
s(x)�D =�

Z

D
�(x, z)[�u

s(z) + k
2
u
s(z)] dz

+

Z

@D
�(x, z)

@

@⌫
u
s
�(z)� u

s
�(z)

@

@⌫
�(x, z) ds(z)
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where �D is the indicator function on the scatterer D. In a similar manner, using
Green’s 2nd Theorem in the exterior of D for a fixed x 2 BR gives that

u
s(x)(1� �D) =�

Z

@D
�(x, z)

@

@⌫
u
s
+(z)� u

s
+(z)

@

@⌫
�(x, z) ds(z)

+

Z

@BR

�(x, z)
@

@⌫
u
s(z)� u

s(z)
@

@⌫
�(x, z) ds(z).

where BR = {x 2 Rd : |x| < R} such that D ⇢ BR. Note, that we have used the
fact that us is a solution to the Helmholtz equation on the exterior of D.

Therefore, by adding the above expressions we obtain the Lippmann-Schwinger
type representation of the scattered field

u
s(x) = k

2

Z

D
(n� 1)�(x, z)

⇥
u
s(z) + u

i(z)
⇤
dz +

Z

@D
⌘�(x, z)

⇥
u
s(z) + u

i(z)
⇤
ds(z).

(6)

Notice, that we have used the scattered field and fundamental solution satisfying
the radiation condition (3) to handle the boundary integral over @BR by letting
R ! 1. In the following section we will define a far-field pattern that involves the
parameter at the boundary and factorize it. We will analyze equation (6) in order
to better understand the behavior of the scattered field.

3. Factorizing the scattered field. In this section, we derive a factorization
of the far-field operator that will be used in our extension of the direct sampling
method to solve the problem for the reconstruction of absorbing scatterers. The
Lippmann–Schwinger representation of the scattered field (6) will be used in our
analysis. We will derive a new factorization of the far-field operator defined in (5)
which is one of the main components of our analysis. We will prove that the new
proposed imaging function has the property that it decays as the sampling point
moves away from the scatterer.

We begin by factorizing the far-field operator defined in (5) which will allow us
to define an imaging function to facilitate the reconstruction of extended regions
D. Recall, that the far-field operator for g 2 L

2(Sd�1) is given by

(Fg)(x̂) =

Z

Sd�1

u
1(x̂, ŷ)g(ŷ)ds(ŷ)

where Sd�1 is the unit sphere/circle. Since it is well-known that the far-field pattern
is analytic (see for e.g. [10]) it is clear that F is a compact operator. It has been
shown in [4], that the far-field operator is injective with a dense range provided that

�'+ k
2
' = 0 and ��+ k

2
� = 0 in D (7)

' = � and @⌫' = @⌫�+ ⌘� on @D (8)

only admits the trivial solution in L
2(D)⇥L

2(D). This says that the wave number
k is not a transmission eigenvalue. This problem has been studied [3, 12, 13] and it
is known that the set of transmission eigenvalues is at most discrete in the complex
plane, provided that |n � 1|�1

2 L
1(D) and ⌘

�1
2 L

1(@D) (see also [7] for
a recent study with two conductivity parameters). Therefore, we will make the
assumption that (7)–(8) only admits the trivial solution. The factorization of the
far-field operator was initially studied [29] for the case when ⌘ = 0. Now, we recall
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the Lippmann–Schwinger representation of the scattered field

u
s(x, ŷ) =

Z

D
k
2(n� 1)(us + u

i)�(x, z)dz +

Z

@D
⌘(ui + u

s)�(x, z)ds(z)

which implies that

u
1(x̂, ŷ) =

Z

D
k
2(n� 1)(us + u

i)e�ikx̂·z dz +

Z

@D
⌘(ui + u

s)e�ikx̂·z ds(z).

Using the above formula for the far-field pattern, we can change the order of inte-
gration to obtain the following identity

Fg =

Z

D
k
2(n� 1)(us

g + vg)e
�ikx̂·z dz +

Z

@D
⌘(us

g + vg)e
�ikx̂·z ds(z).

Here, we let vg(x) denote the Herglotz wave function defined as

vg(x) =

Z

Sd�1

eikx·ŷg(ŷ) ds(ŷ) and u
s
g(x) =

Z

Sd�1

u
s(x, ŷ)g(ŷ) ds(ŷ)

where us
g solves the boundary value problem (1)–(3) when the incident field u

i = vg.
The factorization method for the far-field operator F is based on factorizing F

into three distinct pieces that act together and give us more information about the
region of interest D. To this end, one can show that

H : L2(Sd�1) �! L
2(D)⇥ L

2(@D) where Hg = (vg|D , vg|@D) (9)

is a bounded linear operator. Now, we consider the following auxiliary problem

(�+ k
2
n)w = �k

2(n� 1)f in Rd
\ @D (10)

w� � w+ = 0 and @⌫w� � @⌫w+ = ⌘(w + h) on @D (11)

@rw � ikw = O

✓
1

r(d+1)/2

◆
as r ! 1 (12)

with f 2 L
2(D) and h 2 L

2(@D). It is clear that the auxiliary problem (10)–(12) is
well-posed by [4] with w 2 H

1
loc(Rd) under the assumptions of this paper. We can

define the operator T associated with the auxiliary problem (10)–(12) such that

T : L2(D)⇥ L
2(@D) �! L

2(D)⇥ L
2(@D)

which is given by

T (f, h) =
�
k
2(n� 1)(w + f)|D , ⌘(w + h)|@D

�
. (13)

Similarly, we have that T is a bounded and linear operator. Due to the fact that
u
s
g solves (10)–(12) with f = vg|D and h = vg|@D, we have that

THg =
�
k
2(n� 1)(us

g + vg)|D , ⌘(us
g + vg)|@D

�

for any g 2 L
2(Sd�1).

Now, in order to determine a suitable factorization of the far-field operator F ,
we need to compute the adjoint of the operator H. Observe that by definition we
have

(Hg, ('1,'2))L2(D)⇥L2(@D)

=

Z

D

✓Z

Sd�1

eikx̂·zg(x̂) ds(x̂)

◆
'1(z) dz +

Z

@D

✓Z

Sd�1

eikx̂·zg(x̂) ds(x̂)

◆
'2(z) ds(z)

=

Z

Sd�1

g(x̂)

✓Z

D
eikx̂·z'1(z) dz

◆
ds(x̂) +

Z

Sd�1

g(x̂)

✓Z

@D
eikx̂·z'2(z) dz

◆
ds(x̂)
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=

Z

Sd�1

g(x̂)

✓Z

D
e�ikx̂·z'1(z) dz

◆
ds(x̂) +

Z

Sd�1

g(x̂)

✓Z

@D
e�ikx̂·z'2(z) dz

◆
ds(x̂)

and thus

H
⇤('1,'2) =

Z

D
'1(z)e

�ikx̂·z dz +

Z

@D
'2(z)e

�ikx̂·z ds(z).

We then obtain

H
⇤
THg =

Z

D
k
2(n� 1)(us

g + vg)e
�ikx̂·z dz +

Z

@D
⌘(us

g + vg)e
�ikx̂·z ds(z) = Fg

for any g 2 L
2(Sd�1). Therefore, we have derived a factorization for the far-field

operator.

Theorem 3.1. The far-field operator F : L2(Sd�1) �! L
2(Sd�1) has the symmetric

factorization F = H
⇤
TH where the operators H and T are defined in (9) and (13),

respectively.

The factorization given above is one of the main pieces that will be used to derive
an imaging functional. The next step in our analysis is the Funk–Hecke integral
identity, this integral identity gives us the opportunity to evaluate the Herglotz
wave function for g = �z which is given by

v�z (x) =

Z

Sd�1

e�ik(z�x)·ŷds(ŷ) =

8
><

>:

2⇡J0(k|x� z|), in R2
,

4⇡j0(k|x� z|), in R3
.

(14)

Here, J0 is the zeroth order Bessel function of the first kind and j0 is the zeroth
order spherical Bessel function of the first kind. With the factorization of the far-
field operator F and the Funk–Hecke integral identity, we can solve the inverse
problem of recovering D by using the decay of the Bessel functions (similarly done
in [11, 15]).

The final piece needed in our study for the factorization of F is to analyze the
middle operator T . Just as in the factorization [4, 24, 23] and generalized linear
sampling methods [2, 33, 34], coercivity of the middle operator is essential to our
analysis and will be proven to gather information about the far-field operator F . To
this end, we will show that T is coercive with respect to the Range(H). Thus, we
begin by showing that T can be decomposed into a sum of a compact and coercive
operator.

Theorem 3.2. Let the operator T be as defined in (13). Then we have that T =
S + K where the operators S and K : L2(D) ⇥ L

2(@D) �! L
2(D) ⇥ L

2(@D) are
given by

S(f, h) = (k2(n� 1)f, ⌘h) and K(f, h) = (k2(n� 1)w, ⌘w)

where w is the unique solution to (10)–(12). Moreover, we have that K is a compact
operator and

±Re (S(f, h), (f, h))L2(D)⇥L2(@D) � ↵k(f, h)k2L2(D)⇥L2(@D)

for some positive ↵ > 0

provided that ±Re(n� 1) and ±Re(⌘) are positive definite.
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Proof. To prove the claim, we first start with proving the coercivity result for the
operator S. Therefore, by definition of the operator we have that

(S(f, h), (f, h))L2(D)⇥L2(@D) = k
2 ((n� 1)f, f)L2(D) + (⌘h, h)L2(@D)

and by the assumptions on the coe�cients we can obtain the estimate

±Re (S(f, h), (f, h))L2(D)⇥L2(@D) � ↵k(f, h)k2L2(D)⇥L2(@D)

for some constant ↵ > 0 depending on the coe�cients.
Now, the compactness of the operator K is due to the fact that H

1/2(@D) is
compactly embedded into L

2(@D) as well as H
1(D) being compactly embedded

into L
2(D). This proves the claim.

Now, we proceed with stating a well-known limit (see for e.g. [24]) that will
help us analyze the behavior of the imaginary part of the operator T . Studying the
imaginary part of T will help prove our coercivity result for the operator. Let w be
the solution function of the auxiliary problem above, i.e. (10)–(12). Then, we have
that Z

@BR

w@⌫w ds �! i|�|2k

Z

Sd�1

|w
1
|
2 ds as R �! 1. (15)

We can now prove that the imaginary part of the operator T is positive on the
Range(H). Recall, that we have assumed that the material parameters satisfy the
estimates Im(n) � 0 and Im(⌘) � 0.

Theorem 3.3. Let the operator T be as defined in (13). Then we have that

Im (T (f, h), (f, h))L2(D)⇥L2(@D) > 0

for all (0, 0) 6= (f, h) 2 Range(H) provided that k is not a transmission eigenvalue.

Proof. In order to prove the claim, we will express the inner-product using the
auxiliary boundary value problem (10)–(12) for w with inputs f and h. We begin,
by using the fact that

f = f + w � w as well as h = h+ w � h

and observe that

(T (f, h), (f, h))L2(D)⇥L2(@D) =

Z

D
k
2(n� 1)|w + f |

2dx+

Z

@D
⌘|h+ w|

2 ds

�

Z

D
k
2(n� 1)(w + f)w dx�

Z

@D
⌘(w + h)w ds.

Recall, our auxiliary problem (10)–(12) and since n = 1 on the exterior of D, we
have

�w + k
2
w = �k

2(n� 1)(w + f) in BR \ @D for D ⇢ BR. (16)

Then, we apply Green’s 1st Theorem on (16) in D to obtain

�

Z

D
k
2(n� 1)(w + f)w dx =

Z

D
w(�w + k

2
w) dx

= �

Z

D
|rw|

2
� k

2
|w|

2 dx+

Z

@D
w@w� ds

and in BR \ @D we have that

0 = �

Z

BR\D
|rw|

2
� k

2
|w|

2 dx+

Z

@BR

w@⌫w ds�

Z

@D
w@w+ ds.
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Now, by the appealing to the jump in the normal derivative

@⌫w� � @⌫w+ = ⌘(w + h) on @D

we have the equality

(T (f, h), (f, h))L2(D)⇥L2(@D) =

Z

D
k
2(n� 1)|w + f |

2 dx+

Z

@D
⌘|h+ w|

2 ds

�

Z

BR

|rw|
2
� k

2
|w|

2 dx+

Z

@BR

w@⌫w ds.

Letting R �! 1 and using (15) we see that

Im (T (f, h), (f, h))L2(D)⇥L2(@D) =k
2

Z

D
Im(n)|w + f |

2 dx

+

Z

@D
Im(⌘)|h+ w|

2 ds+ |�|
2
k

Z

Sd�1

|w
1
|
2 ds.

(17)

By assumption on the imaginary part of the coe�cients, we have that the imaginary
part of T is non-negative in L

2(D)⇥ L
2(@D).

Now, we prove that imaginary part of T is positive in Range(H). To this end,
we assume that there exists (f, h) 2 Range(H) such that

Im (T (f, h), (f, h))L2(D)⇥L2(@D) = 0

and we must prove that prove (f, h) = (0, 0). From the definition of H, we have
that f = v|D and h = v|@D where v is a solution to the Helmholtz equation in D.
Notice, that by (17) we have that w

1 = 0 and by Rellich’s Lemma (see for e.g.
[5, 6]) we have that w = 0 in Rd

\D. By the boundary conditions in (11), we have
that

w� = 0 and @⌫w� = ⌘v on @D

since @⌫w+ = w+ = 0 on @D. We also have that

�w + k
2
w = �k

2(n� 1)(w + v) and �v + k
2
v = 0 in D.

Combining the above inequalities, (w+v, v) 2 L
2(D)⇥L

2(D) satisfy the boundary
value problem

�(w + v) + k
2
n(w + v) = 0 and �v + k

2
v = 0 in D

(w + v) = v and @⌫(w + v) = @⌫v + ⌘v on @D.

By our assumption, we have that the above boundary value problem only admits
the trivial solution (w + v, v) = (0, 0) i.e. f = 0 and h = 0, proving the claim.

In the next section, we will use this factorization to derive a direct sampling
method that is connected to the factorization method.

4. The Landweber direct sampling method. In this section, we study a
Landweber indicator function using the operator F# defined below. In previous
works, a similar reconstruction method for extended regions based on (6) was stud-
ied for the case where ⌘ = 0 and n real-valued see [14]. Although, the authors did
not consider the case of absorbing scatterers they got better reconstructions using
the Tikhonov direct sampling method. In our problem, the coe�cients for the scat-
tering problem (1)–(3) are complex and thus we must use a di↵erent characterization
for the operator. We extend the regularization to the Landweber iteration basing
it on the factorization method. In comparison to previous studies, the Landweber
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iteration will provide us the ability to pick a regularization parameter considering
a discrepancy principle and the ‘optimal’ number of iterations.

The operator is defined to be F# = |Re(F )|+ |Im(F )| where

Re(F ) =
1

2
(F + F

⇤) and Im(F ) =
1

2i
(F � F

⇤).

Note, that the absolute value of the above self-adjoint compact operators is given
by its eigenvalue decomposition. One can easily show that F# is a self-adjoint,
compact, and positive (see for e.g. [24]). Therefore, we have that the operator F#

have an orthonormal eigenvalue decomposition (�j , j) 2 R+ ⇥L
2(Sd�1) such that

F#g =
1X

j=1

�j(g, j)L2(Sd�1) j for all g 2 L
2(Sd�1).

As a consequence of F# being a compact operator we have that �j �! 0 as j �! 1.

Thus, we have that �j 6= 0 for all j and the set { j} is a complete orthonormal set
in L

2(Sd�1).

4.1. Derivation of the Landweber regularization. We use the operator F# to
recover absorbing scatteres by solving the ill-posed equation of the form

F
1/2
# gz = �z for z 2 Rd (18)

which is solvable if and only if the sampling point z 2 D. We will derive an ap-
proximate solution operator to the above equation and use the Landweber iteration
to approximate the solution operator. We exploit the fact that we can construct a
polynomial that when applied to the operator acts as the solution operator for F#.

The Landweder regularized solution to (18) will be denoted g
r
z and using the

eigenvalue decomposition we have that

g
r
z =

1X

j=1

1p
�j

h
1� (1� ��j)

r
i
(�z, j)L2(Sd�1) j .

We define the filter function

�r(t) =
1� (1� �t)r

p
t

where � 2 (0, 1/�1) and r 2 N

which has a removable discontinuity such that �r(0) := 0 and as a consequence is
continuous on the interval [0,�1]. The function �r(t) is connected to the solution
operator for the Landweder regularization given by the mapping

�z 7�!

1X

j=1

�r(�j)(�z, j)L2(Sd�1) j . (19)

We note that the parameter � is chosen to be in the interval � 2 (0, 1/�1) and r 2 N
that we can control and choose throughout the calculations in our experiments.

In order to approximate our solution operator (19), we will exploit the fact that
the function �r(t) is continuous for all t � 0. To this end, for every ✏ > 0 there is a
polynomial Pr,✏(t) where Pr,✏(0)=0 that approximates our function �r(t) such that

kPr,✏(t)� �r(t)kL1(0,�1)
< ✏. (20)
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The construction of this approximation polynomial gives us an approximation of
the solution operator that is defined to be

Pr,✏(F#)�z =
1X

j=1

Pr,✏(�j)(�z, j) j . (21)

Using (19) and (20), we propose a Landweder indicator function for a fixed r and
� and this is by exploiting the defined polynomial of the operator F# via the
eigenvalue decomposition as commonly done in linear algebra. Thus we have the
following imaging function

WLDSM(z) = kPr,✏(F#)�zk
2
L2(Sd�1) with kPr,✏(t)� �r(t)kL1(0,�1)

⇡ 0 (22)

where Pr,✏(t) is our approximation polynomial.
We know that { j} is an orthonormal basis in the space L

2(Sd�1) and as a
consequence using the definition of Pr,✏(F#)�z we have

kPr,✏(F#)�zk
2
L2(Sd�1) =

1X

j=1

P
2
r,✏(�j)

���(�z, j)L2(Sd�1)

���
2
.

Now that we have the new Landweder indicator function WLDSM(z) where we will
connect it to the factorization operator derived in Section 3. Observe that (20)
gives us the following inequality for all ✏ > 0 and for fixed parameters � and r

P
2
r,✏(�j)  �2

r(�j) + 2✏�r(�j) + ✏
2
,

where this holds for all ✏ > 0 and j 2 N. We know that �r(t) is continuous for all
t � 0 and by using Bernoulli’s inequality for t � �1 we have �r(t)  r�

p
t. As a

consequence, we define

Cr := sup(0,�1) k�r(t)k  sup(0,�1)r�
p
t = r�

p
�1 < 1

where it only depends on �, r, and �1. Now, take 0 < ✏ < 1 and we estimate the
following

kPr,✏(F#)�zk
2
L2(Sd�1)



1X

j=1

�2
r(�j)

���(�z, j)L2(Sd�1)

���
2

+ 2✏
1X

j=1

�r(�j)
���(�z, j)L2(Sd�1)

���
2
+ ✏

2
1X

j=1

���(�z, j)L2(Sd�1)

���
2



1X

j=1

�2
r(�j)

���(�z, j)L2(Sd�1)

���
2
+ (2✏Cr + ✏

2)k�zk
2
L2(Sd�1)

=
1X

j=1

�2
r(�j)

���(�z, j)L2(Sd�1)

���
2
+ 2d�1

⇡(2✏Cr + ✏
2)

where k�zk
2
L2(Sd�1) = 2d�1

⇡. Using Bernoulli’s inequality once more we can easily

see �2
r(�j)  r

2
�
2
�j and combining this bound with the above inequalities gives

kPr,✏(F#)�zk
2
L2(Sd�1)  r

2
�
2

1X

j=1

�j

���(�z, j)L2(Sd�1)

���
2
+ C(r, d)✏
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where C(r, d) is a positive constant depending on our regularization parameters and

the dimension. The definition of F 1/2
# and our above inequalities implies that

kPr,✏(F#)�zk
2
L2(Sd�1)  r

2
�
2
���(F#�z,�z)L2(Sd�1)

���+ C(r, d)✏

for fixed � and r.

In the previous section, Theorem (3.1) established a factorization of the operator
F . Now, with our new operator F#, it is known that by Theorem 3.2 and 3.3 that
the operator F# = H

⇤
T#H where the new operator T# is coercive. Having this

factorization allows us to do the following
���(F#�z,�z)L2(Sd�1)

��� =
���(T#H�z, H�z)L2(D)⇥L2(@D)

���.

Thus, there exists constants c1 and c2 such that

c1

⇣
kv�zk

2
L2(D) + kv�zk

2
L2(@D)

⌘

��(F#�z,�z)L2(Sd�1)

��

 c2

⇣
kv�zk

2
L2(D) + kv�zk

2
L2(@D)

⌘
. (23)

Thus we have the main result of this section which relates the operator F# to the
Bessel functions that will decay as we move far away from the region of interest.

Theorem 4.1. For all z 2 Rd
\D we have that

kPr,✏(F#)�zk
2
L2(Sd�1)  Cdist(z,D)1�d +O(✏) for dist(z,D) ! 1

where the Pr,✏(t) = �r(t) +O(✏) as ✏ �! 0.

Proof. The proof of the claim is a result of the fact that

kPr,✏(F#)�zk
2
L2(Sd�1)  r

2
�
2
���(F#�z,�z)L2(Sd�1)

���+O(✏)

as ✏ ! 0 along with equations (14) and (23). Then, by using the fact that the
Bessel function J0(|z � x|) decays at a rate of |z � x|

�1/2 as |z � x| ! 1 for d = 2
and j0(|z � x|) decays at a rate of |z � x|

�1 as |z � x| ! 1 for d = 3.

This theorem gives the resolution analysis for using the imaging function. This
implies that the imaging function will decay fast when we move away from the
scatterer. Also, an important question about developing this imaging function is
the choice and control over the parameter r 2 N. We present a discrepancy principle
to determine r and also an stability result for the new imaging function WLDSM(z)
given by (22).

4.2. Determination of the parameter r 2 N and stability result. Here we will
assume that we have the perturbed far-field operator F � = F +O(�) as � ! 0. The
known � 2 (0, 1) represents the noise level from our measured far-field data. Now,
that we have derived our new sampling method we consider the imaging function
where we use F

�
#, as well as address how to determine the parameter r 2 N. To

this end, we develop a discrepancy principle using the principle eigenvalue �1. We
consider solving

�r(�1)� �r+1(�1) = � (24)

for r i.e. we use r iterations until we hit the noise level. Solving for r in (24) gives
us that

r =
ln
⇣

�
�
p
�1

⌘

ln
⇣
1� ��1

⌘ .
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In order to insure that r 2 N the chosen regularization parameter is given by

r = max

8
<

:

2

666

ln
⇣

�
�
p
�1

⌘

ln
⇣
1� ��1

⌘

3

777
, 1

9
=

; . (25)

From here we have a method to pick the parameter r 2 N with respect to the known
noise level. In our numerical experiments, we noticed that this choice of r  5.

Before proceeding with the numerical examples, we address the stability of the
imaging function WLDSM(z) given by (22) with respect to a given/measured per-
turbed far-field operator It is well known that if

kF
�
� Fk < � we have that kF

�
# � F#k < C(1 + | ln(�)|)�

for some C > 0 independent of � see for e.g. [26]. We present a lemma that will
address an important property before showing the stability result.

Lemma 4.2. Assume that Pr,✏(F#) : L2(Sd�1) ! L
2(Sd�1) is defined as above in

(21), then we have that

kPr,✏(F
�
#)� Pr,✏(F#)k  C

pX

m=1

��(F �
#)

m
� (F#)

m
��  C(1 + ln(�))�

where the constant C = C (p, kF#k) is independent of 0 < � < 1.

Proof. To begin the argument, we make the observation that we can always factorize
terms of the form

(F �
#)

p
� (F#)

p = (F �
# � F#)

p�1X

m=0

(F �
#)

m(F#)
p�1�m

where we define Qp�1(F �
#, F#) =

Pp�1
m=0(F

�
#)

m(F#)p�1�m which is a polynomial of
two variables and has degree p� 1. We focus our attention to the following term

k(F �
#)

p
� (F#)

p
k = kQp�1(F

�
#, F#)(F

�
# � F#)k  CkQp�1(F

�
#, F#)k(1 + | ln(�)|)�.

Notice, that since kF
�
# � F#k < C(1 + | ln(�)|)� which implies that there is a

constant independent of � such that kF �
#k  CkF#k for 0 < � < 1. Then, we have

the estimate

kQp�1(F
�
#, F#)k  C

p�1X

m=0

��(F#)
m(F#)

p�1�m
�� = C (p, kF#k)

Thus, we have k(F �
#)

p
� (F#)pk  C(1+ | ln(�)|)� where C is independent of �.

With this result we are now able to prove stability of the imaging function
WLDSM(z) defined in (22). Here was assume that only the perturbed operator
F

� is known and we prove that the imaging function using the perturbed operator
is uniformly close to the imaging function using the unperturbed operator.

Theorem 4.3. Assume that kF �
� Fk < � such that 0 < � < 1, then

���kPr,✏(F
�
#)�zk

2
L2(Sd�1) � kPr,✏(F#)�zk

2
L2(Sd�1)

���  C(1 + | ln(�)|)� for any 0 < � < 1

uniformly on compact subsets of Rd.
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Proof. Using the L
2(Sd�1) norm and its inner product we have the following in-

equalities
���kPr,✏(F

�
#)�zk

2
L2(Sd�1) � kPr,✏(F#)�zk

2
L2(Sd�1)

���



���kPr,✏(F
�
#)�zkL2(Sd�1)k(Pr,✏(F

�
#)� Pr,✏(F#))�zkL2(Sd�1)

+ kPr,✏(F
�
#)� Pr,✏(F#))�zkL2(Sd�1)kPr,✏(F#)�zkL2(Sd�1)

���



⇣
kPr,✏(F

�
#)kkPr,✏(F

�
#)� Pr,✏(F#)k

+ kPr,✏(F
�
#)� Pr,✏(F#)kkPr,✏(F#)k

⌘
k�zk

2
L2(Sd�1)

where on the second line we have added and subtracted terms and used the Cauchy
–Schwarz inequality. It is clear from (21) and Lemma 4.2 that kPr,✏(F �

#)k and
kPr,✏(F#)k are both bounded with respect to � 2 (0, 1). Thus we have that

���kPr,✏(F
�
#)�zk

2
L2(Sd�1) � kPr,✏(F#)�zk

2
L2(Sd�1)

���  CkPr,✏(F
�
#)� Pr,✏(F#)k.

Using Lemma (4.2) we have kPr,✏(F �
#) � Pr,✏(F#)k  C(1 + | ln(�)|)� for any

0 < � < 1. This last inequality is the final item to show the desired stability. Thus
we have
���kPr,✏(F

�
#)�zk

2
L2(Sd�1)�kPr,✏(F#)�zk

2
L2(Sd�1)

���  C(1+| ln(�)|)� for any 0 < � < 1

proving the claim.

The stability result closes up the analysis about the Landweber direct sampling
method connecting this direct sampling method and factorization method. In the
following section we present numerical results using the imaging function to recover
multiple types of scatterers.

5. Numerical validation.

5.1. Boundary integral equations. We first derive the boundary integral equa-
tion to compute far-field data for arbitrary domains in two dimensions which are
defined through a smooth parametrization. Note that the derivation is also valid
in three dimensions by changing the corresponding fundamental solution in the
integral operators.

Recall, that the given scatterer D is illuminated by an incident plane wave of
the form u

i = eikx·ŷ with incident direction ŷ 2 S1 (the unit circle), then the direct
scattering problem is given by: find the total field u 2 H

1(D) and scattered field
u
s
2 H

1
loc(Rd

\D) such that

�u
s + k

2
u
s = 0 in R2

\D and �u+ k
2
nu = 0 in D (26)

(us + u
i)+ � u

� = 0 and @⌫(u
s + u

i)+ + ⌘(us + u
i)+ = @⌫u

� on @D (27)

lim
r!1

r
1/2 (@ru

s
� ikus) = 0. (28)

We use a single-layer ansatz to derive a 2⇥2 system of boundary integral equations.
Precisely, we take

u
s(x) = SLk'(x) , x 2 R2

\D and u(x) = SLk
p
n (x) , x 2 D , (29)
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where

SLk�(x) =

Z

@D
�k(x, y)�(y) ds , x /2 @D

with �k(x, y) the fundamental solution of the Helmholtz equation in two dimensions.
Here, ' and  are yet unknown functions on @D. On the boundary, we have

u
s(x) = Sk'(x) and u(x) = Skpn (x) ,

where

Sk�(x) =

Z

@D
�k(x, y)�(y) ds , x 2 @D .

Because of u� u
s = u

i, we obtain the first boundary integral equation

Skpn � Sk� = u
i
. (30)

Taking the normal derivative of (29) and the jump conditions yields on the boundary

@⌫u
s(x) =

✓
�
1

2
I + K0

k

◆
'(x) and @⌫u(x) =

✓
1

2
I + K0

k
p
n

◆
 (x) ,

where

K0
k�(x) =

Z

@D
@⌫(x)�k(x, y)�(y) ds , x 2 @D .

Because of @⌫u� @⌫u
s
� ⌘u

s = @⌫u
i + ⌘u

i, we obtain the second boundary integral
equation

✓
1

2
I + K0

k
p
n

◆
 �

✓
�
1

2
I + K0

k

◆
'� ⌘Sk' = @⌫u

i + ⌘u
i
. (31)

After we solve (30) and (31) for  and ', we obtain the far-field by computing

u
1(x̂) = S1k '(x̂) ,

where

S1k �(x̂) =

Z

@D
e�ikx̂·y

�(y) ds(y) , x̂ 2 S1 . (32)

The system of boundary integral equations (30) and (31) is numerically solved
with the boundary element collocation method (refer also to [25] for more details).
Likewise, the expression (32) is approximated.

To test that our solver produces correct results, we derive the corresponding far-
field pattern for a disk with radius R > 0. The Jacobi-Anger expansion for the
incident wave u

i(x) = eikx·ŷ with incident direction ŷ is given by

eikx·ŷ =
1X

p=�1
ipJp(k|x|)e

ip(✓��)
,

where ✓ is the polar angle for x and � is the polar angle for ŷ. The scattered field
in the exterior is given by

u
s(rx̂) =

1X

p=�1
ipapH

(1)
p (kr)eip(✓��)

, r > R ,

where x̂ = x/r 2 S1. The field inside of D is given by

u(rx̂) =
1X

p=�1
ipbpJp(k

p
nr)eip(✓��)

, r < R .
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The first boundary condition u
s
� u = �u

i yields

H
(1)
p (kR)ap � Jp(k

p
nR)bn = �Jp(kR) . (33)

The second boundary condition @⌫us + ⌘u
s
� @⌫u = �@u

i
� ⌘u

i gives

kH
(1)0

p (kR)ap + ⌘H
(1)
p (kR)ap � k

p
nJ

0
p(k

p
nR)bp = �kJ

0
p(kR)� ⌘Jp(kR) . (34)

Equations (33) and (34) can be written as
 

H
(1)
p (kR) �Jp(k

p
nR)

kH
(1)0

p (kR) + ⌘H
(1)
p (kR) �k

p
nJ

0
p(k

p
nR)

!✓
ap

bp

◆

=

✓
�Jp(kR)

�kJ
0
p(kR)� ⌘Jp(kR)

◆
.

The solution ap (using Cramer’s rule) is given by

ap = �
k
p
nJp(kR)J 0

p(k
p
nR)� Jp(k

p
nR)

�
kJ

0
p(kR) + ⌘Jp(kR)

�

k
p
nH

(1)
p (kR)J 0

p(k
p
nR)� Jp(k

p
nR)

⇣
kH

(1)0
p (kR) + ⌘H

(1)
p (kR)

⌘ .

The far-field is expressed by

u
1(x̂, ŷ) =

4

i

1X

p=�1
ape

ip(✓��)
. (35)

Let Fk 2 C64⇥64 be the matrix containing the far-field data for 64 equidistant inci-
dent directions and 64 evaluation points for the disk with radius R with parameters,

⌘, n and given wave number k obtained by (35). We denote by F
(Nf )
k the far-field

data obtained through the boundary element collocation method, where Nf denotes
the number of faces in the method. Note that the number of collocation nodes is
3·Nf . The absolute error is defined by

"
(Nf )
k := kFk � F

(Nf )
k k2.

In Table 1, we show the absolute error of the far-field for 64 incident directions and
64 evaluation point, for a disk with radius R = 1 and the parameters ⌘ = 2+ i, and
n = 4 + i and the wave numbers k = 2, k = 4, and k = 6. As we can observe, we
obtain very accurate results using 120 collocation nodes.

Table 1. Absolute error of the far-field with 64 equidistant inci-
dent directions and 64 evaluation for the disk with R = 1 and the
parameters, ⌘ = 2 + i, and n = 4 + i for varying number of faces
(collocation nodes). The wave numbers are k = 2, k = 4, and
k = 6.

Nf "
(Nf )
2 "

(Nf )
4 "

(Nf )
6

10 0.82745 9.75548 74.46130
20 0.01051 0.41988 3.07890
40 0.00089 0.00556 0.03872
80 0.00011 0.00018 0.00108
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5.2. Numerical examples. For the numerical examples we will be using the dis-
cretized form of the operator F# which we can get from the discretized far-field
operator F i.e.

F =
h
u
1(x̂i, ŷj)

i64
i,j=1

.

We can discretize such that

x̂i = ŷi = (cos(✓i), sin(✓i)) where ✓i = 2⇡(i� 1)/64 for i = 1, . . . , 64.

We get then F which is a 64 ⇥ 64 complex valued matrix with 64 incident and
observation directions. An additional component needed is the vector �z which we
compute by

�z =
�
e�ikx̂1·z, . . . , e�ikx̂64·z

�>
where z 2 R2

.

In order to model experimental error in the data we add random noise to the
discretized far-field operator F such that

F� =
h
Fi,j(1 + �Ei,j)

i64
i,j=1

where kEk2 = 1.

Here, the matrix E 2 C64⇥64 is taken to have random entries and 0 < � ⌧ 1 is the
relative noise level added to the data. This gives that the relative error is given by
�.

Thus, numerically we can approximate the imaging function by

WLDSM(z) =
���Pr,✏(F

�
#)�z

���
4

L2(S)

where we use the 4–th power to increase the resolution. We need to numerically
be able to compute the approximation polynomial Pr,✏(t) in order to continue dis-
cretizing the imagining functional. Recall, that the matrix F�

# = |Re(F�)|+|Im(F�)|
where we have that

Re(F�) =
1

2

⇥
F� + (F�)⇤

⇤
and Im(F�) =

1

2i

⇥
F�

� (F�)⇤
⇤
.

Here, the absolute value of the matrices are define via its eigenvalue decomposition.
With the computed F�

# we compute the singular values denoted sj for j = 1, · · · , 64.
Thus, in order to use our Landweber direct sampling method, we need the construc-
tion of the polynomial Pr,✏(t) such that for all t 2 [0, s1] approximates the function
�r(t) defined in the previous section. In all our example, we pick � = 1/(2s1)
to insure that � 2 (0, 1/s1) for simplicity. For the experiments we construct the
polynomial such that

Pr,✏(t) =
MX

k=1

ckt
k such that Pr,✏(t`) =

1
p
t`

�
1� (1� �t`)

r
�
,

where M is the degree of the polynomial and t` 2 [0, s1] are the interpolation points.
We consider three di↵erent interpolation points over the interval [0, s1];

1. ` = 1, . . . , 100 and t` are equally spaced,
2. t` are the singular values of F# i.e. tj = sj ,
3. t` are the 32 Gaussian quadrature points on the interval [0, s1].

We compute the regularization parameter r 2 N where it is defined in (25). In
addition, one uses a spectral cut-o↵ to compute the coe�cients ck where the cut-o↵
parameter is fixed to be 10�8 in all the numerical examples.
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Once the approximating polynomial is computed, we can numerically approxi-
mate the new imaging function WLDSM(z). We will discuss the construction of the
polynomial Pr,✏(t) in terms of the degree and how the choice a↵ects the numer-
ical examples. As mentioned in Theorem (4.1), we will see in the examples the
decay as the sampling point z moves away from the scatterer/boundary using the
approximation polynomial applied to the solution operator. We consider the fol-
lowing three domains: disk with radius one, a kite, and a peanut. Their respective
parameterizations are given by

@D =
�
cos(✓), sin(✓)

�>
, @D =

�
� 1.5 sin(✓), cos(✓) + 0.65 cos(2✓)� 0.65

�>

and

@D = 2

r
sin(✓)2

2
+

cos(✓)2

10

�
cos(✓), sin(✓)

�>
.

Note, that for the kite and peanut shaped scatterers, the far-field data was com-
puted as described in the previous section using Nf = 128. In all of our examples,
we address the di↵erent ways of interpolating the polynomial Pr,✏(t) on the inter-
val [0, s1] and use its construction and representation to approximate the solution
operator. In all our figures, the dotted line is the boundary of the scatterer D.

Example 1. Recovering a peanut region: For the peanut shaped domain, we
assume that the refractive index is n = 4+i and boundary parameter ⌘ = 2+i. Here,
we will take k = 2⇡ as the wave number and we let � = 0.10 which corresponds
to the 10% random noise added to the data. In this first example, we address the
construction of the polynomial Pr,✏(t) with respect to the degree. The first image
has an interpolating polynomial of degree M = 4 and on the second image the
degree of the polynomial is 6.

Figure 1. Reconstruction using an interpolating polynomial of
degree M = 4 of peanut region by the Landweber direct sam-
pling method. Images left to right: reconstruction using equidis-
tant points, singular values, and Gaussian quadrature points.

In Figure (1) and (2), we see that both images are very similar and both give a
good approximation of the scatterer. We tried many degrees for the interpolating
polynomial but we chose to present degree 4 and 6. With any degree, the only
change we see is that the values at the boundary are higher. We can conclude that
using any degree for the interpolating polynomial will be su�cient and enough to
approximate the solution operator. Thus, without loss of generality for the rest of
the numerical examples we assume that the degree of the polynomial can be taken
to be M = 4.

Example 2. Recovering a peanut region with 20% noise: For this recon-
struction, we take the same values for the physical parameters as example 1. The
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Figure 2. Reconstruction using an interpolating polynomial of
degree M = 6 of peanut region by the Landweber direct sam-
pling method. Images left to right: reconstruction using equidis-
tant points, singular values, and Gaussian quadrature points.

di↵erence here is that we fix the degree of the interpolating polynomial to be M = 4,
we do all the interpolating methods, and lastly we add 20% random noise to the
data.

Figure 3. Reconstruction using an interpolating polynomial of
degree M = 4 of peanut region by the Landweber direct sampling
method with 20% noise. Images left to right: reconstruction using
equidistant points, singular values, and Gaussian quadrature
points.

In Figure (3), we see that with even more random noise added, the reconstruction
only changes with respect to the values at the boundary in comparison to Figure
(1).

Example 3. Recovering a kite region: For this numerical experiment, we have
fixed the degree of the approximation polynomial to be M = 4, the refractive index
to be n = 4+ i, and boundary parameter ⌘ = 2+ i. Here, we will take k = 6 as the
wave number and � = 0.10 which corresponds to the 10% random noise added to
the data.

In the next example, we compare (4) with the same reconstruction but using a
noise level of 20% and the wave number k = 2⇡.

In Figure (4) and (5), both reconstructions are very similar. The change is based
on the values at the boundary and how big they are. However, even with di↵erent
noise levels we still capture most of the scatterers. For the last two reconstructions,
we will analyze the unit circle and address a change of physical parameters to see
how our indicator function performs when we modify these.

Example 4. Recovering a circle region: For this numerical experiment, we
have fixed the degree of the approximation polynomial to be M = 4, the refractive
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Figure 4. Reconstruction using an interpolating polynomial of
degree M = 4 of kite scatterer by the Landweber direct sampling
method with 10% noise. Images left to right: reconstruction using
equidistant points, singular values, and Gaussian quadrature
points.

Figure 5. Reconstruction using an interpolating polynomial of
degree M = 4 of kite scatterer by the Landweber direct sampling
method with 20% noise. Images left to right: reconstruction using
equidistant points, singular values, and Gaussian quadrature
points.

index to be n = 3, and boundary parameter ⌘ = 6+ 4i. Here, we will take k = 4 as
the wave number and � = 0.15 which corresponds to the 15% random noise added
to the data.

Figure 6. Reconstruction using an interpolating polynomial of de-
gree M = 4 of circle scatterer by the Landweber iteration method
with 15% noise. Images left to right: reconstruction using equidis-
tant points, singular values, and Gaussian quadrature points.

For this last example, we change the physical parameters to be n = 5 and ⌘ =
2.5 + i and we keep the wave number and noise the same.
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Figure 7. Reconstruction using an interpolating polynomial of de-
gree M = 4 of circle scatterer by the Landweber iteration method
with 15% noise. Images left to right: reconstruction using equidis-
tant points, singular values, and Gaussian quadrature points.

We see that in both images, (6) and (7) the location of the scatterers are known.
Although, changing the physical parameters gives us a better reconstruction in the
second image, we still can fully reconstruct the boundary of the scatterer in the
first example for the circle. In all our numerical tests, we saw no clear di↵erence
in reconstruction for the three method types of interpolation points. Therefore, we
think that each method will work in practice but it would theoretically better to use
the Gaussian quadrature points. In conclusion, our indicator function does perform
well in terms of determining the location, the shape, and the size of the scatterer
when varying either the noise level, the physical parameters, or the shape of the
scatter.

6. Conclusion. In this study, we investigated a novel direct sampling method
linked to the factorization method. This generalizes the work in [14] to the case when
the scatterer has complex-valued coe�cients i.e. F may not be a diagonalizable
operator. To achieve this, we developed a factorization of the far-field operator and
then analyzed the operator to derive the new imaging function. We have derived the
resolution analysis as well as the stability of the proposed reconstruction algorithm.
A further extension to the work in [14] is the discrepancy principle used to determine
the regularization parameter given in equation (25). Also, a detailed numerical
study is presented to show the stability and accuracy of the method. We note that,
the analysis presented here can be extended to the near-field operator similar to
[11]. There are further questions to be explored for this scattering problem, such
as: does the far-field data uniquely determine the coe�cients as well as studying
direct sampling methods for the case with two boundary parameters(see for e.g.
[4, 7]).
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