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A B S T R A C T   

Ecological niche models (ENMs) can forecast species’ potential range shifts by transferring a model to a future 
climatic scenario. However, this approximation does not identify whether range shifts have occurred in species’ 
distributional limits in the last several decades. Given ongoing anthropogenic climate change, changes in 
distributional limits are expected to occur (poleward and upslope for several montane species). Here, I use a 
climatic time series to predict potential changes in distributional limits in response to climate change over the 
last four decades, using the Mexican small-eared shrew (Cryptotis mexicanus), a montane cloud-forest species, as 
an example. I transferred the ENM (tuned to optimize complexity) to a series of thirty-year bioclimatic periods 
between 1979 and 2019 created with monthly precipitation and temperature data. I detected trends in suitability 
and bioclimatic variables using a Mann-Kendall test and identified which variables could be driving the suit
ability changes in distributional limits. The detected extent and direction of suitability trends do not suggest the 
uniform pole-ward or upslope shifts expected under warming conditions. Comparisons between suitability and 
variable trends suggest that precipitation, not temperature, plays a stronger role in explaining changes in climatic 
suitability for C. mexicanus. Where precipitation decreased, there was suitability loss, while in areas where 
precipitation increased, suitability gain was observed. These analyses illustrate how incorporating time-series 
climatic data into ENMs can aid in understanding if species are already responding to changes in climate. 
Here, the potential response of C. mexicanus to climate change varies across its distribution and therefore the 
species’ range shifts may not necessarily follow expected general patterns. These findings should be verified with 
field data. More generally, using the valuable climatic information of the last several decades should be incor
porated into studies that determine potential range shifts under recent or future climatic conditions.   

1. Introduction 

Although climate change is one of the main factors affecting biodi
versity worldwide (Bellard et al., 2012; IPBES, 2019; Thomas et al., 
2004; Urban, 2015), the exact dynamics of possible extinctions and 
distributional shifts of species are still unclear (Román-Palacios and 
Wiens, 2020). Changes in abundance or distributional limits (also 
known as range shifts) are being detected for species around the globe in 
response to ongoing climate change (e.g., Boggs, 2016; Huang et al., 
2017; Iknayan and Beissinger, 2018; Rowe et al., 2015). Ecological 
niche models (ENMs) are commonly used to estimate these range shifts 
in response to climate change (Anderson, 2013; Elith et al., 2010). These 
models associate multiple climatic and environmental variables (e.g., 
temperature, precipitation, land cover, topography) with species 

occurrences to predict suitable areas where a species may occur 
(Peterson, 2001). The standard approach to forecast range shifts is to fit 
an ENM in the present, transfer it to the future, and compare predictions 
to estimate loss and gain in the areas suitable for a species (Elith et al., 
2010). Although the comparison between current and forecasted dis
tributions can predict potential range shifts, incorporating climatic data 
from the last several decades into ENMs allows researchers to under
stand if a species may be already reconfiguring their geographic range 
(Iknayan and Beissinger, 2018; Rapacciuolo et al., 2014; Rowe et al., 
2015; Smith et al., 2019; Tingley et al., 2012; VanDerWal et al., 2013). 

One specific caveat of ENMs is the common practice of using a single 
baseline of environmental values based on the average of several de
cades of short-term atmospheric conditions as the sole representation of 
the modern climate (Fick and Hijmans, 2017; Hijmans et al., 2005; 
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Karger et al., 2017). The use of these average values hides the interan
nual variability of environmental variables and their trends over the last 
several decades, such as global temperature rise and changes in pre
cipitation patterns. When incorporated into ENMs, these values can 
result in inaccurate estimations of extinction risk and ineffective con
servation plans (Gardner et al., 2021; Perez-Navarro et al., 2021; Reside 
et al., 2010). Including climate extremes (i.e., the frequency of short- 
term extreme weather events such as heatwaves and droughts) has 
improved model performance, leading to better range shift forecasting 
(Germain and Lutz, 2020; Stewart et al., 2021). Despite this, the practice 
does not provide insights into whether species are already responding to 
climate change. Additionally, climate does not affect animal and plant 
distributions uniformly across their entire geographic ranges (Beever 
et al., 2016; Rowe et al., 2015; Smith et al., 2019; Tingley et al., 2012). 
For instance, changes in environmentally marginal areas, which usually 
correspond to the geographical distributional limits of the species (Pir
onon et al., 2017), could lead to the emergence of newly suitable areas 
or the disappearance of areas (that become unsuitable). Understanding 
if species are experiencing heterogeneous climate-driven changes in 
suitability across their geographic range can provide better insights into 
regional population dynamics (Billman et al., 2021; Brodie et al., 2021; 
Porzig et al., 2014; Smith et al., 2019), enable monitoring of changes in 
species’ distributions (Arenas-Castro and Sillero, 2021), improve 
decision-making for species conservation (Prieto-Torres et al., 2016; 
Smith et al., 2019), and aid in the management of invasive species (Low 
et al., 2020). 

To recognize if species are responding to climate change in the last 
several decades, it is necessary to incorporate spatial and temporal 
variations in climate into the modeling framework (e.g., Arenas-Castro 
and Sillero, 2021; Bellard et al., 2012; Crossley et al., 2021; Smith et al., 
2019). One approach is to build time series of derived environmental 
variables using monthly climatic data over the last several decades (e.g., 
WorldClim, Fick and Hijmans, 2017; Climatic Research Unit [CRU], 
Harris et al., 2020; European Center Atmospheric Reanalysis [ERA], 
Hersbach et al., 2020). Precipitation and temperature data are 
commonly available as consecutive monthly means in raster format. 
Using these monthly data to create a sequence of temporal variables 
(also known as a time series) can provide insight into how species dis
tributions may already be impacted by climate change over the last 
several decades. Transferring ENMs made based on derived environ
mental variables allows for tracking changes in habitat suitability (both 
gain and loss) and provides valuable insights into potential shifts in 
distributional limits. Importantly, this can be achieved without the need 
to transfer models to future climatic scenarios. 

Pole-ward and elevational upslope and downslope range shifts are 
the most commonly documented responses to climate change for both 
temperate (Lenoir and Svenning, 2015) and tropical montane species 
(Fadrique et al., 2018; Freeman et al., 2018; Morueta-Holme et al., 
2015). While many studies tend to incorporate temperature rise as the 
main factor to explain distributional changes, more studies are begin
ning to consider other environmental variables as responsible for range 
shifts, such as evapotranspiration (Iknayan and Beissinger, 2018), vapor 
pressure deficit (Johnston et al., 2019; Johnston et al., 2021), water 
balance (Beever et al., 2016), precipitation (Iknayan and Beissinger, 
2018; McCain and Colwell, 2011), and its interaction with temperature 
(Rapacciuolo et al., 2014; Riddell et al., 2019; Rowe et al., 2015; Van
DerWal et al., 2013). Range shifts in montane species are expected to be 
more evident as the temperature rise, pushing their distributional limits 
to the mountaintop (Guralnick, 2007; Rowe et al., 2010). Changes in 
precipitation are more heterogeneous in the landscape than temperature 
(McCain and Colwell, 2011; Rowe et al., 2015), so species’ geographic 
ranges are expected to shift towards more mesic regions if the areas 
originally occupied become arid over time, or towards drier areas when 
precipitation exceeds the ideal conditions for the species. 

A montane mammal from eastern Mexico, the Mexican small-eared 
shrew (Soricidae, Cryptotis mexicanus), is an ideal model for exploring 

potential changes in climatic suitability because it is a cloud-forest 
specialist, and humidity and temperature constrain its distribution 
(Guevara et al., 2015; Guevara et al., 2018). Using precipitation and 
temperature in shrew ENMs has provided useful distribution models in 
the present and the late Pleistocene (Guevara, 2020; Guevara et al., 
2018). Multiple studies indicate that Mexican cloud forest is projected to 
undergo an upward shift and a progressive loss of favorable climatic 
conditions at lower elevations (Ponce-Reyes et al., 2012; Ponce-Reyes 
et al., 2013; Rojas-Soto et al., 2012). A recent study of the historical 
change (1910–2009) of the climate in Mexico indicated that the 
biogeographical provinces where C. mexicanus is found experienced an 
increase in temperature and decrease in precipitation since 1970 
(Cuervo-Robayo et al., 2020). Therefore, it is expected that the distri
butional limits of C. mexicanus would exhibit evidence of suitability loss 
at lower elevations and gain at upper elevations in response to these 
changes in temperature and precipitation in the last several decades. 
However, the rate and the extent of the shrew’s actual shift in distri
bution are contingent on additional factors, such as the shrew’s dispersal 
capabilities and/or the presence of cloud forest vegetation. 

By transferring ENMs to a time series of derived climatic data over 
the last several decades (1979–2019), this study aimed to i) determine 
areas in which climatic suitability has been changing in the climatic 
history of the last several decades and ii) differentiate the direction of 
these changes (i.e., gain or loss of suitability) along distributional limits. 
In addition, iii) I aimed to determine if the suitability for C. mexicanus 
has uniformly changed throughout its range. Finally, iv) I identified 
which variables could be driving possible distributional limit changes by 
examining if trends in variables and suitability are similar. 

2. Methods 

2.1. Input data 

2.1.1. Occurrence data 
Records of C. mexicanus were obtained from biological collections 

with taxonomy confirmed by morphology (Sánchez-Cordero and Gue
vara, 2016). Occurrences collected between January 1981 and 
December 2010 were used in model training to match the temporal 
range of the environmental variables. To reduce the spatial sampling 
bias in the records, which can impact model performance and pre
dictions (Boria et al., 2014), I performed a spatial thinning of 5 km using 
the spThin package (Aiello-Lammens et al., 2015) in R v4.1.0 (R Core 
Team, 2021). The thinning process selected 33 records for ENM fitting 
(Appendix A). 

2.1.2. Environmental variables 
Bioclimatic variables (O’Donnell and Ignizio, 2012) used in model 

fitting were based on 30-arcsec monthly precipitation and temperature 
data from CHELSA v2.1 (Karger et al., 2017; Karger et al., 2021). This 
study opted for a 30-arcsec resolution as it is not computationally 
intensive to handle and is readily available and storable, ensuring 
replicability and reproducibility. However, employing higher resolu
tions could enhance the spatial accuracies in representing montane en
vironments with complex topography, thereby potentially improving 
model performance than using a coarse resolution (Chauvier et al., 
2022). After downloading the monthly data available on mean precip
itation, and minimum and maximum temperature, I created a series of 
bioclimatic variables with a modified version of the “biovars” function 
(dismo R package; Hijmans et al., 2021), which incorporates the terra 
package (Hijmans, 2022) for faster processing. I used four bioclimatic 
variables, derived from monthly temperature and precipitation, which 
have been successfully employed to obtain the potential distribution of 
C. mexicanus, as these environmental factors are more likely to restrict 
the distribution of the species (Guevara et al., 2018): the maximum 
temperature of the warmest month (Bio05; C◦ × 10), the minimum 
temperature of the coldest month (Bio06; C◦ × 10), precipitation of 
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wettest month (Bio13; mm), and precipitation of driest month (Bio14; 
mm). 

I used a commonly used baseline of a 30-year period (1981–2010) for 
model building and evaluation (step 2 in Fig. 1). The area for model 
fitting should delimit the accessible space for the species by limiting 
potential geographic barriers and representing the available environ
ment (Anderson and Raza, 2010; Barve et al., 2011). The calibration 
area represented a buffer of 0.5 degrees around thinned localities that 
incorporated all background data (123,157 points) to avoid artificial 
truncation in the model fitting (Guevara et al., 2018). For the suitability 
trend analysis (see section 2.3 below), I transferred the model to a time 
series of bioclimatic variables (step 3 in Fig. 1). Each set of this time 
series summarized 30 years of monthly data. I built these sets by using a 
moving average window of 30 years by advancing by one month each 
time (step 1 in Fig. 1), covering the period from February 1979 to June 
2019. As a result, I obtained a time series of 126 sets of bioclimatic 
variables. 

2.2. Model fitting, assessment, and prediction 

I fitted models using the maximum entropy algorithm, Maxent v3.4.4 
(Phillips et al., 2017), using ENMeval v2 (Kass et al., 2021). I divided the 
occurrences and background data into four bins for cross-validation 
using a latitudinal block partition. I performed model tuning using 50 
combinations of feature classes (Linear [L], Quadratic [Q], Hinge [H], 
Product [P]; combinations: L, LQ, H, LQH, LQHP) and regularization 
multipliers (a sequence between 0.5 and 5 by increments of 0.5). Here, 
model selection relies on assessing several validation metrics and the 
ecological realism of the predictions in geographic space. The Akaike 
Information Criterion corrected for small samples (AICc) is commonly 
used as the only metric for model selection even though it does not 
differentiate between training and validation data (Kass et al., 2021; 
Muscarella et al., 2014), and it does not provide any assessment for 
model transferability (Velasco and González-Salazar, 2019). However, 
AICc is still helpful in assessing which combinations of feature classes 
and regularization multipliers best balance model complexity and pre
dictability (Warren and Seifert, 2011). First, I selected the ten combi
nations that led to models with the lowest AICc values. Then, as a second 

step in model selection, I used the average validation omission rate 
based on the lowest 10th percentile of training omission rate (OR10 
threshold). This metric makes model predictions less sensitive to 
including extreme occurrences (Radosavljevic and Anderson, 2014). 
Third, I used two threshold-independent validation metrics, average 
Area Under the Curve (AUC) and Continuous Boyce index (Hirzel et al., 
2006), to inform regarding performance. Finally, as C. mexicanus mainly 
occurs in cloud forests, I verified that the selected model did not predict 
areas of extreme conditions that correspond to low or high elevations 
where the cloud forest is not present (Guevara et al., 2018). 

2.3. Trends in climatic suitability 

I transferred the selected model to the series of bioclimatic variables, 
resulting in a series of climatic suitability predictions (n = 126). The 
OR10 threshold (determined for the final model using all thinned re
cords) defined the suitable or unsuitable areas for each set. To explore 
the changes in suitability over time, I computed the area predicted as 
suitable for each period using the “expanse” function (terra package; 
Hijmans, 2022). Although climate change should affect the entire dis
tribution of the species, the first evidence of change in geography is 
expected to occur in environmentally marginal areas, which mainly 
correspond to the distributional limits of the species. I defined these 
areas based on changes in the binary estimates of suitability (i.e., areas 
intermittently predicted as suitable or unsuitable) across periods. 
Following this criterion, I classified the cells in the study area as 
consistently suitable when cells were always suitable for all 126 sets 
(suitability consistently above the OR10 threshold), inconsistently 
suitable cells when they corresponded to at least one switch in suitability 
among periods (i.e., areas of potential ongoing range shift), and 
consistently unsuitable when cells were always deemed unsuitable. 

Next, I tested for trends in the climatic suitability of each inconsis
tently suitable cell based on the sequence of continuous values (n = 126) 
from the series of model transfers. I used a modified version of the Mann- 
Kendall test to control for temporal autocorrelation in the data series 
(Hamed and Rao, 1998). This non-parametric test detects monotonic 
trends in a time series by performing pairwise comparisons between 
earlier and later observations in the series (Mann, 1945). These multiple 
comparisons detected if the sequence decreased or increased over time. I 
performed the “Hamed and Rao” modification in each cell using the 
“mmkh” function (modifiedmk package; Patakamuri and O’Brien, 2021) 
with a confidence interval of 95%. The sign of the corrected Mann- 
Kendall Z-scores determined the loss (decreasing) or gain (increasing) 
in suitability over time in each cell showing a significant trend (p-value 
<0.05). As I performed monotonic trend tests for each inconsistently 
suitable cell, I controlled for multiple testing by adjusting p-values using 
the False Discovery Rate procedure (Benjamini and Hochberg, 1995) 
with the “p.adjust” function (stats package; R Core Team, 2021). 

2.4. Comparison against bioclimatic variables 

To explore which variables may explain the observed suitability 
trends along inferred distributional limits, I calculated the relationship 
between suitability trends and the variables of the model only in the 
inconsistent cells. I detected temporal trends for each variable using the 
same procedure for suitability trend detection (see above). Those results 
comprised a tag of each cell (levels: decreasing, no trend, increasing) for 
suitability and for the variable. Then, I obtained a 3 × 3 pairwise 
nominal contingency table for each bioclimatic variable to compute the 
association between trends of that variable and suitability trends (using 
the Goodman-Kruskal lambda coefficient (λGK; Goodman and Kruskal, 
1954). Coefficient values range between 0 and 1. A value close to zero 
signifies low association, while a higher association lies closer to 1. 
Additionally, to interpret the magnitude of change over time for each 
variable, I calculated the variables’ means and ranges (maximum minus 
minimum per cell) and overlapped them in response curve plots. 

Fig. 1. Flowchart representing the i) creation of the 30-year bioclimatic vari
able (BIOS) time series using 485 months (February 1979 to June 2019) of 
precipitation and temperature data; ii) model tuning using occurrences and 
bioclimatic data based on the 30-year climatic baseline between January 1981 
and December 2010 (dashed line) and iii) transfer of the selected model to each 
set of bioclimatic variables (n = 126), to obtain a series of model predictions 
(solid line). 
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3. Results 

3.1. Model fitting, assessment, and prediction 

Among the ten candidate models with the lowest AIC values 
(Table 1) and then using the lowest OR10, the model with linear and 
quadratic feature classes and a regularization multiplier of 0.5 (LQ_0.5) 
was selected as the optimal model for the potential distribution of 
C. mexicanus. All bioclimatic variables contributed to that model: the 
maximum temperature of the warmest month (bio05; 10.4%), the 
minimum temperature of the coldest month (bio06; 37.6%), the pre
cipitation of wettest month (bio13; 41.2%), and the precipitation of 
driest month (bio14; 10.8%). LQ_0.5 was the only model whose 
geographic prediction did not predict suitable areas in extremely high 
elevations where the species is not present (Fig. 2; i.e., Citlaltépetl and 
Nauhcampatépetl volcanoes). The highest suitability values were found 
mainly in the regions corresponding to the extent of cloud forest in the 
Sierra Madre Oriental and the highlands of northern Oaxaca. Addi
tionally, the geographic prediction identified several unsuitable valleys 
(e.g., Grande and Santo Domingo rivers in Oaxaca, Moctezuma River on 
the Hidalgo-Queretaro border), lower elevations with warmer temper
atures to the east, and areas with drier and colder conditions to the 
northwest of the prediction (i.e., the Mexican Plateau). 

3.2. Trends in climatic suitability 

The area predicted as suitable in the series of model transfers 
changed continuously over time (Fig. 3). The average suitable area for 
all periods was 25,661.27 km2 (sd = 317.74 km2, min = 25,013.28 km2, 
max = 26,302.87 km2). Of the areas that were suitable in any period, 
21.55% changed between suitable and unsuitable (inconsistently suit
able cells = 6234.23 km2) and 78.45% were consistently suitable 
throughout all periods (consistently suitable cells = 22,701.47 km2). 
The detected area of cells with a significant trend in suitability gain 
(2891.02 km2) corresponded to 46.37% of inconsistently suitable cells. 
The area of cells with a significant suitability loss over time (3069.39 
km2) corresponded to 49.23% of inconsistently suitable cells. 

The area and direction of suitability trends did not follow a general 
poleward transition or a change to higher elevations (Fig. 4). The suit
ability trend analysis detected a prominent pattern of suitability gain at 
the center of the distribution (on the western limits) at the same latitude 
as the highest mountain peaks (i.e., Citlaltépetl and Nauhcampatépetl). 
However, the same gain pattern was observed at lower elevations in 
similar latitudes on both eastern and western slopes. The area with the 
greatest suitability loss was in the north center of the species’ distribu
tion (mainly in the state of Hidalgo). Although I did not find a general 

poleward pattern for the distribution as a whole, there are indeed traces 
of suitability loss in the southern end of the range. 

3.3. Comparison against bioclimatic variables 

Comparisons between the suitability and bioclimatic variable trends 
suggest that precipitation of the wettest month (bio13) has a greater 
influence on the potential change in suitability than variables associated 
with temperature (Fig. 5 and Table 2). Bio13 trends presented the 
highest association with trends of suitability (λGK = 0.952), followed by 
the precipitation of the driest month (bio14; λGK = 0.576), the maximum 
temperature of the warmest month (bio05, λGK = 0.237), and the min
imum temperature of the coldest month (bio06, λGK = 0.049). The 
maximum temperature of the warmest month increased over time 
(22.4% of the inconsistently suitable cells; Fig. 5a). For the minimum 
temperature of the coldest month (Fig. 5b), inconsistently suitable cells 
only corresponded to temperature increases a 5.7%. In contrast, the 

Table 1 
Performance metrics based on cross-validation for the ten models with the 
lowest ΔAICc for Cryptotis mexicanus using bioclimatic variables which sum
marize climatic data between January 1981 and December 2010. The selected 
model appears in italics. Validation metrics: Omission rate using a 10th 
percentile training omission threshold (OR10), Area Under the Curve (AUC), and 
Continuous Boyce Index (CBI), corrected Akaike information criterion (AICc). 
Feature classes (FC; Hinge [H], Linear [L], Quadratic [Q], Product [P]). Regu
larization multiplier (RM). Columns are sorted by AICc.  

FC RM OR10 AUC CBI AICc 

H 2 0.118 0.879 0.446 715.944 
LQHP 2 0.118 0.879 0.469 715.945 
LQHP 1.5 0.118 0.878 0.456 717.332 
H 1.5 0.118 0.878 0.457 717.355 
H 1 0.118 0.875 0.542 718.701 
LQ 0.5 0.090 0.864 0.514 720.740 
LQHP 1 0.118 0.875 0.551 722.866 
LQ 1.5 0.122 0.853 0.541 724.456 
LQ 5 0.153 0.843 0.428 724.505 
LQ 2 0.122 0.852 0.503 724.669  

Fig. 2. Maxent model prediction (LQ_0.5) for Cryptotis mexicanus using the 
bioclimatic average between January 1981 and December 2010. Black points 
are the spatially thinned localities used for model fitting (n = 33). Lower 
suitability is represented in purple and higher suitability is represented in 
yellow. Cells below the 10th percentile training omission threshold (OR10) 
were removed. The black dashed polygon represents the area of model training, 
and no prediction was made to other areas. Sites predicted as unsuitable inside 
the red oval correspond to the inactive volcanoes Citlaltépetl (south) and 
Nauhcampatépetl (north). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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precipitation of the wettest month reported heterogeneous changes over 
time across the geographic space for almost all inconsistently suitable 
cells: 48.45% decreased and 46.28% increased (Fig. 5c). Finally, the 
decrease and increase in the precipitation of the driest month corre
sponded to 46.05% and 11.76% of the inconsistently suitable cells, 
respectively. Suitability loss was generally detected wherever precipi
tation decreased, while suitability gain was detected wherever precipi
tation increased. 

The change in bioclimatic variable values for all periods also sup
ported the impact of precipitation in changing climatic suitability over 
time (Fig. 5). In cells with inconsistent suitability, the average change in 
temperature across all cells was 0.19 ◦C for the maximum temperature of 
the warmest month (bio05) and 0.14 ◦C for the minimum temperature of 
the coldest month (bio06). For the precipitation of the wettest month 
(bio13), the minimum and maximum change were 4 and 114 mm, 
respectively (average = 44.18 mm). For the precipitation of the driest 
month (bio14), some pixels presented no change (0 mm), and a 
maximum change of 13 mm was observed (average = 4.53 mm). These 
changes can be visualized on the response curves, demonstrating how 
small changes in bioclimatic values can affect suitability. For example, 
an increase or decrease of 0.2 ◦C may represent a minor change in 
suitability, while a difference of 50 mm in precipitation of the wettest 
month could indicate a substantial change (as shown by the purple 
rectangles in the response curves in Fig. 5). It is important to note that 
the degree of change in suitability also depends on the position in the 
response curves (e.g., depending on their steepness in that portion) and 
the direction of the suitability (i.e., increasing or decreasing) as the 
degree of change may have less impact if it corresponds to the vertex of 
the response curve. 

4. Discussion 

This study examines where and how the climatic suitability along the 
range limits has changed in the last several decades by detecting suit
ability trends using a bioclimatic time series. The analyses of a series of 
model predictions for a tropical montane species, C. mexicanus, suggest 
that the climate suitable for this species is not following a clear unidi
rectional poleward or upward shift. Instead, the results indicate that 
changes in suitable areas are due to regional and local trends in climatic 
variables. While the results present a suitability gain in higher eleva
tions, a uniform suitability loss was not observed at lower altitudes. 
Additionally, the common temperature-centric view of poleward or high 
elevation shifts in response to anthropogenic climate change is inade
quate because it fails to consider changes in precipitation. This study 
found that changes in precipitation, instead of temperature, are the 

primary variable determining suitability trends at distributional limits, 
which are affected by regional conditions. 

4.1. Suitability trends of C. mexicanus do not follow a uniform shift 

The responses of some species to climate change vary across their 
distribution and do not necessarily follow expected patterns of range 
shifts (e.g., poleward or upslope shifts; Billman et al., 2021; Iknayan and 
Beissinger, 2018; Rowe et al., 2015, Rowe et al., 2010; Tagliari et al., 
2021; Zu et al., 2021). As environmental niches differ between species, 
the varying geographical responses to climatic changes depend mainly 
on the loss and gain of combinations of environmentally suitable con
ditions particular to a species (Wiens et al., 2009). Ongoing climate 
change has already impacted the distributional limits of species world
wide (Huang et al., 2017; Iknayan and Beissinger, 2018; Rapacciuolo 
et al., 2014; Rowe et al., 2015; Tingley et al., 2012; VanDerWal et al., 
2013; Zu et al., 2021), and the suitability trends detected for 
C. mexicanus over the last several decades suggest that this species is 
probably not an exception. The patterns observed along the distribu
tional limits using a time series of model predictions indicate that the 
suitability for this species does not follow a general range shift pattern (i. 
e., upslope or poleward). Instead, the results suggest regional patterns in 
suitability trends. Firstly, suitability trends are not showing an ongoing 
upslope shift as is generally expected for tropical montane species 
(Fadrique et al., 2018; Freeman et al., 2018; Morueta-Holme et al., 
2015) or what is forecasted for Mexican cloud forests (Jiménez-García 
and Peterson, 2019; Ponce-Reyes et al., 2012, 2013). Secondly, the 
shrew habitat’s suitability shows slight evidence of a potential poleward 
shift at the southern end of its distribution, but there is no indication of a 
potential suitability gain at the northern end, which would be expected 
for a poleward shift. 

4.2. Precipitation plays an important role in explaining suitability trends 

Suitability trends for C. mexicanus have a lower association with 
temperature than precipitation despite the fact that some environmen
tally marginal areas within its distribution have already experienced an 
increase of almost 0.2 ◦C in less than four decades. Here, by analyzing 
ENM predictions using climatic time series, this study revealed not only 
the low role of temperature but also the high importance of precipitation 
in explaining the suitability trends of C. mexicanus. Visual inspection of 
the response curves suggests that the variation in precipitation is driving 
changes in climatic suitability in the last several decades for this species. 
Studies using resurveys of historically surveyed sites have similarly 
demonstrated the importance of precipitation as one of the principal 
drivers of regional variation in range margin responses for several 
montane mammals and birds in the United States (Iknayan and Beis
singer, 2018; Rowe et al., 2010; Tingley et al., 2012). For instance, the 
decline in bird richness in the Mojave Desert in the U.S. has mainly been 
attributed to decreased precipitation (Iknayan and Beissinger, 2018). 
Furthermore, downslope elevation shifts for birds of the Sierra Nevada 
in the U.S. can be explained by their sensitivity to precipitation (Tingley 
et al., 2012). In the Great Basin in the U.S., increased precipitation is one 
of the factors preventing the potential expansion of xeric species in low 
elevations (Rowe et al., 2010). Moreover, the increase in precipitation 
contributed to reduced biomass and energy use in small mammals over 
the past century (Rowe et al., 2011) while also potentially mitigating 
species loss on a local scale based on their specific moisture re
quirements (Rowe and Terry, 2014). Additionally, the variability in 
environmental variables on a regional scale better explains the potential 
changes in the species’ geographic distribution (Beever et al., 2016; 
Iknayan and Beissinger, 2018; Rowe et al., 2010; Smith et al., 2019). 

4.3. Implications for the study of species responses to climate change 

Understanding if species are already responding to changes in 

Fig. 3. Predicted suitable area over time obtained by transferring the optimal 
model to multiple sets of 360 months of climatic information based on a moving 
average window (n = 126). 
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climate should be a first step in any study that also wants to determine 
potential range shifts under future climate conditions. Climate data 
corresponding to the last several decades contain valuable information 
that can help us understand how species may respond to climate change 
and help in conservation decision-making (Merow et al., 2022; Van
DerWal et al., 2013). Here, there is a greater loss of suitable areas along 
the distributional limits than the gain of the regions indicated as 

becoming suitable over time, signifying an overall loss in suitable areas. 
Nevertheless, if the shrew cannot disperse to and inhabit these newly 
suitable areas due to its vagility or other non-climatic factors (e.g., land- 
cover change), this could translate into an even higher species’ vulner
ability (McCain and Colwell, 2011; Rowe et al., 2010). Forecasting range 
shifts using future climatic simulation models, which are commonly 
employed, may help predict these shifts. However, the inherent 

Fig. 4. Suitability trends over the last four decades detected within the distribution of Cryptotis mexicanus based on transfers to a series of bioclimatic variables. a) 
Plot showing the changes in five examples of suitability series (each representing changes in one cell). b) Map showing the location of suitability trends, especially for 
inconsistently suitable cells. Black represents cells with suitable series for all periods (consistently suitable cells) for both figures. Grey (a) or transparent (b) cells 
were unsuitable for all periods (consistently unsuitable cells). Inconsistently suitable cells correspond to green (cells with detected suitability gain over time), yellow 
(cells with no significant temporal trend), and orange (cells with suitability loss over time). The blue dashed line in (a) represents the threshold used to denote 
suitable vs. unsuitable conditions. Colored dashed lines between figures connect suitability-cell series with their specific geographical locations. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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uncertainty within each of these climatic simulation models may lead to 
inaccurate range estimations (Guevara et al., 2019; Peterson et al., 
2018). 

Like any correlative approach, it may be wrong to assume that the 
actual geographic range of C. mexicanus followed these complex envi
ronmental changes of the area in the last several decades, and it is 
crucial to acknowledge that model outputs should be verified with field 
data. Other approaches could confirm if a species tracks the climate by 
using historical distribution data to model and comparing predictions 
against recent data (e.g., Beever et al., 2016; Pardi et al., 2020; Rowe 
et al., 2010). However, these studies rely on resurveys, which are usually 
limited to a regional or local scale, in which historical data are not 

always available, particularly for tropical species (Meyer et al., 2015). 
By using ENMs and their transfers to a bioclimatic time series, we are 
able to obtain potential ongoing range shifts for any species, even for the 
many areas where historical data are unavailable. Additionally, previous 
resurvey studies (e.g., Iknayan and Beissinger, 2018; Rowe et al., 2015; 
Tingley et al., 2012) have found that changes in distributional limits are 
heterogeneous across species ranges. This information should be 
considered for conservation planning (Smith et al., 2019), especially in 
actions covering entire species ranges. The use of suitability trends could 
provide valuable insights in such cases. 

Compared to the common practice of model transfer to the future (e. 
g., model fitting and transfer; Elith et al., 2010), trend analyses only 

Fig. 5. Temporal trends in inconsistently suitable 
cells and response curves of bioclimatic variables. a) 
Bio05, maximum temperature of the warmest month. 
b) Bio06, minimum temperature of the coldest month. 
c) Bio13, precipitation of wettest month. d) Bio14, 
precipitation of driest month. The grey colour palette 
represents the difference between the maximum and 
the minimum values per cell (greater differences are 
darker). Trends in variables are presented in blue 
(decreasing) and red (increasing). No detected sig
nificant trends are represented in yellow. Inset figures 
show model response curves (grey line). Purple bars 
represent the ranges centered by the mean value for 
all inconsistently predicted cells (vertical purple 
dashed line). (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   
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require creating bioclimatic variables for several periods and the sub
sequent analysis of the time series. Here, time series analysis allowed me 
to recognize complex and spatially heterogeneous trends in habitat 
suitability and predict a multifaceted response by C. mexicanus to 
climate change. In addition, the variability in predicted areas and suit
ability values across the series also revealed the model’s characteriza
tion of the decoupled temperature and precipitation changes over time. 
Variable changes are not usually considered in the standard practice in 
ENMs by assuming that no variation exists in the environmental data 
among times when occurrences were collected (Anderson, 2013). It is 
essential to note that the discrepancy between suitability trends iden
tified in this study vs. real distributional changes are inherent limitations 
of all ENMs. For instance, it is uncertain whether this shrew species will 
disperse to areas predicted to have increased suitability or if the cloud 
forest will undergo similar changes in these areas. Furthermore, ENMs 
and the trends derived from them generally do not incorporate other 
factors such as biotic interactions or human-induced land-use changes 
which could better explain distributions and their changes (Iknayan and 
Beissinger, 2018; Rowe et al., 2010). 

4.4. Further directions 

Future studies should test whether or not suitability trends are linked 
to changes in the distributional limits of the species’ ranges. In these 
areas, temporal variation in climate could cause changes in abundance 
that translate into the expansion, survival, or extinction of local pop
ulations (Beever et al., 2016; McCain and Colwell, 2011; Román-Pala
cios and Wiens, 2020). As other factors such as land-cover change can 
reshape species ranges (Caro et al., 2022; Iknayan and Beissinger, 2018), 
incorporating a series of non-climatic factors into the same temporal 
scale (e.g., remote sensing derived data) into the modeling framework 

(Arenas-Castro and Sillero, 2021) or postprocessing (Merow et al., 2022) 
could help overcome some of these limitations. Although the detection 
of climatic suitability trends in this study is based on a simple method to 
analyze time-series data (i.e., Mann-Kendall), other methods could 
quantify the pace of suitability change in response to the climate (e.g., 
Sen’s slope; Sen, 1968). Furthermore, statistical methods widely used in 
econometrics to analyze time series, such as the Autoregressive inte
grated moving average models (Box et al., 2015), could help forecast 
suitability changes and detect stationarity and seasonality of the series, 
providing new avenues to complement the quantification of species re
sponses to climate (e.g., bioclimatic velocity; Serra-Diaz et al., 2014). 

Using variables created with non-traditional averaging periods raises 
the question of whether widely used long-term averages (30 or more 
years) can capture the biological response to climate, depending on in
dividual species’ particular life-history traits. Incorporating temporal 
variation into model-fitting has improved model prediction and accu
racy when environmental variables are concordant with the actual 
climate that an organism experiences in its lifespan (Bateman et al., 
2012; Smith et al., 2019). Similarly, as the selection of a spatial reso
lution could affect niche model estimations in which a higher resolution 
is recommended (Chauvier et al., 2022), a selection of a temporal res
olution could also affect or change the predictions obtained in this study. 
For instance, model predictions improved by using shorter climatic pe
riods for highly mobile species (e.g., Australian birds; Reside et al., 
2010) and when the climate determines food sources availability (e.g., 
truffles for rat kangaroos; Bateman et al., 2012). Although these studies 
use shorter temporal resolution than traditional 30-year averages, it is 
still unclear if model predictions of C. mexicanus can improve by using a 
shorter resolution, especially for a species with low mobility. Temporal 
variation of environmental variables is even more relevant in environ
mentally marginal conditions where populations could be more sensi
tive to climate change (Perez-Navarro et al., 2021). Further directions of 
using niche modeling to estimate species responses to climate change 
and its applications in conservation decision-making and invasive spe
cies management should consider how environmental variables change 
through time and the relevance of using realistic average terms that 
consider the species’ biology instead of 30-year average periods. 
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Table 2 
Association among temporal trends in bioclimatic variables and suitability 
trends in inconsistently suitable cells. The counts in each cell of the table were 
converted into percentages. Results represent the concordance between the 
monotypic trends for each variable (levels: decreasing, no trend, increasing) 
against suitability trends (levels: gain, no trend, loss).  

Suitability trend Trend in maximum temperature of the warmest month (bio05) 

Decreasing No trend Increasing 

Gain 0.00 29.76 16.57 
No trend 0.00 3.09 1.31 
Loss 0.30 44.46 4.52   

Suitability trend Trend in minimum temperature of the coldest month (bio06) 

Decreasing No trend Increasing 

Gain 0.01 42.40 3.92 
No trend 0.00 3.76 0.63 
Loss 0.00 48.13 1.15   

Suitability trend Trend in precipitation of wettest month (bio13) 

Decreasing No trend Increasing 

Gain 0.00 0.65 45.68 
No trend 0.18 3.63 0.58 
Loss 48.27 1.00 0.01   

Suitability trend Trend in precipitation of driest month (bio14) 

Decreasing No trend Increasing 

Gain 6.13 31.74 8.46 
No trend 1.63 2.53 0.23 
Loss 38.29 7.92 3.06  
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