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ABSTRACT

Ecological niche models (ENMs) can forecast species’ potential range shifts by transferring a model to a future
climatic scenario. However, this approximation does not identify whether range shifts have occurred in species’
distributional limits in the last several decades. Given ongoing anthropogenic climate change, changes in
distributional limits are expected to occur (poleward and upslope for several montane species). Here, I use a
climatic time series to predict potential changes in distributional limits in response to climate change over the
last four decades, using the Mexican small-eared shrew (Cryptotis mexicanus), a montane cloud-forest species, as
an example. I transferred the ENM (tuned to optimize complexity) to a series of thirty-year bioclimatic periods
between 1979 and 2019 created with monthly precipitation and temperature data. I detected trends in suitability
and bioclimatic variables using a Mann-Kendall test and identified which variables could be driving the suit-
ability changes in distributional limits. The detected extent and direction of suitability trends do not suggest the
uniform pole-ward or upslope shifts expected under warming conditions. Comparisons between suitability and
variable trends suggest that precipitation, not temperature, plays a stronger role in explaining changes in climatic
suitability for C. mexicanus. Where precipitation decreased, there was suitability loss, while in areas where
precipitation increased, suitability gain was observed. These analyses illustrate how incorporating time-series
climatic data into ENMs can aid in understanding if species are already responding to changes in climate.
Here, the potential response of C. mexicanus to climate change varies across its distribution and therefore the
species’ range shifts may not necessarily follow expected general patterns. These findings should be verified with
field data. More generally, using the valuable climatic information of the last several decades should be incor-
porated into studies that determine potential range shifts under recent or future climatic conditions.

1. Introduction

occurrences to predict suitable areas where a species may occur
(Peterson, 2001). The standard approach to forecast range shifts is to fit

Although climate change is one of the main factors affecting biodi-
versity worldwide (Bellard et al., 2012; IPBES, 2019; Thomas et al.,
2004; Urban, 2015), the exact dynamics of possible extinctions and
distributional shifts of species are still unclear (Roman-Palacios and
Wiens, 2020). Changes in abundance or distributional limits (also
known as range shifts) are being detected for species around the globe in
response to ongoing climate change (e.g., Boggs, 2016; Huang et al.,
2017; Tknayan and Beissinger, 2018; Rowe et al., 2015). Ecological
niche models (ENMs) are commonly used to estimate these range shifts
in response to climate change (Anderson, 2013; Elith et al., 2010). These
models associate multiple climatic and environmental variables (e.g.,
temperature, precipitation, land cover, topography) with species

an ENM in the present, transfer it to the future, and compare predictions
to estimate loss and gain in the areas suitable for a species (Elith et al.,
2010). Although the comparison between current and forecasted dis-
tributions can predict potential range shifts, incorporating climatic data
from the last several decades into ENMs allows researchers to under-
stand if a species may be already reconfiguring their geographic range
(Iknayan and Beissinger, 2018; Rapacciuolo et al., 2014; Rowe et al.,
2015; Smith et al., 2019; Tingley et al., 2012; VanDerWal et al., 2013).

One specific caveat of ENMs is the common practice of using a single
baseline of environmental values based on the average of several de-
cades of short-term atmospheric conditions as the sole representation of
the modern climate (Fick and Hijmans, 2017; Hijmans et al., 2005;
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Karger et al., 2017). The use of these average values hides the interan-
nual variability of environmental variables and their trends over the last
several decades, such as global temperature rise and changes in pre-
cipitation patterns. When incorporated into ENMs, these values can
result in inaccurate estimations of extinction risk and ineffective con-
servation plans (Gardner et al., 2021; Perez-Navarro et al., 2021; Reside
et al., 2010). Including climate extremes (i.e., the frequency of short-
term extreme weather events such as heatwaves and droughts) has
improved model performance, leading to better range shift forecasting
(Germain and Lutz, 2020; Stewart et al., 2021). Despite this, the practice
does not provide insights into whether species are already responding to
climate change. Additionally, climate does not affect animal and plant
distributions uniformly across their entire geographic ranges (Beever
et al., 2016; Rowe et al., 2015; Smith et al., 2019; Tingley et al., 2012).
For instance, changes in environmentally marginal areas, which usually
correspond to the geographical distributional limits of the species (Pir-
onon et al., 2017), could lead to the emergence of newly suitable areas
or the disappearance of areas (that become unsuitable). Understanding
if species are experiencing heterogeneous climate-driven changes in
suitability across their geographic range can provide better insights into
regional population dynamics (Billman et al., 2021; Brodie et al., 2021;
Porzig et al., 2014; Smith et al., 2019), enable monitoring of changes in
species’ distributions (Arenas-Castro and Sillero, 2021), improve
decision-making for species conservation (Prieto-Torres et al., 2016;
Smith et al., 2019), and aid in the management of invasive species (Low
et al., 2020).

To recognize if species are responding to climate change in the last
several decades, it is necessary to incorporate spatial and temporal
variations in climate into the modeling framework (e.g., Arenas-Castro
and Sillero, 2021; Bellard et al., 2012; Crossley et al., 2021; Smith et al.,
2019). One approach is to build time series of derived environmental
variables using monthly climatic data over the last several decades (e.g.,
WorldClim, Fick and Hijmans, 2017; Climatic Research Unit [CRU],
Harris et al., 2020; European Center Atmospheric Reanalysis [ERA],
Hersbach et al., 2020). Precipitation and temperature data are
commonly available as consecutive monthly means in raster format.
Using these monthly data to create a sequence of temporal variables
(also known as a time series) can provide insight into how species dis-
tributions may already be impacted by climate change over the last
several decades. Transferring ENMs made based on derived environ-
mental variables allows for tracking changes in habitat suitability (both
gain and loss) and provides valuable insights into potential shifts in
distributional limits. Importantly, this can be achieved without the need
to transfer models to future climatic scenarios.

Pole-ward and elevational upslope and downslope range shifts are
the most commonly documented responses to climate change for both
temperate (Lenoir and Svenning, 2015) and tropical montane species
(Fadrique et al., 2018; Freeman et al., 2018; Morueta-Holme et al.,
2015). While many studies tend to incorporate temperature rise as the
main factor to explain distributional changes, more studies are begin-
ning to consider other environmental variables as responsible for range
shifts, such as evapotranspiration (Iknayan and Beissinger, 2018), vapor
pressure deficit (Johnston et al., 2019; Johnston et al., 2021), water
balance (Beever et al., 2016), precipitation (Iknayan and Beissinger,
2018; McCain and Colwell, 2011), and its interaction with temperature
(Rapacciuolo et al., 2014; Riddell et al., 2019; Rowe et al., 2015; Van-
DerWal et al., 2013). Range shifts in montane species are expected to be
more evident as the temperature rise, pushing their distributional limits
to the mountaintop (Guralnick, 2007; Rowe et al., 2010). Changes in
precipitation are more heterogeneous in the landscape than temperature
(McCain and Colwell, 2011; Rowe et al., 2015), so species’ geographic
ranges are expected to shift towards more mesic regions if the areas
originally occupied become arid over time, or towards drier areas when
precipitation exceeds the ideal conditions for the species.

A montane mammal from eastern Mexico, the Mexican small-eared
shrew (Soricidae, Cryptotis mexicanus), is an ideal model for exploring
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potential changes in climatic suitability because it is a cloud-forest
specialist, and humidity and temperature constrain its distribution
(Guevara et al., 2015; Guevara et al., 2018). Using precipitation and
temperature in shrew ENMs has provided useful distribution models in
the present and the late Pleistocene (Guevara, 2020; Guevara et al.,
2018). Multiple studies indicate that Mexican cloud forest is projected to
undergo an upward shift and a progressive loss of favorable climatic
conditions at lower elevations (Ponce-Reyes et al., 2012; Ponce-Reyes
et al., 2013; Rojas-Soto et al., 2012). A recent study of the historical
change (1910-2009) of the climate in Mexico indicated that the
biogeographical provinces where C. mexicanus is found experienced an
increase in temperature and decrease in precipitation since 1970
(Cuervo-Robayo et al., 2020). Therefore, it is expected that the distri-
butional limits of C. mexicanus would exhibit evidence of suitability loss
at lower elevations and gain at upper elevations in response to these
changes in temperature and precipitation in the last several decades.
However, the rate and the extent of the shrew’s actual shift in distri-
bution are contingent on additional factors, such as the shrew’s dispersal
capabilities and/or the presence of cloud forest vegetation.

By transferring ENMs to a time series of derived climatic data over
the last several decades (1979-2019), this study aimed to i) determine
areas in which climatic suitability has been changing in the climatic
history of the last several decades and ii) differentiate the direction of
these changes (i.e., gain or loss of suitability) along distributional limits.
In addition, iii) I aimed to determine if the suitability for C. mexicanus
has uniformly changed throughout its range. Finally, iv) I identified
which variables could be driving possible distributional limit changes by
examining if trends in variables and suitability are similar.

2. Methods
2.1. Input data

2.1.1. Occurrence data

Records of C. mexicanus were obtained from biological collections
with taxonomy confirmed by morphology (Sanchez-Cordero and Gue-
vara, 2016). Occurrences collected between January 1981 and
December 2010 were used in model training to match the temporal
range of the environmental variables. To reduce the spatial sampling
bias in the records, which can impact model performance and pre-
dictions (Boria et al., 2014), I performed a spatial thinning of 5 km using
the spThin package (Aiello-Lammens et al., 2015) in R v4.1.0 (R Core
Team, 2021). The thinning process selected 33 records for ENM fitting
(Appendix A).

2.1.2. Environmental variables

Bioclimatic variables (O’Donnell and Ignizio, 2012) used in model
fitting were based on 30-arcsec monthly precipitation and temperature
data from CHELSA v2.1 (Karger et al., 2017; Karger et al., 2021). This
study opted for a 30-arcsec resolution as it is not computationally
intensive to handle and is readily available and storable, ensuring
replicability and reproducibility. However, employing higher resolu-
tions could enhance the spatial accuracies in representing montane en-
vironments with complex topography, thereby potentially improving
model performance than using a coarse resolution (Chauvier et al.,
2022). After downloading the monthly data available on mean precip-
itation, and minimum and maximum temperature, I created a series of
bioclimatic variables with a modified version of the “biovars” function
(dismo R package; Hijmans et al., 2021), which incorporates the terra
package (Hijmans, 2022) for faster processing. I used four bioclimatic
variables, derived from monthly temperature and precipitation, which
have been successfully employed to obtain the potential distribution of
C. mexicanus, as these environmental factors are more likely to restrict
the distribution of the species (Guevara et al., 2018): the maximum
temperature of the warmest month (Bio05; C° x 10), the minimum
temperature of the coldest month (Bio06; C° x 10), precipitation of
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wettest month (Biol3; mm), and precipitation of driest month (Biol4;
mm).

I used a commonly used baseline of a 30-year period (1981-2010) for
model building and evaluation (step 2 in Fig. 1). The area for model
fitting should delimit the accessible space for the species by limiting
potential geographic barriers and representing the available environ-
ment (Anderson and Raza, 2010; Barve et al., 2011). The calibration
area represented a buffer of 0.5 degrees around thinned localities that
incorporated all background data (123,157 points) to avoid artificial
truncation in the model fitting (Guevara et al., 2018). For the suitability
trend analysis (see section 2.3 below), I transferred the model to a time
series of bioclimatic variables (step 3 in Fig. 1). Each set of this time
series summarized 30 years of monthly data. I built these sets by using a
moving average window of 30 years by advancing by one month each
time (step 1 in Fig. 1), covering the period from February 1979 to June
2019. As a result, I obtained a time series of 126 sets of bioclimatic
variables.

2.2. Model fitting, assessment, and prediction

I fitted models using the maximum entropy algorithm, Maxent v3.4.4
(Phillips et al., 2017), using ENMeval v2 (Kass et al., 2021). I divided the
occurrences and background data into four bins for cross-validation
using a latitudinal block partition. I performed model tuning using 50
combinations of feature classes (Linear [L], Quadratic [Q], Hinge [H],
Product [P]; combinations: L, LQ, H, LQH, LQHP) and regularization
multipliers (a sequence between 0.5 and 5 by increments of 0.5). Here,
model selection relies on assessing several validation metrics and the
ecological realism of the predictions in geographic space. The Akaike
Information Criterion corrected for small samples (AICc) is commonly
used as the only metric for model selection even though it does not
differentiate between training and validation data (Kass et al., 2021;
Muscarella et al., 2014), and it does not provide any assessment for
model transferability (Velasco and Gonzalez-Salazar, 2019). However,
AlCc is still helpful in assessing which combinations of feature classes
and regularization multipliers best balance model complexity and pre-
dictability (Warren and Seifert, 2011). First, I selected the ten combi-
nations that led to models with the lowest AICc values. Then, as a second

T BIOS

Dec 2010

i) Model

i) Creation of tuning

bioclimatic
variable series

Chelsa v2.1 BIOS BIOS i Model
485 months of Feb 1979 - Jul 1989 - | 1) <;
precipitation and Jan 2009 Jun 2019 | lransfers
temperature

Feb 1979 - Jun 2019

Fig. 1. Flowchart representing the i) creation of the 30-year bioclimatic vari-
able (BIOS) time series using 485 months (February 1979 to June 2019) of
precipitation and temperature data; i) model tuning using occurrences and
bioclimatic data based on the 30-year climatic baseline between January 1981
and December 2010 (dashed line) and iii) transfer of the selected model to each
set of bioclimatic variables (n = 126), to obtain a series of model predictions
(solid line).
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step in model selection, I used the average validation omission rate
based on the lowest 10th percentile of training omission rate (OR10
threshold). This metric makes model predictions less sensitive to
including extreme occurrences (Radosavljevic and Anderson, 2014).
Third, I used two threshold-independent validation metrics, average
Area Under the Curve (AUC) and Continuous Boyce index (Hirzel et al.,
2006), to inform regarding performance. Finally, as C. mexicanus mainly
occurs in cloud forests, I verified that the selected model did not predict
areas of extreme conditions that correspond to low or high elevations
where the cloud forest is not present (Guevara et al., 2018).

2.3. Trends in climatic suitability

I transferred the selected model to the series of bioclimatic variables,
resulting in a series of climatic suitability predictions (n = 126). The
OR10 threshold (determined for the final model using all thinned re-
cords) defined the suitable or unsuitable areas for each set. To explore
the changes in suitability over time, I computed the area predicted as
suitable for each period using the “expanse” function (terra package;
Hijmans, 2022). Although climate change should affect the entire dis-
tribution of the species, the first evidence of change in geography is
expected to occur in environmentally marginal areas, which mainly
correspond to the distributional limits of the species. I defined these
areas based on changes in the binary estimates of suitability (i.e., areas
intermittently predicted as suitable or unsuitable) across periods.
Following this criterion, I classified the cells in the study area as
consistently suitable when cells were always suitable for all 126 sets
(suitability consistently above the OR10 threshold), inconsistently
suitable cells when they corresponded to at least one switch in suitability
among periods (i.e., areas of potential ongoing range shift), and
consistently unsuitable when cells were always deemed unsuitable.

Next, I tested for trends in the climatic suitability of each inconsis-
tently suitable cell based on the sequence of continuous values (n = 126)
from the series of model transfers. I used a modified version of the Mann-
Kendall test to control for temporal autocorrelation in the data series
(Hamed and Rao, 1998). This non-parametric test detects monotonic
trends in a time series by performing pairwise comparisons between
earlier and later observations in the series (Mann, 1945). These multiple
comparisons detected if the sequence decreased or increased over time. I
performed the “Hamed and Rao” modification in each cell using the
“mmkh” function (modifiedmk package; Patakamuri and O’Brien, 2021)
with a confidence interval of 95%. The sign of the corrected Mann-
Kendall Z-scores determined the loss (decreasing) or gain (increasing)
in suitability over time in each cell showing a significant trend (p-value
<0.05). As I performed monotonic trend tests for each inconsistently
suitable cell, I controlled for multiple testing by adjusting p-values using
the False Discovery Rate procedure (Benjamini and Hochberg, 1995)
with the “p.adjust” function (stats package; R Core Team, 2021).

2.4. Comparison against bioclimatic variables

To explore which variables may explain the observed suitability
trends along inferred distributional limits, I calculated the relationship
between suitability trends and the variables of the model only in the
inconsistent cells. I detected temporal trends for each variable using the
same procedure for suitability trend detection (see above). Those results
comprised a tag of each cell (levels: decreasing, no trend, increasing) for
suitability and for the variable. Then, I obtained a 3 x 3 pairwise
nominal contingency table for each bioclimatic variable to compute the
association between trends of that variable and suitability trends (using
the Goodman-Kruskal lambda coefficient (Agx; Goodman and Kruskal,
1954). Coefficient values range between 0 and 1. A value close to zero
signifies low association, while a higher association lies closer to 1.
Additionally, to interpret the magnitude of change over time for each
variable, I calculated the variables’ means and ranges (maximum minus
minimum per cell) and overlapped them in response curve plots.
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3. Results
3.1. Model fitting, assessment, and prediction

Among the ten candidate models with the lowest AIC values
(Table 1) and then using the lowest OR10, the model with linear and
quadratic feature classes and a regularization multiplier of 0.5 (LQ_0.5)
was selected as the optimal model for the potential distribution of
C. mexicanus. All bioclimatic variables contributed to that model: the
maximum temperature of the warmest month (bio05; 10.4%), the
minimum temperature of the coldest month (bio06; 37.6%), the pre-
cipitation of wettest month (bio13; 41.2%), and the precipitation of
driest month (biol4; 10.8%). LQ_0.5 was the only model whose
geographic prediction did not predict suitable areas in extremely high
elevations where the species is not present (Fig. 2; i.e., Citlaltépetl and
Nauhcampatépetl volcanoes). The highest suitability values were found
mainly in the regions corresponding to the extent of cloud forest in the
Sierra Madre Oriental and the highlands of northern Oaxaca. Addi-
tionally, the geographic prediction identified several unsuitable valleys
(e.g., Grande and Santo Domingo rivers in Oaxaca, Moctezuma River on
the Hidalgo-Queretaro border), lower elevations with warmer temper-
atures to the east, and areas with drier and colder conditions to the
northwest of the prediction (i.e., the Mexican Plateau).

3.2. Trends in climatic suitability

The area predicted as suitable in the series of model transfers
changed continuously over time (Fig. 3). The average suitable area for
all periods was 25,661.27 km? (sd = 317.74 km?, min = 25,013.28 km?,
max = 26,302.87 km?). Of the areas that were suitable in any period,
21.55% changed between suitable and unsuitable (inconsistently suit-
able cells = 6234.23 km?) and 78.45% were consistently suitable
throughout all periods (consistently suitable cells = 22,701.47 km?).
The detected area of cells with a significant trend in suitability gain
(2891.02 km?) corresponded to 46.37% of inconsistently suitable cells.
The area of cells with a significant suitability loss over time (3069.39
km?) corresponded to 49.23% of inconsistently suitable cells.

The area and direction of suitability trends did not follow a general
poleward transition or a change to higher elevations (Fig. 4). The suit-
ability trend analysis detected a prominent pattern of suitability gain at
the center of the distribution (on the western limits) at the same latitude
as the highest mountain peaks (i.e., Citlaltépetl and Nauhcampatépetl).
However, the same gain pattern was observed at lower elevations in
similar latitudes on both eastern and western slopes. The area with the
greatest suitability loss was in the north center of the species’ distribu-
tion (mainly in the state of Hidalgo). Although I did not find a general

Table 1

Performance metrics based on cross-validation for the ten models with the
lowest AAICc for Cryptotis mexicanus using bioclimatic variables which sum-
marize climatic data between January 1981 and December 2010. The selected
model appears in italics. Validation metrics: Omission rate using a 10th
percentile training omission threshold (OR10), Area Under the Curve (AUC), and
Continuous Boyce Index (CBI), corrected Akaike information criterion (AICc).
Feature classes (FC; Hinge [H], Linear [L], Quadratic [Q], Product [P]). Regu-
larization multiplier (RM). Columns are sorted by AICc.

FC RM OR10 AUC CBI AlCc

H 2 0.118 0.879 0.446 715.944
LQHP 2 0.118 0.879 0.469 715.945
LQHP 1.5 0.118 0.878 0.456 717.332
H 1.5 0.118 0.878 0.457 717.355
H 1 0.118 0.875 0.542 718.701
LQ 0.5 0.090 0.864 0.514 720.740
LQHP 1 0.118 0.875 0.551 722.866
LQ 1.5 0.122 0.853 0.541 724.456
LQ 5 0.153 0.843 0.428 724.505
LQ 2 0.122 0.852 0.503 724.669
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Fig. 2. Maxent model prediction (LQ_0.5) for Cryptotis mexicanus using the
bioclimatic average between January 1981 and December 2010. Black points
are the spatially thinned localities used for model fitting (n = 33). Lower
suitability is represented in purple and higher suitability is represented in
yellow. Cells below the 10th percentile training omission threshold (OR10)
were removed. The black dashed polygon represents the area of model training,
and no prediction was made to other areas. Sites predicted as unsuitable inside
the red oval correspond to the inactive volcanoes Citlaltépetl (south) and
Nauhcampatépetl (north). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

poleward pattern for the distribution as a whole, there are indeed traces
of suitability loss in the southern end of the range.

3.3. Comparison against bioclimatic variables

Comparisons between the suitability and bioclimatic variable trends
suggest that precipitation of the wettest month (biol3) has a greater
influence on the potential change in suitability than variables associated
with temperature (Fig. 5 and Table 2). Biol3 trends presented the
highest association with trends of suitability (Agx = 0.952), followed by
the precipitation of the driest month (bio14; Agx = 0.576), the maximum
temperature of the warmest month (bio05, Agx = 0.237), and the min-
imum temperature of the coldest month (bio06, Agx = 0.049). The
maximum temperature of the warmest month increased over time
(22.4% of the inconsistently suitable cells; Fig. 5a). For the minimum
temperature of the coldest month (Fig. 5b), inconsistently suitable cells
only corresponded to temperature increases a 5.7%. In contrast, the
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Fig. 3. Predicted suitable area over time obtained by transferring the optimal
model to multiple sets of 360 months of climatic information based on a moving
average window (n = 126).

precipitation of the wettest month reported heterogeneous changes over
time across the geographic space for almost all inconsistently suitable
cells: 48.45% decreased and 46.28% increased (Fig. 5c). Finally, the
decrease and increase in the precipitation of the driest month corre-
sponded to 46.05% and 11.76% of the inconsistently suitable cells,
respectively. Suitability loss was generally detected wherever precipi-
tation decreased, while suitability gain was detected wherever precipi-
tation increased.

The change in bioclimatic variable values for all periods also sup-
ported the impact of precipitation in changing climatic suitability over
time (Fig. 5). In cells with inconsistent suitability, the average change in
temperature across all cells was 0.19 °C for the maximum temperature of
the warmest month (bio05) and 0.14 °C for the minimum temperature of
the coldest month (bio06). For the precipitation of the wettest month
(bio13), the minimum and maximum change were 4 and 114 mm,
respectively (average = 44.18 mm). For the precipitation of the driest
month (biol4), some pixels presented no change (0 mm), and a
maximum change of 13 mm was observed (average = 4.53 mm). These
changes can be visualized on the response curves, demonstrating how
small changes in bioclimatic values can affect suitability. For example,
an increase or decrease of 0.2 °C may represent a minor change in
suitability, while a difference of 50 mm in precipitation of the wettest
month could indicate a substantial change (as shown by the purple
rectangles in the response curves in Fig. 5). It is important to note that
the degree of change in suitability also depends on the position in the
response curves (e.g., depending on their steepness in that portion) and
the direction of the suitability (i.e., increasing or decreasing) as the
degree of change may have less impact if it corresponds to the vertex of
the response curve.

4. Discussion

This study examines where and how the climatic suitability along the
range limits has changed in the last several decades by detecting suit-
ability trends using a bioclimatic time series. The analyses of a series of
model predictions for a tropical montane species, C. mexicanus, suggest
that the climate suitable for this species is not following a clear unidi-
rectional poleward or upward shift. Instead, the results indicate that
changes in suitable areas are due to regional and local trends in climatic
variables. While the results present a suitability gain in higher eleva-
tions, a uniform suitability loss was not observed at lower altitudes.
Additionally, the common temperature-centric view of poleward or high
elevation shifts in response to anthropogenic climate change is inade-
quate because it fails to consider changes in precipitation. This study
found that changes in precipitation, instead of temperature, are the
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primary variable determining suitability trends at distributional limits,
which are affected by regional conditions.

4.1. Suitability trends of C. mexicanus do not follow a uniform shift

The responses of some species to climate change vary across their
distribution and do not necessarily follow expected patterns of range
shifts (e.g., poleward or upslope shifts; Billman et al., 2021; Iknayan and
Beissinger, 2018; Rowe et al., 2015, Rowe et al., 2010; Tagliari et al.,
2021; Zu et al., 2021). As environmental niches differ between species,
the varying geographical responses to climatic changes depend mainly
on the loss and gain of combinations of environmentally suitable con-
ditions particular to a species (Wiens et al., 2009). Ongoing climate
change has already impacted the distributional limits of species world-
wide (Huang et al., 2017; Iknayan and Beissinger, 2018; Rapacciuolo
et al., 2014; Rowe et al., 2015; Tingley et al., 2012; VanDerWal et al.,
2013; Zu et al, 2021), and the suitability trends detected for
C. mexicanus over the last several decades suggest that this species is
probably not an exception. The patterns observed along the distribu-
tional limits using a time series of model predictions indicate that the
suitability for this species does not follow a general range shift pattern (i.
e., upslope or poleward). Instead, the results suggest regional patterns in
suitability trends. Firstly, suitability trends are not showing an ongoing
upslope shift as is generally expected for tropical montane species
(Fadrique et al., 2018; Freeman et al., 2018; Morueta-Holme et al.,
2015) or what is forecasted for Mexican cloud forests (Jiménez-Garcia
and Peterson, 2019; Ponce-Reyes et al., 2012, 2013). Secondly, the
shrew habitat’s suitability shows slight evidence of a potential poleward
shift at the southern end of its distribution, but there is no indication of a
potential suitability gain at the northern end, which would be expected
for a poleward shift.

4.2. Precipitation plays an important role in explaining suitability trends

Suitability trends for C. mexicanus have a lower association with
temperature than precipitation despite the fact that some environmen-
tally marginal areas within its distribution have already experienced an
increase of almost 0.2 °C in less than four decades. Here, by analyzing
ENM predictions using climatic time series, this study revealed not only
the low role of temperature but also the high importance of precipitation
in explaining the suitability trends of C. mexicanus. Visual inspection of
the response curves suggests that the variation in precipitation is driving
changes in climatic suitability in the last several decades for this species.
Studies using resurveys of historically surveyed sites have similarly
demonstrated the importance of precipitation as one of the principal
drivers of regional variation in range margin responses for several
montane mammals and birds in the United States (Iknayan and Beis-
singer, 2018; Rowe et al., 2010; Tingley et al., 2012). For instance, the
decline in bird richness in the Mojave Desert in the U.S. has mainly been
attributed to decreased precipitation (Iknayan and Beissinger, 2018).
Furthermore, downslope elevation shifts for birds of the Sierra Nevada
in the U.S. can be explained by their sensitivity to precipitation (Tingley
etal., 2012). In the Great Basin in the U.S., increased precipitation is one
of the factors preventing the potential expansion of xeric species in low
elevations (Rowe et al., 2010). Moreover, the increase in precipitation
contributed to reduced biomass and energy use in small mammals over
the past century (Rowe et al., 2011) while also potentially mitigating
species loss on a local scale based on their specific moisture re-
quirements (Rowe and Terry, 2014). Additionally, the variability in
environmental variables on a regional scale better explains the potential
changes in the species’ geographic distribution (Beever et al., 2016;
Iknayan and Beissinger, 2018; Rowe et al., 2010; Smith et al., 2019).

4.3. Implications for the study of species responses to climate change

Understanding if species are already responding to changes in
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Fig. 4. Suitability trends over the last four decades detected within the distribution of Cryptotis mexicanus based on transfers to a series of bioclimatic variables. a)
Plot showing the changes in five examples of suitability series (each representing changes in one cell). b) Map showing the location of suitability trends, especially for
inconsistently suitable cells. Black represents cells with suitable series for all periods (consistently suitable cells) for both figures. Grey (a) or transparent (b) cells
were unsuitable for all periods (consistently unsuitable cells). Inconsistently suitable cells correspond to green (cells with detected suitability gain over time), yellow
(cells with no significant temporal trend), and orange (cells with suitability loss over time). The blue dashed line in (a) represents the threshold used to denote
suitable vs. unsuitable conditions. Colored dashed lines between figures connect suitability-cell series with their specific geographical locations. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

climate should be a first step in any study that also wants to determine
potential range shifts under future climate conditions. Climate data
corresponding to the last several decades contain valuable information
that can help us understand how species may respond to climate change
and help in conservation decision-making (Merow et al., 2022; Van-
DerWal et al., 2013). Here, there is a greater loss of suitable areas along
the distributional limits than the gain of the regions indicated as

becoming suitable over time, signifying an overall loss in suitable areas.
Nevertheless, if the shrew cannot disperse to and inhabit these newly
suitable areas due to its vagility or other non-climatic factors (e.g., land-
cover change), this could translate into an even higher species’ vulner-
ability (McCain and Colwell, 2011; Rowe et al., 2010). Forecasting range
shifts using future climatic simulation models, which are commonly
employed, may help predict these shifts. However, the inherent
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uncertainty within each of these climatic simulation models may lead to
inaccurate range estimations (Guevara et al., 2019; Peterson et al.,
2018).

Like any correlative approach, it may be wrong to assume that the
actual geographic range of C. mexicanus followed these complex envi-
ronmental changes of the area in the last several decades, and it is
crucial to acknowledge that model outputs should be verified with field
data. Other approaches could confirm if a species tracks the climate by
using historical distribution data to model and comparing predictions
against recent data (e.g., Beever et al., 2016; Pardi et al., 2020; Rowe
et al., 2010). However, these studies rely on resurveys, which are usually
limited to a regional or local scale, in which historical data are not
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Fig. 5. Temporal trends in inconsistently suitable
| % cells and response curves of bioclimatic variables. a)
! Bio05, maximum temperature of the warmest month.
! b) Bio06, minimum temperature of the coldest month.
: c) Biol3, precipitation of wettest month. d) Biol4,
1 precipitation of driest month. The grey colour palette
: represents the difference between the maximum and
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darker). Trends in variables are presented in blue
(decreasing) and red (increasing). No detected sig-
nificant trends are represented in yellow. Inset figures
show model response curves (grey line). Purple bars
represent the ranges centered by the mean value for
all inconsistently predicted cells (vertical purple
dashed line). (For interpretation of the references to
colour in this figure legend, the reader is referred to
the web version of this article.)
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always available, particularly for tropical species (Meyer et al., 2015).
By using ENMs and their transfers to a bioclimatic time series, we are
able to obtain potential ongoing range shifts for any species, even for the
many areas where historical data are unavailable. Additionally, previous
resurvey studies (e.g., Iknayan and Beissinger, 2018; Rowe et al., 2015;
Tingley et al., 2012) have found that changes in distributional limits are
heterogeneous across species ranges. This information should be
considered for conservation planning (Smith et al., 2019), especially in
actions covering entire species ranges. The use of suitability trends could
provide valuable insights in such cases.

Compared to the common practice of model transfer to the future (e.
g., model fitting and transfer; Elith et al., 2010), trend analyses only
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Table 2

Association among temporal trends in bioclimatic variables and suitability
trends in inconsistently suitable cells. The counts in each cell of the table were
converted into percentages. Results represent the concordance between the
monotypic trends for each variable (levels: decreasing, no trend, increasing)
against suitability trends (levels: gain, no trend, loss).

Suitability trend Trend in maximum temperature of the warmest month (bio05)

Decreasing No trend Increasing
Gain 0.00 29.76 16.57
No trend 0.00 3.09 1.31
Loss 0.30 44.46 4.52

Suitability trend Trend in minimum temperature of the coldest month (bio06)

Decreasing No trend Increasing
Gain 0.01 42.40 3.92
No trend 0.00 3.76 0.63
Loss 0.00 48.13 1.15

Suitability trend Trend in precipitation of wettest month (bio13)
Decreasing No trend Increasing

Gain 0.00 0.65 45.68

No trend 0.18 3.63 0.58

Loss 48.27 1.00 0.01

Suitability trend Trend in precipitation of driest month (bio14)
Decreasing No trend Increasing

Gain 6.13 31.74 8.46

No trend 1.63 2.53 0.23

Loss 38.29 7.92 3.06

require creating bioclimatic variables for several periods and the sub-
sequent analysis of the time series. Here, time series analysis allowed me
to recognize complex and spatially heterogeneous trends in habitat
suitability and predict a multifaceted response by C. mexicanus to
climate change. In addition, the variability in predicted areas and suit-
ability values across the series also revealed the model’s characteriza-
tion of the decoupled temperature and precipitation changes over time.
Variable changes are not usually considered in the standard practice in
ENMs by assuming that no variation exists in the environmental data
among times when occurrences were collected (Anderson, 2013). It is
essential to note that the discrepancy between suitability trends iden-
tified in this study vs. real distributional changes are inherent limitations
of all ENMs. For instance, it is uncertain whether this shrew species will
disperse to areas predicted to have increased suitability or if the cloud
forest will undergo similar changes in these areas. Furthermore, ENMs
and the trends derived from them generally do not incorporate other
factors such as biotic interactions or human-induced land-use changes
which could better explain distributions and their changes (Iknayan and
Beissinger, 2018; Rowe et al., 2010).

4.4. Further directions

Future studies should test whether or not suitability trends are linked
to changes in the distributional limits of the species’ ranges. In these
areas, temporal variation in climate could cause changes in abundance
that translate into the expansion, survival, or extinction of local pop-
ulations (Beever et al., 2016; McCain and Colwell, 2011; Roman-Pala-
cios and Wiens, 2020). As other factors such as land-cover change can
reshape species ranges (Caro et al., 2022; Iknayan and Beissinger, 2018),
incorporating a series of non-climatic factors into the same temporal
scale (e.g., remote sensing derived data) into the modeling framework
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(Arenas-Castro and Sillero, 2021) or postprocessing (Merow et al., 2022)
could help overcome some of these limitations. Although the detection
of climatic suitability trends in this study is based on a simple method to
analyze time-series data (i.e., Mann-Kendall), other methods could
quantify the pace of suitability change in response to the climate (e.g.,
Sen’s slope; Sen, 1968). Furthermore, statistical methods widely used in
econometrics to analyze time series, such as the Autoregressive inte-
grated moving average models (Box et al., 2015), could help forecast
suitability changes and detect stationarity and seasonality of the series,
providing new avenues to complement the quantification of species re-
sponses to climate (e.g., bioclimatic velocity; Serra-Diaz et al., 2014).
Using variables created with non-traditional averaging periods raises
the question of whether widely used long-term averages (30 or more
years) can capture the biological response to climate, depending on in-
dividual species’ particular life-history traits. Incorporating temporal
variation into model-fitting has improved model prediction and accu-
racy when environmental variables are concordant with the actual
climate that an organism experiences in its lifespan (Bateman et al.,
2012; Smith et al., 2019). Similarly, as the selection of a spatial reso-
lution could affect niche model estimations in which a higher resolution
is recommended (Chauvier et al., 2022), a selection of a temporal res-
olution could also affect or change the predictions obtained in this study.
For instance, model predictions improved by using shorter climatic pe-
riods for highly mobile species (e.g., Australian birds; Reside et al.,
2010) and when the climate determines food sources availability (e.g.,
truffles for rat kangaroos; Bateman et al., 2012). Although these studies
use shorter temporal resolution than traditional 30-year averages, it is
still unclear if model predictions of C. mexicanus can improve by using a
shorter resolution, especially for a species with low mobility. Temporal
variation of environmental variables is even more relevant in environ-
mentally marginal conditions where populations could be more sensi-
tive to climate change (Perez-Navarro et al., 2021). Further directions of
using niche modeling to estimate species responses to climate change
and its applications in conservation decision-making and invasive spe-
cies management should consider how environmental variables change
through time and the relevance of using realistic average terms that
consider the species’ biology instead of 30-year average periods.
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