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A New Perspective on Stress Detection: An 
Automated Approach for Detecting Eustress 

and Distress 
Abstract— Previous studies have solely focused on establishing Machine Learning (ML) models for automated detection of stress 
arousal. However, these studies do not recognize stress appraisal and presume stress is a negative mental state. Yet, stress can 
be classified according to its influence on individuals; the way people perceive a stressor determines whether the stress reaction 
is considered as eustress (positive stress) or distress (negative stress). Thus, this study aims to assess the potential of using an 
ML approach to determine stress appraisal and identify eustress and distress instances using physiological and behavioral 
features. The results indicate that distress leads to higher perceived stress arousal compared to eustress. An XGBoost model 
that combined physiological and behavioral features using a 30 second time window had 83.38% and 78.79% F1-scores for 
predicting eustress and distress, respectively. Gender-based models resulted in an average increase of 2-4% in eustress and 
distress prediction accuracy. Finally, a model to predict the simultaneous assessment of eustress and distress, distinguishing 
between pure eustress, pure distress, eustress-distress coexistence, and the absence of stress achieved a moderate F1-score of 
65.12%. The results of this study lay the foundation for work management interventions to maximize eustress and minimize 
distress in the workplace. 

Index Terms— Psychological Stress; Physiological Data; Behavioral Data; Machine Learning 

——————————   ◆   —————————— 

1. INTRODUCTION 
tress, labeled the "epidemic of the 21st century," [1] af-
fects a majority of Americans, with job pressure being 

the main stressor [2]. Office work, which encompasses 18.5 
million people in the US [3], leads to significant stress due 
to long hours, heavy workload, job insecurity, conflicts, and 
inappropriate task assignments. 

Distress refers to the overwhelming feeling of being 
"stressed out" when facing uncontrollable stressors [4]. It 
negatively impacts workers, leading to psychological ef-
fects like loss of concentration, impaired performance, in-
security, as well as physical consequences such as tension, 
insomnia, and headaches. This places a burden on the 
healthcare system, with American companies estimated to 
lose up to $300 billion annually due to worker distress [5]. 
A survey of 17,000 American office workers revealed that 
33% missed work due to distress [6], reducing overall 
productivity and the national gross domestic product. Thus, 
distress among office workers is a significant concern that 
requires an urgent solution. 

On the other hand, eustress, or positive stress, occurs when 
people feel confident in handling a stressor, resulting in 
higher concentration, energy, motivation, confidence, en-
gagement, and excitement [7]. It serves as a driving force 
for individuals to achieve success, fulfillment, and over-
come challenges [8]. While the negative effects of job stress 
have been extensively studied, the variations in eustress 
and distress remain largely unexplored [9]. 

Work organizations typically focus on limiting stressors 
with the assumption that stress is negative, disregarding 
the potential benefits of eustress [10]. However, effective 

management plans should aim to minimize distress and 
maximize eustress by optimizing work stressors. This can 
be achieved through approaches that set challenging yet 
attainable expectations for employees [11]. Determining 
workers' perception of stressors as eustress or distress is 
challenging but necessary. While indicators of distress are 
well-understood, knowledge of indicators specific to eu-
stress is limited. Machine Learning (ML) offers the potential 
to examine psychophysiological responses in relation to 
both eustress and distress. Previous studies have mainly fo-
cused on detecting stress arousal by differentiating be-
tween "stress" and "no stress," neglecting the appraisal 
component [12]. In fact, only one study has attempted to 
detect eustress using an automated approach. Li et al. [13] 
utilized a small sample size (n=7) and data from partici-
pants' computers, phones, and heart rate sensors. They 
achieved a moderate detection accuracy of 70% using a 
machine learning algorithm. This study demonstrates that 
automated stress detection can go beyond arousal detec-
tion and focus on the appraisal of stress as eustress or dis-
tress. 

Furthermore, personal factors, such as age and gender, in-
fluence how individuals appraise stress experiences. For in-
stance, a study of 281 office workers in technology firms 
found that younger females reported higher eustress, while 
males experienced more distress due to a lack of emotional 
support at work [9]. Another questionnaire-based study of 
595 office workers revealed that older employees and 
those with higher academic qualifications perceived work 
overload as more distressing compared to younger coun-
terparts [14]. To that end, any attempt to understand the 
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differences between eustress and distress must not ignore 
the impact of personal characteristics on the appraisal of 
stress.  

Built on this background, this study aims to assess the po-
tential of using an ML approach to determine stress ap-
praisal and identify instances of eustress and distress 
among office workers. The study investigated six research 
questions. (1) How does stress level (i.e., arousal) change as 
a function of eustress and distress (i.e., valence)? (2) What 
ML algorithms are best suited for the prediction of eustress 
and distress? (3) What window size for data processing is 
best suited for the prediction of eustress and distress? (4) 
What data modality (i.e., physiological, behavioral, or com-
bination of both) is best suited for the prediction of eu-
stress and distress? (5) How does gender affect the predic-
tion of eustress and distress? and (6) How can we create a 
stress appraisal prediction model to differentiate between 
eustress, distress, eustress-distress coexistence, and no-
stress?  

The remainder of this paper is organized as follows. Section 
2 provides a comprehensive background overview of stress 
detection research. Section 3 explains in detail the experi-
mental setup for data collection, the procedure for data 
cleaning and processing, and the training and testing of the 
different ML algorithms. Section 4 provides a summary of 
the results, while Section 5 offers a discussion, and provides 
insights into the feasibility of using ML for identifying pos-
itive and negative appraisals of stress. Section 6 focuses on 
the conclusions drawn from the results and outlines the 
study limitations and future research directions. 

2. BACKGROUND 
2.1 Psychophysiological and behavioral 

responses to stress 
Multimodal stress detection research typically relies on an-
alyzing three main categories of responses: psychological, 
physiological, and behavioral. These categories encompass 
different aspects of human responses to stress and are of-
ten used in combination to provide a comprehensive un-
derstanding of stress levels.  

Psychological processes play a pivotal role in shaping the 
stress response and have been employed to establish pre-
cise labels for training machine learning algorithms in 
stress detection [12]. The assessment of acute stress can be 
achieved by examining various facets of the psychological 
response. Questionnaires designed to gauge perceived 
stress levels, emotional valence, and arousal, for example, 
serve as indicators of acute stress [15]. While previous re-
search has primarily concentrated on stress arousal, stress 
appraisal questionnaires have not garnered widespread 
recognition. Nevertheless, the Valencia Eustress-Distress 
Appraisal Scale (VEDAS) [16], [17] offers an opportunity to 

evaluate the psychological dimensions of stress appraisal, 
thus advancing stress detection research by incorporating 
appraisal in addition to arousal. This scale serves as a vali-
dated instrument for assessing stress appraisal and has un-
dergone translation into multiple languages, as well as val-
idation across diverse populations worldwide. 

In addition to psychological responses, stress activates the 
autonomic nervous system, leading to variations in bodily 
biomarkers and physiological signals [12]. While various bi-
omarkers have been used to measure stress, some are in-
convenient to collect (such as cortisol levels from saliva or 
blood samples, or EEG via electrode cap) and unsuitable for 
continuous stress detection. Non-invasive physiological 
measures such as Heart Rate (HR),  Heart Rate Variability 
(HRV), Skin Temperature (ST), ElectroDermal Activity (EDA), 
and Blood Volume Pulse (BVP) (i.e., volume of blood flow-
ing through the peripheral blood vessels) are more com-
monly studied in stress research, as they can be collected 
using wearable devices [18]. For instance, HR and HRV are 
direct indicators of stress, with higher levels of HR and 
lower levels of HRV generally associated with psychological 
stress [19]. During periods of psychological stress, EDA typ-
ically increases due to increased sweating, BVP tends to 
show an increase under stress. On the other hand, ST tends 
to decrease during stress due to vasoconstriction, which re-
duces blood flow to the skin and results in cooler skin tem-
peratures. 

Furthermore, the psychophysiological stress response can 
manifest in behavioral changes, which may be observed 
through alterations in body posture, facial expression, and 
interaction with the environment. While the exploration of 
behavioral measurements for stress detection is not as ex-
tensive as that of physiological measures, pioneering stud-
ies have demonstrated their potential predictive power, and 
further research holds the potential to strengthen these 
findings. Video cameras have been employed to capture 
and analyze facial and posture features in relation to stress 
development, yielding substantial improvements in stress 
arousal prediction. Additionally, within the context of office 
work, observing workers' interactions with their computer, 
such as mouse or keyboard usage, can provide valuable in-
sights into work pressure and the associated increase in 
stress arousal. These behavioral indicators, when combined 
with physiological measures, contribute to a more compre-
hensive understanding of stress dynamics. 

Hans Selye characterized stress as a state of heightened 
arousal and emphasized that when faced with stress, the 
crucial factor is how it is perceived by the individual—
whether as a positive or negative experience [20]. Conse-
quently, stress appraisal emerges as an outcome of stress 
arousal, providing a means to anticipate eustress and dis-
tress by employing physiological and behavioral indicators 
already employed for stress arousal prediction. However, 
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further investigation is required to determine the associa-
tion between stress appraisal and physiological and behav-
ioral changes and determine the extent of their impact dur-
ing shifts in positive and negative valence.  

2.2 Stress detection 
The existing body of literature has primarily focused on the 
identification of stress arousal [12]. Unfortunately, this ap-
proach has largely overlooked the appraisal component in-
herent in the stress response. However, the limitations ob-
served in these stress detection studies can offer valuable 
insights that can be utilized in the development of depend-
able stress appraisal models. Notably, a majority of these 
investigations have predominantly relied on physiological 
data as the foundation for constructing their machine 
learning prediction models [12]. In light of this, Alberdi et 
al. [12] contend that the integration of a multimodality 
stress detection approach is imperative to enhance the ac-
curacy of detection. This viewpoint finds support in the 
work of Liao et al. [21], who hypothesize that physical 
symptoms, such as an accelerated heart rate, are not exclu-
sively indicative of stress. Consequently, stress detection 
machine learning models that incorporate the fusion of in-
formation from multiple modalities are likely to exhibit in-
creased reliability and proficiency in discerning between 
stressful and non-stressful situations. 

Yet, while some studies have attempted to adopt a multi-
modal approach, many of them have focused solely on 
combining various physiological features without incorpo-
rating data from other domains, such as behavioral data 
[12]. In contrast, Koldijk et al. [22] conducted a laboratory 
experiment that simulated stressors commonly experi-
enced in office work, such as interruptions and time pres-
sure, and collected both physiological data (heart rate and 
skin conductance) and behavioral data (posture, facial ex-
pressions, and human-computer interactions). The feature 
importance analysis of their stress detection model showed 
that facial expressions, head movement, and skin conduct-
ance were among the most crucial features for detecting 
stress arousal. This demonstrates the contribution of com-
bining different modalities in stress detection research. 
However, additional research is necessary to investigate the 
trade-offs between physiological and behavioral features in 
terms of prediction accuracy, especially in the context of 
stress appraisal. 

Finally, many stress detection studies in office-like environ-
ments rely on using psychometric tests (arithmetic calcula-
tions, Stroop tests, memory tests) or visual stimuli to induce 
stress [23], [24]. Although proven to induce stress effec-
tively, these tests do not accurately mimic real office work 
(e.g., completing reports, writing, preparing presentations, 
etc.), which could lead to unreliable stress detection results 
when implementing the models in real office environments. 
It should be noted that these tests may not be the optimal 

means of creating eustress and distress conditions, and 
thus, it is necessary to reconsider the experimental proce-
dures, particularly when examining stress appraisal. 

To this day, the investigation conducted by Li et al. [13] rep-
resents the only explicit attempt to employ machine learn-
ing techniques for the prediction of eustress. Nevertheless, 
the study is not without its limitations, which include a 
small sample size comprising merely 7 individuals, an inad-
equate grasp of a comprehensive methodology for distin-
guishing between eustress and distress, as well as limited 
analysis pertaining to the behavioral and physiological var-
iations observed in instances of eustress. Additionally, the 
study fails to explore how eustress may vary in relation to 
personal characteristics. In another study, Setz et al. [25] 
aimed to differentiate between stress and cognitive load in 
a way that is similar to the distinction between distress and 
eustress. By focusing on this differentiation, they sought to 
provide a more accurate representation of the psychologi-
cal experiences of individuals in office work settings. Their 
results showed a good prediction accuracy that reached 
82%. However, their work falls short in detecting situations 
characterized by the absence of stress or instances where 
stress coexists with cognitive load. 

3. METHODOLOGY 
We conducted an experimental procedure to study the 
physiological and behavioral signals that are most useful 
for the automated detection of eustress and distress 
among office workers. To obtain as wide a range of signals 
as possible within each participant, the 70-minute experi-
ment incorporated a phase of low-stress engagement at a 
computer workstation, followed by a phase of engagement 
that incorporated multiple stressful components. The study 
was approved by the Institutional Review Board of the Uni-
versity of Southern California. 

3.1 Participants 
A total of 48 participants voluntarily completed the experi-
ment, of which 28 were females and 20 were males. Partic-
ipants were mainly graduate and undergraduate students 
with a mean age of 22.6 years and a standard deviation of 
2.1 years. Individuals with eye/vision problems that would 
prevent them from working on a computer, with psycho-
logical problems that make them sensitive to stress-induc-
ing tasks, who were pregnant, or who were taking any med-
ication that would affect their physiological signals were 
excluded.  

3.2 Experimental Procedure 
To collect physiological data such as heart rate, BVP, EDA, 
ST, and wrist accelerations, participants wore an E4 Empat-
ica wristband [18] and an H10 polar chest strap [26]. To re-
duce motion artifacts, the E4 device was placed on the non-
dominant hand, as research has shown that this hand ex-
periences less motion than the dominant hand [18]. This 
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reduces instances of motion interference in the data col-
lected by the E4 device. During the experiment, a Microsoft 
Azure Kinect DK camera was installed facing the participant 
at the top of the screen to record their faces. Additionally, 
a logging application called Mini Mouse Macro [27] ran in 
the background of the computer to record participants’ in-
teractions, such as keyboard keystrokes and mouse clicks. 

As presented in Fig. 1, the experiment consisted of two 
phases: low-stress work and high-stress work. At the start 
of each phase, participants remained still for 5 minutes to 
collect resting physiological data. Participants then rated 
their stress level on a 0-100 scale. Throughout both phases, 
every 5 minutes, participants completed a pop-up ques-
tionnaire on the computer screen to rate their perceived 
stress level on the 0-100 scale and to appraise the work as 
eustress and distress using the VEDAS [16], [17]. Eustress 
was rated as a source of opportunity/challenge using a 6-
point scale (with 1 being "very definitely is not" and 6 being 
"very definitely is"), while distress was rated as a source of 
pressure using the same scale.  

In the low-stress task, participants were given 40 minutes 
to prepare a slide deck for a presentation about their favor-
ite movie, TV series, or book, which was a familiar topic that 
allowed them agency over the task. The allotted time and 
topic had been previously piloted, ensuring that partici-
pants had ample time to complete the assignment with no 
time constraints or pressure. After a break, participants 
were given 30 minutes to prepare a new presentation on 
an unfamiliar topic - the scientific and philosophical 
achievements of two ancient Greek philosophers. The high-
stress task was carefully designed to create time pressure 
and an unfamiliar workload. Participants were informed 
that they would present their work to a committee at the 
end of the experiment to encourage them to take the task 
seriously. 

Additional external stressors were added during the high-
stress task. Participants turned on their video cameras and 
shared their screens via Zoom with a confederate posing as 

a professor with expertise in optimizing work settings for 
office workers. The confederate informed participants that 
he would monitor their work and reduce their score when-
ever he noticed suboptimal performance. Participants were 
told that their final score would be compared to others in 
the study, with the highest scorers receiving the highest 
compensation ($50) and the lowest scorers receiving mini-
mal compensation ($5). However, at the end of the high-
stress task, participants were debriefed and informed that 
the confederate was not a professor, and their score had no 
impact on their compensation. All participants received the 
maximum compensation. Participants were also informed 
that they would not actually present their work to a com-
mittee, and the task was designed to push them to perform 
to the best of their abilities. 

3.3 Feature Extraction 
To analyze the HRV data, we used the Kubios software 
package [28], which provides accurate and detailed HRV 
analysis and extracts the time and frequency-domain indi-
ces of the heart rate signal for every time window. We ap-
plied a medium level of artifact correction that identifies R-
R intervals varying above or below 0.25 seconds compared 
with the average. This method helps to preserve the varia-
bility of the data while addressing the presence of any arti-
facts. Kubios also uses a piecewise cubic spline interpola-
tion method to generate corrupted or missing values, re-
sulting in a cleaner and more accurate HRV signal. It is 
noteworthy that the RR-interval, which represents the time 
between successive R-peaks in heart rate analysis, was ex-
cluded from the feature set. This decision was made to pre-
vent feature duplication, given the direct relationship be-
tween RR-interval and heart rate. Generally, the RR-interval 
and heart rate are inversely proportional, with their product 
being a constant value of 60,000 (HR x RR interval = 
60,000). This relationship was further confirmed in our da-
taset, as there was a strong 94% correlation between these 
two features. 

Before feature extraction, BVP and ST signals were filtered 

Fig. 1. Experimental design schematic 
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using winsorization [29], a statistical technique to remove 
outlier values by replacing extreme values beyond the 2th 
and 98th percentiles. We used this method to clean the 
noisy BVP and ST signals collected from the Empatica E4, 
as done in [30]. For EDA data, we utilized the MATLAB Le-
dalab toolbox [31], which provides various functions to 
clean and process EDA data. We applied a series of signal 
processing techniques, including a Butterworth low-pass 
filter, Hanning smoothing with a window size of 4 samples, 
and manual artifact correction to remove any noise intro-
duced by movement or other sources of interference. 

Following this cleaning procedure, we computed various 
statistical parameters including the mean, standard devia-
tion, median, minimum, maximum, 25th and 75th percen-
tiles, and the slope of BVP, EDA, and ST. Our analysis focuses 
on these specific statistical parameters as they have been 
used in previous studies related to stress detection, 
demonstrating their relevance and effectiveness in detect-
ing stress levels, thus providing a comprehensive evalua-
tion of the different aspects of stress appraisal [12]. All 
physiological related-features were subtracted from the 
corresponding experimental phase’s 5 minutes baseline for 
each participant. Also, the x, y, and z wrist accelerations 
were calculated for every time window. 

We used OpenFace [32] to extract participants' mean and 
standard deviation of facial action unit (AU) intensities from 
the RGB video recorded by the Kinect camera. AUs are pre-
defined facial muscle movements that correspond to emo-
tions and are categorized as main AUs, head movement 
AUs, and eye movement AUs. Facial expressions are an ex-
cellent indicator of stress, making them suitable for stress 
detection research [22]. We excluded the head translation 
vector in the x, y, and z planes from the analysis because it 
was dependent on the participant's height and position in 
the camera frame. We also dropped head rotation in the x 
and y planes due to high interdependence with the gaze 
vector, resulting in redundant features. A correlation analy-
sis supported this finding, indicating a close relationship 
between these variables (Pearson correlation between 89% 
and 94%). By removing these features, we avoided dupli-
cating information in our analysis. 

Finally, keyboard strokes and left and right mouse clicks 
were aggregated for the predefined time windows. While 
these measures may not be directly related to physiological 
changes associated with stress, they are known to be af-
fected by cognitive and emotional states and can reflect 
changes in work-related stress levels. The inclusion of key-
board strokes and left and right mouse clicks as features in 
a dataset aimed at predicting stress in an office setting is a 
relatively novel approach that has shown promising results 
in recent studies [33], [34]. 

3.4 Data Processing 
Due to technical errors, some sensors failed to collect data, 

resulting in missing data for some participants. Keyboard 
and mouse files were missing for three participants during 
the low-stress condition, and RGB video files were missing 
for two others during the high-stress condition. To impute 
the missing data, we trained an XGBoost model using data 
from 43 participants with complete data. We optimized the 
model by tuning hyperparameters such as learning rate, 
maximum depth of trees, and number of trees through 
cross-validation. Using the optimized XGBoost model, we 
predicted the missing data points for keyboard, mouse, and 
RGB video files. This method is accurate and preserves the 
standard deviation and shape of the feature distribution, 
avoiding data loss due to deletion of rows with missing en-
tries [35]. 

Depending on the window size, the physiological and be-
havioral dataset comprised of 48 participants×70 minutes 
per participant×1/window size. For instance, considering a 
30 second time window, the total number of datapoints 
would be: 48×70×1/(0.5min) = 6720 datapoints. The final 
dataset included 83 features including 34 physiological fea-
tures, 48 behavioral features including 3 human-computer 
interactions, 39 facial-related features and 6 features for 
the hand wrist acceleration, and 1 feature indicating the 
participant's gender. All features were normalized using 
min-max scaling, which involved a linear transformation of 
the original data to a range between 0 and 1. Table 1 pre-
sents a summary of all the features included in our analysis. 

Table 1  
Features Dataset 

 
Participants’ ratings of stress level were each subtracted 
from the rating provided at the end of the corresponding 
resting period resulting in stress arousal ratings ranging 
from -100 to 100. Appraisals of eustress and distress were 
transformed into a binary outcome. “Stress is not appraised 
as” eustress or distress was created by bundling any 

Type (Number of 
features) Signal  Features Included 

Physiological (34) 

EDA  
Blood Volume Pulse 

Skin Temperature 

Mean, Standard 
deviation, Median, 

Minimum, Maximum, 
25th & 75th percentile, 

slope fitted through the 
data. 

Heart Rate and HRV 

Mean, Standard 
deviation, Minimum, 
Maximum, rmsdd, LF 

peak, HF peak, LF 
power, HF power, 

LF/HF 

Behavioral (48)  

Facial action units 
Head Rotation 

Eye gaze direction 

Mean, Standard 
deviation 

Blink Count 

Hand wrist acceleration Mean, Standard 
deviation 

Mouse right clicks 
Mouse left clicks 

Keyboard keystrokes 
Count 

Gender (1) Female vs Male Binary 
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response from the 3 categories of “very definitely is not a 
source of,” “definitely is not a source of,” and “generally is 
not a source of.” Similarly, the 3 categories of “very defi-
nitely is a source of,” “definitely is a source of,” and “gener-
ally is a source of” were grouped into “stress appraised as” 
eustress or distress.  

3.5 Metrics for prediction assessment 
Eustress and distress were transformed into binary out-
comes for ML analysis, a classification problem. Metrics 
used to evaluate prediction performance included accu-
racy, unweighted (average) precision, recall, and F1 score, 
which accounts for class imbalance. Each model presented 
in the results section was assessed using the leave-one-
person-out cross validation method, a technique com-
monly used in machine learning to build models that are 
robust and generalizable. 

4. RESULTS 
To provide a foundation for our findings, we first present a 
variety of descriptive data related to stress appraisal across 
and within the two experimental conditions. While the 
overall perceived stress level among all participants for 
both work conditions was relatively low (M=13.96, 
SD=20.24), our experiment induced stress given that the 
perceived stress level was on average 13.96 points higher 
than the baseline. In addition, the low-stress work condi-
tion induced more eustress (N=2,110) among participants 
than distress (N=1,380). On the other hand, the high-stress 
work condition resulted in almost equal eustress (N=2,390) 
and distress (N=2,220) datapoints. Despite the low-stress 
condition being 10 minutes longer than the high-stress 
condition, the distress datapoints in the latter (N=2,220) 
were significantly higher than the former (N=1,380), as ev-
idenced by the significant results of the chi-squared analy-
sis (X2 (df=1, N=6,720) = 1,120, p<0.001). Fig. 2 provides a 
summary of the eustress and distress datapoints distribu-
tion across both conditions. 

 
Fig. 2. Distribution of eustress and distress across the high- and low- 
stress conditions 

4.1 Perceived stress levels variation across 
eustress and distress conditions 

To answer our first research question, we conducted two 

independent t-tests that examined how perceived stress 
level (i.e., arousal) changed as a function of eustress and 
distress (i.e., valence). The first test investigated the effect 
of eustress appraisal on stress arousal. The results show a 
significant effect of eustress appraisal on the stress arousal 
(t(6718)=-17.44,  p<0.001); the stress arousal was signifi-
cantly higher when datapoints were labeled as “stress ap-
praised as eustress” (M=16.92, SD=21.74) in comparison to 
the data points labeled as “stress not appraised as eustress” 
(M=7.96, SD=15.11). The second test examined the effect 
of distress appraisal on stress arousal. The results show a 
significant effect of distress appraisal on stress arousal 
(t(6718)=-28.05,  p<0.001), more specifically stress arousal 
was significantly higher with datapoints labeled as “stress 
appraised as distress” (M=20.06, SD=22.59) compared to 
the stress arousal associated with datapoints labeled as 
“stress not appraised as distress” (M=6.92, SD=14.19).  

4.2 Comparison between different ML models 
We answered our second question by investigating which 
ML model is best suited for predicting eustress and distress 
using the 83 features in our dataset. We examined ten 
models, including Naïve Bayes (NB), K-nearest neighbor (K-
NN) (K-values between 3 and 15), Support Vector Machine 
(SVM) with different kernels, Decision Tree (DT), Random 
Forest (RF), Extreme Gradient Boosting (XGBoost), Multi-
Layer Perceptron (MLP), and Logistic Regression (LR) as well 
Long Short-Term Memory (LSTM) and a combination of 
Convolutional Neural Network (CNN) and LSTM models. 
Both LSTM and CNN-LSTM were implemented with the 
Keras Sequential API. The LSTM model consisted of a single 
LSTM layer with 64 units, followed by a dense layer with 
sigmoid activation for binary classification. The input shape 
was determined by the time steps in the training data and 
a single feature dimension. The model was optimized using 
binary cross-entropy loss and Adam optimizer. The CNN-
LSTM model included one-dimensional convolutional lay-
ers, followed by an LSTM layer and a dense output layer. It 
employed 64 filters in the convolutional layers with a kernel 
size of 3 and ReLU activation. A max-pooling layer and 
dropout were applied to reduce overfitting. 

Fig. 2 reveals a somewhat unbalanced distribution of the 
eustress and distress classes. Although unbalanced da-
tasets can pose challenges for classification problems, the 
degree of imbalance in this binary distribution is not severe 
enough to require statistical intervention. To confirm our 
assumption, we conducted ML analysis both with and with-
out data augmentation. The results showed comparable 
performance between the datasets, with the augmented 
dataset exhibiting only a small increase of 2% in accuracy 
and approximately 3% for the F1-score across all ML mod-
els. Thus, the accuracy, precision, recall, and F1-score re-
ported in Table 2 are based on the actual dataset without 
any augmentation.  
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4.3 Comparison between different window sizes 
This section answers the third research question and pre-
sents our findings on the optimal window size for training 
eustress and distress prediction models. In our analysis, we 
considered four different window sizes, namely 30 seconds, 
1 minute, 2.5 minutes, and 5 minutes, with corresponding 
datasets of 6720 datapoints, 3360, 1344, and 672 for each 
window size respectively. We chose a 30-second time win-
dow based on the recommendation of Bernardes et al. [36], 
who found that this is the smallest time frame that can re-
liably capture HRV features that accurately assess psycho-
logical stress. Furthermore, we chose 1 minute as it is a 
commonly used window size in previous studies on stress 
prediction [22]. The 2.5-minute window size was chosen to 
capture a longer period of signals, which may provide ad-
ditional information for predicting eustress and distress. Fi-
nally, given that participants received a new questionnaire 
every 5 minutes, a timeframe of 5 minutes was determined 
to be the maximum feasible window size. The results pre-
sented in Table 3, are based on training an XGBoost model 
using all 83 features.  

Table 3  
Window size analysis for binary classification of eustress 

and distress 

 

4.4 Comparison between different modalities 
To answer question four, we trained different ML models to 
determine how different data modalities affect the predic-
tion performance of eustress and distress. Since XGBoost 
resulted in the highest accuracies among the ML models, 
all analyses conducted from this point forward used 
XGBoost. The results in Table 4 show that the combination 
of physiological and behavioral features resulted in the 
highest prediction accuracy and F1-scores for both eustress 
and distress. 

Table 4  
XGBoost results for binary classification of eustress and 

distress 

 
Next, we employed SHAP feature importance analysis [37] 
to identify the most influential physiological and behavioral 
features for predicting eustress and distress. Fig. 3 displays 
the feature importance analysis for the eustress and dis-
tress binary models using combined physiological and be-
havioral data. Only the top 15 features are shown, as in-
cluding additional features showed a negligeable improve-
ment in performance. Using only the top 15 features led to 
a slight decline in performance when compared to the full 
models. The accuracy and F1-score for eustress decreased 
from 85.65% and 83.38% to 83.99% and 82.11% respec-
tively, while for distress, the accuracy and F1-score de-
creased from 78.90% and 78.79% to 76.19% and 75.40% 
respectively. 

4.5 Gender-based models 
This section answers the fifth question of the study. Fig. 3 
shows that gender was the second most important feature 
in the prediction of eustress. Therefore, we decided to build 
gender-based stress appraisal models. The distribution of 
the eustress and distress binary variables based on gender 
is presented in Fig. 4 below.  

Fig. 3. Gender-based distribution of eustress and distress variables 

 
Eustress  Distress  

30 sec 1 min 2.5 min 5 min 30 sec 1 min 2.5 min 5 min 

Accuracy(%) 85.65 83.16 82.15 84.23 78.90 78.27 76.35 77.24 

Precision(%) 85.24 82.75 78.88 82.96 79.21 77.75 75.97 77.29 

Recall(%) 81.60 80.17 83.75 84.52 78.38 76.96 77.11 75.05 

F1-score(%) 83.38 81.44 81.24 83.37 78.79 77.35 76.53 76.15 
 

 
Eustress  Distress  

Physio Behavior Combined Physio Behavior Combined 

Accuracy(%) 83.45 73.38 85.65 74.83 72.35 78.90 

Precision(%) 81.00 69.81 85.24 75.48 72.32 79.21 

Recall(%) 80.26 67.48 81.60 73.63 71.28 78.38 

F1-score(%) 80.63 68.62 83.38 74.54 71.79 78.79 
 

Table 2  
Comparison of binary classifiers’ performance in the prediction of eustress and distress 

  NB LR SVM KNN MLP LSTM CNN-
LSTM DT RF XGB 

oost 
 Eustress 

Accuracy(%) 
(%) 

68.14 70.32 79.25 83.55 79.29 79.86 80.03 82.21 84.29 85.65 
Precision(%) 62.74 65.52 78.07 82.13 79.30 78.42 78.07 81.59 84.47 85.24 

Recall(%) 61.74 63.41 72.92 80.79 71.81 73.10 72.92 78.10 80.42 81.60 
F1-score(%) 62.23 64.44 75.40 81.45 75.37 75.66 75.40 79.81 82.39 83.38 

 Distress 
Accuracy(%) 54.03 65.14 70.16 70.73 70.89 75.45 78.35 72.24 74.92 78.90 
Precision(%) 

(%) 
53.53 65.20 71.56 71.92 72.29 76.06 78.37 72.12 75.31 79.21 

Recall(%) 53.23 64.70 69.29 69.50 69.92 74.60 77.72 72.20 74.03 78.38 
F1-score(%) 53.38 64.94 70.40 70.68 71.08 75.32 78.04 72.16 74.66 78.79 
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We created gender-based models by dividing our initial da-
taset of 6720 datapoints (30 second time window) into two 
subsets: one for males (2800 datapoints) and one for fe-
males (3920 datapoints). XGBoost models were trained for 
each dataset, incorporating all available features within a 
30-second time window. Table 5 presents the results of 
these gender-based models.  

Table 5  
Gender-based binary eustress and distress prediction 

models 

 
4.6 Differentiating between eustress, distress, 

eustress-distress coexistence, and no-stress 
Individuals in the workplace can perceive stressors differ-
ently, resulting in varying levels of eustress and distress 
[38]. For example, a worker may feel pure eustress when 
leading a successful project, but pure distress when dealing 
with limited work resources or a toxic work environment. 
While eustress and distress can be experienced separately, 
they can also coexist in the workplace. For instance, a 
worker may experience pressure to meet a deadline (eu-
stress) while also feeling overwhelmed by workload (dis-
tress). Conversely, individuals may experience no stress at 
all when they're disengaged or bored at work, which can 
negatively impact their performance and well-being. An 
administrative assistant, for example, may feel no eustress 
or distress when performing repetitive tasks, leading to 
feelings of disengagement or apathy towards their work. 

This coexistence of eustress and distress highlights the 
need for a more comprehensive understanding of work-
place stress. Thus, after exploring the distinct concepts of 

eustress and distress, creating prediction models for each, 
and identifying the physiological and behavioral character-
istics that best represent them, we developed a compre-
hensive model to predict the simultaneous assessment of 
both types of stress. Our model aims to capture not only 
the presence of eustress and distress but also their simul-
taneous appraisal, enabling a more nuanced understand-
ing of the complex experiences individuals face in the work-
place. Therefore, we developed a new outcome measure 
that distinguishes between pure eustress, pure distress, eu-
stress-distress coexistence, and the absence of stress. We 
reverted back to the binary formulation of eustress and dis-
tress, defining "Eustress" as stress appraised as eustress but 
not distress, "Distress" as stress appraised as distress but 
not eustress, "Eustress-distress coexistence" as stress ap-
praised as both eustress and distress, and "No stress" as 
stress not appraised as either eustress or distress. Table 6 
presents the formulation of stress appraisal states. 

Table 6 
Simultaneous stress appraisal formulation and data distri-

bution 

 
The resulting dataset is imbalanced, as approximately 50% 
of cases reflected Eustress-distress coexistence, while Dis-
tress was only identified in 5% of cases. To address the issue 
of imbalanced classes, we utilized an oversampling tech-
nique by employing the synthetic minority oversampling 
technique (SMOTE) algorithm [39]. This technique involves 

 
Eustress  Distress  

Male Female Male Female 
Accuracy(%) 86.65 88.02 79.74 80.12 
Precision(%) 81.19 87.25 78.50 79.80 

Recall(%) 84.10 86.35 79.43 77.98 
F1-score(%) 82.62 86.80 78.96 78.88 

 

Eustress Appraisal Distress Appraisal Stress 
Appraisal  Datapoints 

Stress not appraised as 
eustress 

Stress not appraised as 
distress No stress 1890 

Stress appraised as 
eustress 

Stress not appraised as 
distress Eustress 1230 

Stress appraised as 
eustress 

Stress appraised as 
distress 

Eustress-
distress 

coexistence 
3270 

Stress not appraised as 
eustress 

Stress appraised as 
distress Distress 330 

 

Fig. 4. Feature importance for the distress and eustress binary classification models 
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generating new synthetic samples in the minority classes 
by selecting a random sample from the minority class, 
identifying the k-nearest neighbors, and creating synthetic 
data points in the direction of the vector that connects the 
minority instance and its neighbors. It is worth noting that 
the SMOTE algorithm was applied solely to the training set, 
not the testing set. For this analysis, we utilized the 
XGBoost algorithm to build our predictive model and in-
corporated all 83 features with a 30-second time window. 
The XGBoost model achieved a moderate classification per-
formance, with an accuracy of 74.42%, precision of 66.78%, 
recall of 63.55% and F1 score of 65.12%.  

5. DISCUSSION 
5.1 Perceived stress level variation across 

eustress and distress conditions 
When participants indicated having a eustress feeling, their 
stress arousal was significantly higher than with a non-eu-
stress feeling. Similarly, participants experiencing a dis-
tressing feeling showed significantly higher stress arousal 
compared to the non-distress feeling. However, a distress-
ful situation was considerably more intense than situations 
that elicited a eustress feeling as the former led to a sub-
stantially higher level of stress arousal. Hans Selye defined 
stress as the body’s response to a certain demand but dis-
tinguished between eustress and distress [20]. He denoted 
stress as arousal and explained that whenever stress arises, 
the question becomes about its valence and whether the 
stressed individual perceives it as positive or negative. The 
results from the t-tests are in accordance with Selye’s defi-
nition of stress; both eustress and distress were associated 
with an increase in perceived stress arousal.  

5.2 Comparison between different ML models 
Naïve Bayes classifier had the weakest F1-score for eustress 
(62.23%) and distress (53.38%), likely due to its assumption 
that the presence of a particular feature is independent of 
all other features, which is not applicable to physiological 
and behavioral features that are interdependent. Logistic 
regression also showed weak F1-score for eustress (64.44%) 
and distress (64.94%) likely because the target classes have 
no linear correlation with the features. In contrast, decision 
tree, K-NN, SVM, and MLP models had fair to good predic-
tion accuracy. The best K-NN model with a K value of 3 
achieved F1-scores of 81.45% for eustress and 70.68% for 
distress. Among SVM models, the polynomial kernel in the 
6th degree led to the best F1-score of 75.40% for eustress 
and 70.40% for distress. MLP also showed good F1-scores 
of 75.37% for eustress and 71.08% for distress, despite its 
relatively longer training time for large datasets. 

The LSTM model achieved an F1-score of 75.66% for eu-
stress and 75.32% for distress. Additionally, the CNN-LSTM 
model showed similar performance to the LSTM model in 
terms of F1-scores, achieving ≈75% for eustress and (75-

78%) for distress. These results indicate that combining 
convolutional and recurrent layers is an effective approach 
for predicting stress appraisal from physiological and be-
havioral signals, as it captures both local and temporal de-
pendencies, outperforming other models in the study. 

The best-performing models were XGBoost (eustress: 
83.38%, distress: 78.79%) and random forest (eustress: 
82.39%, distress: 74.66%), with slightly better performance 
for XGBoost. XGBoost is an optimized gradient boosting 
technique that builds decision trees sequentially and pe-
nalizes underperforming leaves. In contrast, random forest 
combines multiple decision trees using bagging. XGBoost, 
by learning from previous mistakes, can capture complex 
patterns and outperforms most classification algorithms. 
Another study by Hseih et al. [40] (F1-score: 89%) also iden-
tified XGBoost as the most effective algorithm to distin-
guish between stress and amusement states. However, it is 
important to note that their study employed a different ex-
perimental design from ours. In contrast, our findings high-
light the importance of assessing individual appraisal of 
work conditions as a source of pressure. Therefore, while 
the results of [40] are impressive, our study provides novel 
insights into the context of work-related stress.  

Finally, our study found that ML models can predict eu-
stress and distress with reasonable accuracy and F1-scores. 
However, both metrics were lower for distress, which may 
be due to its complexity and the influence of contextual 
factors. Response bias [41] may also have played a role, as 
participants may have under-reported their distress levels 
to appear competent, resulting in misalignment between 
actual and reported distress and lower performance for the 
distress model compared to the eustress model. 
 
5.3 Comparison between different window sizes 
Our results suggest that shorter window sizes may capture 
more fine-grained fluctuations in the physiological and be-
havioral signals and result in a slightly more accurate pre-
diction. However, the differences in accuracy and F1-scores 
between the tested window sizes are relatively small. 
Within the range of window sizes that were tested, the 
choice of window size may not be critical for achieving 
good model performance. Additionally, it is important to 
acknowledge that emotions may not fluctuate as rapidly as 
within the short time frames tested in our experiment. 
While our study provides valuable insights, it is limited to a 
controlled laboratory experiment with a short duration of 
70 minutes. As such, longitudinal data collection in real-
world office environments is necessary to determine how 
eustress and distress develop over time and how well pre-
diction models perform in such settings. This will also allow 
for the exploration of larger window sizes and their effec-
tiveness in capturing changes in stress appraisal over 
longer time periods. Further research is needed to fully un-
derstand the complexities of stress appraisal and its 
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prediction in real-world settings. Nonetheless, our findings 
offer important validation and evidence that predicting eu-
stress and distress is possible. 
 
5.4 Comparison between different modalities 
Previous studies, focusing on detecting stress as an arousal 
state, demonstrated that a combination of behavioral and 
physiological signals leads to higher ML prediction perfor-
mance. For instance, Koldijk et al. [22] showed that a com-
bination of physiological, facial, and computer interaction 
features led to the highest accuracy in differentiating 
stressful from non-stressful work conditions for office 
workers. Our results show that the same conclusion holds 
for determining stress appraisal as distress and eustress. In 
the study of Li et al. [13], a composite of features derived 
from smartphone and computer usage, along with heart 
rate data, was utilized to identify occurrences of eustress in 
a naturalistic data setting. The authors' findings revealed a 
prediction accuracy of 71.33%, albeit their study population 
was confined to a mere seven participants. Our laboratory-
based results, however, suggest that a blend of facial fea-
tures and physiological measures beyond heart rate may 
serve as stronger indicators of eustress reaching a predic-
tion accuracy of 85.65% and an F1-score of 83.38%.  

The combination feature set resulted in only a slight in-
crease in performance (2-4%) compared to the physiologi-
cal feature sets for eustress and distress predictions, while 
the behavioral feature set showed a larger increase (accu-
racyeustress:12%, F1-scoreeustress:15% and accuracydistress:6%, F1-
scoredistress:7%). These findings suggest that physiological 
features may be more informative than behavioral features 
for predicting eustress and distress. However, further re-
search is needed to fully evaluate the relative importance 
of each feature set. These results have practical implications 
for researchers interested in implementing this framework. 
If high prediction performance is crucial, a combination of 
features may be necessary, but this would require signifi-
cant financial and computational resources to acquire and 
analyze the data. Alternatively, relying on a unimodal 
framework with physiological features can provide good 
prediction performance, comparable to the combination 
feature set. 

Upon examining the SHAP plots, a clear contrast emerged 
between the dominant predictors for eustress and distress. 
Notably, physiological data played a prominent role in pre-
dicting eustress, as 10 out of the top 15 features were phys-
iological, whereas only 4 were behavioral, and gender was 
the final feature. Conversely, in predicting distress, 6 behav-
ioral features were among the top 15, which explains why 
the performance of behavioral-based models (72.35%) was 
relatively comparable to that of physiological-based mod-
els (74.83%). However, this trend, as shown in Table 3, did 
not hold for eustress prediction models (Behavioral = 
73.38%, Physiological=83.45%). These findings highlight 

the importance of considering the distinct predictors for 
eustress and distress, particularly in developing effective 
prediction models. 

Our study found that EDA, BVP, and ST were the most im-
portant physiological features for predicting both eustress 
and distress. This confirms previous research, which sug-
gested that EDA is a strong indicator of stress but is not 
enough on its own to differentiate between eustress and 
distress [42]. Our study uniquely shows that ST and BVP are 
also important predictors of stress appraisal. In addition to 
these features, heart rate (minimum heart rate) and HRV 
features (high frequency bands) were among the most im-
portant features for unveiling stress appraisal. Our review 
of the literature showed that only one attempt has been 
made to determine when an office worker is feeling eu-
stressed [13],  with similar findings of importance as in our 
study. 

The identification of brow lowering (AU04), lid tightening 
(AU07), and upper lip raising (AU10) as predictors of dis-
tress is consistent with prior research linking these action 
units with negative emotions such as anger, fear, sadness, 
and worry, which are commonly observed in response to 
threatening or stressful events [43]. Interestingly, AU14, 
which is not typically associated with emotional expression, 
has been found to predict both eustress and distress. This 
finding is noteworthy, as it suggests that the presence of 
AU14 may reflect a sense of enjoyment or pleasure, con-
sistent with the experience of eustress. Alternatively, it may 
also reflect a coping mechanism or an attempt to maintain 
a positive mood in the face of adversity. Our study identi-
fied a unique finding of gaze angle in the y-direction, but 
we acknowledge that head movement and gaze cannot be 
interpreted separately from body posture, which we did not 
examine. Yang et al. [44] argue that head movements are 
typically associated with gaze drifting and body move-
ments, highlighting the need for further investigation into 
body posture to obtain a complete understanding of the 
behavioral characteristics of eustress and distress. 

We added productivity-related features to our model, con-
sidering the impact of eustress and distress on workers' 
productivity [8]. Wrist accelerations in the x and y planes 
emerged as significant predictors of both eustress and dis-
tress. This finding is consistent with Holder et al.'s argument 
that hand acceleration captured by the Empatica E4 is a 
crucial factor in predicting stress arousal [45], reflecting 
people's engagement and performance [46], which is re-
lated to the impacts of both eustress and distress on en-
gagement and excitement during work. In contrast to pre-
vious studies, our results did not find keyboard strokes and 
mouse clicks as crucial features for predicting eustress or 
distress. Nonetheless, these metrics may be relevant in real 
office settings or different types of office tasks [22]. Future 
work could examine other HCI features like keystroke 

This article has been accepted for publication in IEEE Transactions on Affective Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2023.3324910

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on October 23,2023 at 16:05:33 UTC from IEEE Xplore.  Restrictions apply. 



AWADA ET AL.: A NEW PERSPECTIVE ON STRESS DETECTION: AN AUTOMATED APPROACH FOR DETECTING EUSTRESS AND DISTRESS                11
  

 

pressure, gaze duration, and application usage to enhance 
the prediction of eustress and distress.  

5.5 Gender-based models 
When employing gender-based models, eustress predic-
tion performance improved more considerably than dis-
tress prediction performance. For males and females, the 
eustress prediction accuracy was 86.65% and 88.02%, re-
spectively, compared to the 85.65% prediction accuracy for 
the generalized eustress model. The male and female 
groups' distress prediction accuracy was 79.74% and 
80.12%, respectively, compared to the 78.90% prediction 
accuracy for the generalized distress model. However, 
when examining the F1-scores, the only notable improve-
ment was observed for the eustress category in the fe-
males’ group with an F1-score of 86.80% in comparison to 
83.38% for the generalized model. This larger increase in 
the eustress model is consistent with the SHAP results. 
Gender was not among the top predictors of distress, but 
it was the second most important feature in predicting eu-
stress, as shown in Fig. 3.  

Gender is an important factor in the way people perceive 
and respond to stress. Stress is a complex biological and 
psychological phenomenon, and research has consistently 
found gender differences in the physiological, cognitive, 
and behavioral responses to stressors. For instance, women 
tend to have stronger physiological responses to stress 
than men, including a higher heart rate and blood pressure 
[47], which may be attributed to hormonal factors. Addi-
tionally, societal expectations and gender roles can influ-
ence how men and women perceive and respond to stress-
ors at work [25], leading to differences in coping strategies 
and outcomes. These gender differences may also extend 
to eustress and distress, with studies suggesting that men 
and women may experience different types of stressors 
that elicit either eustress or distress [9], [48]. 

In recent years, ML and predictive modeling techniques 
have been used to develop tools for detecting and predict-
ing stress. These models often incorporate gender as a fea-
ture to address the effect of gender on stress detection and 
acquire better prediction performance [49], [34]. In the pre-
sent study, separating the eustress and distress prediction 
models by gender led to an improvement in prediction per-
formance, suggesting that gender-specific differences play 
an important role in stress appraisal.  

It is important to note that stress appraisal is influenced by 
a variety of personal and contextual factors, and gender is 
just one of these factors. Other personal characteristics, 
such as age, personality traits, work type, and coping styles, 
may also play a role in stress appraisal and response. By 
creating more group models based on personal character-
istics, we may be able to further improve the performance 
of machine learning techniques in stress appraisal. Building 
on that, future research should continue to explore the role 

of gender and other personal characteristics in stress ap-
praisal and response, to further enhance our understand-
ing of this complex phenomenon. 

5.6 Differentiating between eustress, distress, 
eustress-distress coexistence, and no-stress 

The results of the classification problem involving four 
stress appraisal classes indicate an overall decline in perfor-
mance (accuracy=74.42%, F1-score=65.12%) when com-
pared to the binary classification problems for eustress (ac-
curacy=85.65%, F1-score=83.38%) and distress (accu-
racy=78.90%, F1-score=78.79%). These observed differ-
ences in performance can be attributed to various factors 
inherent to the nature of the classification tasks. Firstly, the 
binary classification task inherently possesses a simpler 
structure compared to the multi-class classification prob-
lem, as it involves distinguishing between only two classes. 
In contrast, the 4-class classifier is burdened with the intri-
cate task of differentiating among four distinct classes. This 
increased complexity of the multi-class problem poses 
greater challenges for the classifier in accurately classifying 
instances. Secondly, the presence of class imbalance can 
significantly impact classifier performance. While the bal-
anced distribution of classes in the binary classification 
problem may contribute to higher accuracy and F1 score, 
imbalanced class distributions in the 4-class classification 
problem, particularly when certain classes have signifi-
cantly fewer instances, can adversely affect overall classifier 
performance. The minority classes (i.e., distress class), being 
underrepresented, may prove more difficult to accurately 
classify, leading to lower scores. Lastly, the overlapping fea-
tures among classes in a multi-class classification scenario 
introduce inherent ambiguity and elevate the difficulty in 
correctly classifying instances. In our case, there might be a 
potential overlap between the "Eustress-distress coexist-
ence" class and the "Eustress" and "Distress" classes, intro-
ducing some classification errors. Conversely, binary classi-
fication problems often exhibit more distinct boundaries 
between the two classes, facilitating the classifier's discrim-
ination process. 

The study conducted by Setz et al. [25] aimed to differenti-
ate between stress and cognitive load using electrodermal 
activity (EDA) data collected from 33 subjects in a labora-
tory experiment. Although not directly related to eustress 
and distress, their work is similar to our study's objective of 
distinguishing between different stress states. Multiple ML 
models, including linear discriminant analysis, SVM, and 
nearest class center, were tested, with the highest accuracy 
of 82.8% achieved. This research presents a comparable 
analysis between cognitive load and eustress and stress 
and distress. However, our study contributes to the litera-
ture by identifying pure eustress, pure distress, eustress-
distress coexistence, and the absence of stress. We have ex-
panded the classification beyond the binary categorization 
of stress and cognitive load to include four different stress 
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appraisal states. 

Our approach has important implications for workplace 
settings where stress is prevalent. By distinguishing be-
tween eustress and distress, managers and supervisors can 
intervene early to prevent negative emotions from escalat-
ing. Additionally, our ability to detect eustress-distress co-
existence is valuable in identifying mixed emotional states 
that are difficult to discern through self-report measures. 
This information can facilitate targeted interventions that 
help individuals develop coping strategies and reframe 
negative emotions. These findings have practical signifi-
cance for the development of affective computing systems 
that can accurately detect and differentiate between differ-
ent emotional states in real-time. By using a combination 
of physiological and behavioral features, our approach rep-
resents a significant step forward in the field of affective 
computing. It has the potential to be applied in a variety of 
contexts, including workplace stress management, mental 
health monitoring, and personalized healthcare. 

6. LIMITATIONS & FUTURE RESEARCH 
While this study presents the first attempt to employ ML 
for differentiating eustress and distress, it also has some 
limitations. First, although the experimental procedure was 
designed to simulate stressful office work, participants 
were assigned predesigned tasks and were put under ex-
treme work conditions (i.e., zoom monitoring, compensa-
tion withhold). Hence, this experiment falls short of mim-
icking the dynamics and complexity of office work. To that 
end, future research directions should examine office work-
ers’ eustress and distress in their naturalistic work environ-
ments. Second, the proposed ML models presented in this 
paper did not consider the full personalized experience of 
stress and only accounted for gender as a moderating pre-
diction feature. Eustress and distress appraisal are affected 
by various personal characteristics; what is considered as 
eustress for one person can be distress for another. For 
that, future research should incorporate personal charac-
teristics (e.g., age, personality traits) while building auto-
mated prediction frameworks for eustress and distress or 
establishing personalized and unique ML models for 
groups of workers following their personal characteristics. 
Finally, our results showed that both head movement and 
gaze were important predictors of eustress and distress, 
which hints at the importance of incorporating body pos-
ture in future research studies to differentiate between eu-
stress and distress appraisal. 

7. CONCLUSIONS 
This study represents the first attempt to employ an ML 
framework to predict eustress and distress in an experi-
mental setting. The study mimicked different work settings 
with two stress conditions: low-stress and high-stress work. 

Physiological and behavioral signals were used in establish-
ing the prediction models. Results show that the perception 
of distress is associated with a higher level of subjective 
stress arousal than the perception of eustress. The XGBoost 
classifier had the best prediction performance for both eu-
stress and distress compared to nine other classifiers. Using 
this ML model along with a window size of 30 seconds, the 
combination of physiological and behavioral features led 
to 85.65% and 78.90% accuracy in predicting eustress and 
distress, respectively. Additionally, the results indicate that 
gender plays a role in predicting eustress and distress con-
ditions, with a potentially higher influence in predicting eu-
stress than distress. Finally, we developed a model to pre-
dict the simultaneous assessment of eustress and distress, 
distinguishing between pure eustress, pure distress, eu-
stress-distress coexistence, and the absence of stress. The 
developed model achieved a moderate accuracy of 74.42% 
and F1-score of 65.12%. 

This study presents promising findings that can be inte-
grated with work management practices to minimize work 
distress and promote eustress among office workers. Per-
sonal factors play a major role in how workers perceive the 
stress associated with their work tasks. Thus, eustress-dis-
tress prediction models could help work managers effec-
tively design, tailor, and assign work duties among office 
workers with the aim of maximizing eustress at the expense 
of distress. Also, implementing this framework may be use-
ful for promoting self-awareness among workers about 
their negative stress levels and the specific work conditions 
that increase their distress. Finally, such a framework could 
be coupled with a notification system to alert workers 
about prolonged distress experiences and provide them 
with appropriate intervention suggestions that limit un-
healthy distress exposure. 
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