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ABSTRACT
In this paper, we consider inverse shape problems coming from diffuse
optical tomography and the Helmholtz equation. In both problems, our
goal is to reconstruct small volume interior regions from measured data
on the exterior surface of an object. In order to achieve this, we will derive
an asymptotic expansion of the reciprocity gap functional associated with
each problem. The reciprocity gap functional takes in themeasured Cauchy
data on the exterior surface of the object. In diffuse optical tomography,
we prove that aMUSIC-type algorithm that does not require evaluating the
Green’s function canbeused to recover theunknownsubregions. This gives
an analytically rigorous and computationally simplemethod for recovering
the small volume regions. For the problem coming from inverse scatter-
ing, we recover the subregions of interest via a direct sampling method.
The direct samplingmethod presented here allows us to accurately recover
the small volume region from one pair of Cauchy data, requiring less data
thanmanydirect samplingmethods.Wealsoprove that thedirect sampling
method is stablewith respect to noisy data. Numerical exampleswill be pre-
sented for both cases in two dimensions where themeasurement surface is
the unit circle.
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1. Introduction

The two problems we consider in this paper are motivated by di!use optical tomography (DOT) and
the Helmholtz equation. In both problems, the goal is to reconstruct interior subregions of small vol-
ume from known Cauchy data on the boundary of the given bounded open set ! in R2 or R3. These
are inverse shape problems where the knowledge of the solution to a partial di!erential equation on
the boundary is used to recover unknown interior regions. Here we are interested in reconstructing a
subregion D ⊂ ! such that dist(D, ∂!) > 0. In our models, a Dirichlet condition is imposed on the
exterior boundary ∂! and the corresponding Neumann condition is measured. For the entirety of
this paper, we assume thatD is a collection of small volume subregions such that |D| = O(εd), where
d = 2 or 3 is the dimension. To "x the notation, we let

D =
J⋃

j=1
Dj with Dj = (xj + εBj) such that dist (xi, xj) ≥ c0 > 0 (1)

for i #= j where the parameter 0 < ε $ 1 and Bj is a domain with Lipschitz boundary centered at the
origin such that |Bj| = O(1). We also assume that the individual regionsDj are disjoint. See Figure 1
for a visual representation of the described set up.
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2 G. GRANADOS AND I. HARRIS

Figure 1. Here is an example of the type of small volume regions D described in (1) contained in a circle! that will be considered
throughout the paper.

In DOT, the propagation of light through a medium is modeled by the steady-state di!usion
equation. Inside the medium, we consider the case where the absorption coe#cient is zero except
in the small volume subregions. In this case, the Cauchy data corresponds to inward and outward
light $uxes across the medium’s surface. For a comprehensive description of DOT see topical reviews
[1,2]. In our inverse source problem for the Helmholtz equation, a forcing term will be applied to
the direct problem where the source term is zero except in the small volume subregions. Here, the
Dirichlet condition represents the scattered "eld on the surface of the exterior boundary ∂!. See
[3–6] for more discussion on the theory and applications of this inverse problem. For other works for
the inverse source problem we refer to [7–13].

In order to solve both inverse shape problems, we will develop reconstruction algorithms that fall
under the category of qualitativemethods. Inmany applications, qualitativemethods are optimal since
one of their main advantages is that they generally require little a priori knowledge of the unknown
regionD. Whereas iterativemethods usually require a priori information to construct a “good” initial
estimate for the unknown region and/or parameters to ensure that the iterative process will converge
to the unique solution of the inverse problem. Iterative methods can also be computationally expen-
sive as well as highly ill-conditioned. From the given Dirichlet data, we will assume that we have the
corresponding normal derivative on the surface ∂! and analyze its asymptotic expansionwith respect
to the small parameter ε > 0.

In our DOT problem, we reconstruct D by developing a MUSIC–type algorithm. This method
has been used in many imaging modalities such as acoustic [14–17], electromagnetic [18–20],
and elastic [21,22] inverse scattering. Recently, the factorization method was applied to this prob-
lem for recovering extended regions in [23]. For our second problem for the Helmholtz equation,
we derive a direct sampling method which is similar to the orthogonality sampling method and
reverse time migration, to reconstruct D. This method has been widely studied for far-"eld mea-
surements for several inverse scattering problems, see for e.g. [24–26]. These methods have also been
applied to problems in DOT [27] and Electrical Impedance Tomography [28]. The aforementioned
approaches will be in combination with the so called reciprocity gap functional de"ned as the surface
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integral

R[v] :=
∫

∂!
v∂νu − u∂νv ds. (2)

In the two problems we are considering, the solution u ∈ H1(!) with L2 Laplacian represents the
respective "elds and v ∈ H1(!) with L2 Laplacian represents a solution to the problem without the
small volume regions. This functional has been studied in [29,30] for other inverse scattering prob-
lems.We utilize this functional in our asymptotic analysis in order to reconstruct the unknown region
with little a priori knowledge.

The rest of the paper is organized as follows. In Section 2, we consider an inverse shape problem
in DOT and develop the analytic framework for the MUSIC-type algorithm, which requires multi-
ple measurements. To do this, we apply the reciprocity gap functional to a harmonic lifting of the
Dirichlet data and the measured Cauchy data in order to derive an imaging functional. We proceed
in Section 3 by considering the problem from inverse scattering where we derive and analyze a direct
sampling imaging functional. Thismethod only requires a single Cauchy pair andwe show its stability
with respect to error. Here the reciprocity gap functional is applied to a plane wave and the measured
Cauchy data. In Sections 2 and 3 numerical examples are presented inR2 to validate the analysis of the
constructed imaging functionals which is based on the asymptotic expansion of the Neumann data.
Lastly, in Section 4 we provide a summary of the results of this paper and brie$y discuss potential
directions for future research.

2. An application to diffuse optical tomography

We begin by considering the direct problem associated with DOT. This problem stems from semi-
conductor theory where boundary measurements are used to determine the existence of an interior
structure. Recall, that we are concerned with the case where these interior structures are of small vol-
ume.We assume that the domain! ⊂ Rd (for d = 2, 3) is a bounded simply connected open set with
Lipschitz boundary ∂! with unit outward normal ν. We let D ⊂ ! with Lipschitz boundary ∂D and
we have a priori knowledge that it satisfying (1).

Now, we let u ∈ H1(!) be the unique solution to

− %u + ρχDu = 0 in ! and u|∂! = f (3)

for any given f ∈ H1/2(∂!) where χ(·) denotes the indicator function. We assume the absorption
coe#cient ρ ∈ L∞(D). For analytical purposes of well-posedness for the direct problem and the
upcoming analysis of the inverse problem, we assume that there are constants ρmin and ρmax such
that 0 < ρmin ≤ ρ ≤ ρmax for a.e. x ∈ D.

One may easily verify that (3) is well-posed by considering its variational formulation (see for e.g.
[31]). Thus, one can show that for some C> 0 that is independent of 0 < ε $ 1 we have that

‖u‖H1(!) ≤ C‖f ‖H1/2(∂!).

By Equation (3) we have that the Cauchy data is such that (f , ∂νu) ∈ H1/2(∂!) × H−1/2(∂!).
In this section, we will develop the MUSIC Algorithm for solving the inverse problem under con-

sideration. The goal is to "rst derive an asymptotic expansion for the Neumann data. Beingmotivated
by analysis in [16,32], we will derive an analog of the multi-static response matrix derived from the
reciprocity gap functional (2) for this problem.

2.1. MUSIC algorithm

We begin, by proving an asymptotic expansion of the Neumann data ∂νu on ∂! in terms of the
parameter 0 < ε $ 1. To this end, we let u0 ∈ H1(!) be the harmonic lifting of the Dirichlet data
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such that
− %u0 = 0 in ! and u0|∂! = f . (4)

In other words, u0 satis"es the background problem associated with (3) without the absorption coef-
"cient with the same Dirichlet data f ∈ H1/2(∂!). We continue by de"ning the Dirichlet Green’s
function for the negative Laplacian on the known domain ! as G(·, z) ∈ H1

loc(! \ {z}), which is the
unique solution to the boundary value problem

−%G(·, z) = δ(·, z) in ! and G(·, z)|∂! = 0.

For any "xed z ∈ !, we appeal to Green’s 2nd Theorem to obtain the representation

−(u − u0)(z) =
∫

!
(u − u0)(x)%G(x, z) dx =

∫

!
G(x, z)ρ(x)χD(x)u(x) dx

=
∫

D
G(x, z)ρ(x)u(x) dx

where we have used the fact that the absorption coe#cient is zero outside of the region D. By taking
the normal derivative, we have that for all z ∈ ∂!

∂ν(u − u0)(z) = −
∫

D
ρ(x)u(x)∂ν(z)G(x, z) dx

= −
∫

D
ρ(x)u0(x)∂ν(z)G(x, z) dx −

∫

D
ρ(x)(u − u0)(x)∂ν(z)G(x, z) dx (5)

where the integrands are well de"ned due to the fact that z ∈ ∂! and ∂ν(z) denotes the normal deriva-
tive on ∂! with respect to z. Given that the region D satis"es (1), we claim that (5) is dominated by
the "rst integral. In other words, the Neumann data can be approximated by the harmonic lifting u0
restricted to the small volume subregions, instead of the unknown photon density u.

The following estimate derived in Theorem3.1 of [33] will help us in our asymptotic analysis of (5).
It states that for all ϕ ∈ H1(!) with D ⊂ ! such that |D| = O(εd), we have that

‖ϕ‖L2(D) ≤ Cε
d
2

(
1− 2

p

)

‖ϕ‖H1(!) (6)

where p ≥ 2 in d = 2 and 2 ≤ p ≤ 6 in d = 3. This estimate is proven using the Sobolev embedding
ofH1(!) ↪→ Lp(!) (see for e.g. Chapter 5 of [34]). Using (6), we prove that u0 approximates uwhen
D has small volume.

Lemma 2.1: For all f ∈ H1/2(∂!), let u and u0 be the solutions to (3) and (4), respectively. Then, we
have that

‖u − u0‖H1(!) ≤ Cε
d
(
1− 2

p

)

‖f ‖H1/2(∂!)

provided that |D| = O(εd) where p ≥ 2 in d = 2 and 2 ≤ p ≤ 6 in d = 3.

Proof: Since, u − u0 ∈ H1
0(!) we have that ‖u − u0‖H1(!) ≤ C‖∇(u − u0)‖L2(!) by the Poincaré

inequality. By appealing to Equations (3) and (4) along with Green’s 1st Theorem, we have that
∫

!

|∇(u − u0)|2 dx = −
∫

D
ρu(u − u0) dx ≤ ρmax‖u‖L2(D)‖u − u0‖L2(D).

Now, by using the estimate in (6), we obtain that

‖u‖L2(D)‖u − u0‖L2(D) ≤ Cε
d
(
1− 2

p

)

‖u‖H1(!)‖u − u0‖H1(!).

This proves the claim by appealing to the well-posedness of (3). !
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From the above lemma, we have shown that u can be approximated by u0 in norm when |D| =
O(εd) is small. Under the same assumption, wewill use the previous lemma alongwith (6) to compare
the magnitudes of the two integrals in Equation (5). We start by analyzing the second integral and
provide the following results.

Lemma 2.2: For z ∈ ∂! and |D| = O(εd), we have that
∫

D
ρ(x)(u − u0)(x)∂ν(z)G(x, z) dx = O(εd+1) as ε → 0.

Proof: In order to prove the claim, we must estimate
∣∣∣∣

∫

D
ρ(x)(u − u0)(x)∂ν(z)G(x, z) dx

∣∣∣∣ ≤ Cε
d
2

(
1− 2

p

)

‖u − u0‖H1(!)‖∂ν(z)G(·, z)‖L2(D)

≤ Cε
3d
2

(
1− 2

p

)

‖f ‖H1/2(∂!)‖∂ν(z)G(·, z)‖L2(D)

where we have used (6), and Lemma 2.1 in order. We also have that

‖∂ν(z)G(·, z)‖L2(D) ≤ ‖∇G(·, z)‖L2(D) ≤ Cεd/2‖G(·, z)‖C1(!∗)

by the fact that ν is a unit vector and the symmetry of the Green’s function. The region !∗ satis"es
that D ⊂ !∗ ⊂ ! for all 0 < ε $ 1 with dist(∂!,!∗) > 0. Thus, we have that for all z ∈ ∂!

∣∣∣∣

∫

D
ρ(x)(u − u0)(x)∂ν(z)G(x, z) dx

∣∣∣∣ ≤ Cε
d
(
2− 3

p

)

‖f ‖H1/2(∂!). (7)

For d = 2, we recall that p ≥ 2. In order to prove the claim, we impose the condition that

3 = 2
(
2 − 3

p

)
making the exponent of ε equal to d + 1 in (7),

which yields that p = 6. From the above inequality we get that
∫

D
ρ(x)(u − u0)(x)∂ν(z)G(x, z) dx ≤ Cε3‖f ‖H1/2(∂!).

Similarly, for d = 3, we recall that 2 ≤ p ≤ 6. Again, to prove the claim we impose that

4 = 3
(
2 − 3

p

)
again making the exponent of ε equal to d + 1 in (7),

which yields that p = 4.5. Thus, we have that
∫

D
ρ(x)(u − u0)(x)∂ν(z)G(x, z) dx ≤ Cε4‖f ‖H1/2(∂!).

Therefore, for both d = 2 and d = 3 taking p = 6 and p = 4.5, respectively, we have that
∫

D
ρ(x)(u − u0)(x)∂ν(z)G(x, z) dx = O

(
εd+1

)
as ε → 0

which proves the claim. !
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Next, we show that the "rst integral in (5) is of order εd. From this, Equation (5) will imply that
the "rst integral is the leading term, rendering the second integral as negligible. This is proven in the
following result.

Lemma 2.3: For all z ∈ ∂! where D is given by (1), we have that as ε → 0

∫

D
ρ(x)u0(x)∂ν(z)G(x, z) dx = εd

J∑

j=1
|Bj|Avg(ρj)u0(xj)∂ν(z)G(xj, z) + O(εd+1)

where Avg(ρj) is the average value of ρ in Dj.

Proof: By (1), we have that x ∈ Dj if and only if x = xj + εy for some y ∈ Bj. Now, recall that both
u0 and ∂ν(z)G(·, z) are smooth in the interior of of ! since z ∈ ∂! by standard elliptic regularity.
Therefore, we have that for all x ∈ Dj

u0(x)∂ν(z)G(x, z) = u0(xj + εy)∂ν(z)G(xj + εy, z) = u0(xj)∂ν(z)G(xj, z) + O(ε)

as ε → 0 by appealing to Taylor’s Theorem. From this, we obtain that

∫

D
ρ(x)u0(x)∂ν(z)G(x, z) dx =

J∑

j=1

∫

Dj

ρ(x)u0(xj + εy)∂ν(z)G(xj + εy, z) dx

=
J∑

j=1

(
u0(xj)∂ν(z)G(xj, z) + O(ε)

) ∫

Dj

ρ(x) dx.

This implies that

∫

D
ρ(x)u0(x)∂ν(z)G(x, z) dx = εd

J∑

j=1
|Bj|Avg(ρj)u0(xj)∂ν(z)G(xj, z) + O(εd+1)

as ε → 0 where Avg(ρj) denotes the average value of ρ in Dj as well as using the fact that |Dj| =
εd|Bj|. !

Using Lemmas 2.2 and 2.3, it is clear that for a speci"ed z ∈ ∂!, the normal derivative of the
di!erence of u and u0 is dominated by the "rst integral from Equation (5). Therefore, we have proven
an asymptotic expansion for the boundary data ∂νu in therms of the known harmonic lifting and
Green’s function. Similar results have been proven in [35,36] using boundary integral operators.

Theorem 2.1: For any z ∈ ∂! we have that

∂ν(z)u(z) = ∂ν(z)u0(z) − εd
J∑

j=1
u(xj)Avg(ρj)|Bj|∂ν(z)G(xj, z) + O(εd+1) as ε → 0

provided that D satis!es (1).

We use this asymptotic expansion to develop an algorithm that detects the centers of the defec-
tive regions. To achieve this, we study the MUSIC algorithm which can be considered as a discrete
analogue of the factorization method (see for e.g. [16,37,38]). To this end, we let u0(·, g) and u0(·, f )
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denote the harmonic liftings with Dirichlet data g and f ∈ H1/2(∂!), respectively (see for e.g. Chap-
ter 2 of [31]). Thus, using Theorem 2.1 we can approximate the reciprocity gap functional (2) with
Cauchy data (u = f , ∂νu) on ∂! and input v = u0(·, g). Therefore, we have that

Rf
[
u0(·, g)

]
=

∫

∂!
u0(·, g)∂νu(·, f ) − u(·, f )∂νu0(·, g) ds

=
∫

∂!
u0(·, g)



∂νu0(·, f ) − εd
J∑

j=1
u(xj)Avg(ρj)|Bj|∂ν(z)G(xj, z)



 ds

−
∫

∂!
u0(·, f )∂νu0(·, g) ds + O(εd+1)

= −εd
J∑

j=1
|Bj|Avg(ρj)u0(xj, f )

∫

∂!
u0(·, g)∂ν(z)G(xj, z) ds + O(εd+1)

where we used the fact that u|∂! = u0(·, f )|∂! = f , as well as u0(·, f ) and u0(·, g) being harmonic in
!. Furthermore, since z ∈ ∂!, we have that

∫

∂!
u0(·, g)∂ν(z)G(xj, z) ds = −u0(xj, g).

With this, we obtain the expansion

Rf
[
u0(·, g)

]
= εd

J∑

j=1
|Bj|Avg(ρj)u0(xj, f )u0(xj, g) + O(εd+1) (8)

as ε → 0 where we have made the dependance on f explicit.
In order to derive the MUSIC algorithm, we assume that ! is the unit ball for d = 2 where we let

g = eimθ and f = einθ form, n = 0, . . . ,N for some "xedN ∈ N. By the RiemannMapping Theorem,
we have that the planar region ! can be mapped to the unit ball where the transformed potential
satis"es a modi"ed version of (3) a.e. in the unit ball. Therefore, we can apply the following MUSIC
algorithm without needing to evaluate the Green’s function. Here θ denotes the angle formed by
points on ∂! when converted to polar coordinates. Using only the leading order term of (8), we
de"ne the matrix

Fn,m = εd
J∑

j=1
|Bj|Avg(ρj)u0(xj, fn)u0(xj, gm).

From the de"nition of F, we see that it can be factorized by the matricesU ∈ C(N+1)×J and T ∈ CJ×J

that are given by

Um,j = u0(xj, fm) and T = diag
(
εd|Bj|Avg(ρj)

)
.

Therefore, it is easy to see that F=UTU.. Notice, that by our assumptions on ρ, all the diagonal
entries of the matrix T are non-zero. We now de"ne the vector φx ∈ CN+1 for any x ∈ Rd by

φx =
(
u0(x, f0), . . . , u0(x, fN)

). . (9)

The goal is to prove that the vector φx is in the range of FF∗ if and only if x is contained in the set{
xj : j = 1, . . . , J

}
as similarly done in [39]. This is a discretized version of the factorization method

initially studied for this problem in [23]. See for e.g. [16,37] for the connection of the factorization
method and MUSIC algorithm.
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We now construct an imaging functional derived from the leading order term in the asymptotic
expansion of the reciprocity gap functional. To this end, we need to show that for each sampling point
x ∈ ! we have that φx is in the range of FF∗ if and only if x ∈ {xj : j = 1, . . . , J}. This result has been
proven in Theorem 3.2 of [39]. To avoid repetition, we will state the following result and reference
the proofs in Section 3 of [39] for details.

Theorem 2.2: Assume that N+ 1> J. Then for all x ∈ ! being given by the unit circle

φx ∈ Range(FF∗) if and only if x ∈
{
xj : j = 1, . . . , J

}

where φx is de!ned as in (9). Moreover, the rank of the matrix FF∗ is given by J.

Notice, that the matrix F can be approximated by the known reciprocity gap functional. This
implies that Theorem 2.1 can be used to recover the centers of the subregions {xj : j = 1, . . . , J}. To
this end, we must verify whether φx ∈ Range(FF∗). This is equivalent to Pφx = 0 where P is the
orthogonal projection onto the Null(FF∗).

2.2. Numerical validation for theMUSIC algorithm

We now provide some numerical examples of recovering locations the {xj : j = 1, . . . , J} using
Theorem 2.2. All of our numerical experiments are done with the software MATLAB 2020a. We will
let ! be given by the unit circle in R2 and we need to compute the Neumann data ∂νu. It is clear
that the Neumann data can be approximated by the harmonic lifting u0 with the same Dirichlet data.
Indeed, Lemmas 2.2 and 2.3 imply that for all z ∈ ∂!

∂νu ≈ ∂νu0 −
∫

D
ρ(x)u0(x)∂ν(z)G(x, ·) dx.

This can be seen as an analog to the Born approximation used in other applications (see for e.g.
[16,40]). It is clear that for Dirichlet data einθ the harmonic lifting is given by

u0(x, einθ ) = |x|neinθ for all n ∈ N ∪ {0}.

It is also well known that the normal derivative of G(x, z) is given by

∂ν(z)G (x, z) |∂! = 1
2π

[
1 − |x|2

|x|2 + 1 − 2|x|cos(θ − θz)

]

for z ∈ ∂!. Therefore, we can compute ∂νu using the ‘integral2’ command in MATLAB.
Given the Dirichlet data

fm = eimθ and its corresponding Neumann data ∂νu(·, eimθ ),

we can easily approximate the reciprocity gap functional as given by (2) using 64 equally spaced points
on the unit circle for v = u0(·, einθ ). We have that

Rfm
[
u0(·, einθ )

]
=

∫

∂!
einθ ∂νu(·, eimθ ) − u(·, eimθ )neinθ ds

which is approximated via a Riemann sum using the ‘dot’ command in MATLAB for m, n =
0, . . . , 20. By appealing to the asymptotic result in Theorem 2.1, we have that

Fn,m ≈
∫

∂!
einθ ∂νu(·, eimθ ) − u(·, eimθ )neinθ ds such that F ∈ C21×21.
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Once F has been approximated we can use Theorem 2.2 to recover the locations of the components
of D. We only need to check if the vector φx is in the range of FF∗. Therefore, we compute the norm

‖Pφx‖22 =
21∑

-=r+1

∣∣(φx,u-

)∣∣2

where the vectors u- are the orthonormal eigenvectors for FF∗ and r =Rank(FF∗). Recall, that the
vector

φx =
(
1, |x|eiθ , . . . , |x|20e20iθ

).

by Equation (9) where θ is the polar angle for the sampling point x ∈ !. Here P denotes the orthog-
onal projection onto the Null(FF∗). Therefore, the imaging functional for recovering the centers is
given by

WMUSIC(x) =
[ 21∑

-=r+1

∣∣(φx,u-

)∣∣2
]−1

for any x ∈ !

which has the property thatWMUSIC(x) 1 1 for x = xj andWMUSIC(x) = O(1) for x #= xj. We will
plot the imaging functional to provided a numerical approximation of the centers xj for j = 1, . . . , J.

In Figures 2, 4, and 5weuse the imaging functionalWMUSIC(x) given above to recover the locations
of the two components of the region D. In theses experiments, the region

D = (x1 + εB(0, 1))
⋃

(x2 + εB(0, 1))

with B(0, 1) being the unit ball centered at the origin. The points x1 and x2 are points contained in
the region !. We will take the forcing term to be given by ρ = 1 on both components of D. Here,
we take ε = 0.01 as well as adding δ = 5% random noise to the computed normal derivative of the
di!erence of u and its harmonic lifting to simulate error in measured data. Note that even though the
analysis uses the Green’s function, the numerical inversion does not.

Figure 2. Initial reconstruction of the locations x1 = (−0.25, 0.25) and x2 = (0.25,−0.25) via theMUSIC algorithmwith the faulty
rank of FF∗ . Contour plot on the left and Surface plot on the right of the imaging functionWMUSIC(x).
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Figure 3. Semi-log plot of the svd(FF∗). Labeled are its 2nd and 3rd singular values.

Figure 4. Reconstruction of the locations x1 = (−0.25, 0.25) and x2 = (0.25,−0.25) via theMUSIC algorithm. Contour plot on the
left and Surface plot on the right of the imaging functionalWMUSIC(x).

Example 1: In our !rst example presented here, we let

x1 = (−0.25, 0.25) and x2 = (0.25,−0.25)
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Figure 5. Reconstruction of the locations x1 = (−0.25, 0.25) and x2 = (−0.25,−0.25) via the MUSIC algorithm. Contour plot on
the left and Surface plot on the right of the imaging functionalWMUSIC(x).

for the reconstruction in Figure 2. Here we let δ = 5% and ρ = 1 in both subregions. Presented is a
contour and surface plot of the imaging functional WMUSIC(x). As we can see, the imaging functional is
elevated in the general region around the centers.

Recall, that the imaging functionalWMUSIC(x) depends on the rank of FF∗, which was calculated
using the rank function in MATLAB. However, ‖FF∗‖ $ 1 and the default tolerance of the rank
function produces an overestimation of the true rank since the singular values of FF∗ are very small.
For the rest of our numerical experiments, we improve the rank calculation by computing the singular
values of FF∗ and ad hoc checking when a singular value decreases by at least 3 orders of magnitude
from the previous one.

Figure 3, suggests that the actual rank of FF∗ is 2, as expected by Theorem 2.2 since there are
2 components of D. Note, that it is common practice (see for e.g. [21]) to pick the "rst signi"cant
jump in magnitude of the singular values to estimate the rank of a matrix. Throughout the remaining
examples of this section, we will continue to heuristically calculate the rank of FF∗ with this method.
With this new method of calculating the rank, Figure 4 demonstrates a clearer reconstruction of the
2 subregions centered at the locations x1 = (−0.25, 0.25) and x2 = (0.25,−0.25). As we can see from
the data tips, the improved imaging functional has spikes at the points

x̃1 = (−0.2462, 0.2462) and x̃2 = (0.2462,−0.2462).

Here we see that the locations x̃1 and x̃2 given by theMUSIC algorithm provide a good approximation
for the actual locations of the components of the region D.

Example 2: In our second example presented here, we let

x1 = (−0.25, 0.25) and x2 = (−0.25,−0.25)

for the reconstruction in Figure 5. Presented is a contour and surface plot of the imaging functional
WMUSIC(x). We again let δ = 5% and ρ = 1 in both subregions. As we can see from the data tips, the
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imaging functional has spikes at the points

x̃1 = (−0.2462, 0.2462) and x̃2 = (−0.2462,−0.2462).

Again, in this example we see that the locations of x̃1 and x̃2 provide an approximation for the locations
of the components of the region D.

In our "nal two examples of this section, we similarly let the region

D =
J⋃

j=1

(
xj + εB(0, 1)

)

where J = 3 and J = 4, respectively, with B(0, 1) being the unit ball centered at the origin. The points
xj for j = 1, . . . , J are contained in the region! and we once again let ε = 0.01. However, we vary the
value of the forcing term ρ on each of the components of D. Furthermore, we add δ = 10% random
noise to the approximated normal derivative of the di!erence of u and its harmonic lifting to simulate
error in measured data.

Example 3: In our third example presented here, we let

x1 = (−0.75, 0), x2 = (0.25, 0.5), and x3 = (−0.3,−0.4)

for the reconstruction in Figure 6. Presented is a contour and surface plot of the imaging functional
WMUSIC(x). As we can see from the data tips, the imaging functional has spikes at the points

x̃1 = (−0.7487,−0.0151), x̃2 = (0.2563, 0.4975), and x̃3 = (−0.2965,−0.407).

In this example we see that the locations of x̃1, x̃2, and x̃3 provide an approximation for the locations of
the components of the region D. For this example we let δ = 10% where ρ = 1/4 in the region centered
at x1, ρ = 1 in the region centered at x2, and ρ = 2 in the region centered at x3. Notice that this example
suggests that the MUSIC algorithm gives sharper reconstructions when the regions are well separated.

Figure 6. Reconstruction of the locations x1 = (−0.75, 0), x2 = (0.25, 0.5), and x3 = (−0.3,−0.4) via the MUSIC algorithm.
Contour plot on the left and Surface plot on the right of the imaging functionalWMUSIC(x).



APPLICABLE ANALYSIS 13

Figure 7. Reconstruction of the locations x1 = (0, 0.75), x2 = (−0.25, 0.25), x3 = (0.25,−0.25) and x4 = (0.2,−0.6) via the
MUSIC algorithm. Contour plot on the left and Surface plot on the right of the imaging functionalWMUSIC(x).

Example 4: In our !nal example presented here, we let

x1 = (0, 0.75), x2 = (−0.25, 0.25), x3 = (0.25,−0.25) and x4 = (0.2,−0.6)

for the reconstruction in Figure 7. Presented is a contour and surface plot of the imaging functional
WMUSIC(x). As we can see from the data tips, the imaging functional has spikes at the points

x̃1 = (−0.005, 0.7487), x̃2 = (−0.2362, 0.2362), x̃3 = (0.2362,−0.2562),

and

x̃4 = (0.206,−0.5879).

In this example, we see that the reconstructed locations provide an approximation for the locations of the
components of the region D. For this example, we let δ = 10% where ρ = 3/4 in the region centered at
x1, ρ = 1 in the region centered at x2, ρ = 3/2 in the region centered at x3, and ρ = 1/2 in the region
centered at x4.

3. An inverse source problem

We now consider the direct problem where the governing physical equation is the Helmholtz
equation. This has many scienti"c applications in medical imagining, non-destructive testing, as well
as geophysics. We are particularly concerned with detecting small volume hidden objects within a
complex media in the case where one can only make measurements on an exterior surface. Just as
in the previous section, we assume that the domain ! ⊂ Rd (for d = 2, 3) is a bounded, simply
connected open set with Lipschitz boundary ∂! with unit outward normal ν. We let D ⊂ ! with
Lipschitz boundary ∂D and we have a priori knowledge that it satisfying (1). Now, let the scattered
"eld us ∈ H1(!) satisfy

%us + k2us = ρχD in ! and us|∂! = f (10)
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for any given f ∈ H1/2(∂!) where once again χ(·) denotes the indicator function. We let k denote
the wavenumber where we assume k2 is not a Dirichlet eigenvalue of −% in !. With this assump-
tion on the wave number, we have that (10) is well-posed provided that the source ρ ∈ L∞(D). By
equation (10) we have that the Cauchy data is such that (f , ∂νus) ∈ H1/2(∂!) × H−1/2(∂!).

In this section, we will develop a direct sampling method for solving the inverse shape problem.
This method has been employed for other imaging modalities such as DOT [27] and Electri-
cal Impedance Tomography [28]. See also [41–43] for applications with near "eld measurements.
MUSIC-type algorithms has also been extensively used for similar shape reconstruction problems in
[17,19,20,39]. However, our method only requires pair of Cauchy data to recover the support of the
source and also avoids matrix operations. Lastly, our method is also highly tolerant to noise.

3.1. Direct samplingmethod

The analysis in this section generalizes the result in [6]where only point and dipole scatterers are stud-
ied. This method can also be used to provide an initial estimate for the iterative methods presented
in [3,5]. We denote us0 ∈ H1(!) as the lifting which solves the Helmholtz equation such that

%us0 + k2us0 = 0 in ! and us0|∂! = f . (11)

Therefore, us0 satis"es the background problem (10) (i.e. without the forcing term) withDirichlet data
f ∈ H1/2(∂!) and wavenumber k. By our assumption on the wave number we have that (11) is also
well-posed. We proceed by de"ning the Dirichlet Green’s function for the Helmholtz equation for
the known domain! as Gk(·, z) ∈ H1

loc(! \ {z}), which is the unique solution to the boundary value
problem

%Gk(·, z) + k2Gk(·, z) = −δ(·, z) in ! and Gk(·, z)|∂! = 0.

Here, we again assume that the wavenumber k is as in (10) and (11). For any "xed z ∈ !, we appeal
to Green’s 2nd Theorem to obtain the representation

−(us − us0)(z) =
∫

!
(us − us0)(x)

[
%Gk(x, z) + k2Gk(x, z)

]
dx =

∫

D
Gk(x, z)ρ(x) dx

where we used the indicator function from our source term. By taking the normal derivative, we have
that for all z ∈ ∂!

∂ν(us − us0)(z) = −
∫

D
ρ(x)∂ν(z)Gk(x, z) dx (12)

where the integrand is well de"ned since z ∈ ∂!. Again, we let ∂ν(z) denote the normal derivative
on ∂! with respect to z. We now begin our asymptotic analysis of the normal derivative where D is
the "nite union of small volume regions as given by (1). The following lemma is key in deriving the
asymptotic expansion.

Lemma 3.1: For all z ∈ ∂! where D is given by (1), we have that as ε → 0

∫

D
ρ(x)Gk(x, z) dx = −εd

J∑

j=1
|Bj|Avg(ρj)∂ν(z)Gk(xj, z) + O(εd+1)

where Avg(ρj) is the average value of ρ in Dj.
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Proof: By (1), we have that x ∈ Dj if and only if x = xj + εy for some y ∈ Bj. Since z ∈ ∂!, then
∂ν(z)G(·, z) is smooth in the interior of ! by elliptic regularity. Therefore, we have that for all x ∈ Dj

∂ν(z)Gk(x, z) = ∂ν(z)Gk(xj + εy, z) = ∂ν(z)Gk(xj, z) + O(ε)

as ε → 0 by appealing to Taylor’s Theorem. From this, we obtain that

∫

D
ρ(x)∂ν(z)Gk(x, z) dx =

J∑

j=1

∫

Dj

ρ(x)∂ν(z)Gk(xj + εy, z) dx

=
J∑

j=1

(
∂ν(z)Gk(xj, z) + O(ε)

) ∫

Dj

ρ(x) dx

Therefore, we have that
∫

D
ρ(x)∂ν(z)Gk(x, z) dx = εd

J∑

j=1
|Bj|Avg(ρj)∂ν(z)Gk(xj, z) + O(εd+1)

as ε → 0 where we used the fact that |Dj| = εd|Bj| and Avg(ρj) denotes the average value of ρ in Dj.
!

From the above lemma, it is clear that for a speci"ed z ∈ ∂!, the normal derivative of the di!erence
of us and the lifting us0 is approximated by the centers of the inclusions.

Theorem 3.1: For any z ∈ ∂! we have that

∂ν(z)us(z) = ∂ν(z)us0(z) − εd
J∑

j=1
|Bj|Avg(ρj)∂ν(z)Gk(xj, z) + O(εd+1) as ε → 0

provided that D satis!es (1).

With this approximation to the Neumann data, we develop an algorithm that detects the centers
of small volume regions within our domain. We now study a direct sampling method. This is done
by using Theorem 3.1 and evaluating the reciprocity gap functional R[v] given by (2), where the
Cauchy data (us = f , ∂νus) on ∂! is"xed. Recall, thatwe assume that v ∈ H1(!) solves theHelmholtz
equation in ! which gives that

R[v] =
∫

∂!
v∂νus − us∂νv ds

=
∫

∂!
v



∂νus0 − εd
J∑

j=1
Avg(ρj)|Bj|∂ν(z)G(xj, z) + O(εd+1)



 − us0∂νv ds

= −εd
J∑

j=1
|Bj|Avg(ρj)

∫

∂!
v∂ν(z)G(xj, z) ds + O(εd+1)

= εd
J∑

j=1
|Bj|Avg(ρj)v(xj) + O(εd+1)

where we used (11) as well as the fact that us|∂! = us0|∂! = f .
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Notice, we can take v = eikz·ŷ, which is clearly a solution to the Helmholtz equation for all z ∈ Rd,
when ŷ ∈ Sd−1(i.e. unit circle/sphere). We proceed by de"ning the imaging functionalW(z) : Rd →
R≥0 as

W(z) =
∣∣∣∣
(
R[eikz·ŷ], eikz·ŷ

)

L2(Sd−1)

∣∣∣∣ . (13)

This functional can be used to recover the regionD by plotting it’s values in !. To prove this fact, we
will study the resolution analysis for this imaging functional. This will involve using the asymptotic
expansion derived in Theorem 3.1 to write the functional in terms of Bessel functions. To this end,
notice that

W(z) =

∣∣∣∣∣∣



εd
J∑

j=1
|Bj|Avg(ρj)eikxj·ŷ + O(εd+1), eikz·ŷ





L2(Sd−1)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
εd

J∑

j=1
Avg(ρj)|Bj|

∫

Sd−1
eik(xj−z)·ŷ ds(ŷ) + O(εd+1)

∣∣∣∣∣∣

where we used straightforward calculations and the asymptotic expansion of the reciprocity gap
functional. Now, we will recall the Funk–Hecke integral identity

∫

Sd−1
e−ik(z−x)·ŷ ds(ŷ) =

{
2π J0(k|x − z|), in R2,
4π j0(k|x − z|), in R3

see for e.g. [25,44]. Therefore, it is now clear that for all z ∈ !,

W(z) =






±ε2 2π
J∑

j=1
Avg(ρj)|Bj|J0(k|xj − z|) + O(ε3), d = 2

±ε3 4π
J∑

j=1
Avg(ρj)|Bj|j0(k|xj − z|) + O(ε4), d = 3

(14)

where J0 represents the zeroth order Bessel function of the "rst kind and j0 represents the zeroth order
spherical Bessel function of the "rst kind. This allows us to provide our main result of this section.

Theorem 3.2: Up to leading order, if Avg(ρj) #= 0 we have that for all z ∈ Rd \ D,

W(z) = O
(
dist(z,X )

1−d
2

)
as dist(z,X ) → ∞

provided that the region D satis!es (1), where the set X =
{
xj : 1, . . . , J

}
.

Proof: In order to prove the result, we use the fact that

J0(|z − x|) = O
(
|z − x|−1/2) and j0(|z − x|) = O

(
|z − x|−1)

as |z − x| → ∞ for the case when d = 2 or 3 along with the expansion in (14). !

Thus, Theorem 3.2 can be used to recover the centers of the subregions since the imaging func-
tional W(z) attains a local maximum at each of the centers. Notice that, since we only require one
Cauchy pair, this implies that this method requires less data than other direct sampling methods
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[25,41,43]. We now introduce a lemma regarding the stability for the reciprocity gap functional. This
will help us obtain a stability estimate forW(z).

The analysis in this section is similar to the work done in [45]. There are some key di!erences
in the methodologies. Here we consider a bounded domain where as [45] considers an unbounded
domain. For the case of a bounded domainwe use theDirichlet Green’s function for the region as well
as a comparison with the solution without the region of interest but for the case of the unbounded
domain in [45] one can use the free space Green’s function alone for the expansion of the scattered
"eld. In this manuscript the imaging function we propose is given by evaluating the reciprocity gap
functional at a plane wave and integrate over the unit sphere to recover the region of interest. For the
case of the unbounded domain the imaginary part of the free space Green’s function is plugged into
the reciprocity gap functional is used to determine an imaging function. In [45] if the forcing term
are point sources (which is not considered here) then one can recover the strengths from the imaging
functional. The analysis in this paper extends the result from [6,45].

Lemma 3.2: For added random noise 0 < δ < 1, we have that for any solution v ∈ H1(!) to the
Helmholtz equation,

∣∣R[v] − Rδ[v]
∣∣ ≤ Cδ‖v‖H1(!)

where R[v] is given by (2) and the perturbed reciprocity gap functional is given by

Rδ[v] =
∫

∂!
v∂νusδ − usδ∂ν ds (15)

provided that there are positive constants C1 and C2 such that

‖∂ν(usδ − us)‖H−1/2(∂!) ≤ C1δ and ‖usδ − us‖H1/2(∂!) ≤ C2δ.

Proof: By simply subtracting the expressions, we have that

R[v] − Rδ[v] =
∫

∂!
v(∂νus − ∂νusδ) − (us − usδ)∂νv ds

Thus, we can estimate the above quantity such that

|R[v] − Rδ[v]| ≤
(
‖usδ − us‖H1/2(∂!)‖∂νv‖H−1/2(∂!)

+‖v‖H1/2(∂!)‖∂ν(usδ − us)‖H−1/2(∂!)

)
≤ Cδ‖v‖H1(!)

by the dual-pairing of H1/2(∂!) and H−1/2(∂!). We have also used Trace Theorems and the fact
that v solves Helmholtz equation in !. This proves the claim. !

We are now able to present the following theorem on the error estimate for the imaging functional
W(z).

Theorem 3.3: For added random noise 0 < δ < 1, we have that for any z ∈ Rd,

|W(z) − Wδ(z)| = O(δ) as δ → 0 (16)

such that the perturbed imaging functional is de!ned as

Wδ(z) =
∣∣∣∣
(
Rδ[eikz·ŷ], eikz·ŷ

)

L2(Sd−1)

∣∣∣∣

where Rδ[·] is de!ned as in (15).
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Proof: By the Triangle and Cauchy–Schwarz inequalities, we have that

|W(z) − Wδ(z)| ≤ ‖R[eikz·ŷ] − Rδ[eikz·ŷ]‖L2(Sd−1)‖eikz·ŷ‖L2(Sd−1).

Note, that by the previous result in Lemma 15, we have that

‖R[eikz·ŷ] − Rδ[eikz·ŷ]‖L2(∂!) ≤ Cδ‖eikz·ŷ‖H1(!).

Furthermore, we have that both ‖eikz·ŷ‖H1(!) and ‖eikz·ŷ‖L2(Sd−1) are bounded and independent of
the parameter δ. Thus, we have that

|W(z) − Wδ(z)| ≤ Cδ as δ → 0

which proves the claim. !

This result demonstrates that the imaging functional W(z) is stable with respect to error in the
measured Cauchy data. This implies that plotting the imaging functional is an analytically rigorous
as well as computationally simple and stable.

3.2. Numerical validation for the direct sampling algorithm

In this section, we provide some numerical examples for recovering the locations of the unknown
source given by

{
xj : j = 1, . . . , J

}
using Theorem 3.2. Just as in the previous section, all of our numer-

ical experiments are once again done with the software MATLAB 2020a. For simplicity, we let ! be
given by the unit ball in R2. In order to do so, we "rst need a way to calculate the corresponding
scattered "eld us solving (10). To this end, we can take the radiation scattered "eld for all x ∈ R2

given by

x 2−→ −
∫

R2
ρ(y)χD(y).k(x, y) dy.

This scattered "eld solves the associated source problem in all of R2 where .k denotes the radiating
fundamental solution to the Helmholtz equation. Since χ(·) denotes the indicator function, we have
that for all x ∈ !

us(x) = −
∫

D
ρ(y)

i
4
H(1)
0 (k|x − y|) dy (17)

solves (10)with the correspondingDirichlet data. It is a well known fact that the fundamental solution
is given by

.k(x, y) = i
4
H(1)
0 (k|x − y|)

where H(1)
0 represents the "rst kind Hankel function of order zero.

Next, we compute the normal derivative of the scattered "eld. It is straightforward to conclude that
the normal derivative on ∂! of the solution us is given by

∂νus(x) =
∫

D
ρ(y)

ik
4
H(1)
1 (k|x − y|)

[
1 − x · y
|x − y|

]
dy (18)

where H(1)
1 represents the "rst kind Hankel function of order one. We calculate the scattered "eld

and its normal derivative as given by (17) and (18), respectively, using the ‘integral2’ command
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in MATLAB. Here, we evaluate the reciprocity gap functional R[eikx·ŷ] for 64 equally spaced points ŷ
on the unit circle. By appealing to our asymptotic result in (14), the imaging functional is given by

WDIRECT(x) =
∣∣∣∣
(
R[eikx·ŷ], eikx·ŷ

)

L2(S1)

∣∣∣∣
p

for any x ∈ !

which is approximated via a Riemann sum using the ‘dot’ command in MATLAB. In our calcu-
lations p> 0 is a "xed chosen parameter to sharpen the resolution of the imaging functional. We
also normalize the values of the imaging functional and pick p = 4 in our calculations such that
WDIRECT(x) = O(1) for x = xj andWDIRECT(x) ≈ 0 for x #= xj.

In all our examples, we use the imaging functionalWDIRECT(x) given above to recover the location
of the components of the region D. In these experiments, the region

D =
J⋃

j=1

(
xj + εB(0, 1)

)

with B(0, 1) being the unit circle centered at the origin. Here, we take ε = 0.01 as well as adding
random noise level δ to the simulate data us and ∂νus on ∂!. We let the wave number k = 25 and the
points xj are points contained in the region !. In Examples 1 and 2, D is composed of two regions.
In Example 3, D is composed of three regions, and in Example 4, D is composed of four regions.

Example 1: In our !rst example presented here, we let

x1 = (0, 0.75) and x2 = (0.5, 0)

for the reconstruction in Figure 8. Presented is a contour and surface plot of the imaging functional
WDIRECT(x). As we can see from the data tips, the imaging functional has spikes at the points

x̃1 = (0.0101, 0.7374) and x̃2 = (0.4949, 0.0101).

We can see that the locations of x̃1 and x̃2 given by the Direct Sampling Algorithm provide an approxi-
mation for the locations of the components of the region D. Here we let noise level δ = 1% and ρ = 1 in
both subregions.

Figure 8. di2c1e11rk25 Reconstruction of the locations x1 = (0, 0.75) and x2 = (0.5, 0) via the imaging function WDIRECT(x).
Contour plot on the left and Surface plot on the right.
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For the rest of the examples of this section, we vary the value of the forcing term ρ on each of
the components of D. Furthermore, we also increment the random noise level δ to demonstrate the
stability of the method.

Example 2: For our second example presented here, we let

x1 = (0.15, 0.5) and x2 = (0.35, 0.2)

for the reconstruction in Figure 9. Presented is a contour and surface plot of the imaging functional
WDIRECT(x). As we can see from the data tips, the imaging functional has spikes at the points

x̃1 = (0.1717, 0.4747) and x̃2 = (0.3333, 0.2121).

Again, in this example we see that the locations of x̃1 and x̃2 given by the direct sampling method provide
an approximation for the locations of the components of the region D. Here we let noise level δ = 10%
where ρ = 0.9 in the region centered at x1 and ρ = 1 in the region centered at x2. In this example, notice
that we have reduced the distance between x1 and x2 and incremented noise level δ from Example 1.
Thus, the sharp reconstruction of D as shown in Figure 9 illustrates the stability and robustness of this
method.

Example 3: In our third example presented here, we let

x1 = (−0.5,−0.5), x2 = (0, 0) and x3 = (0.5, 0.25)

for the reconstruction in Figure 10. Presented is a contour and surface plot of the imaging functional
WDIRECT(x). As we can see from the data tips, the imaging functional has spikes at the points

x̃1 = (−0.5152,−0.5152), x̃2 = (0.0101, 0.0101) and x̃3 = (0.4949, 0.2525).

In this example we see that the locations of x̃1, x̃2 and x̃3 provide an approximation for the locations of
the components of the region D. For this example we let δ = 20% where ρ = 0.8 in the region centered
at x1, ρ = 1.1 in the region centered at x2, and ρ = 0.9 in the region centered at x3.

Figure 9. Reconstruction of the locations x1 = (0.15, 0.5) and x2 = (0.35, 0.2) via the imaging functionalWDIRECT(x). Contour plot
on the left and Surface plot on the right.
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Figure 10. Reconstruction of the locations x1 = (−0.5,−0.5), x2 = (0, 0) and x3 = (0.5, 0.25) via the imaging functional
WDIRECT(x). Contour plot on the left and Surface plot on the right.

Figure 11. Reconstruction of the locations x1 = (0, 0.5), x2 = (0.25, 0.25), x3 = (−0.25,−0.25) and x4 = (0,−0.75) via the
imaging functionalWDIRECT(x). Contour plot on the left and Surface plot on the right.

Example 4: In our !nal example presented here, we let

x1 = (0, 0.5), x2 = (0.25, 0.25), x3 = (−0.25,−0.25) and x4 = (0,−0.75)

for the reconstruction in Figure 7. Presented is a contour and surface plot of the imaging functional
WDIRECT(x). As we can see from the data tips, the imaging functional has spikes at the points

x̃1 = (0.0101, 0.4949), x̃2 = (0.2525, 0.2727), x̃3 = (−0.2525,−0.2727)

and

x̃4 = (−0.0101,−0.7576).

In this example we see that the reconstructed locations provide an approximation for the locations of the
region Dj. For this example we let δ = 25% where ρ = 0.95 in the region centered at x1, ρ = 1 in the
region centered at x2, ρ = 0.9 in the region centered at x3, and ρ = 1.1 in the region centered at x4.
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4. Conclusions

In this paper, we studied the use of qualitative methods for small volume inverse shape problems
in DOT and for the Helmholtz equation. In both cases, we analyzed the asymptotic expansion of
the reciprocity gap functional (2) in order to construct an imaging functional to recover the region
of interest D. For the DOT problem, we have studied the MUSIC algorithm. Whereas in the inverse
source problem, we derived a direct samplingmethod.We note that the analysis provided here can be
used to study the inverse source problems in Rd for d = 2, 3, where one can use (17) and the asymp-
totic analysis presented here. Both algorithms allow for fast and accurate reconstruction. A future
direction for this project, in the area of inverse scattering can be to study the problem in Section 3 for
the case of electromagnetic and elastic inverse source problem. Another interesting project would be
to develop a direct sampling method as in [27] for the DOT problem presented in Section 2.
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