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ABSTRACT

In this paper, we consider inverse shape problems coming from diffuse
optical tomography and the Helmholtz equation. In both problems, our
goal is to reconstruct small volume interior regions from measured data
on the exterior surface of an object. In order to achieve this, we will derive
an asymptotic expansion of the reciprocity gap functional associated with
each problem. The reciprocity gap functional takes in the measured Cauchy
data on the exterior surface of the object. In diffuse optical tomography,
we prove that a MUSIC-type algorithm that does not require evaluating the
Green's function can be used to recover the unknown subregions. This gives
an analytically rigorous and computationally simple method for recovering
the small volume regions. For the problem coming from inverse scatter-
ing, we recover the subregions of interest via a direct sampling method.

ARTICLE HISTORY
Received 9 March 2023
Accepted 30 October 2023

COMMUNICATED BY
Y.Ou

KEYWORDS

Diffuse optical tomography;
helmholtz equation; MUSIC
algorithm; direct sampling

MATHEMATICS SUBJECT
CLASSIFICATIONS
35J05; 35J25

The direct sampling method presented here allows us to accurately recover
the small volume region from one pair of Cauchy data, requiring less data
than many direct sampling methods. We also prove that the direct sampling
method is stable with respect to noisy data. Numerical examples will be pre-
sented for both cases in two dimensions where the measurement surface is
the unit circle.

1. Introduction

The two problems we consider in this paper are motivated by diffuse optical tomography (DOT) and
the Helmholtz equation. In both problems, the goal is to reconstruct interior subregions of small vol-
ume from known Cauchy data on the boundary of the given bounded open set 2 in R? or R3. These
are inverse shape problems where the knowledge of the solution to a partial differential equation on
the boundary is used to recover unknown interior regions. Here we are interested in reconstructing a
subregion D C € such that dist(D, 0€2) > 0. In our models, a Dirichlet condition is imposed on the
exterior boundary 92 and the corresponding Neumann condition is measured. For the entirety of
this paper, we assume that D is a collection of small volume subregions such that |D| = O(e?), where
d = 2 or 3 is the dimension. To fix the notation, we let

J
D= UDj with  Dj = (xj + €B;j) such that dist (x;,x)) > co > 0 (1)
j=1
for i # j where the parameter 0 < € < 1 and B; is a domain with Lipschitz boundary centered at the

origin such that |B;j| = O(1). We also assume that the individual regions D; are disjoint. See Figure 1
for a visual representation of the described set up.
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2 G. GRANADOS AND I. HARRIS

Figure 1. Here is an example of the type of small volume regions D described in (1) contained in a circle 2 that will be considered
throughout the paper.

In DOT, the propagation of light through a medium is modeled by the steady-state diffusion
equation. Inside the medium, we consider the case where the absorption coefficient is zero except
in the small volume subregions. In this case, the Cauchy data corresponds to inward and outward
light fluxes across the medium’s surface. For a comprehensive description of DOT see topical reviews
[1,2]. In our inverse source problem for the Helmholtz equation, a forcing term will be applied to
the direct problem where the source term is zero except in the small volume subregions. Here, the
Dirichlet condition represents the scattered field on the surface of the exterior boundary 9<2. See
[3-6] for more discussion on the theory and applications of this inverse problem. For other works for
the inverse source problem we refer to [7-13].

In order to solve both inverse shape problems, we will develop reconstruction algorithms that fall
under the category of qualitative methods. In many applications, qualitative methods are optimal since
one of their main advantages is that they generally require little a priori knowledge of the unknown
region D. Whereas iterative methods usually require a priori information to construct a “good” initial
estimate for the unknown region and/or parameters to ensure that the iterative process will converge
to the unique solution of the inverse problem. Iterative methods can also be computationally expen-
sive as well as highly ill-conditioned. From the given Dirichlet data, we will assume that we have the
corresponding normal derivative on the surface €2 and analyze its asymptotic expansion with respect
to the small parameter € > 0.

In our DOT problem, we reconstruct D by developing a MUSIC-type algorithm. This method
has been used in many imaging modalities such as acoustic [14-17], electromagnetic [18-20],
and elastic [21,22] inverse scattering. Recently, the factorization method was applied to this prob-
lem for recovering extended regions in [23]. For our second problem for the Helmholtz equation,
we derive a direct sampling method which is similar to the orthogonality sampling method and
reverse time migration, to reconstruct D. This method has been widely studied for far-field mea-
surements for several inverse scattering problems, see for e.g. [24-26]. These methods have also been
applied to problems in DOT [27] and Electrical Impedance Tomography [28]. The aforementioned
approaches will be in combination with the so called reciprocity gap functional defined as the surface
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integral
R[v] == / voyu — ud,vds. (2)
Q2

In the two problems we are considering, the solution u € H!(Q) with L? Laplacian represents the
respective fields and v € H!(2) with L? Laplacian represents a solution to the problem without the
small volume regions. This functional has been studied in [29,30] for other inverse scattering prob-
lems. We utilize this functional in our asymptotic analysis in order to reconstruct the unknown region
with little a priori knowledge.

The rest of the paper is organized as follows. In Section 2, we consider an inverse shape problem
in DOT and develop the analytic framework for the MUSIC-type algorithm, which requires multi-
ple measurements. To do this, we apply the reciprocity gap functional to a harmonic lifting of the
Dirichlet data and the measured Cauchy data in order to derive an imaging functional. We proceed
in Section 3 by considering the problem from inverse scattering where we derive and analyze a direct
sampling imaging functional. This method only requires a single Cauchy pair and we show its stability
with respect to error. Here the reciprocity gap functional is applied to a plane wave and the measured
Cauchy data. In Sections 2 and 3 numerical examples are presented in R? to validate the analysis of the
constructed imaging functionals which is based on the asymptotic expansion of the Neumann data.
Lastly, in Section 4 we provide a summary of the results of this paper and briefly discuss potential
directions for future research.

2. An application to diffuse optical tomography

We begin by considering the direct problem associated with DOT. This problem stems from semi-
conductor theory where boundary measurements are used to determine the existence of an interior
structure. Recall, that we are concerned with the case where these interior structures are of small vol-
ume. We assume that the domain ¢ R¥ (for d = 2, 3) is a bounded simply connected open set with
Lipschitz boundary 92 with unit outward normal v. We let D C Q with Lipschitz boundary dD and
we have a priori knowledge that it satisfying (1).

Now, we let u € H'(Q) be the unique solution to

—Au+pxpu=0 inQ and ulpo=f (3)

for any given f € H'/2(3Q2) where x(, denotes the indicator function. We assume the absorption
coefficient p € L (D). For analytical purposes of well-posedness for the direct problem and the
upcoming analysis of the inverse problem, we assume that there are constants pmin and pmax such
that 0 < Pmin < P < Pmax fora.e. x € D.

One may easily verify that (3) is well-posed by considering its variational formulation (see for e.g.
[31]). Thus, one can show that for some C > 0 that is independent of 0 < € < 1 we have that

lullne) < Cliflgrpg)-

By Equation (3) we have that the Cauchy data is such that (f, d,u) € H'2(3Q) x H™'2(3Q).

In this section, we will develop the MUSIC Algorithm for solving the inverse problem under con-
sideration. The goal is to first derive an asymptotic expansion for the Neumann data. Being motivated
by analysis in [16,32], we will derive an analog of the multi-static response matrix derived from the
reciprocity gap functional (2) for this problem.

2.1. MUSIC algorithm

We begin, by proving an asymptotic expansion of the Neumann data d,u on 92 in terms of the
parameter 0 < € < 1. To this end, we let uy € H'(2) be the harmonic lifting of the Dirichlet data
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such that
—Aup=0 inQ and ulsq =f. (4)

In other words, uy satisfies the background problem associated with (3) without the absorption coef-
ficient with the same Dirichlet data f € H'/2(3$2). We continue by defining the Dirichlet Green’s
function for the negative Laplacian on the known domain Q as G(-,z) € H llo (Q\ {z}), which is the
unique solution to the boundary value problem

—AG(,2) =6(,2) inQ and G(,2)|3q =0.

For any fixed z € €2, we appeal to Green’s 2nd Theorem to obtain the representation

—(u—up)(2) = /Q(u —up) X)AG(x,z) dx = /QG(x, 2)p (%) xp(x)u(x) dx

=/(G(x,z)p(x)u(x) dx
D

where we have used the fact that the absorption coefficient is zero outside of the region D. By taking
the normal derivative, we have that for all z € Q2

0y (u — up)(2) = —/Dp(x)u(x)au(z>G(x, z)dx

__ /D P ()11 (X)) G (x, 2) dx — /D P () — ) (WG dx  (5)

where the integrands are well defined due to the fact that z € 92 and 9,,(;) denotes the normal deriva-
tive on 92 with respect to z. Given that the region D satisfies (1), we claim that (5) is dominated by
the first integral. In other words, the Neumann data can be approximated by the harmonic lifting u
restricted to the small volume subregions, instead of the unknown photon density u.

The following estimate derived in Theorem 3.1 of [33] will help us in our asymptotic analysis of (5).
It states that for all ¢ € H'(2) with D C Q such that |D| = O(e?), we have that

d(1_2
lell2py < C€2( P)||90||H1(Q) (6)

wherep > 2ind = 2and 2 < p < 6ind = 3. This estimate is proven using the Sobolev embedding
of HI(Q) < LP(R) (see for e.g. Chapter 5 of [34]). Using (6), we prove that uy approximates u when
D has small volume.

Lemma 2.1: Forallf € HY2(3Q), let u and uq be the solutions to (3) and (4), respectively. Then, we
have that

d(1-2
lu —uollg(q) < Ce ( P)Hf”Hl/Z(agz)

provided that |D| = O(e?) wherep > 2ind = 2and2 < p < 6ind = 3.

Proof: Since, u — ug € Hé(Q) we have that ||u — ug|| 1) < CIIV(4 — uo)|l12(q) by the Poincaré
inequality. By appealing to Equations (3) and (4) along with Green’s 1st Theorem, we have that

fg IV (1 — up)|? dx = —fD/Ou(u — to) dx < pmax|lullr2(p)llu — uollz2(py-

Now, by using the estimate in (6), we obtain that

d(1-2
lull 2oy llu — uoll2py < Ce ( ")||u||H1(sz)||u — upll g1 (q)-

This proves the claim by appealing to the well-posedness of (3). [
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From the above lemma, we have shown that u can be approximated by ug in norm when |D| =
O(e*) is small. Under the same assumption, we will use the previous lemma along with (6) to compare
the magnitudes of the two integrals in Equation (5). We start by analyzing the second integral and
provide the following results.

Lemma 2.2: Forz € 92 and |D| = O(e%), we have that

/ P (%) (U — ug) (%)) G(x,2) dx = (’)(ed+1) ase — 0.
D
Proof: In order to prove the claim, we must estimate

df1_2
M)P(x)(u — 1) (%) 0y G(x,2) dx| < CGZ( ) llu — ol (@) 10wy G (> 2 12Dy

3d

1-2
<Ce? ( P> Il n2a0) 10v G 22 (D)
where we have used (6), and Lemma 2.1 in order. We also have that
19vG D2y < IVEGDm) < CeY2IGE 2l

by the fact that v is a unit vector and the symmetry of the Green’s function. The region Q* satisfies
that D C Q* C Qforall 0 < € « 1 with dist(9€2, 2*) > 0. Thus, we have that for all z € 92

d(2-2
/ p (%) (1 — ug) (x)dy(z) G(x,2) dx| < Ce (=) f 1172 a2y (7)
D
For d = 2, we recall that p > 2. In order to prove the claim, we impose the condition that
3 . .
3=2 <2 — 1—)) making the exponent of € equal to d + 1 in (7),
which yields that p = 6. From the above inequality we get that
/D P (0 (1 — 116) () By G (%, 2) dx < CE|f 1252
Similarly, for d = 3, we recall that 2 < p < 6. Again, to prove the claim we impose that
3 . . .
4=3 (2 — I_7> again making the exponent of € equal to d + 1 in (7),
which yields that p = 4.5. Thus, we have that
f P () — 1) ()G, 2) dx < Ce*If 2 a2
D
Therefore, for both d = 2 and d = 3 taking p = 6 and p = 4.5, respectively, we have that
/ P (x) (1 — up) (%)) G(x,2) dx = O (edﬂ) ase —> 0
D

which proves the claim. [
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Next, we show that the first integral in (5) is of order €. From this, Equation (5) will imply that
the first integral is the leading term, rendering the second integral as negligible. This is proven in the
following result.

Lemma 2.3: For all z € 92 where D is given by (1), we have that as€ — 0

J
/ P X)up (X)) G(x, 2) dx = €? ) " | Bj| Avg(py)uo (%) v G %), 2) + O(e )
D -
j=1

where Avg(p;j) is the average value of p in D;.

Proof: By (1), we have that x € D; if and only if x = xj + €y for some y € B;. Now, recall that both
up and 9,(;)G(:, z) are smooth in the interior of of Q since z € IR by standard elliptic regularity.
Therefore, we have that for all x € D;

o (x)0y(2)G(x, 2) = uo(xj + €)u() G(xj + €y, 2) = up(x)) () G(x), 2) + O(e)

as € — 0 by appealing to Taylor’s Theorem. From this, we obtain that

J
/ p(x)uo(x)f?v(z)G(x,Z)dx:E / p(x)uo(xj + €9) v G(x; + €y, 2) dx
D - D:

j=1 J

J
j=

(u0(x)) 0y G (%}, 2) +O(e))/.p(x) dx.

1 D;

This implies that

J
/D P X)tp (X)) G(x, 2) dx = €? ) |Bil Avg(p)uo (%) dux G (%), 2) + O(e )
j=1

as € — 0 where Avg(p;) denotes the average value of p in D; as well as using the fact that |D;| =
d
€“|B;l. [ |

Using Lemmas 2.2 and 2.3, it is clear that for a specified z € 9€2, the normal derivative of the
difference of u and u is dominated by the first integral from Equation (5). Therefore, we have proven
an asymptotic expansion for the boundary data d,u in therms of the known harmonic lifting and
Green’s function. Similar results have been proven in [35,36] using boundary integral operators.

Theorem 2.1: For any z € dS2 we have that

]
oo u(z) = duizytio(2) — €1 Y u(x)) Avg(p))|Bjl 0y G (x5, 2) + O(¢!) ase - 0
j=1

provided that D satisfies (1).

We use this asymptotic expansion to develop an algorithm that detects the centers of the defec-
tive regions. To achieve this, we study the MUSIC algorithm which can be considered as a discrete
analogue of the factorization method (see for e.g. [16,37,38]). To this end, we let ug(-,g) and ug (-, f)
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denote the harmonic liftings with Dirichlet data g and f € HY/2(3<2), respectively (see for e.g. Chap-
ter 2 of [31]). Thus, using Theorem 2.1 we can approximate the reciprocity gap functional (2) with
Cauchy data (4 = f, d,u) on 02 and input v = 1y (-, g). Therefore, we have that

Ry [uo(9)] = /m uo (> Q) dvul,f) — ul,f)dvuo(-,g) ds

= /a uo(~g) | dyuo(- f)—edZuu])Avg(pjnB|av(z>G(xJ,z> ds
j=1

—~ / uo (- )dytio (-, g) ds + O(et1)
02

——edZ|B | Avg())uo (x5, f) / 1o ()G (), 2) ds + O(e™*h)
j=1

where we used the fact that 4|3 = uo(-,f)|aq = f, as well as ug (-, f) and uo (-, g) being harmonic in
Q. Furthermore, since z € 32, we have that

/a 0 ) G5 2) s =~ ().

With this, we obtain the expansion

]
 [uo(9)] = Z |Bjl Avg (o)) uo (xj, o (xj, §) + O(eth) (8)

as € — 0 where we have made the dependance on f explicit.

In order to derive the MUSIC algorithm, we assume that Q is the unit ball for d = 2 where we let
g=¢e" andf = e" form,n = 0,..., N for some fixed N € N. By the Riemann Mapping Theorem,
we have that the planar region €2 can be mapped to the unit ball where the transformed potential
satisfies a modified version of (3) a.e. in the unit ball. Therefore, we can apply the following MUSIC
algorithm without needing to evaluate the Green’s function. Here 6 denotes the angle formed by
points on 92 when converted to polar coordinates. Using only the leading order term of (8), we
define the matrix

J
Fum = €’ Z |Bj| Avg(0j)uo (x> fn) o (xj &m)-
j=1

From the definition of F, we see that it can be factorized by the matrices U CWNEDXT and T e ¢/¥
that are given by

Upj = uo(xjf) and T = diag (ed |Bj|Avg(,0j)> .

Therefore, it is easy to see that F=UTU'. Notice, that by our assumptions on p, all the diagonal
entries of the matrix T are non-zero. We now define the vector ¢, € CN*! for any x € R¥ by

T

¢, = (uo(x,f0)s .. ., uo(x, fn)) )
The goal is to prove that the vector ¢, is in the range of FF* if and only if x is contained in the set
{x:j=1,...,]} as similarly done in [39]. This is a discretized version of the factorization method

initially studied for this problem in [23]. See for e.g. [16,37] for the connection of the factorization
method and MUSIC algorithm.
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We now construct an imaging functional derived from the leading order term in the asymptotic
expansion of the reciprocity gap functional. To this end, we need to show that for each sampling point
x € Q we have that ¢, is in the range of FF* ifand only if x € {x; : j = 1,...,J}. This result has been
proven in Theorem 3.2 of [39]. To avoid repetition, we will state the following result and reference
the proofs in Section 3 of [39] for details.

Theorem 2.2: Assume that N+ 1> ]. Then for all x € Q2 being given by the unit circle
¢, € Range(FF*) ifandonlyifx € {xj:j=1,...,]}
where @, is defined as in (9). Moreover, the rank of the matrix FF* is given by J.

Notice, that the matrix F can be approximated by the known reciprocity gap functional. This
implies that Theorem 2.1 can be used to recover the centers of the subregions {x; : j = 1,...,]}. To
this end, we must verify whether ¢, € Range(FF*). This is equivalent to P¢, = 0 where P is the
orthogonal projection onto the Null(FF*).

2.2. Numerical validation for the MUSIC algorithm

We now provide some numerical examples of recovering locations the {xj:j=1,...,]} using
Theorem 2.2. All of our numerical experiments are done with the software MATLAB 2020a. We will
let Q be given by the unit circle in R? and we need to compute the Neumann data d,u. It is clear
that the Neumann data can be approximated by the harmonic lifting uy with the same Dirichlet data.
Indeed, Lemmas 2.2 and 2.3 imply that for all z € 2

dvu ~ dyug — / p(x)uo(x)au(z)G(x’ ) dx.
D

This can be seen as an analog to the Born approximation used in other applications (see for e.g.
[16,40]). It is clear that for Dirichlet data e’ the harmonic lifting is given by
up(x, ey = |x|"e"®  foralln € N U {0}.

It is also well known that the normal derivative of G(x, z) is given by

1 1 — |x?
a G 8 - = —
b (z) (%, 2) lag 27 |:|x|2 + 1 —2|x|cos(8 — Oz)]

for z € 9Q2. Therefore, we can compute 9, u using the ‘integral2’ command in MATLAB.
Given the Dirichlet data
fm = e andits corresponding Neumann data d,u(-, eim?),

we can easily approximate the reciprocity gap functional as given by (2) using 64 equally spaced points
on the unit circle for v = ug(-, e™). We have that

Rfm [uo(.’eii’la)] — '/d\Q ein@avu(.) eimQ) _ u(.’eime)neine ds

which is approximated via a Riemann sum using the ‘dot’ command in MATLAB for m,n =
0,...,20. By appealing to the asymptotic result in Theorem 2.1, we have that

Fom = / e d,u(-, ™) — u(-,e™)ne" ds  such that F e C**2!,
Q2
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Once F has been approximated we can use Theorem 2.2 to recover the locations of the components
of D. We only need to check if the vector ¢, is in the range of FF*. Therefore, we compute the norm

21

1Pe 3= 3 |(wue)|’

l=r+1

where the vectors uy are the orthonormal eigenvectors for FF* and r =Rank(FF*). Recall, that the
vector

. T
¢x — (1) |x|e19) e |x|20e2019)

by Equation (9) where 0 is the polar angle for the sampling point x € Q. Here P denotes the orthog-
onal projection onto the Null(FF*). Therefore, the imaging functional for recovering the centers is
given by

21 -1

Wausic@) = | > [($ u)|? forany x € Q
l=r+1

which has the property that Wyusic(x) 3> 1 for x = xj and Wyusic(x) = O(1) for x # x;. We will
plot the imaging functional to provided a numerical approximation of the centers x; forj = 1,...,].

In Figures 2,4, and 5 we use the imaging functional Wyysic (x) given above to recover the locations
of the two components of the region D. In theses experiments, the region

D = (x1 + €B(0,1)) U (x2 + €B(0,1))

with B(0, 1) being the unit ball centered at the origin. The points x; and x; are points contained in
the region Q. We will take the forcing term to be given by p = 1 on both components of D. Here,
we take € = 0.01 as well as adding § = 5% random noise to the computed normal derivative of the
difference of u and its harmonic lifting to simulate error in measured data. Note that even though the
analysis uses the Green’s function, the numerical inversion does not.

3500

X -0.2161
Y 0.1558
Z3086

3000

2500

- 2000

1500

1000

Figure 2. Initial reconstruction of the locations x; = (—0.25,0.25) and x; = (0.25, —0.25) via the MUSIC algorithm with the faulty
rank of FF*. Contour plot on the left and Surface plot on the right of the imaging function Wyysic (x).
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100 -
& X2
10° Y 6.428e-07
L)
10-10 L
X3
Y 2.555e-14
.
10715 - -
10»20 .
. [ ] @
° °
° ° ™ °® ° ° ° ° ° ° ”
=25 |
10 2
10-30 | | | | | | | | | | J
0 2 4 6 8 10 12 14 16 18 20 22

Figure 3. Semi-log plot of the svA(FF*). Labeled are its 2nd and 3rd singular values.

— 3000

X 0.2462
Y -0.2462
Z3498

2500 X -0.2462

2000

1500

1000

Figure 4. Reconstruction of the locations x; = (—0.25,0.25) and x; = (0.25, —0.25) via the MUSIC algorithm. Contour plot on the
left and Surface plot on the right of the imaging functional Wmysic (x).

Example 1: In our first example presented here, we let

x1 = (—0.25,0.25) and x; = (0.25,—0.25)
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— 7000

o 7000 | X -0.2462
Y -0.2462
z7268

6000 .|

- 5000

4000

3000

2000

1000

Figure 5. Reconstruction of the locations x; = (—0.25,0.25) and x; = (—0.25, —0.25) via the MUSIC algorithm. Contour plot on
the left and Surface plot on the right of the imaging functional Wusic (x).

for the reconstruction in Figure 2. Here we let § = 5% and p = 1 in both subregions. Presented is a
contour and surface plot of the imaging functional Wusic(x). As we can see, the imaging functional is
elevated in the general region around the centers.

Recall, that the imaging functional Wyysic(x) depends on the rank of FF*, which was calculated
using the rank function in MATLAB. However, |FF*|| « 1 and the default tolerance of the rank
function produces an overestimation of the true rank since the singular values of FF* are very small.
For the rest of our numerical experiments, we improve the rank calculation by computing the singular
values of FF* and ad hoc checking when a singular value decreases by at least 3 orders of magnitude
from the previous one.

Figure 3, suggests that the actual rank of FF* is 2, as expected by Theorem 2.2 since there are
2 components of D. Note, that it is common practice (see for e.g. [21]) to pick the first significant
jump in magnitude of the singular values to estimate the rank of a matrix. Throughout the remaining
examples of this section, we will continue to heuristically calculate the rank of FF* with this method.
With this new method of calculating the rank, Figure 4 demonstrates a clearer reconstruction of the
2 subregions centered at the locations x; = (—0.25,0.25) and x; = (0.25, —0.25). As we can see from
the data tips, the improved imaging functional has spikes at the points

X1 = (—0.2462,0.2462) and X, = (0.2462, —0.2462).

Here we see that the locations ] and X, given by the MUSIC algorithm provide a good approximation
for the actual locations of the components of the region D.

Example 2: In our second example presented here, we let
x1 = (—0.25,0.25) and x; = (—0.25,—0.25)

for the reconstruction in Figure 5. Presented is a contour and surface plot of the imaging functional
Wausic(x). We again let § = 5% and p = 1 in both subregions. As we can see from the data tips, the
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imaging functional has spikes at the points
X1 = (—0.2462,0.2462) and %, = (—0.2462, —0.2462).

Again, in this example we see that the locations of X, and X, provide an approximation for the locations
of the components of the region D.

In our final two examples of this section, we similarly let the region

D=

J

J
(xj + €B(0,1))

=1

where ] = 3 and ] = 4, respectively, with B(0, 1) being the unit ball centered at the origin. The points
xjforj=1,...,] are contained in the region 2 and we once again let € = 0.01. However, we vary the
value of the forcing term p on each of the components of D. Furthermore, we add § = 10% random
noise to the approximated normal derivative of the difference of 1 and its harmonic lifting to simulate
error in measured data.

Example 3: In our third example presented here, we let
x1 = (—0.75,0), x5 =(0.25,0.5), and x3=(—0.3,—-04)

for the reconstruction in Figure 6. Presented is a contour and surface plot of the imaging functional
Wausic(x). As we can see from the data tips, the imaging functional has spikes at the points

% = (—0.7487,—0.0151), % = (0.2563,0.4975), and X3 = (—0.2965, —0.407).

In this example we see that the locations of X1, X2, and X3 provide an approximation for the locations of
the components of the region D. For this example we let § = 10% where p = 1/4 in the region centered
atxy, p = 1 in the region centered at x,, and p = 2 in the region centered at x3. Notice that this example
suggests that the MUSIC algorithm gives sharper reconstructions when the regions are well separated.

X 0.2563
Y 0.4975
2959.9

900

800

700

600

Figure 6. Reconstruction of the locations x; = (—0.75,0), x = (0.25,0.5), and x3 = (—0.3, —0.4) via the MUSIC algorithm.
Contour plot on the left and Surface plot on the right of the imaging functional Wpusic (x).
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1600

X 0.2362
1400

1600

X -0.2362
1200 1400 Y 0.2362

Z 1340
1200 -
1000
1000 |

X -0.005025
Y 0.7487

BO0, z5102

Figure 7. Reconstruction of the locations x; = (0,0.75), x, = (—0.25,0.25), x3 = (0.25, —0.25) and x4 = (0.2, —0.6) via the
MUSIC algorithm. Contour plot on the left and Surface plot on the right of the imaging functional Wwysic (x).

Example 4: In our final example presented here, we let
x1 = (0,0.75), x3 =(—0.25,0.25), x3 =(0.25,—0.25) and x4 = (0.2,—0.6)

for the reconstruction in Figure 7. Presented is a contour and surface plot of the imaging functional
Wamusic(x). As we can see from the data tips, the imaging functional has spikes at the points

% = (—0.005,0.7487), % = (—0.2362,0.2362), *3; = (0.2362, —0.2562),

and
%4 = (0.206, —0.5879).

In this example, we see that the reconstructed locations provide an approximation for the locations of the
components of the region D. For this example, we let § = 10% where p = 3/4 in the region centered at
x1, p = 1 in the region centered at x;, p = 3/2 in the region centered at x3, and p = 1/2 in the region
centered at x4.

3. Aninverse source problem

We now consider the direct problem where the governing physical equation is the Helmholtz
equation. This has many scientific applications in medical imagining, non-destructive testing, as well
as geophysics. We are particularly concerned with detecting small volume hidden objects within a
complex media in the case where one can only make measurements on an exterior surface. Just as
in the previous section, we assume that the domain Q@ ¢ R? (for d = 2, 3) is a bounded, simply
connected open set with Lipschitz boundary €2 with unit outward normal v. We let D C Q with
Lipschitz boundary 0D and we have a priori knowledge that it satisfying (1). Now, let the scattered
field u* € H'(Q) satisfy

AU+ K =pxp inQ and o =f (10)
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for any given f € H'/2(3Q2) where once again x., denotes the indicator function. We let k denote
the wavenumber where we assume k? is not a Dirichlet eigenvalue of —A in . With this assump-
tion on the wave number, we have that (10) is well-posed provided that the source p € L*°(D). By
equation (10) we have that the Cauchy data is such that (f, 9, 4°) € H2(3Q) x H™12(3Q).

In this section, we will develop a direct sampling method for solving the inverse shape problem.
This method has been employed for other imaging modalities such as DOT [27] and Electri-
cal Impedance Tomography [28]. See also [41-43] for applications with near field measurements.
MUSIC-type algorithms has also been extensively used for similar shape reconstruction problems in
[17,19,20,39]. However, our method only requires pair of Cauchy data to recover the support of the
source and also avoids matrix operations. Lastly, our method is also highly tolerant to noise.

3.1. Direct sampling method

The analysis in this section generalizes the result in [6] where only point and dipole scatterers are stud-
ied. This method can also be used to provide an initial estimate for the iterative methods presented
in [3,5]. We denote uf, € H'(Q) as the lifting which solves the Helmholtz equation such that

Auj+Kuy=0 inQ and ujlye =1 (11)

Therefore, 1) satisfies the background problem (10) (i.e. without the forcing term) with Dirichlet data
feH 1/2(5Q) and wavenumber k. By our assumption on the wave number we have that (11) is also
well-posed. We proceed by defining the Dirichlet Green’s function for the Helmholtz equation for
the known domain 2 as G (-, z) € lOC(Q \ {2}), which is the unique solution to the boundary value
problem

AGk(-,2) + K*Gr(2) = =8(,2) inQ and Gi(-,2)|sq = 0.

Here, we again assume that the wavenumber k is as in (10) and (11). For any fixed z € €2, we appeal
to Green’s 2nd Theorem to obtain the representation

—(uf — u)(2) = / W — u) (%) [AGx(%,2) + KGi(x,2)] dx / Gi(x%2)p(x) dx

where we used the indicator function from our source term. By taking the normal derivative, we have
that for all z € 9Q

8ot — 13)(2) = — /D P (9005 Gi(x, 2) dx (12)

where the integrand is well defined since z € 9€2. Again, we let 9,(;) denote the normal derivative
on 92 with respect to z. We now begin our asymptotic analysis of the normal derivative where D is
the finite union of small volume regions as given by (1). The following lemma is key in deriving the
asymptotic expansion.

Lemma 3.1: For all z € dS2 where D is given by (1), we have that as€ — 0

/ p ()G (x,2) dx = —e* Z |B;|Avg (032 Gk () 2) + O(e*H)
j=1

where Avg(p;) is the average value of p in D;.
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Proof: By (1), we have that x € D; if and only if x = x; + €y for some y € Bj. Since z € <2, then

dv(2)G (-, 2) is smooth in the interior of €2 by elliptic regularity. Therefore, we have that for all x € D;
() Gr(x, 2) = y(0)Gi(xj + €),2) = 0y(z) G (), 2) + O(€)

as € — 0 by appealing to Taylor’s Theorem. From this, we obtain that

]
/Dp(x)au(z)Gk(x,Z) dx = Z/D P (X)0y(2) Gk (xj + €y, 2) dx
j=17Di

J
= (duxGrlx}, 2) + Oe)) f p(x) dx

j=1 by
Therefore, we have that
J
/ P ()0 Gr(x,2) dx = €? ) " |Bj|Avg(0)du(o) Gi (), 2) + O(e*H)
D ;
j=1

as € — 0 where we used the fact that |Dj| = ed|Bj| and Avg(p;) denotes the average value of p in D;.
|

From the above lemma, it is clear that for a specified z € 9€2, the normal derivative of the difference
of u® and the lifting ) is approximated by the centers of the inclusions.

Theorem 3.1: For any z € 92 we have that

J
By(o) ' (2) = By (2) — €? Y |BjAvg(p)) v Gi(xj,2) + O(¢?!) ase — 0
=1

provided that D satisfies (1).

With this approximation to the Neumann data, we develop an algorithm that detects the centers
of small volume regions within our domain. We now study a direct sampling method. This is done
by using Theorem 3.1 and evaluating the reciprocity gap functional R[v] given by (2), where the
Cauchy data (4° = f, 9, u°) on 9 is fixed. Recall, that we assume that v € H'(£2) solves the Helmholtz
equation in  which gives that

R[v] = / Vo1’ — u’d,vds
Q2

]
:/ v Bvuf)—edZAvg(pj)|Bj|8v(z)G(xj,z)+O(ed+1) — ud,vds
Q2 ;
j=1

J
= —e?) " |Bj|Avg(p)) /d . V()G (xj,2) ds + O(e?™)
j=1

J
= e " |Bj|Avg(pj)v(x)) + Ot
j=1

where we used (11) as well as the fact that u’[yo = uylse = f.
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Notice, we can take v = elkzy , which is clearly a solution to the Helmholtz equation for all z € R4,
when j € S*~1(i.e. unit circle/sphere). We proceed by defining the imaging functional W (z) : RY —
R>p as

W(z) =

(R[eikz-jl] , eikz-j/)

iy |’ (13)

This functional can be used to recover the region D by plotting it’s values in €2. To prove this fact, we
will study the resolution analysis for this imaging functional. This will involve using the asymptotic
expansion derived in Theorem 3.1 to write the functional in terms of Bessel functions. To this end,
notice that

J
W(z) = el Z |Bj|AVg(pj)eikx;")’ + O(ed-‘rl)’eikzy
j=1 L,

J
— Ed ZAVg(p])|B]| /‘Sd?l elk(X]‘—Z)-)’ dS(}A/) + O(€d+1)
=1

where we used straightforward calculations and the asymptotic expansion of the reciprocity gap
functional. Now, we will recall the Funk-Hecke integral identity

TS 2 Jo(klx — z|), inR2,
/ o ik(z x)yds(y) _ .0( | D e
Sd—1 4mjo(klx — z|), inR

see for e.g. [25,44]. Therefore, it is now clear that for all z € €,

J
+e? 21 Y Avg(p)|Bilo(klxj — z) + O(), d =2
W(z) = 7 (14)
+e> 4 Yy Avg(p)|Biljo (klx; — zI) + O(e*), d =3
j=1

where Jy represents the zeroth order Bessel function of the first kind and jj represents the zeroth order
spherical Bessel function of the first kind. This allows us to provide our main result of this section.

Theorem 3.2: Up to leading order, if Avg(p;) # 0 we have that for all z € R4\ D,
1-d
W(z) =0 (dist(z, X)T) as dist(z, X) — o0
provided that the region D satisfies (1), where the set X = {xj: 1,...,]}.

Proof: In order to prove the result, we use the fact that
Jolz = xf) = O (lz—x7%)  and jo(lz = x) = O (jz —x7")
as |z — x| — oo for the case when d = 2 or 3 along with the expansion in (14). n

Thus, Theorem 3.2 can be used to recover the centers of the subregions since the imaging func-
tional W(z) attains a local maximum at each of the centers. Notice that, since we only require one
Cauchy pair, this implies that this method requires less data than other direct sampling methods
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[25,41,43]. We now introduce a lemma regarding the stability for the reciprocity gap functional. This
will help us obtain a stability estimate for W(z).

The analysis in this section is similar to the work done in [45]. There are some key differences
in the methodologies. Here we consider a bounded domain where as [45] considers an unbounded
domain. For the case of a bounded domain we use the Dirichlet Green’s function for the region as well
as a comparison with the solution without the region of interest but for the case of the unbounded
domain in [45] one can use the free space Green’s function alone for the expansion of the scattered
field. In this manuscript the imaging function we propose is given by evaluating the reciprocity gap
functional at a plane wave and integrate over the unit sphere to recover the region of interest. For the
case of the unbounded domain the imaginary part of the free space Green’s function is plugged into
the reciprocity gap functional is used to determine an imaging function. In [45] if the forcing term
are point sources (which is not considered here) then one can recover the strengths from the imaging
functional. The analysis in this paper extends the result from [6,45].

Lemma 3.2: For added random noise 0 < § < 1, we have that for any solution v € H'(Q) to the
Helmholtz equation,

Rv] = R[v]| < C8lIviipn g

where R[v] is given by (2) and the perturbed reciprocity gap functional is given by
R[v] = / voyuy — uzd, ds (15)
Q2

provided that there are positive constants Cy and C, such that
”81;(1[3 — MS)”H—I/Z(GQ) < C15 and ||u§ - uS”Hl/Z(aQ) < C25

Proof: By simply subtracting the expressions, we have that

R[v] — R%[v] = / v(@yu'® — dyuy) — (u° — uz)d,vds
a0

Thus, we can estimate the above quantity such that
IRIV] — R[] < (Iluy — el gn2oe 100wl g-1200)
vl /2 a0 190 (5 — ) |l g-1/2(302)) < C81IVIlE ()

by the dual-pairing of H/2(3$2) and H~'/2(32). We have also used Trace Theorems and the fact
that v solves Helmholtz equation in €2. This proves the claim. [

We are now able to present the following theorem on the error estimate for the imaging functional
W(z).

Theorem 3.3: For added random noise 0 < § < 1, we have that for any z € RY,
(W(z) = Wo(2)| = O@) asé— 0 (16)

such that the perturbed imaging functional is defined as

W(S(Z) — ‘(Ré[eikzj/])eikzj/)

LZ(Sd—l)

where R®[.] is defined as in (15).
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Proof: By the Triangle and Cauchy-Schwarz inequalities, we have that
(W(2) — W (@)| < IIR[€¥7] — R [*9]| 2 ga-1) 1€¥°7 | o a1
Note, that by the previous result in Lemma 15, we have that
IRI™] = R[e* ] 2ag) < COIe™ g qy.

Furthermore, we have that both [|e*¢7| H(@) and [|eikzd | 12(sd-1) are bounded and independent of
the parameter §. Thus, we have that

IW(z) — Wl(2)| < CS asé— 0

which proves the claim. |

This result demonstrates that the imaging functional W (z) is stable with respect to error in the
measured Cauchy data. This implies that plotting the imaging functional is an analytically rigorous
as well as computationally simple and stable.

3.2. Numerical validation for the direct sampling algorithm

In this section, we provide some numerical examples for recovering the locations of the unknown
source givenby {xj : j = 1,...,J} using Theorem 3.2. Just as in the previous section, all of our numer-
ical experiments are once again done with the software MATLAB 2020a. For simplicity, we let Q2 be
given by the unit ball in R?. In order to do so, we first need a way to calculate the corresponding
scattered field u° solving (10). To this end, we can take the radiation scattered field for all x € R?
given by

X = /RZ P xp () Pr(x,y) dy.
This scattered field solves the associated source problem in all of R? where ® denotes the radiating
fundamental solution to the Helmholtz equation. Since x(., denotes the indicator function, we have
that for all x € Q

W) = — / p()HY (Kix = i) dy (17)
D

solves (10) with the corresponding Dirichlet data. It is a well known fact that the fundamental solution
is given by

i
Dp(x,y) = ZH},“(kpc )

where Hél) represents the first kind Hankel function of order zero.
Next, we compute the normal derivative of the scattered field. It is straightforward to conclude that
the normal derivative on 92 of the solution u° is given by

s ko), l—x-y
0,1 (x) = fD ) HY (kix = y) [—|x_y| } dy (18)

where H il) represents the first kind Hankel function of order one. We calculate the scattered field
and its normal derivative as given by (17) and (18), respectively, using the ‘integral2’ command
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in MATLAB. Here, we evaluate the reciprocity gap functional R[e!**7] for 64 equally spaced points
on the unit circle. By appealing to our asymptotic result in (14), the imaging functional is given by

P

Woirect (%) = ‘(R[eikx'j' ], ek ) forany x € Q

12(SY)

which is approximated via a Riemann sum using the ‘dot’ command in MATLAB. In our calcu-
lations p > 0 is a fixed chosen parameter to sharpen the resolution of the imaging functional. We
also normalize the values of the imaging functional and pick p = 4 in our calculations such that
Wpirect (%) = O(1) for x = xj and Wprecr(x) ~ 0 for x # x;.

In all our examples, we use the imaging functional WpirgcT () given above to recover the location
of the components of the region D. In these experiments, the region

J
D= U (xj + €B(0, 1))

j=1

with B(0, 1) being the unit circle centered at the origin. Here, we take € = 0.01 as well as adding
random noise level § to the simulate data »° and 9, u° on Q2. We let the wave number k = 25 and the
points x; are points contained in the region 2. In Examples 1 and 2, D is composed of two regions.
In Example 3, D is composed of three regions, and in Example 4, D is composed of four regions.

Example 1: In our first example presented here, we let
x1 = (0,0.75) and x; = (0.5,0)

for the reconstruction in Figure 8. Presented is a contour and surface plot of the imaging functional
WpIrECT (). As we can see from the data tips, the imaging functional has spikes at the points

%1 = (0.0101,0.7374) and %, = (0.4949,0.0101).

We can see that the locations of X and X, given by the Direct Sampling Algorithm provide an approxi-
mation for the locations of the components of the region D. Here we let noise level § = 1% and p = 1 in
both subregions.

X0.0101
4 Y 0.7374 X 0.4949
| Z0.9552 Y0.0101
. z1

4 7

Figure 8. di2c1e11rk25 Reconstruction of the locations x; = (0,0.75) and x, = (0.5,0) via the imaging function Wpgect(X).
Contour plot on the left and Surface plot on the right.
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For the rest of the examples of this section, we vary the value of the forcing term p on each of
the components of D. Furthermore, we also increment the random noise level § to demonstrate the
stability of the method.

Example 2: For our second example presented here, we let
x1 = (0.15,0.5) and x, = (0.35,0.2)

for the reconstruction in Figure 9. Presented is a contour and surface plot of the imaging functional
WpiIrecT (x). As we can see from the data tips, the imaging functional has spikes at the points

% = (0.1717,0.4747) and % = (0.3333,0.2121).

Again, in this example we see that the locations of x| and X, given by the direct sampling method provide
an approximation for the locations of the components of the region D. Here we let noise level § = 10%
where p = 0.9 in the region centered at x; and p = 1 in the region centered at x. In this example, notice
that we have reduced the distance between x1 and x, and incremented noise level § from Example 1.
Thus, the sharp reconstruction of D as shown in Figure 9 illustrates the stability and robustness of this
method.

Example 3: In our third example presented here, we let
x1 = (—=0.5,—0.5), x, =(0,0) and x3 = (0.5,0.25)

for the reconstruction in Figure 10. Presented is a contour and surface plot of the imaging functional
WpiIrecT (x). As we can see from the data tips, the imaging functional has spikes at the points

~

X1 = (—0.5152,—0.5152), X, = (0.0101,0.0101) and X3 = (0.4949,0.2525).

In this example we see that the locations of X1, X, and X5 provide an approximation for the locations of
the components of the region D. For this example we let § = 20% where p = 0.8 in the region centered
at x1, p = 1.1 in the region centered at x,, and p = 0.9 in the region centered at x3.

] X0.3333
Y0.2121
| z1

08 X04717
Y 0.4747 ‘
206752

474

Figure 9. Reconstruction of the locations x; = (0.15,0.5) and x, = (0.35, 0.2) via the imaging functional Wprect (X). Contour plot
on the left and Surface plot on the right.
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- 1 X -0.5152
Y -0.5152
z1

0.9

0.8

X0.4949
07 Y 0.2525

X0.0101 20,6792
Y0.0101 .
20,6420

0.6

Figure 10. Reconstruction of the locations x; = (—0.5,—0.5), x, = (0,0) and x3 = (0.5,0.25) via the imaging functional
Whoirect (x). Contour plot on the left and Surface plot on the right.

X -0.0101
Y -0.7576
z1

0.9 I

Ho7 0.8 | ’

X 0.2525
X0.0101 Y 0.2727 ‘
06 i Y 0.4949 20.5624
Z0890 | P
w Y -0.2727
405 z0.5192
05 - 1
04
04
03 03

0.2

0.1 -

Figure 11. Reconstruction of the locations x; = (0,0.5), x, = (0.25,0.25), x3 = (—0.25, —0.25) and x4 = (0, —0.75) via the
imaging functional Wpirect (). Contour plot on the left and Surface plot on the right.

Example 4: In our final example presented here, we let
x1 = (0,0.5), x =(0.25,0.25), x3=(—0.25,—-0.25) and x4 = (0,—0.75)

for the reconstruction in Figure 7. Presented is a contour and surface plot of the imaging functional
WpiIrecT (x). As we can see from the data tips, the imaging functional has spikes at the points

%1 = (0.0101,0.4949), X%, = (0.2525,0.2727), x3 = (—0.2525,—0.2727)
and

X4 = (—0.0101, —0.7576).

In this example we see that the reconstructed locations provide an approximation for the locations of the
region D;. For this example we let § = 25% where p = 0.95 in the region centered at x1, p = 1 in the
region centered at x2, p = 0.9 in the region centered at x3, and p = 1.1 in the region centered at x4.
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4. Conclusions

In this paper, we studied the use of qualitative methods for small volume inverse shape problems
in DOT and for the Helmholtz equation. In both cases, we analyzed the asymptotic expansion of
the reciprocity gap functional (2) in order to construct an imaging functional to recover the region
of interest D. For the DOT problem, we have studied the MUSIC algorithm. Whereas in the inverse
source problem, we derived a direct sampling method. We note that the analysis provided here can be
used to study the inverse source problems in R¥ for d = 2, 3, where one can use (17) and the asymp-
totic analysis presented here. Both algorithms allow for fast and accurate reconstruction. A future
direction for this project, in the area of inverse scattering can be to study the problem in Section 3 for
the case of electromagnetic and elastic inverse source problem. Another interesting project would be
to develop a direct sampling method as in [27] for the DOT problem presented in Section 2.
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