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This short paper is concerned with the numerical reconstruction of small sources
from boundary Cauchy data for a single frequency. We study a sampling method to
determine the location of small sources in a very fast and robust way. Furthermore,
the method can also compute the intensity of point sources provided that the
sources are well separated. A simple justification of the method is done using
the Green representation formula and an asymptotic expansion of the radiated
field for small volume sources. The implementation of the method is non-iterative,
computationally cheap, fast, and very simple. Numerical examples are presented
to illustrate the performance of the method.
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1. Introduction

We study in this paper a numerical method for the inverse source problem of determining small radiating

sources from Cauchy data at a fixed frequency. The Cauchy data are boundary measurements of the field

generated by the source. Inverse source problems have applications in physics and engineering such as

antenna synthesis and medical imaging. These inverse problems have been studied intensively during the

past two decades. We refer to [1–5] and references therein for results on stability analysis of inverse source

problems. There has been a large amount of literature on numerical methods for solving these inverse

problems. Results on numerical methods for inverse source problems with multi-frequency data can be found

in [6–14].

In the case of data associated with a single frequency inverse source problems may have multiple solutions

unless some a priori information about the source is given [15,16]. We refer to [17–20] for an algebraic method

for computing point sources for elliptic partial di�erential equations such as the Poisson equation and the

Helmholtz equation. An iterative approach of Newton type can be found in [15,21] for recovering point

and extended sources. A direct sampling method for computing multipolar point sources for the Helmholtz
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equation was studied in [22]. The main advantage of the sampling approach is that it is non-iterative,

fast, and computationally cheap. In the present work, we also study a sampling method for recovering

point sources and small volume sources for the Helmholtz equation. Compared with the imaging functional

introduced in [22] the imaging functional in this paper involves only a single integral instead of a double

integral. Thus the sampling method in the present work may be faster and computationally cheaper (e.g. for

large search domains in three dimensions). In addition, our implementation does not require a multi-level

sampling process as in [22] and seems to provide equivalently good reconstruction results. The justification

of our sampling method for both two and three dimensions is done simultaneously in a pretty simple way.

It relies on the Green representation formula and an asymptotic expansion of the radiated field for small

volume sources.

The paper is organized as follows. Section 2 is dedicated to the reconstruction of the location and intensity

of point sources. The method is extended to locate sources with small volumes in Section 3. A numerical

study of the performance of the method is presented in Section 4.

2. Reconstruction of point sources

We consider N œ N point sources located at xj for j = 1, 2, . . . , N such that dist(xi, xj) Ø c0 > 0. These

sources are represented by the Delta distributions ”xj and have nonzero intensities –j œ C. Let k > 0 be the

wavenumber. Assume that the sources generate the radiating scattered field u that satisfies the following

model problem

�u + k
2
u = ≠

Nÿ

j=1

–j”xj , in Rd
, (1)

lim
ræŒ

r
d≠1

2

3
ˆu

ˆr
≠ iku

4
= 0, r = |x|, (2)

where d = 2 or 3 is the dimension and the Sommerfeld radiation condition (2) holds uniformly for all

directions x̂ œ {x̂ œ Rd
: |x̂| = 1}. The radiating scattered field u is given by

u(x) =

Nÿ

j=1

–j �(x, xj), (3)

where �(x, y) is the Green function of problem (1)–(2)

�(x, y) =

Y
]

[

i

4
H

(1)

0
(k|x ≠ y|), in R2

,

eik|x≠y|
4fi|x≠y| , in R3

,

(4)

and H
(1)

0
is the first kind Hankel function of order zero. Let ⌦ be a regular bounded domain with boundary

ˆ⌦ in Rd
. Assume that xj œ ⌦ for j = 1, . . . , N and denote by ‹(x) the outward normal unit vector to ˆ⌦

at x.

Inverse problem: Given the Cauchy data u and ˆu/ˆ‹ on ˆ⌦ for a fixed wave number k, determine

locations xj and intensities –j for j = 1, 2, . . . , N .

We note that with a single wave number k the Cauchy data is important to justify the uniqueness of

solution to this inverse problem, see [15,16]. The following simple lemma is important for the resolution

analysis of the imaging functional we study for the inverse source problem.

Lemma 1. The following identity holds for the radiating scattered field u in (3)

⁄

ˆ⌦

3
ˆIm�(x, z)

ˆ‹(x)
u(x) ≠ Im�(x, z)

ˆu(x)

ˆ‹(x)

4
ds(x) =

Nÿ

j=1

–j Im�(xj , z). (5)
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Proof. Substituting the formula for u in (3) in the left hand side of (14) implies

⁄

ˆ⌦

Q

aˆIm�(x, z)

ˆ‹(x)

Nÿ

j=1

–j �(x, xj) ≠ Im�(x, z)

Nÿ

j=1

–j
ˆ�(x, xj)

ˆ‹(x)

R

b ds(x)

=

Nÿ

j=1

–j

⁄

ˆ⌦

3
ˆIm�(x, z)

ˆ‹(x)
�(xj , x) ≠ Im�(x, z)

ˆ�(xj , x)

ˆ‹(x)

4
ds(x). (6)

Due to the fact that �Im�(z, y) + k
2
Im�(z, y) = 0 for all z, y œ Rd

the proof follows from the Green

representation formula i.e.

⁄

ˆ⌦

3
ˆIm�(x, z)

ˆ‹(x)
�(y, x) ≠ Im�(x, z)

ˆ�(y, x)

ˆ‹(x)

4
ds(x) = Im�(y, z)

which proves the claim. ⇤

Now, we define the imaging functional

I(z) :=

⁄

ˆ⌦

3
ˆIm�(x, z)

ˆ‹(x)
u(x) ≠ Im�(x, z)

ˆu(x)

ˆ‹(x)

4
ds(x), z œ Rd

. (7)

Therefore, from the lemma above we have that

I(z) =

Nÿ

j=1

–j Im�(xj , z),

where

Im�(x, z) =

I
1

4
J0(k|x ≠ z|) in R2

,

k
4fi j0(k|x ≠ z|) in R3

,
(8)

and J0 and j0 are respectively a Bessel function and a spherical Bessel function of the first kind.

We know from (8) that Im�(z, xj) peaks at z ¥ xj and decays as z is away from xj . Thus we can

determine N as the number of significant peaks of |I(z)|
p

where p > 0 is chosen to sharpen the significant

peaks of the imaging functional (e.g. p = 4 works well for the numerical examples in the last section). Then

xj can be determined as the locations where |I(z)|
p

has significant peaks. It is obvious that the resolution

for imaging the sources is within the di�raction limit. Furthermore, from the fact

J0(t) = O(t
≠1/2

) and j0(t) = O(t
≠1

)

as t æ Œ, we have

|I(z)|
p

= O

1
dist(z, X)

(1≠d)p
2

2
as dist(z, X) æ Œ

where the set X = {xj : 1, . . . , N}. Moreover, once xj is obtained the intensity –j can be estimated as

–j ¥
I(xj)

Im�(xj , xj)
since the xj ’s are well separated. (9)

It is easy to verify that the imaging functional is stable with respect to noise in the Cauchy data see for

instance [22]. We leave the proof to the readers.
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3. Reconstruction of small volume sources

We let D with Lipschitz boundary ˆD have small volume in Rd
such that |D| = O(‘

d
). To this end, we

assume that the scatterer D is given by a collection of small volume subregions i.e.

D =

N€

j=1

Dj with Dj = (xj + ‘Bj) such that dist(xi, xj) Ø c0 > 0 (10)

for i ”= j where the parameter 0 < ‘ π 1 and Bj is a radially symmetric domain with Lipschitz boundary

centered at the origin such that |Bj | is independent of ‘. We also assume that the Dj are pairwise disjoint

such that Dj fl Di is empty for i ”= j. Let f œ L
2
(D) where 1D denotes the indicator function on the set D.

We assume that the radiating scattered field u œ H
1

loc(Rd
) generated by these small sources satisfies

�u + k
2
u = ≠f1D in Rd

(11)

along with the Sommerfeld radiation condition as in (2). It is well–known that the solution is given by

u(x) =

⁄

D
f(y)�(x, y) dy (12)

where �(x, y) is the Green function as in (4).

We consider inverse problem of determining xj , j = 1, . . . , N , from u and ˆu/ˆ‹ on ˆ⌦ . We have that for

any x œ Rd
\ D we can use a first order Taylor expansion of the Green function to approximate the radiated

field u. Therefore, we notice that y œ Dj if and only if y = xj + ‘Ê for some Ê œ Bj which gives that

u(x) =

⁄

D
f(y)�(x, y) dy =

Nÿ

j=1

⁄

Dj

f(y)�(x, xj + ‘Ê) dy

=

Nÿ

j=1

1
�(x, xj) + O(‘)

2 ⁄

Dj

f(y) dy.

Then, letting fDj
be the average value of f on Dj and using the fact that |Dj | = ‘

d
|Bj | we have that

u(x) = ‘
d

Nÿ

j=1

fDj
|Bj |�(x, xj) + O(‘

d+1
). (13)

This gives that up to leading order u acts like a radiating scattered field generated by point sources located at

xj with intensity –j = ‘
d
|Bj |fDj

. Notice, that by the Cauchy–Schwartz inequality we have that is bounded

with respect to ‘. As in (14), we use (13) and the Green formula for Im�(x, z) to derive the following identity.

Lemma 2. The following identity holds for the radiating scattered field u in (3)

⁄

ˆ⌦

3
ˆIm�(x, z)

ˆ‹(x)
u(x) ≠ Im�(x, z)

ˆu(x)

ˆ‹(x)

4
ds(x) = ‘

d
Nÿ

j=1

fDj
|Bj |Im�(xj , z) + O(‘

d+1
). (14)

As in the case of point sources this lemma allows us to use the imaging functional I(z) in (7) to

determine xj . In fact, the centers xj of the small sources can be determined as the locations where |I(z)|
p

has significant peaks. And also, up to the leading order, if fDj
”= 0 we have that for all z œ Rd

\ D,

|I(z)|
p

= O

1
dist(z, X)

(1≠d)p
2

2
as dist(z, X) æ Œ where the set X = {xj : 1, . . . , N}.
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Fig. 1. Pictures of |I(z)|4 for point sources. The true location of the sources are displayed by the green crosses.

4. Numerical examples

We present some numerical examples in two dimensions to demonstrate the performance of the method.

In all of the numerical examples the wave number is chosen as k = 20 and the Cauchy data is given at

256 points which are uniformly distributed on the circle centered at the origin with a radius of 50 (which

is about 159 wavelengths). The data is computed using Eqs. (3) and (12), respectively with 10% random

noise added to the data. The noise vectors N1,2 consist of numbers a + ib where a, b œ (≠1, 1) are randomly

generated with a uniform distribution. For simplicity we consider the same noise level for both u and ˆu/ˆ‹.

The noise vectors are added to u and ˆu/ˆ‹ as follows

u + 10%
N1

ÎN1ÎF
ÎuÎF ,

ˆu

ˆ‹
+ 10%

N2

ÎN2ÎF

....
ˆu

ˆ‹

....
F

,

where Î ·ÎF is the Frobenius matrix norm. The imaging functional I(z) is computed at 256 ◊ 256 uniformly

distributed sampling points on the search domain [≠2, 2]
2
. That means the distance between two consecutive

sampling points is about 0.05 wavelength. This distance is small enough since the sources are supposed to

be well separated.

The reconstruction results for the location and intensity of di�erent numbers of point sources can be

seen in Tables 1 and 2 as well as Fig. 1. The number of significant peaks of |I(z)|
4

(i.e. p = 4) can be

seen clearly in Fig. 1. Then we determine xj as the location of these peaks. Tables 1 and 2 show that the

locations xj of the sources ”xj (j = 1, . . . , N) are computed with good accuracy and the intensities –j are

5
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Fig. 2. The first row is the true profile of small volume sources (the color of the disks is associated with the value of f on each disk
that we are not able to recover using I(z)). The second row contains pictures of |I(z)|4.

Table 1
Reconstruction result for the location of N point sources.

N True location xj Computed location xj

2 (close) (0.15, 0), (≠0.15, 0) (0.125, 0.000), (≠0.125, 0.000)
2 (distant) (≠1, 0.8), (0.7, ≠1) (≠1.000, 0.796), (0.703, ≠1.000)
3 (1, ≠1), (1.3, 1), (≠1.2, ≠0.25) (1.000, ≠0.984), (≠1.312, 0.984), (≠1.203, ≠0.250)
4 (1, ≠1), (1, 0.75), (≠1.2, ≠1), (≠1.2, 0.75) (1.015, ≠1.000), (1.015, 0.750), (≠1.203, ≠1.000), (≠1.203, 0.750)

Table 2
Reconstruction result for the intensity of N point sources with location in Table 1.

N True intensity –j Computed intensity –j

2 (close) 1 ≠ 2i, 1 + 2i 0.942 ≠ 1.881i, 0.950 + 1.899i
2 (distant) 1 ≠ 2i, 1 + 2i 1.007 ≠ 2.045i, 1.024 + 2.004i
3 4 + 0i, 3.5 ≠ i, 3.5 + i 3.912 + 0.023i, 3.431 ≠ 0.918i, 3.570 + 0.968i
4 2.5 + 2i, 2.5 ≠ 2i, 3.5 ≠ i, 3 + i 2.725 + 2.237i, 2.759 ≠ 2.158i, 3.532 ≠ 1.035i, 2.982 + 1.077i

recovered with reasonable errors (the relative error ranges from 1% to 10%). In particular, the method can

reasonably compute the location and intensity of two point sources located within a wavelength. It is noticed

that the error gets worse as the number of sources to compute increases. We display in Table 3 and Fig. 2

the reconstruction results of sources that are small disks. The centers xj of these circular sources are again

computed with very good accuracy. It is worth noting that the source intensities considered in this section

are not too di�erent from each other in terms of magnitude. If there is a large discrepancy in magnitude of

the source intensities the method is likely not able to determine the sources with smaller intensities. This

drawback was also mentioned for the sampling method studied in [22].

6
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Table 3
Reconstruction result for the center xj of N small disks.

N True xj Computed xj

3 (1, 0.75), (≠1, ≠1), (1.25, ≠1.5) (0.984, 0.734), (≠0.984, ≠1.000), (1.234, ≠1.500)
4 (1, 1), (≠1, ≠1.25), (1, ≠1), (≠1, 0.75) (0.984, 0.984), (≠0.984, ≠1.234), (0.984, ≠0.984), (≠0.984, 0.734)
5 (1.25, 1.2), (≠1, 0), (1, ≠1), (≠0.6, 1), (0.25, 0) (1.265, 1.203), (≠1.000, 0.015), (1.000, ≠1.015), (≠0.609, 0.984), (0.250, 0.000)
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