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Single frequency

1. Introduction

We study in this paper a numerical method for the inverse source problem of determining small radiating
sources from Cauchy data at a fixed frequency. The Cauchy data are boundary measurements of the field
generated by the source. Inverse source problems have applications in physics and engineering such as
antenna synthesis and medical imaging. These inverse problems have been studied intensively during the
past two decades. We refer to [1-5] and references therein for results on stability analysis of inverse source
problems. There has been a large amount of literature on numerical methods for solving these inverse
problems. Results on numerical methods for inverse source problems with multi-frequency data can be found
in [6-14].

In the case of data associated with a single frequency inverse source problems may have multiple solutions
unless some a priori information about the source is given [15,16]. We refer to [17-20] for an algebraic method
for computing point sources for elliptic partial differential equations such as the Poisson equation and the
Helmholtz equation. An iterative approach of Newton type can be found in [15,21] for recovering point
and extended sources. A direct sampling method for computing multipolar point sources for the Helmholtz
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equation was studied in [22]. The main advantage of the sampling approach is that it is non-iterative,
fast, and computationally cheap. In the present work, we also study a sampling method for recovering
point sources and small volume sources for the Helmholtz equation. Compared with the imaging functional
introduced in [22] the imaging functional in this paper involves only a single integral instead of a double
integral. Thus the sampling method in the present work may be faster and computationally cheaper (e.g. for
large search domains in three dimensions). In addition, our implementation does not require a multi-level
sampling process as in [22] and seems to provide equivalently good reconstruction results. The justification
of our sampling method for both two and three dimensions is done simultaneously in a pretty simple way.
It relies on the Green representation formula and an asymptotic expansion of the radiated field for small
volume sources.

The paper is organized as follows. Section 2 is dedicated to the reconstruction of the location and intensity
of point sources. The method is extended to locate sources with small volumes in Section 3. A numerical
study of the performance of the method is presented in Section 4.

2. Reconstruction of point sources

We consider N € N point sources located at z; for j =1,2,..., N such that dist(z;,x;) > co > 0. These
sources are represented by the Delta distributions 595]. and have nonzero intensities a;; € C. Let k > 0 be the
wavenumber. Assume that the sources generate the radiating scattered field u that satisfies the following
model problem

N
Au+ k*u = —Zajémj, in RY, (1)
j=1
Y R _
rlggor 2 (37“ - 1ku> =0, r=]|z, (2)

where d = 2 or 3 is the dimension and the Sommerfeld radiation condition (2) holds uniformly for all
directions # € {# € R?: |#| = 1}. The radiating scattered field u is given by

N
u(w) = a; B(x, ), (3)
j=1

where @(z,y) is the Green function of problem (1)—(2)

THM (k| —y)), inR?

40 ) )

@(.23, y) = eiklx—y\ . 3 (4)
prap—r in R?,

and H(gl) is the first kind Hankel function of order zero. Let {2 be a regular bounded domain with boundary

08 in RY. Assume that z; € 2 for j =1,..., N and denote by v(x) the outward normal unit vector to 942

at x.

Inverse problem: Given the Cauchy data w and du/0v on 02 for a fixed wave number k, determine
locations x; and intensities o; for j =1,2,..., N.

We note that with a single wave number k the Cauchy data is important to justify the uniqueness of
solution to this inverse problem, see [15,16]. The following simple lemma is important for the resolution
analysis of the imaging functional we study for the inverse source problem.

Lemma 1. The following identity holds for the radiating scattered field u in (3)

Mmd(@,2) v 1 (. ) 20 Sx_Na‘m o
/axz< () T QS(Jau(x))d()—; jIm @(z;, 2). (5)
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Proof. Substituting the formula for v in (3) in the left hand side of (14) implies
N

Olm &(x, z) w Blo2) — T (a2 NaO@(m,xj) s(z
| T o o) -1 2T Tg 0 | )

Jj=1

— N A Olm &(x, 2) ‘ 0d(z;, )
_;;”Ln(<%@>“%”**m“%@‘m@>>®u» (6)

Due to the fact that Alm &(z,y) + k%Im &(z,y) = 0 for all z,y € R the proof follows from the Green

representation formula i.e.

M B(w,2) 4 o) — 1 (a2 228D () = Tm (., -
foo (Pt ) 000, 0 ) o) = m 02

which proves the claim. [

Now, we define the imaging functional

- Olm @(x,z)u 2 — T Bz » Ou(x) ol . d
1) = [ (25 - o J4D ) asto). e R )

Therefore, from the lemma above we have that

N
I(z) = Zaj Im ¢(z;, 2),
j=1

where
1Jo(klz —z])  in R?,

ﬁjg(lﬂﬂ: —z]) in R3,

Im &(z, 2) = { (8)
and Jy and jj are respectively a Bessel function and a spherical Bessel function of the first kind.

We know from (8) that Im &(z,x;) peaks at z ~ x; and decays as z is away from z;. Thus we can
determine N as the number of significant peaks of |I(z)[” where p > 0 is chosen to sharpen the significant
peaks of the imaging functional (e.g. p = 4 works well for the numerical examples in the last section). Then
z; can be determined as the locations where |I(z)|” has significant peaks. It is obvious that the resolution

for imaging the sources is within the diffraction limit. Furthermore, from the fact
Jo(t) =O@"?) and  jo(t) = O(t™")

as t — oo, we have
(1—-d)p

[1(2)]" = O(dist(z,X) 2 ) as dist(z, X) = o0
where the set X = {x; : 1,..., N}. Moreover, once x; is obtained the intensity a; can be estimated as

o A(z))

a; % ———— since the z;’s are well separated. 9
J Im @(!L‘j, a?j) J P ( )

It is easy to verify that the imaging functional is stable with respect to noise in the Cauchy data see for
instance [22]. We leave the proof to the readers.
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3. Reconstruction of small volume sources

We let D with Lipschitz boundary dD have small volume in R? such that |D| = O(e). To this end, we
assume that the scatterer D is given by a collection of small volume subregions i.e.

D= U D; with Dj = (z;+eB;j) suchthat dist(z;,z;)>co >0 (10)

for i # j where the parameter 0 < ¢ < 1 and Bj is a radially symmetric domain with Lipschitz boundary
centered at the origin such that |B;| is independent of e. We also assume that the D; are pairwise disjoint
such that D; N D; is empty for i # j. Let f € L?(D) where 1p denotes the indicator function on the set D.
We assume that the radiating scattered field u € H, lloc(Rd) generated by these small sources satisfies

Au+k*u=—flp in R? (11)

along with the Sommerfeld radiation condition as in (2). It is well-known that the solution is given by

z) = /D F(y) Bz y) dy (12)

where @(z,y) is the Green function as in (4).

We consider inverse problem of determining z;, j =1,..., N, from « and du/0v on 0f2. We have that for
any x € R4\ D we can use a first order Taylor expansion of the Green function to approximate the radiated
field u. Therefore, we notice that y € D; if and only if y = z; + ew for some w € B; which gives that

0= [ rwaena=3 [ 1w, +wy
. j=17Dj
= > (0w + 00) [ sy

j=1

Then, letting ij be the average value of f on D; and using the fact that |D;| = €?|B;| we have that

N
u(@) = ey Fp, |Bjld(x, ;) + O (13)

j=1

This gives that up to leading order u acts like a radiating scattered field generated by point sources located at
x; with intensity «; = 4| B; |?Dj. Notice, that by the Cauchy—-Schwartz inequality we have that is bounded
with respect to e. Asin (14), we use (13) and the Green formula for Im @(z, z) to derive the following identity.

Lemma 2. The following identity holds for the radiating scattered field u in (3)

Ol d(a2) o O N e e 4 o
/{m( i) M@l ¢(,)ay($)) Z S| Bjlm &(;,2) + O(e™). (14)

As in the case of point sources this lemma allows us to use the imaging functional I(z) in (7) to
determine ;. In fact, the centers x; of the small sources can be determined as the locations where |I(z)[”
has significant peaks. And also, up to the leading order, if TD], # 0 we have that for all z € R?\ D,

lI(2)|” = O(dist(z,X)(l_;l)p) as dist(z, X) — oo where the set X = {z; :1,...,N}.
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Fig. 1. Pictures of |I(2)|* for point sources. The true location of the sources are displayed by the green crosses.

4. Numerical examples

We present some numerical examples in two dimensions to demonstrate the performance of the method.
In all of the numerical examples the wave number is chosen as £k = 20 and the Cauchy data is given at
256 points which are uniformly distributed on the circle centered at the origin with a radius of 50 (which
is about 159 wavelengths). The data is computed using Eqs. (3) and (12), respectively with 10% random
noise added to the data. The noise vectors N7 o consist of numbers a + ib where a,b € (—1,1) are randomly
generated with a uniform distribution. For simplicity we consider the same noise level for both u and du/0ov.
The noise vectors are added to w and du/dv as follows

ou No

N
w+10%—2 g, 2L 4 10% -2
AT A PR AT

Ju
ov

F

where || - || is the Frobenius matrix norm. The imaging functional I(z) is computed at 256 x 256 uniformly
distributed sampling points on the search domain [—2, 2]2. That means the distance between two consecutive
sampling points is about 0.05 wavelength. This distance is small enough since the sources are supposed to
be well separated.

The reconstruction results for the location and intensity of different numbers of point sources can be
seen in Tables 1 and 2 as well as Fig. 1. The number of significant peaks of [I(z)|* (i.c. p = 4) can be
seen clearly in Fig. 1. Then we determine x; as the location of these peaks. Tables 1 and 2 show that the
locations x; of the sources (5%. (j =1,...,N) are computed with good accuracy and the intensities o are
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Fig. 2. The first row is the true profile of small volume sources (the color of the disks is associated with the value of f on each disk
that we are not able to recover using I(z)). The second row contains pictures of |I(z)|*.

Table 1
Reconstruction result for the location of N point sources.
N True location z; Computed location z;
2 (close) (0.15,0), (—0.15,0) (0.125,0.000), (—0.125,0.000)
2 (distant) (—1,0.8), (0.7, —1) (—1.000, 0.796), (0.703, —1.000)
3 (1,-1), (1.3,1), (—1.2,—0.25) (1.000, —0.984), (—1.312,0.984), (—1.203, —0.250)
4 (1,-1),(1,0.75), (—1.2, —1), (—1.2,0.75) (1.015, —1.000), (1.015,0.750), (—1.203, —1.000), (—1.203, 0.750)
Table 2
Reconstruction result for the intensity of N point sources with location in Table 1.
N True intensity «; Computed intensity o
2 (close) 1—2i, 14 2i 0.942 — 1.881i, 0.950 + 1.899i
2 (distant) 1—2i,1+2i 1.007 — 2.045i, 1.024 4 2.004i
3 44 0i, 3.5 —1i, 3.5 41 3.912 + 0.023i, 3.431 — 0.918i, 3.570 + 0.968i
4 2.5+ 2i, 2.5 -2i, 3.5 -1, 341 2.725 + 2.237i, 2.759 — 2.158i, 3.532 — 1.035i, 2.982 + 1.077i

recovered with reasonable errors (the relative error ranges from 1% to 10%). In particular, the method can
reasonably compute the location and intensity of two point sources located within a wavelength. It is noticed
that the error gets worse as the number of sources to compute increases. We display in Table 3 and Fig. 2
the reconstruction results of sources that are small disks. The centers x; of these circular sources are again
computed with very good accuracy. It is worth noting that the source intensities considered in this section
are not too different from each other in terms of magnitude. If there is a large discrepancy in magnitude of
the source intensities the method is likely not able to determine the sources with smaller intensities. This
drawback was also mentioned for the sampling method studied in [22].
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Table 3
Reconstruction result for the center z; of N small disks.
N True x; Computed x;
3 (1,0.75), (—1,—1), (1.25, —1.5) (0.984,0.734), (—0.984, —1.000), (1.234, —1.500)
4 (1,1), (—1,-1.25), (1, —1), (—1,0.75) (0.984,0.984), (—0.984, —1.234), (0.984, —0.984), (—0.984,0.734)
5 (1.25,1.2),(—1,0),(1,—-1),(-0.6,1), (0.25,0) (1.265,1.203), (—1.000, 0.015), (1.000, —1.015), (—0.609, 0.984), (0.250, 0.000)

Data availability

No data was used for the research described in the article.
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