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Abstract

Previous studies have primarily focused on predicting stress arousal, encompassing
physiological, behavioral, and psychological responses to stressors, while neglecting the
examination of stress appraisal. Stress appraisal involves the cognitive evaluation of a
situation as stressful or non-stressful, and as a threat/pressure or a challenge/opportu-
nity. In this study, we investigated several research questions related to the association
between states of stress appraisal (i.e., boredom, eustress, coexisting eustress-distress,
distress) and various factors such as stress levels, mood, productivity, physiological and
behavioral responses, as well as the most effective ML algorithms and data signals for
predicting stress appraisal. The results support the Yerkes-Dodson law, showing that a
moderate stress level is associated with increased productivity and positive mood, while
low and high levels of stress are related to decreased productivity and negative mood,
with distress overpowering eustress when they coexist. Changes in stress appraisal rela-
tive to physiological and behavioral features were examined through the lenses of stress
arousal, activity engagement, and performance. An XGBOOST model achieved the best
prediction accuracies of stress appraisal, reaching 82.78% when combining physiologi-
cal and behavioral features and 79.55% using only the physiological dataset. The small
accuracy difference of 3% indicates that physiological data alone may be adequate to
accurately predict stress appraisal, and the feature importance results identified electro-
dermal activity, skin temperature, and blood volume pulse as the most useful physiologic
features. Implementing these models within work environments can serve as a founda-
tion for designing workplace policies, practices, and stress management strategies that
prioritize the promotion of eustress while reducing distress and boredom. Such efforts
can foster a supportive work environment to enhance employee well-being and
productivity.
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Introduction

Work stress is a widespread problem affecting many employees. The World Health Organiza-
tion has recognized work stress as a global health concern due to its implications on overall
well-being and productivity [1]. According to the American Institute of Stress, 80% of workers
experience job-related stress, with almost half seeking help to manage it [2]. Prolonged expo-
sure to such stress, as noted by Ohman et al. [3], can hamper cognitive abilities, leading to
compromised decision-making and problem-solving capabilities. Particularly in the realm of
office work, which possesses the largest workforce in the U.S. [4], the factors contributing to
work stress are manifold: long hours, pressing deadlines, overwhelming workloads, limited
control over tasks, and interpersonal conflicts [5]. This stress manifests in various physical and
psychological symptoms among office workers, ranging from fatigue and headaches to more
severe conditions like anxiety, depression, and potential early stages of heart disease, as
highlighted by Low et al. [6].

It is essential to understand that not all forms of stress experienced in the workplace are
negative. Stress in the work environment can be categorized into two main types: eustress and
distress. Eustress and distress are two types of stress that can occur in the workplace [7]. Eus-
tress, or "good stress," comes from a challenging or exciting situation, such as a big project or
presentation. Distress, on the other hand, occurs in overwhelming or negative situations, such
as a toxic work environment or heavy workload. Eustress is linked to increased productivity
and positive mood, while distress is associated with decreased productivity and negative mood
[7]. Two concepts are important for differentiating eustress and distress: stress arousal and
stress appraisal. Stress arousal refers to the body’s physiological, behavioral, and psychological
responses to stress [8]. Stress appraisal refers to the cognitive evaluation of a situation as stress-
ful versus non-stressful or as a threat/pressure versus a challenge/opportunity [9]. Both eus-
tress and distress can cause stress arousal, but eustress is associated with a positive stress
appraisal, where individuals see a situation as challenging but manageable, while distress is
associated with a negative stress appraisal, where individuals view a situation as overwhelming
and uncontrollable. It is important to note that eustress and distress can coexist in the work-
place, for example, when an employee experiences eustress from a challenging project but also
experiences distress due to a lack of support from colleagues [10]. This dual experience under-
scores the need for a balanced approach in the workplace, where both positive and negative
reactions to work scenarios are considered. Relying on a holistic model for determining stress
appraisal can help organizations achieve this balance, promoting positive well-being while also
addressing factors related to ill-health [11].

The Yerkes-Dodson Law, conceptualized by psychologists Robert Yerkes and John Dodson
in 1908, elucidates the intricate relationship between arousal and performance [12]. It posits
that optimum performance is achieved at moderate arousal levels, whereas both low and high
arousal can impede performance. Jarinto’s study [13] further delves into this, suggesting that
eustress, within this framework, represents the ideal stressor level, enabling peak performance.
It’s corroborated by other research which indicates that moderate pressure is conducive to
optimal performance, whereas both excessive and insufficient pressure can be counterproduc-
tive [14, 15], while performance tends to deteriorate when employees encounter excessive or
insufficient pressure. This relationship is elegantly depicted in Fig 1, adapted from [16]. The
graph presents a spectrum: from under-challenged conditions leading to boredom, to the opti-
mal "flow” state characterized by heightened productivity, and finally to overwhelming pres-
sure resulting in feelings of inundation and sometimes even panic. The graph presents the
inverted u-curve representing this arousal-performance relationship overlayed with potential
appraisals of the experience that range from boredom to burnout. On the lower end of the
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Fig 1. Adaptation of the Yerkes-Dodson law "inverted U-curve" for stress arousal and performance that
incorporates appraisals of the experience.

https://doi.org/10.1371/journal.pone.0296468.g001

graph, characterized by under-challenged conditions, individuals exhibit a lack of motivation
and may approach their tasks in an unmotivated manner. In the middle section, individuals
operate at their utmost efficiency, entering a state of "flow" characterized by a sense of enjoy-
ment and heightened productivity. Conversely, the upper end of the graph depicts the struggle
experienced under overwhelming pressure and bad mood, marked by the presence of numer-
ous demands that engender feelings of being inundated and, at times, evoking panic-like
responses.

A recent study targeting the prediction of office worker productivity emphasized the signifi
cance of incorporating psychological states into such models to enhance their predictive accu-
racy. This research specifically spotlighted mood and eustress as pivotal indicators of
productivity [17]. Recognizing the impact of these four stress appraisal conditions—boredom,
eustress, the coexistence of eustress and distress, and pure distress—on mood and perfor-
mance enables employers to craft strategies that foster positive work environments. By mitigat-
ing extremes like burnout or boredom, these strategies can enhance both productivity and
mental well-being among workers. Building on this, our study seeks to deepen the understand-
ing of stress appraisal within the context of the Yerkes-Dodson law, conducting a quantitative
examination of shifts in productivity, mood, and stress across the four stress appraisal states.

Recent research has underscored the importance of distinguishing between different types
of stress when evaluating its effects on cognitive and health outcomes. One study emphasized
the subdivision of stress into eustress (low-arousal) and distress (high-arousal) to better under
stand individual cognitive abilities and mental/physical health [18]. In this study, participants’
brain hemodynamics were assessed using functional near-infrared spectroscopy (fNIRS),
which utilizes a near-infrared biosensor. By exposing participants to emotional stimulus using
affective triggering images, they found that both eustress and distress groups showed brain
activity in the right frontal cortex. However, the eustress group displayed heightened brain
activity, while the distress group exhibited a more recessive brain activity pattern, irrespective
of the type of stimuli (positive or negative). In another study, it was determined that the psy-
chological reactions during distress resulted in distinct skin conductance responses, differing
from those observed under eustress [19]. Another study showed that boredom is associated
with parasympathetic nervous system activation and reduced physiological responses [20].
These findings suggest that humans exhibit varied physiological and behavioral responses
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based on the stress appraisal condition, establishing a foundation for differentiating between
various stress appraisal conditions and further elucidating the nuances of the Yerkes-Dodson
Law. Interestingly, there is a notable gap in the literature, as no studies have directly compared
whether physiological or behavioral data are more suitable for examining and studying stress
appraisal.

Recent advancements in Machine Learning (ML) enable the prediction of stress appraisal
by analyzing patterns in physiological and behavioral data, such as Heart Rate Variability
(HRV) and facial expressions. Previous studies have mainly focused on understanding and
predicting stress arousal but not stress appraisal [8, 21]. However, it is crucial to investigate
stress appraisal as it provides valuable insights into individuals’ cognitive evaluations of stress-
ors, enabling a deeper understanding of their subjective experiences and potential coping strat-
egies. For instance, it is well-established that boredom is associated with parasympathetic
nervous system activation and reduced physiological responses [20], and stress arousal,
whether it is positive (eustress) or negative (distress), results in heightened physiological and
behavioral responses due to activation of the sympathetic nervous system [22]. Koldijk et al.
[23] used this understanding to achieve 90% accuracy in detecting stress arousal using heart
rate, electrodermal activity (EDA), facial features, and participants’ interactions with their
computers in a controlled experimental study that mimicked office work stressors (e.g., tight
deadlines, interruptions). Although important for demonstrating the utility of ML, this study
did not consider individual perceptions and appraisals of stress that could moderate the rela-
tionship between arousal and worker or work outcomes. Recently, Li et al. [24] demonstrated
the potential of using ML for stress appraisal prediction by achieving 70% accuracy in predict-
ing eustress. In another study, it was discovered that a combination of facial features and phys-
iological data (e.g., skin temperature, heart rate, blood volume pulse, and skin conductance)
can accurately predict the presence of eustress with an accuracy of 83.38%, and the presence of
distress with an accuracy of 78.79% [25]. However, no study has yet explored the four stress
appraisal states: boredom, eustress, eustress-distress coexistence, and distress within a single
machine learning framework.

Grounded on this background, the primary objective of this study is to assess the precision of
ML in predicting various stress appraisal states, such as boredom, eustress, eustress-distress coex-
istence, and distress. Additionally, this research investigated the relationship between stress
appraisal, mood, and productivity. Four research questions guided this work: (1) How do stress
level (i.e., arousal), mood, and productivity differ across stress appraisal states (i.e., boredom, eus-
tress, eustress-distress coexistence, and distress)? (2) What ML algorithms are best suited for pre-
dicting stress appraisal? (3) What data modalities are best suited for predicting stress appraisal?
(4) How do physiological and behavioral responses vary across different stress appraisal states?

The structure of this paper is as follows. The Methodology section elaborates on the experi-
mental setup for gathering data, the methods used for cleaning and processing the data, and
how the various ML algorithms were trained and evaluated. The Results and Discussion sec-
tion summarizes the findings, presents a discussion that provides an assessment of the poten-
tial of using ML to distinguish the four-stress appraisal states and examines the appraisal
states’ associations with mood, productivity, and physiological and behavioral responses. The
Conclusions section presents the conclusions drawn from the results, highlights the limitations
of the study and provides suggestions for future research.

Methodology

We conducted a controlled experimental procedure to collect physiological and behavioral
data for stress appraisal prediction. This study was conducted according to the guidelines of
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the Declaration of Helsinki and approved by the Institutional Review Board of the University
of Southern California (UP-21-00484, Effective Approval Date: 22 July 2021). All participants
provided written informed consent. Data collection occurred between March 11, 2022, and
July 5, 2022.

Participants

A total of 48 healthy individuals (20 males and 28 females), primarily undergraduate and grad-
uate students, volunteered for the experiment. Their mean age was 22.6 years (+2.1 years), and
there were no dropouts; all 48 initially enrolled participants completed the study. Participants
underwent a rigorous screening process using a self-report questionnaire. It is important to
note that one prospective participant, who did not meet our inclusion criteria, was excluded
before the study’s commencement. This exclusion was based on predefined criteria, such as
vision impairments hindering computer use, psychological sensitivity to stress-inducing activi-
ties, pregnancy, or the use of medication affecting physiological signals. With this exception,
all other participants successfully completed the study without any dropouts.

Physiological, behavioral, and human-computer interaction data

During the experiment, participants were equipped with two distinct physiological monitoring
devices, chosen to align with our research objectives and data collection requirements. Firstly,
participants wore an Empatica E4 wristband [26], which was selected for its versatility in cap-
turing multiple physiological parameters. The wristband collected Electrodermal Activity
(EDA), Skin Temperature (ST), Blood Volume Pulse (BVP), and x, y, and z wrist acceleration.
These parameters were chosen for their relevance to our study, as EDA and ST provide
insights into emotional arousal and stress levels, while BVP offers information about cardio-
vascular responses. Additionally, the wrist acceleration data allowed us to monitor fine-
grained motion-related metrics. Secondly, heart rate data was collected using an H10 Polar
chest strap [27]. We chose this device due to its precision in measuring heart rate, a critical
physiological metric for our study, as it reflects stress levels, emotional states, and physical
exertion. In addition to physiological data, we employed behavioral data collection methods. A
Microsoft Azure Kinect DK camera [28], strategically positioned atop the computer screen
and facing the participant, recorded facial expressions throughout the experiment. This video
data was instrumental in complementing the physiological measurements and facilitating the
analysis of emotional responses. Furthermore, to gain insights into participants’ interactions
with the computer, we ran the Mini Mouse Macro logging application [29] in the background.
This application meticulously recorded participants’ activities involving the computer’s mouse
and keyboard.

Experimental protocol

The experiment took place in a quiet private office using a standard desktop computer. The
experiment simulated 2 different work conditions: low-stress work and high-stress work.

Low-stress work: In this condition, participants had 40 minutes to prepare a PowerPoint
presentation about their favorite movie, book, or television series, that is, a familiar topic. In
this condition, participants worked without being monitored.

High-stress work: In this condition, participants had only 30 minutes to prepare a Power-
Point presentation about an unfamiliar topic. Participants had to present the scientific and
philosophical achievements of two ancient Greek philosophers and provide their opinions
about how these achievements are still shaping modern human life. The requirements (time
and topic) were carefully established to make the completion of the presentation achievable
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but at the same time to create a sense of time pressure, heavy workload, and unfamiliarity with
the task. Furthermore, a confederate played the role of a university professor who monitored
the participants using live video, audio, and screen sharing via Zoom video conferencing. An
application on the computer screen showed the professor’s rating of their work, which began
at 100 points and then decreased and increased in a standardized manner across all partici-
pants. Changes in the score appeared at uneven intervals such that the participants could not
recognize a pattern, instead, associating the scoring with the professor noticing a flaw or cor-
rection. Participants were informed that the highest-scoring individuals would receive the
maximum compensation (i.e., $50) and the lowest-scoring individuals would receive minimal
compensation for their time (i.e., $5). At the conclusion of the study, all participants were
informed that their score did not equate to the level of compensation, and everyone received
the maximum compensation (i.e., $50).

Throughout both conditions, a pop-out questionnaire appeared on the computer screen
every 5 minutes, asking the participants to rate their perceived stress level, mood, and produc-
tivity. These metrics were rated using a 0-100 slider, with 0 indicating “I am not stressed at
all,” “I am in a bad mood,” or “I feel extremely unproductive” and 100 indicating “T am
extremely stressed,” “I am in a good mood” or “I feel extremely productive”. In addition, par-
ticipants appraised their stress as distress (pressure) and eustress (opportunity/challenge)
using the Valencia Eustress-Distress Appraisal Scale (VEDAS), an efficient and validated tool
for appraising stress as perceived levels of distress and eustress [30, 31]. Distress was assessed
using a 6-point scale as 1 (very definitely is not a source of pressure), 2 (definitely is not a
source of pressure), 3 (generally is not a source of pressure), 4 (generally is a source of pres-
sure), 5 (definitely is a source of pressure), or 6 (very definitely is a source of pressure). Eustress
was assessed using a similar 6-point scale going from 1 (very definitely is not a source of
opportunity/challenge) to 6 (very definitely is a source of opportunity/challenge).

Each condition started with a 5-minute baseline phase, in which participants remained idle
and relaxed while we collected a baseline for all physiological signals (which is typical for stress
detection research). At the end of the baseline phase, participants rated their perceived stress
level and mood. Participants were given the option of taking a maximum 10-minute break if
needed between the low and high stress phases; however, all 48 participants opted to proceed
immediately with the next phase of the experiment. The total duration of the experiment was
around 100 minutes.

Feature extraction and data processing

The collected data was segmented into 30-second time frames to extract physiological and
behavioral features. This particular time window was chosen based on the findings of Ber-
nardes et al. [32], who determined that a 30-second duration is the smallest timeframe suitable
for obtaining dependable HRV features that accurately evaluate psychological stress. There-
fore, our dataset consisted of 48 participants, each with 70 minutes of data collection divided
into 30-second time windows, resulting in 6720 datapoints. The final dataset comprised 83 fea-
tures, including 34 physiological features, 48 behavioral features (including 3 related to
human-computer interactions), 39 facial-related features, 6 features for wrist acceleration, and
1 feature indicating the participant’s gender. Table 1 provides a summary of all the features
analyzed.

Kubios software [33] was utilized to process HRV data and extract multiple time and fre-
quency-domain indices of the heart rate signal. A moderate artifact correction was employed
to identify R-R intervals varying above or below 0.25 seconds from the average. This method
preserved the data’s variability while addressing the presence of any artifacts. Kubios also
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Table 1. Features dataset.

Type (Number of Signal Features Included
features)
Physiological (34) | Electrodermal activity | Mean, Standard deviation, Median, Minimum, Maximum, 25" &
(EDA) 75" percentile, slope fitted through the data.
Blood volume pulse
(BVP)
Skin temperature (ST)
Heart rate Mean, Standard deviation, Minimum, Maximum, rmsdd, LF peak,
Heart rate variability HF peak, LF power, HF power, LF/HF
(HRV)
Behavioral (48) Facial action units Mean, Standard deviation
(AUs)

Head rotation
Eye gaze direction

Blink Count
Wrist acceleration Mean, Standard deviation
Mouse right clicks Count
Mouse left clicks
Keyboard keystrokes
Gender (1) Female Binary
Male

Rmsdd: Root Mean Square of the Successive Differences, LF peak: Low-frequency peak, HF peak: High-frequency
peak, LF power: Low frequency power, HF power: High frequency power

https://doi.org/10.1371/journal.pone.0296468.t001

applied a piecewise cubic spline interpolation method to generate corrupted or missing values,
resulting in a cleaner and more accurate HRV signal. The RR-interval was excluded from the
feature set to prevent duplication because of its inverse proportionality with heart rate, and
there was a strong 94% correlation between the two features in the dataset.

Signals obtained from the Empatica E4 were processed before feature extraction to reduce
noise, similar to what was done in a previous study [34]. The BVP and ST signals were filtered
using winsorization [35], a statistical technique that replaces extreme values beyond the 2™
and 98™ percentiles. We used the MATLAB Ledalab toolbox [36] to clean and process the
EDA data using a Butterworth low-pass filter, Hanning smoothing with a window size of 4
adjacent datapoints, and manual artifact correction to remove any noise that might have been
caused by movement or other sources of interference. After the cleaning procedure, we calcu-
lated the mean, standard deviation, median, minimum, maximum, 25" and 75" percentiles,
and slope of BVP, EDA, and ST to ensure a thorough assessment of the various dimensions
involved in stress appraisal [8].

For behavioral data in each 30-second time window, we calculated the mean and standard
deviation for x, y, and z wrist accelerations obtained from the Empatica E4, and we utilized
OpenFace software [37] to extract the mean and standard deviation of participants’ facial
action unit (AU) intensities from the RGB video captured by the Kinect camera. AUs are pre-
defined facial muscle movements associated with emotions and are classified as main AUs,
head movement AUs, and eye movement AUs. Facial expressions are a reliable indicator of
stress and are suitable for stress detection research [23]. We removed the head translation vec-
tor in the x, y, and z planes from the analysis as it depended on the participant’s height and
position in the camera frame. Similarly, we excluded head rotation in the x and y planes as it
was highly correlated with the gaze vector, resulting in duplicate information. A correlation
analysis confirmed the close relationship between these variables, with a Pearson correlation
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ranging from 89% to 94%. By removing these features, we avoided redundancy in our analysis.
Lastly, we aggregated keyboard strokes and mouse clicks, which are known to be influenced by
cognitive and emotional states and is a relatively innovative approach to stress prediction that
has exhibited encouraging results in recent studies [38, 39].

Some data was missing from the dataset due to technical problems, including keyboard and
mouse files for three participants in the low-stress condition and RGB video files for two others in
the high-stress condition. To address this, an XGBoost model was trained using the existing data
from 43 participants to impute the missing data. Hyperparameter tuning was conducted to opti-
mize the model’s performance, and the best values for the learning rate, maximum tree depth,
and number of trees were selected. The optimized XGBoost model was then used to predict miss-
ing data points, as this method preserves the standard deviation and shape of feature distribution
and avoids data loss from deleting rows with missing entries. Mean/median imputation methods
were avoided as they are less accurate [40]. Additionally, robust scaling was used per participant,
a data preprocessing technique to normalize features in machine learning [41]. It employs the
interquartile range (IQR) instead of mean and standard deviation, making it robust against outli-
ers. By linearly transforming the data using the 25" and 75" percentiles (IQR), robust scaling
ensures fair comparisons and accurate modeling, especially in the presence of outliers.

All physiological data were subtracted from individual baseline levels established before the
first experimental condition to increase between-participant validity. Behavioral features were
not normalized against a baseline because facial activation is closely tied to the intensity of
facial expressions, which does not necessarily require normalization across participants. Per-
ceived stress and mood data values were subtracted from the baseline; thus, the range for the
perceived stress and mood variables was between -100 and 100. The baseline for perceived pro-
ductivity was 0 as the participants were not performing any work; thus, the range for the per-
ceived productivity variable was between 0 and 100.

Outcome formulation

This study aimed to examine stress appraisal and thus required the creation of a metric to
describe the four states: boredom, eustress, eustress-distress coexistence, and distress. The
6-point scales for eustress and distress were condensed by grouping the lower three and top
three categories into a binary variable as "Stress not appraised as eustress" or "Stress appraised
as eustress" and "Stress not appraised as distress" or "Stress appraised as distress." The two rat-
ings were combined to classify each datapoint into one of the four stress states of interest, as
shown in Table 2. The resulting dataset was unbalanced, with approximately 49% indicating
eustress-distress coexistence, 28% indicating boredom, 18% indicating eustress, and 5%
appraised as distress.

Prediction assessment

The evaluation of prediction performance involved the use of accuracy and average F, score.
All models presented in the results were subjected to k-fold cross-validation, with a value of 10

Table 2. Stress appraisal formulation and data distribution across four stress appraisal states.

Eustress Appraisal Distress Appraisal Stress Appraisal State Datapoints
Stress not appraised as eustress Stress not appraised as distress Boredom 1890
Stress appraised as eustress Stress not appraised as distress Eustress 1230
Stress appraised as eustress Stress appraised as distress Eustress-distress coexistence 3270
Stress not appraised as eustress Stress appraised as distress Distress 330

https://doi.org/10.1371/journal.pone.0296468.1002
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Fig 2. Boxplots of perceived productivity, mood, and stress across stress appraisal states.

https://doi.org/10.1371/journal.pone.0296468.g002

for k. This approach ensured that no participant was used in both the training and testing sets
during any iteration of the cross-validation process, thereby enhancing the reliability and gen-
eralizability of our results.

Results and discussion

Perceived stress, mood, and productivity levels across stress appraisal
states

To address the first research question of this study, we conducted three ANOVA tests to
explore how different stress appraisal states relate to the perception of stress, mood, and pro-
ductivity. Fig 2 presents the means and variances of these metrics across the four stress
appraisal states. Statistically significant differences were identified in perceived stress (F(3,
6716) = 271.82, p<0.001), mood (F(3, 6716) = 236.62, p = <0.001), and productivity (F(3,
6716) = 135.41, p<0.001) between the four stress appraisal states. Post-hoc Tukey analysis
found no significant differences in the outcomes between "eustress-distress coexistence" and
"distress," but this analysis indicated all other pairwise comparisons were significant for all
three metrics: productivity, mood, and stress (i.e., arousal).

The results of perceived stress and productivity generally follow the Yerkes-Dodson law.
Firstly, low, or insignificant stress arousal is associated with boredom, lack of motivation, lim-
ited interest, and low performance. This is supported by our findings showing that boredom
appraisals had the lowest stress level (M = 5.58+13.17) and were associated with significantly
lower perceived productivity (M = 27.35+27.67) compared to the three other stress appraisal
states. The Yerkes-Dodson law states that moderate stress levels can increase alertness, atten-
tion, and motivation resulting in better performance. In our results, eustress appraisals had the
highest perceived productivity (M = 46.02+32.94) and a slight but statistically significant
increase in stress level (M = 8.98+15.41) compared to boredom. This represents the “sweet
spot” or optimal level of stress arousal that sets the grounds for eustress and maximizes
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performance. Next, the Yerkes-Dodson law states that as stress arousal builds up, distress takes
over eustress, leading to impaired performance due to increased anxiety. This is also supported
by our results, where the eustress-distress coexistence showed increased stress (M = 19.91
+23.00) and reduced perceived productivity (M = 41.87+28.37). Finally, as distress became
dominant, the average change in stress level was the highest (M = 21.61+18.01), and productiv-
ity showed a decreasing trend (M = 38.30+26.69).

The lack of significant difference in perceived stress and productivity between distress and
the eustress-distress coexistence condition may indicate that higher stress arousal is mainly
associated with distress, irrespective of whether eustress coexists with distress. Alternatively,
the differentiation of these appraisal states may not have been possible due to the small number
of time points appraised as distress in the dataset. Moreover, the outcomes associated with dis-
tress appraisal may be time-dependent or have a cumulative component not maximally elicited
within the 40-minute experimental condition.

Changes in mood perceptions were much smaller than stress and productivity across the
four appraisal states. The average rating of mood increased during times appraised as boredom
and eustress, with the best mood (M = 3.67+11.03) occurring along with the eustress state. In
contrast, mood was consistently rated lower than the baseline when distress was indicated,
either in combination with eustress or occurring alone (M = -6.70£15.26). These results sup-
port the division of stress appraisal into 2 constructs: positive and negative. While eustress
(positive construct of stress) is often associated with excitement, enthusiasm, and fulfillment
[14], distress (negative construct of stress) leads to intense negative feelings [42]. It is worth
noting that the negative feelings associated with distress seem to engulf the positive feelings of
eustress, as demonstrated by the average perceived mood (M = -6.57+15.17) under the eus-
tress-distress coexistence condition being almost equal to that of the distress condition.

To the best of our knowledge, this work is the first attempt to quantify the Yerkes-Dodson
law using stress appraisal relative to stress arousal, performance, and mood. These findings
contribute to a deeper understanding of the complex relationship between stress and human
performance while highlighting the importance of optimizing stress arousal to achieve maxi-
mum productivity and well-being.

Comparison between different ML models for stress appraisal prediction

In this section, we address the second research question of this study: What ML algorithms are
best suited for predicting stress appraisal? Using all 83 features, we tested the following algo-
rithms: Naive Bayes, Adaboost, Logistic Regression, Linear Discriminant Analysis, Decision
tree, Multilayer perceptron, Support Vector Machine (with polynomial -degree between 2 and
10- and radial kernel), K-nearest neighbor (for K-values between 2 and 15, and Euclidean or
Manhattan distances), Random Forest, and XGBoost. In selecting these machine learning
models, our aim was to encompass a wide spectrum of algorithmic approaches, from simple
and interpretable models like Naive Bayes and Logistic Regression to more complex and pow-
erful methods such as neural networks (Multilayer Perceptron), ensemble techniques (Ada-
Boost, Random Forest, and XGBoost), and versatile kernel-based methods (Support Vector
Machines and K-nearest neighbor). This comprehensive selection allows us to thoroughly
evaluate the performance of various models on our dataset, ensuring that the best-suited algo-
rithm for predicting stress appraisal is identified.

To overcome the problem of unbalanced classes, we applied an oversampling method using
the synthetic minority oversampling technique (SMOTE) algorithm [43] to generate new syn-
thetic samples in the minority classes. The algorithm draws a random sample from the minor-
ity class, identifies the k-nearest neighbors, and creates synthetic data points in the direction of
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the vector connecting the minority instance and its neighbors. The SMOTE algorithm was
applied to the training set but not to the testing set. The results of modeling the 83 features in
the training set among the ML algorithms are presented in Table 3.

Naive Bayes, AdaBoost, logistic regression and linear discriminant analysis did not perform
well. AdaBoost is sensitive to imbalanced datasets [44]; if one class dominates the other, it will
not generalize well to new data. This is the case in our dataset, where the data distribution
(Table 2) shows that the distress condition represents only 5% of the total datapoints. Naive
Bayes performs poorly with irrelevant features as its predictions may be influenced by these
features that have no relation with the outcome under study. Furthermore, Naive Bayes and
logistic regression both assume that all features are independent [45], which was not true in
our dataset as physiological and behavioral stress indicators are often affected by one another.
For instance, sympathetic neural activity in response to stress autoregulates ST and results in
EDA peaks [46]. If the input features are highly correlated, models might not be able to accu-
rately capture the relationship between the input features and the outcome under study [44]; a
correlation matrix among the input features shows that some features hold up to 80% correla-
tion among each other. In addition, both logistic regression and linear discriminant analysis
algorithms are linear models and assume that the relationship between the input variables and
the output variable is linear. If the relationship is non-linear, models that can handle non-lin-
ear relationships between the input features and the output are better suited; hence decision
trees, multilayer perceptron, and support vector machine algorithms led to better
performance.

K-NN algorithm coupled using K = 4 and Manhattan distance showed a decent accuracy in
predicting stress appraisal conditions (75.56%). K-NN is an instance-based algorithm, which
makes predictions based on the similarity of new data points to the training data [47]. This
means that the outcome under study is separable and can be divided into distinct classes based
on the input features. However, it is worth noting that K-NN can be sensitive to the hyperpara-
meters choice of distance metric, and the value of K as our analysis showed significant fluctua-
tions in performance when changing these hyperparameters.

Random forest and XGBoost performed the best in predicting stress appraisal states. Ran-
dom forest and XGBoost are ensemble learning methods known for their good performance
on classification problems that use decision trees as the base learners, which can handle large
numbers of features and are robust to overfitting. Random forest creates many decision trees

Table 3. Comparison of ML model accuracy between different classifiers.

Algorithm Accuracy F,-score
Naive Bayes 39.27% 40.58%
AdaBoost 48.09% 49.91%
Logistic Regression 54.94% 51.22%
Linear Discriminant Analysis 55.90% 53.61%
Decision Tree 61.07% 61.18%
Multilayer Perceptron 64.67% 63.97%
Support Vector Machine-Linear 64.55% 60.39%
Support Vector Machine-Radial 66.25% 63.57%
Support Vector Machine-Polynomial degree 5 69.06% 68.83%
K-Nearest Neighbor, K = 5, Euclidean distance 70.55% 70.42%
K-Nearest Neighbor, K = 4, Manhattan distance 75.56% 73.59%
Random Forest 77.33% 77.30%
XGBoost 82.78% 82.28%

https://doi.org/10.1371/journal.pone.0296468.t003
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and combines their predictions through majority voting, providing further robustness to over-
fitting and allowing for the capture of complex patterns in the data [48]. XGBoost advances
this approach by using gradient boosting to optimize the decision trees and improve their per-
formance and allows for fine-tuning of the model parameters. Additionally, XGBoost uses reg-
ularization to prevent overfitting and optimizes the tree structure to minimize the loss
function. These optimizations allow XGBoost to generalize better to new data and capture
more complex patterns, typically resulting in slightly better performance than random forest
in classification problems [49], as demonstrated in our dataset.

Comparison between different modalities for stress appraisal prediction

In this section, we address the third research question of this study: What data modalities are
best suited for predicting stress appraisal? Our analysis first looked at clusters of data obtained
from each of the primary data collection tools (e.g., E4, H10, Kinect, Mini Mouse Macro) and
then explored which of the 83 individual features were most useful. Our findings here can
inform which data collection methods and individual features are critical and which might be
dropped to increase the feasibility of data collection in real-world settings.

First, to examine the clusters of features, we used the XGBoost algorithm for our analysis as
it led to the best results, as shown in Table 3. The SMOTE algorithm was applied to all models,
and gender was always included due to differences in how stress can be perceived. We trained
a baseline XGBoost model based on the gender feature without any physiological or behavioral
features. This model’s accuracy was 41.56%. Then, we tested several subsets of the data, as
shown in Table 4.

When using only 1 monitoring device, data from the E4 (accuracy = 73.43%) and facial fea-
tures (accuracy = 69.46%) had the best prediction performances, while HR and HRV features
resulted in weaker performance (accuracy = 63.94%), and the computer features only managed
to improve the prediction accuracy of the baseline gender model by ~3%. When adding a sec-
ond monitoring device, combinations that included the E4 data had the best performance,
with an accuracy as high as 81.08% when E4 data was coupled with the facial features. The
results indicate that the EDA, ST, BVP, and wrist acceleration are among the biggest contribu-
tors to the accurate prediction of the different states of stress appraisal. Minimal improvement
by 1% occurred when combining data from three devices (accuracy = 82.09%), almost equal to
the accuracy for the full dataset comprised of all features (accuracy = 82.78%).

Importantly, a pure physiological dataset (E4+H]10) resulted in a 79.55% accuracy, only 3%
lower than the highest accuracy reached using all four devices (accuracy = 82.78%). This find-
ing is important as it indicates that physiological data alone may be adequate to accurately pre-
dict stress appraisal. These results offer flexibility to users interested in implementing
automated stress appraisal prediction at the workplace. If the goal is to maximize the predic-
tion performance, collecting as many features as possible is necessary; however, when compu-
tation, time, and financial resources are limited, relying only on physiological features can
provide useful results. Nowadays, a single wearable device can offer various physiological fea-
tures. For instance, the Fitbit wristwatch, Oura rings, and WHOOP wristbands can collect
many physiological signals such as heart rate, HRV, EDA, wrist acceleration, and oxygen satu-
ration all at once [50], which makes them a feasible alternative for simple and unobtrusive data
collection protocols and a reliable option for stress appraisal prediction in office settings.

To identify the individual features that had the greatest impact on predicting stress
appraisal, we conducted a feature importance analysis on the best-performing ML model. We
used the feature importance attribute of the model to measure how much each feature contrib-
uted to the overall prediction accuracy. An importance score for each feature was calculated to
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Table 4. Comparison of different features and data collection tools in the prediction of stress appraisal.

Features under study™ (total number of features) Data collection tools Accuracy | F-score
Gender (1) - 41.56% | 26.13%

1 Monitoring Device
EDA, ST, BVP, ACC (31) E4 73.43% | 65.67%
HR&HRYV (11) H10 63.94% | 51.05%
Facial (40) Kinect 69.46% | 60.62%
Computer (4) Mini Mouse Macro 44.87% | 24.33%

2 Monitoring Devices
EDA, ST, BVP, ACC, HR&HRYV (41) E4 + H10 79.55% | 76.60%
EDA, ST, BVP, ACC, Facial (70) E4 + Kinect 81.08% | 78.74%
EDA, ST, BVP, ACC, Computer (34) E4 + Mini Mouse Macro 70.42% | 67.53%
HR&HRYV, Facial (50) H10 + Kinect 72.25% | 65.28%
HR&HRYV, Computer (14) H10 + Mini Mouse Macro 62.17% | 51.38%
Facial, Computer (43) Kinect + Mini Mouse Macro 70.05% | 60.63%

3 Monitoring Devices
EDA, ST, BVP, ACC, HR&HRYV, Facial (80) E4 + H10 + Kinect 82.09% | 81.56%
EDA, ST, BVP, ACC, HR&HRYV, Computer (44) E4 + H10 + Mini Mouse Macro 79.45% 76.44%
HR&HRYV, Facial features, Computer (53) H10 + Kinect + Mini Mouse Macro 75.22% | 67.56%

4 Monitoring Devices
EDA, ST, BVP, ACC, HR&HRYV, Facial, Computer E4 + H10 + Kinect + Mini Mouse 82.78% | 82.28%

(83) Macro

EDA: Electrodermal Activity; ST: Skin Temperature; BVP: Blood Volume Pulse; HR: Heart Rate; HRV: Heart Rate
Variability; ACC: Acceleration

https://doi.org/10.1371/journal.pone.0296468.1004

assess the contribution of each feature to the overall prediction accuracy of the ML model. Our
results revealed that the 15 most important features accounted for a significant proportion of
the model’s overall accuracy (accuracy (op15 = 80.96%), leading to an almost equal prediction
performance to that of the whole dataset (accuracy yhole = 82.78%). The 15 most important fea-
tures of the stress appraisal model using combined physiological and behavioral data are pre-
sented in Fig 3.

The feature importance results indicate that EDA, ST, and BVP were the most significant
physiological features for stress appraisal. Additionally, wrist acceleration (Y-axis) ranked as
the third most important feature. These findings support our previous conclusions and dem-
onstrate why the E4 wristwatch played a crucial role in improving the predictive performance
of the model. The Kinect camera contributed the second most important feature (AU-07) and
five other top features (AU-45, -06, -04, -14) and gaze angle (Y-direction). This highlights why
a model based solely on facial features achieved a respectable prediction accuracy of 69.46%
(as shown in Table 4). Heart rate and HRV features were less significant and less prevalent.
The least important feature among the top 15 was maximum heart rate, which explains why a
model utilizing only these features achieved an accuracy of 63.94%.

It is worth noting that gender was ranked 9" in the list of important features for predicting
stress appraisal states. Research has shown that gender differences affect stress arousal due to
the biological nature of stress [51], and previous studies on stress detection have found that
gender is an important factor that must be considered to achieve better prediction perfor-
mance [39, 52]. Our results support that gender is also crucial for accurately identifying stress
appraisal states using predictive models. Future studies should consider other personal factors
not examined in this study that might also impact stress appraisal (e.g., age, ethnicity).
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Fig 3. Feature importance for the stress appraisal prediction model.

https://doi.org/10.1371/journal.pone.0296468.9003

Finally, data from the Mini Mouse Macro did not contribute value to the overall prediction
models, and none of the top 15 features included human-computer interaction features. While
previous studies have shown that computer-related features (keyboard strokes and mouse
clicks) play an important role in stress detection, our results did not find them to be a useful in
predicting stress appraisal. The limited influence in our study may have been due to the con-
trolled nature of the selected tasks that limited variability in the human-computer interactions
across appraisal states. Additionally, other computer-related measures not collected in our
study (e.g., keystroke pressure, pause rate, typing speed, mouse movement and wheel usage,
number of open windows) might be more useful in predicting stress appraisal. Future research
directions must consider additional features and examine a broader range of task conditions
to provide better insights into the relationship between human-computer interaction and
stress appraisal.

Variation in physiological and behavioral signals across stress appraisal
states

This section addresses the fourth research question of this study: How do physiological and
behavioral responses vary across different stress appraisal states? To the best of our knowledge,
this is the first study to address this research question, which makes it a unique contribution to
the state of the art. We focused this analysis on the most important physiological and behav-
ioral features for predicting stress appraisal states identified by the feature importance analysis.
Table 5 summarizes the average and standard deviation values of all physiological and behav-
ioral features based on the stress appraisal states.

The findings indicate that EDA played a significant role in predicting stress appraisal, with
three out of the top 15 features related to EDA (Table 5). Analysis of Variance (ANOVA)
revealed statistically significant differences in the EDA parameters between the appraisal states:
mean (F(3, 67216) = 71.09, p < 0.001), 75th percentile (F(3, 67216) = 72.98, p < 0.001), and

PLOS ONE | https://doi.org/10.1371/journal.pone.0296468 January 2, 2024 14/22


https://doi.org/10.1371/journal.pone.0296468.g003
https://doi.org/10.1371/journal.pone.0296468

PLOS ONE

An automated framework for stress appraisal identification

Table 5. Physiological and behavioral data changes across the stress appraisal states.

Boredom Eustress Eustress-distress coexistence Distress
Physiological Features
Electrodermal activity, mean pS* -0.90+3.83 -0.11+0.43 0.07+0.43 0.06+0.13
Blood volume pulse, standard deviation™ 38.55+27.48 46.54+26.70 51.94+35.43 50.54+22.67
Electrodermal activity, 75" percentile pS* -0.96+3.94 -0.13+0.40 0.08+0.29 0.09+0.15
Skin Temperature, median "C* -0.48+0.77 -0.32+0.79 -0.43+0.74 -0.55+1.21
Electrodermal activity, maximum pS* -0.82+3.80 -0.03+0.46 0.10+0.38 0.11£0.15
Skin temperature, mean ‘C* -0.46+0.73 -0.42+0.76 -0.54+0.73 -0.64+1.05
Heart rate, maximum bpm* 10.74+8.21 12.96+8.58 12.32+8.29 13.27£11.25
Behavioral Features
AU07 (lid tightener), mean 0.32+0.48 0.35+0.45 0.51+0.42 0.52+0.50
Wrist Acceleration in Y-axis, mean g* 4.40+17.10 10.66+14.78 9.29+14.28 5.03£15.28
AU45, blink count 7.45+4.13 7.87+4.08 6.58+4.11 6.53+4.09
Gaze angle in Y-axis, mean degrees 0.28+0.09 0.32+0.10 0.24+0.11 0.26+0.09
AUO06 (cheek raiser), mean 0.15+0.28 0.19+0.25 0.17+0.26 0.04+0.12
AU04 (brow lowerer), standard deviation 0.29+0.43 0.32+0.50 0.39+0.45 0.37+0.44
AU14 (dimpler), mean 0.49+0.38 0.85+0.58 0.59+0.47 0.48+0.38

*Feature calculated as a change from the pre-experimental state with positive values indicating an increase and negative values indicating a decrease from the baseline

state.

https://doi.org/10.1371/journal.pone.0296468.t005

maximum (F(3, 67216) = 74.88, p < 0.001). As in the productivity, mood, and stress analyses,
post-hoc Tukey HSD tests indicated significant differences between all pairwise comparisons
of EDA outcomes across the appraisal states, except for the comparisons between eustress-dis-
tress coexistence and distress conditions. All three EDA features exhibited a similar pattern.
Specifically, when participants perceived their situation as boring compared to the baseline
condition, there was a notable decrease in EDA with the mean, 75" percentile, and maximum
values of EDA of -0.90+3.83, -0.96+3.94, and -0.82+3.80, respectively. When participants per-
ceived their situation as eustress, there was a slight reduction in EDA compared to the baseline
with mean, 75" percentile, and maximum values of EDA of -0.11+0.43, -0.13+0.40, and -0.03
+0.46, respectively. Conversely, when participants experienced eustress-distress or distress,
their EDA levels were slightly higher than baseline by 0.06-0.11 uS, an upward trend suggest-
ing increased stress arousal [53].

Among the top 15 features used in predicting stress appraisal states, two ST-related parame-
ters, specifically median and mean, were identified. ANOVA tests revealed a statistically signif-
icant difference in ST parameters between stress appraisal states for the median (F(3, 67216) =
14.78, p < 0.001) and mean (F(3, 67216) = 16.06, p < 0.001) values. Tukey HSD analysis dem-
onstrated significant differences in pairwise comparisons across all four stress appraisal states.
Perceptions of boredom and eustress had lower median (-0.48°C and -0.32°C, respectively)
and mean (-0.46°C and -0.42°C, respectively) ST than baseline. In contrast, when participants
assessed their work conditions as co-existing eustress-distress or distress alone, there was a
larger decrease in both median (-0.43°C and -0.55°C, respectively) and mean (-0.54°C and
-0.64°C, respectively) ST. The relationship between stress and ST is intricate and not always
straightforward, which may explain why conditions characterized by low arousal (such as
boredom and eustress) also exhibited a decrease in ST in comparison to the baseline. Further-
more, ST regulation involves numerous factors, including external environmental conditions,
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blood flow, and metabolic processes [54], which may require further exploration or control in
future studies.

BVP and heart rate were the final two physiological features examined. BVP is a physiologi-
cal indicator of stress arousal that measures the amount of blood pumped by the heart in one
minute. When experiencing stress, the sympathetic nervous system can cause vasoconstriction,
which narrows the blood vessels and decreases blood volume at the sensor placement site. This
can result in lower BVP readings. Conversely, BVP readings tend to be more stable and consis-
tent during non-stressful situations [22]. Our results support this description; the ANOVA
analysis showed a significant difference in the standard deviation of BVP (F(3, 67216) = 60.28,
p < 0.001) between appraisal states. More specifically, participants who appraised their work
as boredom had the lowest standard deviation in BVP readings (38.55+27.48), participants
who perceived their working situation as eustress showed a higher level of variation in BVP
readings (46.54+26.70), and those who experienced distress had the highest level of variation
(51.94+35.43-50.54+22.67). Maximum heart rate was only different in boredom states, with a
significantly lower maximum heart rate (10.74+8.21) than the other appraisal states. The dif-
ference is represented by a small approximate increase of 2 beats per minute (bpm) in the max-
imum heart rate when comparing boredom and the other states. Maximum heart rate may be
useful for studies interested in differentiating boredom, but these findings explain why maxi-
mum heart rate was the least important for predicting between all four states (Fig 3).

Among the behavioral features, our results show that wrist acceleration (F(3, 67216) =
51.50, p < 0.001) differed across stress appraisal states. wrist acceleration is the speed of move-
ment of the hand, which can be influenced by factors such as boredom and stress. For example,
boredom can result in slower hand movements, as the individual may lack motivation or inter-
est in the task, while an adequate amount of stress can cause the hand to move more quickly,
as the individual might present more engagement and be motivated and excited to finish work
tasks [55]. Our results follow this pattern such that appraising the working situation as boring
had the lowest wrist acceleration (4.40+17.10), and when participants appraised the work con-
ditions as eustress, they showed the highest level of wrist acceleration (10.66+14.78). When
participants appraised the work as distress, a lower wrist acceleration was noted (5.03+£15.28),
which aligns with an understanding that higher stress levels can interfere with motor perfor-
mance and motor skills due to muscle tension and decreased dexterity, contributing to lower
wrist acceleration. No statistically significant differences were noted for wrist acceleration
between appraisals of the coexistence of eustress and distress (9.29+14.28) and the eustress
(10.66+14.78). Just as previous studies have indicated the value of acceleration data for predict-
ing stress arousal [56], our data indicate this feature may be useful in differentiating ideal stress
appraisal states (i.e., those containing eustress) from less ideal states (i.e., boredom and
distress).

Eustress, distress, and boredom can all have a significant impact on facial features and body
language. When a person experiences eustress, their facial expression can reflect excitement
and engagement, with increased animation in the eyes, eyebrows, and mouth. On the other
hand, when a person experiences distress, their facial expression can be tense and tight, with
furrowed eyebrows, a tight mouth, and a downward gaze. Boredom can result in a neutral or
expressionless face, little movement in the eyes or eyebrows, and a passive or downward gaze.
These emotions can also impact body language, such as head rotation or gaze direction, as peo-
ple tend to lean away from negative stimuli and towards positive ones. These changes in facial
features can provide valuable insights into a person’s emotional state and can be useful in fields
such as psychology, human-computer interaction, and neuroscience. In general, when a per-
son is experiencing stress arousal, (eustress or distress), the intensity of AU07 (lid tightener)
tends to increase [57], while the changes in the intensity of AU04 (brow lowerer) also
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increases, although to a lesser extent [58]. This pattern of facial movements is often associated
with a tense or anxious expression, which may reflect a heightened state of arousal in response
to stress. On the other hand, when a person is experiencing boredom, the intensity of both
AUs 07 and 04 tends to decrease, which is associated with a relaxed or neutral expression. This
pattern of facial movements may reflect a decreased state of arousal in response to a lack of
stimulation or challenge. This description is in line with the findings presented in Table 5.

Other facial features can be analyzed from the perspective of engagement, interest, and
enthusiasm about work tasks, and therefore their relation to productivity and performance of
individuals. High levels of engagement and productivity are associated with positive emotions
such as happiness, interest, and motivation. These emotions can cause an increase in the acti-
vation of the zygomaticus major muscle (AU06: cheek raiser), which pulls the corners of the
mouth upwards and creates a subtle smile [44]. Additionally, high engagement and productiv-
ity can lead to an increase in the activation of the orbicularis oculi muscle (AU14: dimpler),
which raises the upper lip. This action unit has been widely used in ML applications for the
detection of increased attention and activity engagement [59, 60]. Our findings align with
these concepts, showing that the intensity of the action units is low when participants experi-
ence boredom or when distress arises as performance degrades. On the other hand, the AU14
intensity reaches high levels during a eustress state associated with optimal performance. It is
important to note that these relationships are complex and can vary between individuals.

The ANOVA results also suggest significant differences between stress appraisal states in
blink count (F(3, 67216) = 5.01, p = 0.02). The blink count of 7.45+4.13 while experiencing
boredom was slightly lower than during eustress states (7.87+4.08). Although not statistically
significant, this observation indicates that eustress may contribute to a heightened level of
attention or cognitive engagement, leading to an increased blink rate. In contrast, participants
experiencing distress, representing a negative and aversive emotional state, exhibited a lower
blink count. Specifically, participants demonstrated blink rates of 6.58+4.11 and 6.53+4.09
under eustress-distress coexistence and pure distress conditions, respectively. Post-hoc tests
indicated significant differences between the pairwise comparisons of eustress-distress coexis-
tence with both boredom and eustress states. These findings suggest that distress may elicit a
distinct physiological response compared to boredom and eustress. The lower blink rate dur-
ing distress could indicate heightened vigilance or cognitive load, as individuals may be more
focused on the distressing stimuli, resulting in a reduced blink rate.

Lastly, the mean gaze angle in the y-direction is an important feature for predicting stress
appraisal. However, these features are often affected by other factors, such as bodily postures
[61], which were not examined in our analysis. Further analysis is needed to determine the spe-
cific impact of this feature beyond the effects of posture to ensure a more accurate and compre-
hensive understanding of the relationships between stress arousal and appraisal, and also
performance, and the role played by mean gaze angle in these relationships. Furthermore,
while it is noteworthy that individuals can exhibit unique variations in their facial expressions,
the connection between stress arousal and certain facial movements may differ from person to
person. Additionally, context, personality, personal traits, and other factors can impact the cor-
relation between performance, engagement, and activation of facial muscles. To gain a com-
prehensive understanding of the intricate relationship between stress arousal, eustress, distress,
boredom, and performance with facial expressions and gaze, further research is needed.

Conclusions

To the best of our knowledge, this research is the first to use a ML framework to forecast stress
appraisal. The stress appraisal was separated into four categories: boredom, eustress, combined

PLOS ONE | https://doi.org/10.1371/journal.pone.0296468 January 2, 2024 17/22


https://doi.org/10.1371/journal.pone.0296468

PLOS ONE

An automated framework for stress appraisal identification

eustress-distress, and distress. The study simulated various work scenarios with two levels of
stress arousal: low-stress and high-stress work conditions. To build the ML prediction models,
both physiological and behavioral signals were utilized. The findings demonstrate that the rela-
tionship between perceived stress and performance aligns with the Yerkes-Dodson principle,
where moderate stress is associated with improved performance but too much or too little
stress is linked with degraded performance. After evaluating thirteen different classifiers, our
results indicate that the XGBoost algorithm had the best performance for predicting stress
appraisal states. By utilizing this model, a combination of physiological and behavioral features
resulted in an accuracy rate of 82.78% in predicting stress appraisal. The feature importance
analysis showed that physiological and facial features had the greatest impact on prediction
performance, while human-computer interaction features had little effect. Finally, we explored
how the intensities of physiological and facial features varied across the different stress
appraisal conditions and analyzed these differences in relation to previous research findings in
the field.

Practical implications

Our research extends beyond the realm of academic inquiry, intertwining the fields of general
psychology, organizational psychology, and affective computing to offer practical solutions for
enhancing the well-being and health of employees within the workplace. Rooted in the princi-
ples of general psychology, our study delves deep into the intricacies of stress appraisal and its
implications for human physiology, behavior and cognition. From an organizational psychol-
ogy perspective, in the context of today’s fast-paced and demanding work environments,
addressing stress-related issues is paramount to eliminating burnout, mitigating intense stress,
and preventing extended stress exposure. First and foremost, our research empowers manag-
ers with a valuable tool to enhance the well-being of their teams. By utilizing our stress
appraisal model, managers can gain insights into their employees’ unique stress appraisals,
which encompass not only distress but also eustress—the beneficial form of stress associated
with motivation and performance enhancement. Armed with this knowledge, they can make
more informed decisions when it comes to task allocation. This approach goes beyond mere
task distribution; it considers individual stress thresholds and preferences, creating opportuni-
ties to harness the power of eustress, prevent boredom situations, and eliminate extended peri-
ods of excessive distress which can be significant contributors to burnout.

Acknowledging the financial considerations that organizations often face, we propose a
cost-effective approach to monitoring employee well-being. We recommend the utilization of
a single monitoring device for data collection. Drawing from the domain of affective comput-
ing, this pragmatic approach strikes a balance between effectiveness and cost-efficiency,
leveraging technology to understand and respond to human emotions and physiological
responses. It is vital to emphasize that the implementation of such monitoring systems should
be accompanied by transparent communication and a steadfast commitment to respecting pri-
vacy rights. When employees are informed about the purpose behind data collection and have
the agency to choose their level of participation, trust is fostered, and sustainable well-being
initiatives are better supported.

Employee engagement and job satisfaction are pivotal components of a healthy work envi-
ronment. Our stress appraisal model offers a valuable tool for identifying instances of employee
boredom, distress, and eustress. Recognizing the positive impact of eustress on motivation and
performance, organizations can develop tailored strategies not only to eliminate distress but
also to harness the power of eustress, thereby contributing to improved well-being. Effective
stress management is essential in maintaining a healthy workplace. Beyond assessing stress
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arousal, our model can evaluate the effectiveness of stress-management training programs. By
considering stress appraisal alongside stress arousal, organizations gain a more comprehensive
understanding of how well these programs are truly benefiting employees. This insight can lead
to more targeted and effective stress management initiatives, further supporting well-being.

To further enhance our framework, we propose coupling it with a notification system that
can alert workers to prolonged distress experiences. This proactive approach allows for timely
intervention suggestions to limit unhealthy stress exposure. By intervening early and promot-
ing the appropriate balance between distress and eustress, organizations can prevent the esca-
lation of stress-related issues, promoting the well-being and health of their employees.

Limitations and future research directions

The study, which represents the first effort to use ML to identify stress appraisal states, has
some limitations that should be addressed in future research. One limitation is that the experi-
ment was not a true reflection of office work, as participants were assigned predesigned tasks
and subjected to prescribed work conditions. To that end, it should be noted that the impor-
tance of different signals, such as wrist acceleration, may vary depending on the nature of the
task or job description and should. Hence, future research is needed to examine stress
appraisal within real-life work environments. The ML models in this study focused on gender
as a moderator in stress appraisal, but they did not encompass all the personal factors affecting
stress. While our study advanced stress appraisal through machine learning, it is crucial to rec-
ognize that factors beyond gender, like age, socioeconomic background, early life experiences,
and ethnicity, also impact stress responses. To fully understand stress experiences, future
research should explore these factors to enhance ML models and establish personalized predic-
tion frameworks for distinct worker groups based on their unique profiles. Finally, the results
showed that both head movement and gaze are important predictors of stress appraisal, sug-
gesting the importance of considering body posture in future research.
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