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29      Abstract 
 

30      We present the observations of field-aligned currents and the equatorial electrojet during the 23 
 

31      March 2023 magnetic storm, focusing on the effect of the drastic decrease of the solar wind 
 

32      dynamic pressure occurred during the main phase. Our observations show that the negative pressure 
 

33      pulse had significant impact to the magnetosphere-ionosphere system. It weakened large-scale field- 
 

34      aligned currents and paused the progression of the storm main phase for ~3 hrs. Due to the sudden 
 

35      decrease of the plasma convection after the negative pressure pulse, the low-latitude ionosphere was 
 

36      over-shielded and experienced a brief period of westward penetration electric field, which reversed 
 

37      the direction of the equatorial electrojet. The counter electrojet was observed both in space and on 
 

38      the ground. A transient, localized enhancement of downward field-aligned current was observed 
 

39      near dawn, consistent with the mechanism for transmitting MHD disturbances from magnetosphere 
 

40      to the ionosphere after the negative pressure pulse. 
 

41 
 

42      Plain Language Summary 
 

43      The solar wind is a continuous stream of charged particles blowing from the Sun. The Earth’s 
 

44      magnetic field forms a protective shield around our planet, called the magnetosphere, which deflects 
 

45      most of the solar wind particles away from the Earth. Disturbances in the solar wind can interact 
 

46      with the magnetosphere and impact the Earth’s upper atmosphere (ionosphere).  The interaction 
 

47      creates electric fields forcing charged particles to move in the magnetosphere, which creates electric 
 

48      currents flowing along the magnetic field lines connecting to the high-latitude ionosphere and drives 
 

49      the movement of charged particles there. The low-latitude ionosphere is generally shielded from 
 

50      these electric fields. Sudden changes in the solar wind can break such balance, leading to the 
 

51      electric field penetration to low latitudes.  We examined how the magnetosphere and ionosphere 
 

52      interacted during the 23 March 2023 geomagnetic storm, focusing on what happened when the solar 
 

53      wind dynamic pressure suddenly decreased. We found the pressure drop caused a sudden decrease 
 

54      of the high-latitude electric field, resulting in a brief period of overshielding and the electric field in 
 

55      the equatorial ionosphere reversed its direction. This changed the direction of the equatorial 
 

56      electrojet, a major electric current in the ionosphere at the magnetic equator.
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57      1 Introduction 
 

58 
 

59      In steady-state conditions, the low-latitude ionosphere is shielded from the high-latitude convection 
 

60      electric field due to the partial ring current-associated region-2 (R2) field-aligned currents (FACs) 
 

61      which act to oppose the electric field associated with region-1 (R1) FACs (e.g., Southwood, 1977). 
 

62      However, it can be directly coupled to the magnetospheric disturbances through prompt penetration 
 

63      of the convection electric field during active times (Nishida, 1968; Jaggi and Wolf, 1973; Fejer et 
 

64      al., 1979). 
 

65 
 

66      The equatorial electrojet (EEJ), an intense band of eastward electric current flowing along the 
 

67      dayside magnetic equator in the E-region ionosphere (~110 km altitude), is driven by an eastward 
 

68      zonal electric field from plasma-neutral collisional interactions known as the E-region wind dynamo 
 

69      (Richmond, 1973; Heelis, 2004). The intensity and polarity of the EEJ respond directly to the 
 

70      perturbations of the zonal electric field.  Variations of the EEJ often serve as an indicator for the 
 

71      equatorial zonal electric field perturbations, which can be caused by either neutral wind changes 
 

72      from lower atmosphere forcing or prompt penetration electric fields (PPEFs) from enhanced 
 

73      magnetosphere-ionosphere (M-I) coupling. Many studies have used EEJ variations to probe the 
 

74      presence of PPEFs that are attributed to interplanetary magnetic field (IMF) variations (e.g., 
 

75      Yizengaw et al., 2011, 2016) or solar wind dynamic pressure pulses (e.g., Nilam et al., 2020, 2023). 
 

76      Understanding the sources and the process of PPEFs continues to be a subject of ongoing 
 

77      investigation (Kelley et al., 2003; Fejer et al., 2024). 
 

78 
 

79      This paper reports the observations of the M-I coupling and its effect on the equatorial ionosphere 
 

80      in response to a sudden decrease of the solar wind dynamic pressure during the main phase of the 
 

81      23 March 2023 geomagnetic storm. Figure 1 shows 1-min resolution OMNI data for the IMF and 
 

82      solar wind parameters along with ground-based SYM-H index for 23-25 March 2023. This large 
 

83      storm (minimum Dst ~ -170 nT, Kp ~ 7) was associated with the passage of an interplanetary 
 

84      coronal mass ejection (ICME), triggered by the southward IMF in both the sheath and the ICME 
 

85      regions. A drastic density decrease was observed at the boundary crossing from the sheath to the 
 

86      ICME by the WIND spacecraft. As a result, a significant negative solar wind pressure pulse hit the
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87      Earth’s magnetosphere during the main phase of the storm (1440 UT, marked by the red dashed line 
 

88      in Figure 1). The solar wind density as well as the dynamic pressure decreased ~10 times. 
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Figure 1. The 1-min resolution OMNI data. The negative pressure pulse during the main phase of the storm is 

marked by the red dashed line. 

 
 
 
 

We examine how FACs at high latitudes and the EEJ at the equator responded to the negative 

pressure pulse using both space and ground-based magnetic field data. In the following sections, we 

first present evidence for a transient PPEF associated with the pressure pulse from the ground based 

EEJ observations. Then we examine the response of large-scale FACs globally by AMPERE and 

locally by Swarm satellites. We also analyze the EEJ observations in space by Swarm, which 

provide additional evidence for the transient PPEF associated with the pressure pulse.  Finally, we 

discuss the dynamic processes involving solar wind pressure pulse interacting with the 

magnetosphere and coupling into the polar ionosphere, that allow us to understand the behaviors of 

the equatorial ionosphere. 

 
 

2    Observations
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2.1 Ground-based Observations of EEJ 
 

 
 

The EEJ signals can be obtained from a pair of ground magnetometer stations located near the 

magnetic equator on the same meridian, one directly under the EEJ at the equator (within ±3.5o) and 

the other just off the EEJ region (6o–9o from the magnetic equator) (Anderson et al., 2004; 

Yizengaw et al., 2014). The EEJ signals centered at the magnetic equator extend over only a small 

range of latitudes on either side because the EEJ current is confined in a narrow latitudinal band 

(within ±3°). But both stations are expected to record the same magnetic field variations from other 

large-scale current sources, such as the solar quiet (Sq) currents, the ring current, and the 

magnetopause current. The EEJ signals are extracted from the difference of the H-components 

between the two stations. In this study, we used two pairs of geomagnetic observatories at two 

meridians (~80°W and ~50°W). One pair is located at Jicamarca (JICA, 11.95°S/76.87°W GEO, 

MLat = 0.6°N) and Piura (PIUR, 5.2°S/80.6°W GEO, Mlat = 6.9°N) in Peru. The other pair is 

located at Tatuoca, Brazil (TTB, 1.21°S/48.5°W GEO) and Kourou, French Guyana (KOU, 

5.21°N/52.7°W GEO). The magnetic latitudes for TTB and KOU are 2.98°N and 10.72°N, 

respectively, based on the model. However, they are within the region of South Atlantic Anomaly 

with rapid northward moving of the magnetic equator, which passed the TTB in March 2013 

(Morschhauser et al., 2017; Yizengaw, 2020). TTB should be slightly south of and KOU closer to 

the magnetic equator than the model prediction today. 

 
 

Figure 2 shows the magnetic fields from the 2 pairs of ground observatories on 23 March 2023 with 

three subpanels for each pair, from top to bottom, showing the H-component with the background 

removed (dH) off the magnetic equator, at the magnetic equator, and the EEJ signal (dHEEJ, the 

differences between dH at the geomagnetic equator and off the equator), respectively. The 

horizontal bar in the 3rd subpanel indicates dayside hours (6-18 LT) at the equator station. The red 

dashed line indicates the time of the negative pressure pulse (1440 UT) in Figure 1. The local time 

(LT) of the pressure pulses at the two equator stations are also noted in Figure 2. 

 
 

The eastward zonal electric field from the wind dynamo drives the eastward EEJ, producing a 

positive magnetic field perturbation (dHEEJ >0) in the dayside. This is generally the case in Figure 2 

except for a brief period immediately following the negative pressure pulse. There was a transient
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negative impulse of the H-component at all the stations, consisting of a sharp decrease (~6 min) and 

a relatively gradual (~ 1 hour) return, apparently due to the sudden decrease of the magnetopause 

current and expansion of the magnetosphere in response to the negative pressure pulse (Araki and 

Nagano, 1988). However, the transient negative impulse at the equator station is much stronger than 

its off-equator counterpart, and the EEJ signature reversed its sign and minimized to -185 nT at 

80°W and -112 nT at 50°W, showing a transient counter electrojet flowing westward. This 

observation indicates the negative pressure pulse set up a transient westward electric field (~ 1 hour) 

in the equatorial ionosphere.
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Figure 2. Ground-based observations of the H-component from 2 pairs of ground observatories on 23 March 
 

2023, JICA-PIUR and TTB-KOU, respectively. The red dashed line marks the negative pressure pulse in Figure 
 

1. The black horizontal bars indicate the daytime (06-18 LT) at the equator stations.



7  

151 
 

152 
 

153 
 

154 
 

155 
 

156 
 

157 
 

158 
 

159 
 

160 
 

161 
 

162 
 

163 
 

164 
 

165 
 

166 
 

167 
 

168 
 

169 
 

170 
 

171 
 

172 
 

173 
 

174 
 

175 
 

176 
 

177 
 

178 
 

179 
 

180 
 

181 

 

 
2.2 AMPERE Observations of Large-scale FACs 
 

 
 

AMPERE observations of large-scale FACs are derived from measurements of magnetic field 

perturbations from the Iridium constellation of more than 70 near-polar orbiting satellites [Anderson 

et al., 2000].  It collects 10-min data to generate one global patten of large-scale FAC distributions 

and provides a continuous monitor of the state of the global M-I system. (AMPERE data will 

unlikely reveal transient and localized variations due to the limitation of spatial and temporal 

resolution.) Figure 3 shows the AMPERE observations of the total field-aligned currents flowing 

into and out of the ionosphere on 23 March 2023 (Figure S1 provides the magnetic field 

perturbations and global FAC maps). The total upward current out of one hemisphere is calculated 

by integrating all the upward current density over the entire area above 40° latitude, and likewise for 

the total downward current. Again, the red dashed vertical line corresponds to the negative pressure 

pulse in Figure 1. 

 
 

Starting from ~ 07 UT, the total FACs gradually intensified as the storm progressed with the SYM- 

H index became more negative, representing an increasing active magnetosphere as FACs facilitate 

the electromagnetic energy input from the magnetosphere into the ionosphere. There is a brief 

period (~ 1 hr) of total current drop starting at ~13 UT, apparently associated with the northward 

excursion of the IMF Bz component (Figure 1) which turned off the dayside reconnection and 

reduced the magnetospheric convection temporally. 

 
 

Figure 3 shows the total currents responded to the negative pressure in two stages. The total currents 

dropped sharply at ~1440 UT due to the sudden sunward motion of the magnetopause and 

expansion of the magnetosphere.  The sudden reduction of the magnetopause current also caused a 

step decrease of the SYM-H index (Figure 1). Then the total currents continued to decrease 

gradually. The decreasing trend of the SYM-H index has flattened out within the storm main phase, 

indicating the pause of the ring current development (Figure 1). This is expected as IMF Bz 

fluctuated around zero and the expanded magnetosphere adjusted to the new state of reduced 

geomagnetic activity level. At ~1630 UT, the IMF Bz gradually turned southward, which 

terminated the decreasing trend of the total currents. At ~ 18 UT, both the total currents (Figure 3)
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and the SYM-H index (Figure 1) showed that the magnetospheric activities began to intensify 

rapidly with the prolonged steady southward IMF in the ICME. In summary of the AMPERE 

observations, large-scale FACs were significantly weakened by the negative pressure pulse.
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Figure 3. AMPERE Observations of the total upward and downward FACs in northern and southern 

hemisphere, respectively.
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2.3 Swarm Observations of FACs and EEJ 
 

 
 

Swarm is a three-satellite mission in a high-inclination (87.5°) low-Earth orbit, which provides 

vector magnetic field data for frequent in situ measurements of FACs at high latitudes (Lühr et al., 

2015) and scalar magnetic field strength for the EEJ in the equatorial region (Alken et al., 2015). 

Among the three satellites, A and C form a pair flying side by side at the same altitude (~460km) 

with a longitudinal separation of 1.4°. Swarm B has slightly higher altitude (~530km) and its orbital 

plane slowly drifts apart from those of Swarm A/C. In this study, we used two official Swarm level- 

2 data products: (1) the vector magnetic field residuals dB for the study of FACs, and (2) the height- 

integrated latitudinal profile of eastward EEJ current.  The EEJ current profile is estimated from the 

Swarm scalar magnetic field measurements by isolating the EEJ signal from the many other 

geomagnetic sources and then fitting the EEJ signal with a line current model (Alken et al., 2015). 

The EEJ current peak at the magnetic equator provides a good estimate of the EEJ strength. 

 
 

Figure 4 presents an overview of the Swarm observations. Figure 4a shows the spacecraft orbits for 

the polar cap pass near 1440 UT, the intervals marked by the red bars in Figures 4b/4c. Figures 4b 

and 4c contain 4 hours of Swarm vector magnetic field residuals dB in solar magnetic (SM) 

coordinate system centered at 1440 UT (red dashed line) for Swarm A and B, respectively. Swarm 

C data are nearly the same as Swarm A (not shown). During this interval, Swarm made 5 passes of 

the polar cap, denoted by N (S) for the northern (southern) hemisphere, and 3 crossings of the 

dayside magnetic equator marked by MEq and the blue dashed lines. The perturbations in dB are 

the signals of FACs, occurring at auroral latitudes on both sides of the magnetic pole. The 

latitudinal profiles of the estimated EEJ current at the dayside magnetic equator crossings are 

presented in Figures 4d-4f for Swarm A and 4g-4i for Swarm B. The positive current is for eastward 
 

EEJ. 
 

 
 

Both Swarm A and B were in the dayside morning sector over the northern polar cap at the time of 

the negative pressure pulse (red dots in Figure 4a). In Figure 4a, the tick marks on each trajectory 

are separated by 10 min. The red arrows indicate the directions of the spacecraft motion. Swarm A
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was moving from nightside to dayside and Swarm B from dayside to nightside with ~ 2 hr local 

time separation of the orbital planes. 

 
 

In Figures 4b&4c, the FACs observed before the negative pressure pulse were generally stronger 

than those after at Swarm, in agreement with the AMPERE observations. The only exception is that 

the FAC signal was significantly enhanced to ~2000 nT in magnitude shortly after the negative 

pressure pulse at Swarm A (highlighted in yellow in Figure 4b) at ~7 LT (Figure 4a).  The magnetic 

field perturbations were mainly in the -x direction (anti-sunward), which is the signature of a pair of 

FACs flowing downward at higher and upward at lower latitudes, respectively. The enhanced FAC 

pair had the same polarity of the regular R1/R2 FACs in the dawn sector. The enhanced dBx 

magnitude was mainly due to the much-enhanced dawnward FAC at higher latitudes since the 

gradient (i.e., time rate of change) of dBx was significantly higher at the poleward edge. The FACs 

observed by Swarm B at nearly the same time (yellow-highlighted interval in Figure 4c) but at ~11 

LT (Figure 4a) did not show the same feature, neither did the subsequent FACs in the pre-midnight 

sector. When Swarm A returned to the same region in next orbit about 90 min later (~ 1615 UT), 

the FACs have returned to the weakened state. These observations indicate the much-enhanced 

downward FAC is a localized (near dawn) and transient (duration < 90 min) phenomenon in 

response to the sudden decrease of the solar wind dynamic pressure. The AMPERE observations 

did not capture such a localized transient response. 

 
 

We now examine the EEJ profiles. As Swarm B is much closer to the local noon at the dayside 

equator, the EEJ signal is expected to be much stronger at Swarm B than Swarm A. Before the 

negative pressure pulse, the EEJ profile is not well defined at Swarm A (1323 UT, Figure 4d), 

mostly likely due to a very weak EEJ in early morning. But closer to the local noon, Swarm B 

detected the typical eastward EEJ profile at 1252 UT (Figure 4e) and 1426 UT (Figure 4f). Then 

about 17 min after the negative pressure pulse, Swarm A observed a well-defined westward EEJ, or 

counter electrojet (Figure 4e). The observed counter electrojet appeared to be a transient 

phenomenon. The EEJ returned to nominal eastward direction in the next two profiles, 1601 UT at 

Swarm B (Figure 4i) and 1632 UT at Swarm A (Figure 4f). These observations are in agreement 

with the ground-based EEJ currents in Figure 2.
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3    Discussion 
 

 
 

We summarize the observations presented above. 
 

• The solar wind dynamic pressure decreased significantly at the boundary of the ICME that 

caused the 23 March 2023 magnetic storm. The negative pressure pulse arrived at the Earth 

at 1440 UT during the main phase of the storm and the IMF Bz fluctuated between 

northward and southward (Figure 1). 

• The total large-scale FAC currents flowing into and out of the ionosphere decreased 

significantly soon after the arrival of the negative pressure pulse based (Figure 3). The 

overall geomagnetic activity level in the magnetosphere was weakened for more than 3 hrs, 

which paused the progression of the storm main phase. The activity level picked up again 

only after the IMF Bz turned strongly southward for an extended period during the passage 

of the ICME. 

•  Swarm A observed a significant enhancement of the downward FAC at the poleward edge 
 

of the FAC region near dawn shortly after the negative pressure pulse, which appeared to be 

localized and transient (Figure 4). Nearly simultaneous Swarm B observations closer to the 

local noon showed weakened FACs, consistent with the AMPERE observations. 

• A transient counter electrojet was observed both in space by Swarm A (Figure 4) and on the 

ground (Figure 2) within minutes after the arrival of the negative pressure pulse. The counter 

electrojet lasted for ~ 1 hr and then returned to its regular eastward direction. The observed 

transient reversal of the EEJ to the westward direction suggests that the equatorial 

ionosphere experienced a brief period of a westward electric field after the negative pressure 

pulse. 

 
 

These observations demonstrate the profound impact to the M-I system by the negative pressure 

pulse. The observed counter electrojet indicates a transient westward electric field associated with 

the negative pressure pulse penetrated to the equatorial ionosphere from over-shielding (Hori et al., 

2012; Fujita et al., 2012).  The penetration electric field was much stronger in magnitude than the 

background eastward electric field from the wind dynamo so that the overall zonal electric field was
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reversed. Our observations indicated there was a sudden decrease of the dawn-to-dusk (eastward) 

convection electric field as evident by the sudden decrease of the total FAC currents flowing into 

and out of the polar ionosphere immediately after the negative pressure pulse (Figure 3). The total 

FACs then gradually decrease with a time scale of hours. However, SYM-H, the ring current index, 

was flatten out in the same period, indicating the ring current did not immediately respond to the 

weakened convection electric field (Figure 1). The delayed response of the ring current reflects the 

time scale for the M-I system to gradually adjust to the expanded state of the magnetosphere with 

decreased level of plasma convection (Earle and Kelley, 1987).  Thus, there was a short period 

when the low-latitude ionosphere was over-shielded and experienced a dusk-to-dawn (westward) 

electric field. Based on the duration of the counter-electrojet in the ground-based observations 

(Figure 2), the response of the ring current-R2 FAC system was delayed for ~6 min, and it took ~ 1 

hr for the M-I system to gradually adjust itself to the decreased plasma convection level and the 

low-latitude ionosphere to return to be fully shielded. 
 

 
 

To understand the transient responses and localized enhancement of FACs, it is necessary to review 

the current understanding of the underlying physical process. The M-I system responds to a sudden 

pressure pulse in two phases, including a preliminary impulse (PI) and a two-stage main impulse 

(MI) (e.g., Tamao, 1964a&b; Araki, 1977; Araki and Allen, 1982). The PI is due to the propagation 

and conversion of a compressional wave front launched from the magnetopause when the 

magnetosphere is suddenly compressed or expanded. The PI is transient by nature because its driver 

is the interaction between the pressure pulse and the magnetopause, which disappears in minutes 

after the impulse front propagates away from the dayside. 

 
 

Although more previous studies focused on sudden pressure increases than decreases, the basic 

physics is the same. Based on Tamao’s (1964a&b) pioneer work, Araki (1994) proposed a M-I 

coupling PI model to explain the global observations after geomagnetic sudden commencements. 

As illustrated in their Figure 12, the magnetopause moves inward and the dawn-to-dusk 

magnetopause current increases when the solar wind dynamic pressure suddenly increases. A 

compressional MHD wave is excited on the magnetopause, which propagates into the equatorial 

magnetosphere. The solar wind-magnetosphere interaction as a dynamo generates an enhanced 

dusk-to-down electric field at the magnetopause (J× E < 0). A dusk-to-dawn electric field and
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associated inertia electric current are induced inside the magnetosphere. The extra magnetopause 

current and the inertia current would form a counterclockwise current loop. The compressional 

wave will be converted into the transverse Alfven wave due to the nonuniformity of the 

magnetosphere (Tamao, 1964b; Southwood and Kivelson, 1990). When the compressional wave 

front reaches the region where the Alfven speed has a largest spatial gradient, converted Alfven 

waves are generated and propagate along the field lines with associated FACs. A pair of FACs will 

be a part of the current loop, downward in the dusk side and upward in the dawn side. This process 

happens in time scale of minutes. So, the pair of FACs exists transiently at lower latitudes than the 

regular R1 currents with opposite polarity. A quantitative detail of the PI process is provided in the 

MHD simulations by Fujita et al. (2003a&b, 2005), and the source region of the MHD wave mode 

conversion for the generation of the transient FACs was found to be in the region of 6 < L < 7 

(Fujita et al., 2003a). 

 
 

In the case of negative pressure pulses, the observations by Araki (1988) and simulations by Fujita 

et al. (2004, 2012) showed that the magnetospheric and ionospheric signatures mostly mirror those 

in pressure pulses. The negative pressure pulse causes the expansion of the magnetosphere and a 

decrease of the magnetopause current. The PI is associated with a dawn-to-dusk transient dynamo 

electric field at the magnetopause and induced electric field in the magnetosphere. The equatorial 

current loop would be clockwise to effectively reduce the magnetic field strength in the 

magnetosphere, and the pair of transient FACs would be downward in the dawnside and upward in 

the duskside, in the same polarity of the regular R1 currents. The transient and localized 

enhancement of the downward FAC observed by Swarm A near dawn (Figure 4) matches the 

predicted polarity of the FACs. However, our observations differ in an important aspect from the 

model prediction. The transient, localized FAC enhancement was observed at the poleward edge of 

the FAC region, implying the source region was near the magnetopause, as in the earliest work of 

Tamao (1964a). Further theorical and numerical investigation is still needed to understand the 

source region of the transient FACs during the PI. In addition, understanding the role of the ring 

current/R2 FAC system to the undershielding/overshielding and its restoration is particularly needed 

in future simulations. 

 
 

4    Conclusions
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A drastic decrease of the solar wind dynamic pressure occurred during main phase of the 23 March 
 

2023 geomagnetic storm in association with the boundary between the ICME and its sheath. Our 

observations show that the negative pressure pulse had significant impact to the M-I system. It 

weakened the overall geomagnetic activities and plasma convection and paused the progression of 

the storm main phase for ~ 3 hrs. Due to the sudden decrease of the dawn-to-dusk convection 

electric field, there was a transient period when the low-latitude ionosphere was over-shielded and 

experienced a brief period of dusk-to-dawn (westward) penetration electric field. The transient 

westward penetration electric field reversed the direction of the equatorial electrojet, and the 

counter electrojet was observed both in space and on the ground. The response of the ring current- 

R2 FAC system was delayed for ~6 min, and it took ~ 1 hr for the M-I system to adjust itself to the 

decreased plasma convection level until the low-latitude ionosphere was fully shielded again. 

Although the overall large-scale FACs were weakened by the negative pressure pulse, a transient, 

localized enhancement of downward FAC was observed near dawn, consistent with the mechanism 

for transmitting MHD disturbances in the M-I coupling after the negative pressure pulse. But the 

latitudinal location of the localized FAC enhancement differed from the model prediction, which 

calls further investigation of the MI coupling in response to the pressure pulse. 
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