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ABSTRACT

The absolute radical quantum yield (@) is a critical parameter to evaluate the
efficiency of radical-based processes in engineered water treatment. However,
measuring @ is fraught with challenges, as current quantification methods lack
selectivity, specificity and anti-interference capabilities, resulting in significant error
propagation. Herein, a direct and reliable time-resolved technique to determine @ for
commonly used radical precursors in advanced oxidation processes is reported. For
H2O> and peroxydisulfate (PDS), the values of @.on and Pgp;- at 266 nm were

measured to be 1.10+0.01 and 1.46 = 0.05, respectively. For peroxymonosulfate (PMS),

we developed a new approach to determine @ilfs with terephthalic acid as a trap-and-

PMS

on value was

trigger probe in the non-steady state system. For the first time, the @

measured to be 0.56 by the direct method, which is stoichiometrically equal to @gglf—

(0.57 £ 0.02). Additionally, radical formation mechanisms were elucidated by density
function theory (DFT) calculations. The theoretical results showed that the highest
occupied molecular orbital of the radical precursors are O-O antibonding orbitals,
facilitating the destabilization of the peroxy bond for radical formation. Electronic
structures of these precursors were compared, aiming to rationalize the tendency of the
@ values we observed. Overall, this time-resolved technique with specific probes can
be used as a reliable tool to determine @, serving as a scientific basis for accurate

performance evaluation of diverse radical-based treatment processes.

Keywords: radical quantum yield; radical-based treatment; reaction mechanisms; time-

resolved technique.

Synopsis: This study presents a direct and reliable method for determining absolute



48  radical quantum yields, offering a valuable means to accurately evaluate the efficiency

49  ofradical-based treatment processes.
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1. INTRODUCTION

Rapid industrial and urbanized development have brought various deleterious
micropollutants into aquatic systems, posing non-negligible threats to human and
ecosystem health.! 2 Conventional water treatment technologies such as filtration,
adsorption and biodegradation exhibit low removal efficiency for many of these
micropollutants.> # To this end, advanced oxidation processes (AOPs) emerged as a
group of cutting-edge decontamination technology.> ¢ AOPs generate strong oxidative
radicals, such as hydroxyl (‘OH), sulfate (SO; ) and chlorine radicals (C17/Cl; ),
ultimately degrading or even mineralizing recalcitrant micropollutants.”

In the evaluation of performance for different UV-based AOPs, the radical
quantum yield (@, unitless) is a critical parameter.' It measures the efficiency of a
photochemical reaction in generating radicals, and is defined as the ratio of the number

of radicals formed to the number of photons absorbed: !

__ the number of radicals formed through photolysis

D

(1)

the number of photons absorbed
However, determining @ for radicals can be difficult due to the scarcity of reliable
methods for calibrating these transient radical species. Although chemical probes have
been intensively used to indirectly quantify resulting radicals for the determination of

@,'> 13 cautions must be exerted for an appropriate selection of probe compounds: (i)

14,15

Many probes can react with multiple radicals to form same products, complicating

quantification of different radicals, ultimately resulting in misestimation of @ values.

For example, benzoic acid is widely adopted as a probe compound for radical

identification and quantification of ‘OH and SOj” in a system.'® !

COOH COOH

OH
o CY @
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COOH COOH COOH

OH
@ + S0 @ *H,0 3

Nevertheless, the product that can be detected (i.e., salicylic acid) with these two
radicals is the same. (ii) Many probes do not always exhibit an exclusive selectivity.'®
19 The reaction rate constant (k) of "OH with the probe methanol is 9.7 x 108 M! s},
while its k value with H2Oz is 2.7 x 10" M s71.2° The comparable k values indicate a
competition of H2O2 with methanol for "OH at similar concentrations, resulting in error
propagation for @. (iii) Side-reaction interference of probe and target radicals perturb
the @ determination.!*?? Yu et al. used CI~ as a probe to measure the ®.ou produced in
the photolysis of H20,.* In their system, 16 possible reaction pathways were
considered which presented an obstacle for extrapolation back to initial ‘OH
concentration. Therefore, it is necessary to seek more direct and reliable alternatives to
determine @ for radical formation.

Advancements of time-resolved laser flash photolysis (LFP) have opened up new
horizons for transient species kinetic investigations, including improved features, such
as better temporal resolution (~10~ s), rapid response speeds, and lower detection limits
(absorbance less than 5 x 107).2426 For environmentally relevant studies, LFP was
widely exploited to investigate the transformation of micropollutants triggered by
radicals and other reactive species (e.g., excited triplet states of compounds).?” 2% In
particular, Canonica and von Gunten made many pioneering and significant
contributions to characterize the photochemical transformation of micropollutants in
sunlit natural waters.?®! The gradual recognition of its implementation inspires
potential utilization for real-time visualization of transient species and direct
determination of their @ values in radical-based treatment processes. Note although

pulse radiolysis has been also widely used to study fast reactions, the determination of
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@ values cannot be achieved with this technique, as no photons are involved in radical
formation.*% 33

Herein, we report a direct and accurate method to determine the absolute @ values
for radicals by the LFP technique. Three typical radical precursors - H>O», PDS, and
peroxymonosulfate (PMS) - were selected and tested, as these precursors have been
widely used to produce ‘OH and SOj~ in AOPs for water engineering practices.>* > In
particular, we present a new approach to quantify the @ value of ‘OH produced from
PMS using terephthalic acid (TPA) as a trap-and-trigger probe in a non-steady state
system. The @iﬁds value was measured by the direct method for the first time. The
radical formation mechanisms were elucidated by means of density functional theory
(DFT) calculations. We compared electronic structures of these precursors at the
molecular level, aiming to rationalize our experimental observations. This study offers
a reliable and direct @ measurement approach for different radical species, avoiding
derivatization and side-reaction interference. Our method can be used to accurately
evaluate the effectiveness of radical-based treatment processes, thereby instigating

informed decision-making in appropriate selection of AOPs in different treatment

scenarios.

2. MATERIALS AND METHODS
2.1 Materials
Chemicals and reagents used in this study are provided in Supporting Information

Text S1. The calibration of H>O; concentration are described in Text S2.

2.2 Experimental approaches

For direct quantification of different radical species, an in-house built LFP
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platform was used. The LFP consists of a laser, detecting unit (xenon detector lamp,
monochromator, photomultiplier tube, and oscilloscope), and sampling chamber
(Figure S1). The laser is used to provide a high-energy pulse for radical formation. In
this study, the fourth harmonic (266 nm) oscillation of a Nd:YAG Q-switched laser was
used for the excitation of working solutions. The laser pulse energy was measured by a
laser energy meter (7201560, Vega Ophir), and the pulse width was 15 + 1 ns. The
excitation energy was set low at 21+1 mJ pulse™ to avoid biphotonic events. The
repetition rate was held at 10 Hz by a digital pulse generator to ensure sample full
recovery between laser flashes. The flow rate of working solutions through the quartz
cell (dimension of 10 x 10 x 40 mm) was controlled at 12 mL min™ by a peristaltic
pump (BT100-1L, LongerPump). The detecting unit allows monitoring transient
species formation and decay kinetics. The detection light emitted from a pulsed xenon
lamp (ca. 300 W) and passed through a monochromator (Omni-A180D, ZOLIX). Then,
the Oriel photomultiplier tube (PMT) converts and amplifies incident photons into an
electrical signal, and real-time signal was digitized by a TDS-640A Tektronix
oscilloscope (Text S3). For each trace, 512 laser shots were averaged. All experiments
were conducted in triplicate under the same conditions to ensure reproducibility.

The radical quantum yield (@r) from photodissociation of the precursor was

calculated as:

_ NR)y _ C(R)y x Vx Na

Pr NG) N(hv) 4)

where N(R)o and N(Av) refer to the initial number of radicals formed (in our case ‘OH
and SO} ) and photons absorbed by the precursor, respectively; C(R)o is the initial
molar concentration of radicals; and Na represents Avogadro’s number. For SO}, the
initial number N(SOj )o can be directly measured, as it exhibits noticeable absorbance
at 450 nm.’® For "OH, the initial number N(OH)o cannot be directly obtained by

7
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spectroscopic methods, as it does not have a characteristic absorption feature in UV and
visible regions.?” Thus, SCN~ was used as a probe, as it reacts rapidly with ‘OH (eqn.

5,k=1.4 x 10" M s),2° forming (SCN);_ with a diagnostic absorption at 475 nm:

*OH+ SCN~ — SCNOH'™ (5)
SCNOH"™ — SCN" + OH~ (6)
SCN" + SCN™ & (SCN);~ (7)

Note, (SCN);” is in equilibrium with SCN* (eqn. 7, K = 2 x10° M™).*® The
concentration of (SCN); remains unchanged on the microsecond time scale, making

an absolute dosimetry measurement feasible. Based on the stoichiometric relation,

N(COH)y is equal to the initial number of (SCN);, which can be extrapolated back from
the absorption profile of (SCN);".

In steady-state systems, TPA has frequently been used as a probe for ‘OH
quantification, as it selectively reacts with ‘OH via hydroxylation reaction at the & of
4.4 x10° M1 g3 40

TPA + 'OH — hTPA (8)
The resulting hydroxyterephthalate product, hTPA, is fluorescent, resulting in high
sensitivity and low background interferences.*! For example, TPA was used to monitor
"OH production by the photolysis of nitrite and Suwannee River Fulvic Acid (SRFA).*?
Based on the fluorescence intensity of formed hTPA, the steady-concentration of ‘OH
from nitrite and SRFA were measured to be 4.1 M (f for femto) and 0.6 M, respectively.
However, this quantification approach has not yet been explored in a non-steady state
system. We anticipated that with LFP, negative absorption (emission) bands due to
hTPA could be observed and thus the initial concentration of hTPA could be derived

from a calibration. To confirm our anticipation, the steady-state fluorescence of hTPA

was also measured using a fluorescence spectrophotometer (F-4600, Hitachi, Japan).

8
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The emission wavelength was monitored from 350 to 550 nm with a step increase of 5

nm, and the excitation wavelength was set to be 315 nm.

2.3 Computational approaches
Computational studies were used to elucidate radical formation mechanism. The
electronic structures of the three radical precursors (H2O>, PDS and PMS) were

optimized using Gaussian 16 (Revision A.03).43

The geometry optimizations of these
precursors were performed at B3LYP-D3/6-31G(d,p) level of theory, and the single-
point energies were calculated at a higher level of basis set (6-311G(2d,2p)) with the
same functional.** % The B3LYP functional has been extensively used in geometry
optimalizations, as it yields reliable electronic structures and thermodynamic results.*®
47 Note, B3LYP-D3 refers to B3LYP functional with Grimme’s GD3-BJ empirical
dispersion correction®®, which can be used to exclude the interference of weak
interactions. In addition, we also calculated the bond dissociation enthalpy (BDE) of

several well-studied compounds (eqn. 9),* validating the robustness of the B3LYP-D3

functional (Table S1).

*

BDE = (Hrgicalffragment1] — Hradicalffragment2]) — Hparent compound (9)

where H* represents the enthalpy of formation (kcal mol ™). The accuracy of the 6—

311G(2d,2p) basis set was also validated and is detailed in Text S4. Solvation model

based on density (SMD) was used to simulate the solvation interaction of molecules in
water.>%52

In order to depict the molecular orbital (MO) interactions of these precursors,

charge decomposition analysis (CDA) was conducted by Gaussian 16 and Multiwfn 3.8

dev.>*3* The radical precursors were deliberately divided into two open-shell fragments,

and the geometry optimizations were calculated at UB3LYP-D3 functional in



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

combination with 6-31++G(d,p) basis set.”> Then, the Gaussian output files for
precursors and fragments were imported to Multiwfn 3.8 dev., and the orbital
interaction diagram was plotted. Frontier orbital energies are used for the investigation
of photochemical reactions. In particular, the electron densities in the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were
used to interpret radical formation.’® A compound with a small energy gap of HOMO

and LUMO is more susceptible to UV irradiation.

3. RESULTS AND DISCUSSION
3.1 Formation Kinetics of “OH by H20:

Figure 1a illustrates that with an increase of the initial concentration of SCN-, the
maximal absorbance at 475 nm increased from 0.11 ([SCN~] =1 mM, blue line) to 0.14
([SCN7] = 5 mM, red line). The absorbance remained unchanged with further
concentration increase (red and green lines overlaps). This observation can be attributed
to the competitive reactions of ‘OH with SCN~ (eqn. 5) and H>O> (eqn. 10).

"OH + H,02 — H,0 + HO; (10)
von Sonntag proposed the concept of scavenging capacity,’’ and we calculated the
capacities for SCN™ and H20z:

scavenging capacity = k x [scavenger]| (11)
where £ is the second-order reaction rate constant of a radical with a scavenger. With
the k values of 1.4 x 10'° and 2.7 x 10" M!'s"! for SCN~ and H»0», respectively,?® the
scavenger capacity of SCN™is 130 times higher than that of H,O», demonstrating that
the resulting "OH in the photolysis of H2O> was completely scavenged (> 99%) by SCN~
at 5 mM. Note, the recombination of ‘OH can be another important sink, and this

reaction is also fast with a & value of 1.1 x 10'° M s71.% However, this reaction is a

10
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negligible sink of "OH since the concentration of "OH is significantly lower than that of
SCN™.

We monitored the absorption trace of (SCN); at pH =7 and [SCN™] =5 mM. As
shown in Figure 1b, the maximum absorbance was 0.14. With the molar extinction

coefficient () of 7400 M™! cm'! for (SCN);,38 its initial concentration was determined

to be 19.4 uM (Figure S2), and the N("OH)o was calculated to be 9.19 x 10'°. Since

H>0, solution only absorbs a fraction of photons, N(Av) can be calculated as:

EX EA
N(v) == x (1-T) ==

x (1-107¢%) (12)

where E refers to the laser energy per pulse and 7 refers to the transmittance of working

solutions. The apparent ey, , at 266 nm was measured to be low at 7.2 Mtem™! (Figure

S3, a precursor with low & value indicates that it exhibits weak absorption for UV, thus
causing inefficient radical formation). Therefore with eqn. 4, the @.on value was
determined to be 1.10 + 0.01.
Our value was in good agreement with the one measured by Goldstein et a/ (Table
S2). They used methanol as a probe to measure ®.on in a UV/H20; system, as the
generated "OH reacts with methanol forming formaldehyde stoichiometrically. They
quantitated formaldehyde via the addition of acetylacetone, and the adduct formed with
a relatively high absorption. Based on the derivatization technique, ®@.on was deduced
to be 1.16 + 0.05.%® However, our ®.on value was about 10% higher than that by Yu et
al. (d-on = 1.0). They used Cl as a probe for ‘OH (eqn. 13), as the formed CI;~ (eqn.
14) can be observed through its characteristic absorption peak at 364 nm.?*
‘OH+ClI"— 'Cl + OH" (13)
‘Cl+CI" & Cl3y~ (14)

We believe that their method for @.on exhibits a notable degree of uncertainty. In their

11
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system, there exists 16 parallel/sequential reaction pathways, presenting an obstacle for
extrapolation back to initial concentration of C1; . Many secondary/tertiary radical (e.g.,
ClO® and HOCI") and their interference on Cl;, concentration were neglected for
simplification, eventually resulting in a large, propagated error of @.on. In addition, the
presence of Cl; is always accompanied by CI° (eqn. 14), and the spectra of Cl; and
CI' overlap at the wavelength (364 nm) they monitored, adding another layer of
complexity.’® Note we did not observe any potential interference of SCN~ (Figure S4)

and phosphate buffer (Figure S5) on @.ou determination (Text S5).

3.2 Formation kinetics of SO; by PDS

The detection of SO, was achieved by direct monitoring at its feature wavelength,
450 nm (e= 1650 M em™),%° and N(SO; )o was derived from the maximum absorbance.
Figure lc (red line) showed that after the excitation, the maximal absorbance can
increase to 0.044, and the initial concentration of produced SO;~ was then determined
to be 26.6 uM (Figure Ic, inset red line). To quantify the number of photons N(Av), the
epps at 266 nm was measured to be 7.5 M'em™ (Figure S3). With eqn. 4, @gq;- was
measured to be 1.46 + 0.05. Note, we also conducted direct photolysis of phosphate
buffer and monitored its kinetic decay at 450 nm. No diagnostic absorbance change was
observed (Figure S5b), thus phosphate buffer exerts no effect on @gq;- determinations.

Our SO; result is close to the value reported by Gertraud e al. (Pgo;= 1.4, Table
S2). They investigated the photolysis of PDS at 254 nm in deoxygenated solutions.®! In
the presence of fert-butanol (TBA, a hydrogen donor), SO, reacts with TBA forming
a stoichiometric number of protons, and this process can be followed by measuring the
pH change in situ. It should be noted that as a macroscopic measure of solutions, pH

cannot provide a direct indication of the radical concentration.

12
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Interestingly, many studies simply proposed that @gq;- is equal to 2 (similar to
@.on from H>0O3), since one PDS molecule absorbs a photon for O-O bond fission and
subsequently two SO;~ molecules are produced.?? ®* This statement might be true in

gas phase. However, @gq:- in aqueous solution is often significantly lower due to the

t. When two SO}~ are formed simultaneously in the neighboring

solvent cage effec
micro-environment before diffusing into bulk, they tend to recombine due to limited
diffusion processes, resulting in heat release, but no net reaction.

In addition to direct detection of SO; , we also used SCN™ as a probe for

determining @gp;~ via monitoring the absorption trace of SCN; ™ at 475 nm. Redpath et

al. measured the k value of SO~ with SCN™ through pulse radiolysis. They proposed
the product can be assigned to SCN; based on transient spectra obtained after 1 krad
pulse.®* Similar to the scavenging capacity analysis in the H2O> system, the reactions
of SOy~ with other matrix constitutes (i.e., PDS, H,O and phosphate buffer, eqn.15-
17)% can be neglected in the presence of SCN™, and we concluded that SO; was

completely scavenged by SCN".

SOy +S,03™ — S,05” +S03~ (15)
SO;” + H,0 — HSO; + "OH (16)
SO;” +H,PO; — SO;™ + H2PO; (17)

As shown in Figure 1c (blue line), the maximum absorbance spiked to 0.19. The initial
concentration of SCN;  was measured to be 26 uM (Figure 1c, inset blue line). With
the stoichiometric ratio, the initial concentration of SO; was also determined to be 26
1M, ultimately the @gp;- was calculated to be 1.40 via eqn. 4. This result is in excellent
agreement with the value by our direct detection, corroborating the robustness of our

time-resolved technique.
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3.3 Formation kinetics of SO; and "OH by PMS
PMS is also an efficient precursor for SOy , and it is widely used for the
degradation of micropollutants in engineered water treatment systems.®® 7 We

measured @gq;- from the photolysis of PMS. The absorption traces of SO, at 450 nm

were recorded, and an intense maximum absorption reached up to 0.017 (Figure 1d).
Thus, the initial concentration of SO, was calculated to be 10.4 uM (Figure S6). With

gpms at 266 nm being 7.8 M 'em™ (Figure S3), ®go;- was measured to be 0.57 + 0.02.

This value is in an agreement with a previous reported value (Table S2). Guan et al.

calculated Pgq;- produced from PMS irradiation by means of competition kinetics in a

steady-state system. They used nitrobenzene and benzoic acid as probes for ‘OH and

SO; , respectively. The Py, was measured to be 0.52 by subtracting the contribution

of "OH.®® However, our result was significantly higher than the value by Herrmann
(0.12 £ 0.02).%° Their measurement was conducted assuming that the major sink for
SO is its self-recombination, and he only considered this reaction to derive (calculate)

back to the initial concentration of SOy, thus the Pgp;~ was seriously underestimated.

However, the decay of SO, undergoes a series of parallel and consecutive reactions in
aqueous solution.®® Neglecting these side reactions leads to an underestimation of
Do

In addition to SOy, PMS also generates ‘OH through the cleavage of the peroxy
bond, and the resulting ‘OH can trigger the degradation of micropollutants in radical-
based treatment processes.’” 7! Figure S7 demonstrates the commonly-used probe
SCN" cannot be used in the PMS system because these two compounds react rapidly.”
Therefore, we developed a new approach to determine @.on in the PMS system using

TPA, a compound exhibiting low reactivity with PMS due to the presence of electron
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withdrawing group. We measured the full absorption spectrum of the working solution
containing TPA and PMS. As demonstrated in Figure S8, a distinct negative absorption
(emission) from 330 to 360 nm is observed, but this band undergoes complete recovery
within 60 ns. This observation indicated that one or more new species were formed at
the early delay time before the formation of the more stable product. Subsequently, a
negative absorption band due to the formation of hTPA (eqn. 8) emerges. This
assignment was supported by the fluorescence spectra in this region at steady-state
(Figure S9). Therefore, 60 ns after excitation was chosen as the baseline (time zero) for
the event of h'TPA formation.

As illustrated in Figure 2a (blue lines), the absorption signal went negative in the
400-600 nm region. The negative absorption almost completely recovers within 54 ns,
and its lifetime on nanosecond timescale also confirmed the fluorescence emission of
hTPA. The initial absorbance (4A4wta1) at 450 nm was selected, and it was measured to
be —0.14. The AAwa value could be potentially due to the concurrent spectroscopic
contribution from TPA, SO, and hTPA. Therefore, each part was profiled in the
control experiments. The full transient absorption spectrum of TPA was measured
(Figure 2a, green lines), and its initial absorbance at 450 nm (4Atpa) is —0.083.
Similarly, the full absorption spectrum for the mixed solution of TPA and PDS was

scanned (Figure 2a purple lines), showing that its initial absorbance at 450 nm (4450;-)
is —0.038. Therefore, the residual negative absorbance resulting from the formation of
hTPA (4Antra) can be back-calculated:

AAntea = AArorat — AAtea — fx A0 (18)
where fis the ratio of the initial concentration of SO;~ produced from PMS (10.4 uM)
to that from PDS (26.6 uM). The AAntea value of —0.042 by eqn. 18 provided
convincing evidence that ‘OH is generated from the photolysis of PMS.
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Note, the resultant absorption difference between A44tea and AAgn;- may be
attributed to the generated SOy . (i) SO, exhibits significant absorption at 450 nm, that
could offset the negative absorbance; (ii) SOy reacts with TPA with a k value of 1.7 x
108 M!s™!,73 decreasing the concentration of TPA. But these spectroscopic interferences
were excluded via eqn. 18.

To quantify the formed hTPA, a calibration of standard hTPA solutions was
performed (Figure S10). Figure 2b shows that with an increase of concentration of
hTPA from 1 to 20 pM, the 4A4ntpa value at 450 nm decreases from —0.014 to —0.025.
With the calibration, the initial concentration of hTPA in the PMS system was
determined to be 3.11 uM. Thus, the initial concentration of "OH produced from PMS
is calculated to be 10.3 pM based on the hTPA formation yield of 0.3.747¢ With these
inputs, the @.on value was determined to be 0.56 via eqn. 4, which is stoichiometrically

equal to Pgp:- (0.57 £ 0.02) in the same system.

Page et al. proposed that TPA was an unsuitable probe for the study of
photochemical systems under UV irradiation with wavelength shorter than 360 nm,*?
as hTPA is less photostable than TPA. The indication holds in a steady-state system.
However, in non-steady state, the working solution was fully replenished by a peristaltic
pump. Thus, our LFP system effectively decreased the exposure time of hTPA to UV
irradiation, minimizing direct photolysis of hTPA. This is the first study to directly
measure @.on from the photolysis of PMS, exhibiting the competence of TPA as a probe
in non-steady state systems.

Note, based on the full absorption spectrum of 10 uM hTPA (Figure S11), a
pronounced negative absorption band at 330 nm was observed and it gradually

recovered to 0 within 84 ns (Figure S12). The result indicated that after excitation hTPA

generates new species. However, we did not identify them, as the negative absorbance
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at 450 nm was almost unchanged, and thus the formed species did not interfere with the

fluorescence determination at our target wavelength.

3.4 Radical formation mechanisms

Although the selected precursors possess low ¢ values (i.e., they are relatively
weakly absorbing) at 266 nm, they exhibit different capacities to form radicals. In this
section we used the bond dissociation enthalpy (BDE) of the peroxy bond (O—O) and
the HOMO shape to elucidate radical formation mechanisms. The BDE values of the
peroxy bond for H2O2, PDS and PMS were calculated as 47.0, 22.4, and 33.4 kcal mol
! respectively (Table S3). These values were all significantly lower than that of the
irradiation energy (107.5 kcal mol™!), showing the thermodynamic feasibility of radical
formation. However, BDE values reflect the strength of the peroxy bond in the gas
phase, and may not well represent the chemical processes in aqueous solutions.”’

To shed light on radical formation mechanisms from an electronic structure
perspective, the alpha orbital interaction diagrams and the frontier molecular orbitals of
precursors were determined and compared (Figure 3). The contribution (blue digits) of
fragment orbitals (FOs) to precursor orbitals were obtained via Mulliken analysis. For
example, the alpha HOMO of H,O, (Figure 3a) is constructed by mixing alpha FO 5
and FO 4 of two "OH fragments, and each contributes 50% to H»O, orbital formation.
Based on their orbital shapes (Figure 3 lower panel), the HOMOs of these precursors
are peroxy antibonding orbitals. These orbitals result from the out-of-phase
combination of atomic orbitals, leading to a reduction in electron density and repulsive
force in between.”® Ultimately, the repulsion destabilizes the peroxy bond, facilitating
its cleavage and the formation of radicals. The shapes of other orbitals of radicals and

precursor see Table S4-S8.
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Based on our measurement, the susceptibility of the selected precursors towards

UV irradiation decreases in the following order: PDS > PMS > H,0:. The @ggf— and

PMS

radical

@Eﬁoz values were measured to be 1.46 and 1.10, respectively. The @&_ 7 value is

determined to be 1.13 (i.e., the sum of @gn:- = 0.57 and P-on= 0.56). With similar and

low ¢ values, this trend can be predominantly attributed to the quantity of radicals
formed. We provided a set of thermodynamic parameters for qualitative comparison.
The BDE value of H>O> (47.0 kcal mol™!) is the highest, indicating that the peroxy bond
of H20: is the most difficult of the three precursors to be cleaved. Although kinetics
and thermodynamics are not a priori connected, these calculated BDE results could
reflect the trend of radical formation quantity. We also calculated bond length and
Mayer bond order for a more holistic comparison of this particular bond (Table S3).”
The O-O bond in PDS is the most thermodynamically favorable for the dissociation, as
it exhibits the longest bond length (1.478 A) and the lowest Mayer bond order (0.8785).
In addition, the energy gaps of HOMO and LUMO (Egp) of precursors were also
considered. A larger Egap implies high stability and low reactivity in chemical reactions.
The Egp value of PDS (6.73 eV) is lower than that of PMS (7.11 eV) and H2O» (7.46
eV). After irradiation, a peripheral electron on HOMO is susceptible to transit to LUMO,
ultimately being photolyzed from an unstable state. This indication was also in good

agreement with those drawn from bond strength analysis.

4. ENVIRONMENTAL IMPLICATIONS

We developed a direct and accurate method for radical @ determinations in non-
steady state systems by the LFP technique and applied it to three representative
precursors. For H>O; and PDS, this method can achieve real-time visualization of short-

lived radicals (i.e., ‘'OH and SOy ), including excellent reproducibility. Our method
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avoids additional steps such as chemical derivatization and analytical separation,
reducing the operational complexity and error propagation. For PMS, we presented a
new approach for "OH quantification using LFP with TPA as a trap-and-trigger probe.
The successful implementation of TPA for the PMS system is possible because of the
highly fluorescent product (hTPA) formed from the reaction of TPA and ‘OH,*! and its
high resistance to reaction with PMS.”? It should be noted that, in traditional chemical
probe work, a given aqueous sample might be studied multiple times, each time with a

different probe to quantify a different oxidant.®

To increase the selectivity of each
probe, either a scavenger is added to the sample (e.g., 2-propanol to suppress ‘OH) or
the contributions of non-target oxidants are mathematically corrected for once their
concentrations have been determined. The breakthrough we present here shows that
LFP can be combined with probes to determine multiple oxidants in one system. For
probe compounds, we expect that future work will expand this concept to many other
probes. The spectroscopic specificity and selectivity of probe compounds should be
taken into consideration. It is also anticipated that the probe is water soluble and

exhibits low reactivity with radical precursors.

The efficiency of radical formation from UV irradiation of the selected precursors

decreases in the following order: PDS (@ggf— =1.46) > PMS (@i}l\fals = &g~ + Pon=
1.13) > H20, (@292 = 1.10). This study can be used to evaluate the performance of
various AOPs, facilitating the selection of the most suitable one in different treatment
scenarios. With the similar ¢ values of these three precursors, radical @ is proportional
to the concentration of radicals, and the concentration of radicals is the one of the two
factors (radical reactivity) determining the degradation kinetics of micropollutants.

Based on our results, UV/PDS is the most efficient technology, as it can generate the

most radicals. But for a more holistic evaluation of AOPs, other parameters such as pH,
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total dissolved solids, and salinity should also be considered. In addition, our theoretical
results showed that the HOMO of these precursors are the O-O antibonding orbitals,
resulting in bond fission and facile radical formation. We also calculated other
electronic structures of selected precursors and their thermodynamic properties,
confirming that the experimental observations that PDS indeed is thermodynamically

favored to dissociate for radical formation, while H>O» is less photochemically labile.
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Figure 1: Laser flash photolysis of aqueous H2O2, PDS and PMS ([precursor] = 20 mM,
[phosphate buffer] = 5 mM and pH = 7). (a) In the H,O> system, comparison of
absorption traces of SCN5 with an increase of SCN- concentration. The inset
illustrates the magnified maximal absorbance region. (b) In the H»>O» system,
absorption traces of SCN; in the presence of 5 mM SCN~. (c) In the PDS system,
comparison of absorption trace of SO; monitored at 450 nm (red) and SCN;
monitored at 475 nm (blue). The inset corresponds to the concentration decay of SO}
and SCN; . Both traces demonstrate that the maximal concentrations of SO, in these
systems are 26 uM ([SCN~] = 1 mM). (d) In the PMS system, the absorption trace of
SO, monitored at 450 nm.
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482 =5 mM, [PDS] =20 mM, [PMS] = 20 mM, [phosphate buffer] = 5 mM, and pH =7.)
483  (b) The plot of the A4 value at the wavelength of 450 nm vs. hTPA concentrations
4384  ([hTPA] = 0~20 uM, [phosphate buffer] = 5 mM, and pH =7.)
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Figure 3: Alpha orbital interaction diagrams of H,O» (a), PDS (b), and PMS (c). Red lines represent orbitals of the precursors, while yellow and
blue lines for corresponding radical fragments. For all the radical precursors, solid and dashed lines denote occupied and unoccupied orbitals,
respectively. Orbital indices are labelled by black texts. If two or more labels occur in the same line, that means these orbitals are degenerated in
energy (e.g., orbital 47 and 48 in PDS (b)). The blue numbers represent the component of the fragment orbital in their parent molecules. For
example, the alpha HOMO of H>O» (a) is constructed by mixing alpha fragment orbital (FO) 5 and FO 4 of two "OH fragments, and each contributes
50% to HOMO orbital formation. Orbital surface plots of HOMO and LUMO for each precursor were drawn with isodensity value of 0.02 e Bohr >,
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Text S1: Source of chemicals and reagents.

Potassium peroxydisulfate (PDS, Aladdin, 99.5%), potassium peroxymonosulfate
(PMS, AR, Aladdin), terephthalic acid (TPA, Sigma—Alrich, 99%), hydroxyterephthalic
acid (hTAP, Aladdin, > 98%), potassium dihydrogen phosphate (KH2POs, Sigma—
Alrich, 99%), dibasic potassium phosphate (K:HPO4, Sigma—Alrich, 99.0%),
potassium thiocyanate (KSCN, Sigma—Alrich, 99.0%), and sodium oxalate (Na>C>Oq,
Sigma—Alrich, 99.0%) were used without further purification. Hydrogen peroxide
(H202, ca. 30% by weight), and potassium permanganate (KMnO4, AR) was purchased
from Aladdin (Shanghai, China).

H>0: was used as the precursor for ‘OH, while PDS is the SO; precursor. PMS
was used as the precursor for both ‘OH and SOy . The concentration of H>O: in this
study was calibrated by KMnOsj titration, and Na;C>O4 was then used to determine the
concentration of KMnOa.! SCN~ was used as a probe for “OH in the H,O> system and
TPA was used in the PMS system. Phosphate buffer solution (consisting of KH>PO4and
K>HPO4) was used to control solution pH at 7. The selection of a neutral pH was simply

due to its environmental relevance. Experiments were performed at room temperature.
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Text S2: The calibration of H>0O2 concentration
H>0, typically decomposes at the rate of approximately 0.5% per year at room
temperature.? Thus, the H,O5 stock solution (ca. 30% by weight) was stored at 4 °C and
regularly calibrated by titration. Specifically, the H>O> concenration was measured by
adding KMnOys to produce Mn?" in an acidic condition':
5H,0,+ 2MnO, + 6H" - 2Mn?" + 8H,0 + 50 (S1)
The solution turned red and maintained the hue within 30 s, which was considered to
be the endpoint of titration. It should be noted that KMnOy is a strong oxidant, and often
contains impurities, thus it cannot be directly prepared for standard solution. We boiled
KMnOjs solution for 1 hr, and filtered the solution through a sand core funnel. Then,
sodium oxalate (Na;C>04) was used to titrate KMnQOj4 solution in an acidic condition
(eqn. S2).? During this titration process, the temperature of the solution should be kept

at least 60 °C, but not above, as CzOﬁ_ can self-decompose.

5C,03” +2MnOj; + 16H" — 10CO; + 2Mn*" + 8H,0 (S2)
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Text S3: The relationship of A4 and AT/T.
According to Lambert-Beer Law, the absorption (4) of a sample at a specific

wavelength can be calculated as*:

A=-log = &Cb (S3)
0

where o and /1 represents the intensity of incident light and transmitted light,
respectively. Thus, the absorption change (A4) before and after sample excitation by

pump laser can be inferred to be:

0-pump 1o-unpump 11 -unpump
where Apump refers to the absorption of working solution after excitation, while Aunpump
is for a sample before excitation. /o-pump and /1-pump represent the intensities of incident
and transmitted light of the excited sample. Zo-unpump and /i-unpump are the intensities of
the incident and transmitted light in solutions without excitation. It should be noted that

Ty-pump 18 €qual to Io_ynpump- Alternatively, relative transmittance (A7/T) can be also

used to reflect transient absorption signal:

AT/T: Il-pump_ll-unpump — Il-pump _1 ZIO,AA _1 (SS)

Il—unpump Il—unpump
When AA is far less than 1, AT/T'=-2.303AA4, indicating an inverse correlation between

AT/T and AA.
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Text S4: Validation of 6-311G (2d, 2p) basis set.

To test against the accuracy of 6-311G (2d, 2p) basis set, the def2-TZVP was
selected for a comparison, as it exhibits an excellent performance for precisely
describing molecular properties and reactions.’ In this study, BDE value of peroxide
bond in H>0O, was calculated at both SMD/B3LYP-D3/def2-TZVP//B3LYP-D3/6-31G
(d, p) and SMD/B3LYP-D3/6-311G (2d, 2p)// B3LYP-D3/6-31G (d, p) level of theory.
The result was almost identical (with a slight difference of 0.016 kcal mol™!), indicating
the accuracy of 6-311G (2d, 2p) basis set. In addition, 6-311G (2d, 2p) shows much
lower computational cost than that of def2-TZVP one.® Thus, this basis set was used in
this study. Note that BDE values empirically reflect the strength of peroxy bond in gas
phase, and may not well represents the chemical processes in aqueous solutions.’
Therefore, we further analyzed the frontier molecular orbitals of precursors, and
calculated other electronic parameters (i.e., bond length, Mayer bond order, and

HOMO-LUMO energy gap) for mechanism elucidation of radical formation.
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Text S5: Exclusion of interference of SCN™ and phosphate buffer on @.on determination.

Previous studies proposed that SCN™ can be photolyzed forming SCN; , thus
SCN™ as a probe may cause interference for @.on determination monitored at 475 nm.8
To exclude this interference, a working solution containing only SCN™ at 0.1 M was
prepared and irradiated. We measured the full absorption spectrum and the absorption
decay at 475 nm after excitation. As illustrated in Figure S4, the transient spectra
showed a broad absorption band from 360 to 560 nm, and the absorption peak
approximately centers at 460 nm with the maximum absorbance of 0.012. The
observation indicated that after excitation SCN~ indeed generates new species.
However, the lifetime of the transient species is short at ca. 7 us, which is 3 orders of
magnitude shorter than that of SCN, , which is on the order of milliseconds.’
Therefore, the formed species in our system cannot be SCN; . However, the
identification of this transient species is beyond the scope of this study, and this species
will not interfere with our determination of ®.on for radicals due to its the low
absorbance (8 x 10) and fast attenuation kinetics.

We also examined the possible influence of phosphate buffer on @.on by preparing
a 10 mM phosphate buffer solution and irradiating it at 266 nm. The full absorption
spectrum was also measured from 410 to 520 nm. Based on Figure S5a, there is a slight
absorption with complete decay within 3.8 ps. The decay kinetics at 475 nm (the
wavelength used for monitoring of SCN; ) was illustrated in Figure S5b. No
discernible absorbance change was observed. Similar to SCN™, phosphate buffer also

does not compromise the precision of @.on determinations.
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Table S1: The bond dissociation enthalpies (BDE, kcal mol!) of several compounds
calculated with different functionals. The dashed line (---) refers to the dissociated bond.

compound B3LYP-D3 CAM-B3LYP MO06-2X reported value

CHs---H 105.9 106.3 106.7 10510
H3C---CH3 90.61 92.24 95.42 90.01°
HO---OH 47.03 47.98 48.78 47.01
(03SO---0S03)> 2239 25.45 33.69 21.91
(HO---0S03)- 33.40 37.28 41.99 33.513
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Table S2: Comparison of quantum yields (@) for different radicals (The determination of @ in these studies was conducted at room temperature. *
J.is the excitation wavelength for the precursor; ® While the literature reports @ values at different excitation wavelengths, only @ values specifically
centered around 266 nm were tabulated due to the relevance to our study; © N.A. refers to not available, as Yang et al. measured @ for "OH and
SO, in a O3/PMS system, and @ is defined as the yield of radicals per mole of O3 consumption).

photochemical reaction radical A(nm)? @ (unitless) methods reference
266 1.10+0.01 determination of @ at 475 nm with probe SCN~ this study
. . . 248 1.0+£0.1 derivation from consecutive reactions Yu et al.®
Hz0: + kv —"OH +"OH OH 253.7%  1.16+£0.05  chemical derivatization required Goldstein et al.'*
260° 1.11+£0.05  chemical derivatization required Goldstein et al.'*
266 1.46 £0.05  determination of @ at 450 nm this study
. . — 248 1.39+0.04  derivations from consecutive reactions Herrmann et al.'®
PDS + /v — S804 =+ S0, 504 254 1.4+0.1 derivations from pH change Gertraud et al.'®
254 1.4 derivations from consecutive reactions Xie et al."’
‘Ol 266 0.56 determination of @ at 450 nm with probe TPA this study
N.A.° 0.43 +£0.01 chemical derivatization required Yang et al.'®
PMS + hv — SO; + ‘OH 266 0.57+0.02  determination of @ at 450 nm this study
SO, 254 0.52+0.01  derivations from consecutive reactions Guan et al."’
N.A.©  0.53+£0.01 chemical derivatization required Yang et al.'®
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Table S3: Comparison of peroxy bond characteristics and energies for the selected
precursors (BDE for bond dissociation enthalpy in the unit of kcal mol'!; Egap refers to
the energy gaps between the HOMO and LUMO of the precursors). The BDE and Egap
values were calculated at SMD/B3LYP-D3/6-311G(2d,2p)//B3LYP-D3/6-31G(d,p)
level of theory.

precursors BDE bond length (A) Mayer bond order (unitless) Egap (€V)

H>02 47.0 1.47 0.95 7.46
PDS 22.4 1.48 0.88 6.73
PMS 33.4 1.47 0.92 7.11
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Table S4: Orbital surface plots of "OH (isodensity value = 0.02 e Bohr >. FO refers to
fragment orbital).

orbital index  orbital surface plot

FO 2 (’

P
FO 3 \

A ¢4
FO 5

FO 6

FO 4 —@C
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Table S5: Orbital surface plots of SO}~ (isodensity value = 0.02 ¢ Bohr>. FO refers
to fragment orbital).

FO 18

FO 19

FO 20

FO 21

FO 22

FO 23

FO 24

FO 25
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Table S6: Orbital surface plots of H>O (isodensity value = 0.02 e Bohr 3. MO refers to
molecular orbital. MO 9 and MO 10 are HOMO and LUMO orbitals, respectively,
which are illustrated in Figure 5).

orbital index  orbital surface plot

——

MO 3

MO 4

MO 5

MO 6

MO 7

MO 8

MO 11

MO 12
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Table S7: Orbital surface plots of PDS (isodensity value = 0.02 e Bohr >. MO refers to
molecular orbital. MO 49 and MO 50 are HOMO and LUMO orbitals, respectively,
which are illustrated in Figure 5).

MO 37 MO 44
MO 38 MO 45
MO 39 MO 46
MO 40 MO 47
MO 41 MO 48
MO 42 MO 51
MO 43 MO 52
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Table S8: Orbital surface plots of PMS (isodensity value = 0.02 e Bohr >. MO refers to
molecular orbital. MO 29 and MO 30 are HOMO and LUMO orbitals, respectively,
which are illustrated in Figure 5).

orbital index  orbital surface plot

MO 21

MO 22

MO 23

MO 24

MO 25

MO 26

MO 27

MO 28
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Figure S1: Schematic and workflow diagram of the home-built laser flash photolysis platform.
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Figure S2: The concentration decay of SCN; monitored at 475 nm based on the
evolution of A4 in Figure 1(b). ([H202] =20 mM, [SCN~] = 5 mM, [phosphate buffer]
=5 mM, pH =7)
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Figure S3: Base-10 molar absorption coefficient (¢) spectra of the three radical
precursors at pH 7.
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Figure S4: Laser flash photolysis of 0.1 M SCN~ solution. (a) Full absorption spectra
were scanned from 360 to 580 nm. (b) Absorption decay monitored at 475 nm.
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Figure S5: Laser flash photolysis of 10 mM phosphate buffer solution. (a) Full
absorption spectra were scanned from 410 to 520 nm. (b) Absorption change monitored
at 450 and 475 nm.

S20



12

0 1 2 3 4
x10% time (s)

Figure S6: The concentration decay of SO; monitored at 450 nm based on the
evolution of A4 in Figure 1(d). ([PMS] = 20 mM, [phosphate buffer] = SmM, pH =7)
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Figure S7: Laser flash photolysis of 20 mM PMS in the presence of 1 and 5 mM of
SCN. The absorption decay was monitored at 475 nm.
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Figure S8: The photolysis of a working solution containing TPA and PMS. ([TPA] =5
mM, [PMS] =20 mM, [phosphate buffer] =5 mM, and pH = 7)
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Figure S9: Steady-state fluorescence spectra of hTPA with different concentrations.
The emission wavelength was monitored from 350 to 550 nm, and the excitation

wavelength was set to be 315 nm.
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Figure S10: The full absorption spectra of hTPA from 360 nm to 600 nm. ([phosphate
buffer] =5 mM and pH =7)
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Figure S11: The full absorption spectra of hTPA from 300 to 600 nm. ([phosphate buffer]
=5 mM, [WTPA] = 10 uM, and pH = 7)
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Figure S12: The plot of A4 values at the wavelength of 330 nm as function of time.
([hTPA]= 10 uM, [phosphate buffer] = 5 mM, and pH = 7)
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