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Semidefinite programs are optimization
methods with a wide array of applica-
tions, such as approximating difficult com-
binatorial problems. One such semidefi-
nite program is the Goemans-Williamson
algorithm, a popular integer relaxation
technique. We introduce a wvariational
quantum algorithm for the Goemans-
Williamson algorithm that uses only n+1
qubits, a constant number of circuit prepa-
rations, and poly(n) expectation values in
order to approximately solve semidefinite
programs with up to N = 2" variables and
M ~ O(N) constraints. Efficient optimiza-
tion is achieved by encoding the objective
matrix as a properly parameterized uni-
tary conditioned on an auxilary qubit, a
technique known as the Hadamard Test.
The Hadamard Test enables us to opti-
mize the objective function by estimat-
ing only a single expectation value of the
ancilla qubit, rather than separately es-
timating exponentially many expectation
values. Similarly, we illustrate that the
semidefinite programming constraints can
be effectively enforced by implementing a
second Hadamard Test, as well as imposing
a polynomial number of Pauli string ampli-
tude constraints. We demonstrate the ef-
fectiveness of our protocol by devising an
efficient quantum implementation of the
Goemans-Williamson algorithm for vari-
ous NP-hard problems, including MaxCut.
Our method exceeds the performance of
analogous classical methods on a diverse
subset of well-studied MaxCut problems
from the GSet library.

Taylor L. Patti: taylorpatti@g.harvard.edu

1 Introduction

Semidefinite programming (SDP) is a variety of
convex programming wherein the objective func-
tion is extremized over the set of symmetric posi-
tive semidefinite matrices St [1]. Typically, an
N-variable extremization problem is upgraded
to an optimization over N vectors of length N,
which form the semidefinite matrices of 7. A
versatile technigue, SDP can be used to approx-
imately solve a variety of problems, including
combinatorial optimization problems (e.g., NP-
hard problems, whose computational complex-
ity grows exponentially in problem size) [2], and
is heavily used in fields such as operations re-
search, computer hardware design, and network-
ing [3, 4]. In many such cases, semidefinite pro-
grams (SDPs) are integer programming relax-
ations, meaning that the original objective func-
tion of integer variables is reformed as a func-
tion of continuous vector variables [5], such as
the Goemans-Williamson algorithm [6]. This al-
lows the SDP to explore a convex approximation
of the problem. Although such soclutions are only
approximate, SDPs are useful because they can
be efficiently solved with a variety of techniques.
These include interior-point methods, which typ-
ically run in polynomial-time in the number of
problem variables N and constraints M [7]. In
recent years, more efficient versions of these clas-
sical methods have been developed [8, 9].

An additional advantage of optimization with
SDPs is that many have performance guarantees
in the form of approximation ratios. Approxi-
mation ratios are a provable worst-case ratio be-
tween the value obtained by an approximation
algorithm and the ground truth global optimum
[10]. In short, SDPs represent an often favorable
compromise between computational complexity
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Figure 1: Diagram of HTAAC-QSDP for the Goemans-Williamson algorithm with n = 3 non-auxiliary qubits.
(1a) A classical problem of N variables (here an N-vertex MaxCut problem where N = 8). The weight matrix W
is used to generate the unitary Uy, which is rotated about the angle o and implemented as a controlled-unitary
conditioned on the n+1th-qubit (auxilary qubit). (1b) The population-balancing unitary Up is generated by the
diagonal matrix P, which offsets the asymmetric edge weights on certain vertices in proportion to some constant 5.
(1c) The Hadamard Test is used to efficiently evaluate the objective function and population balancing constraints.
The n-qubit state |¢p) = Uy/|0) is prepared with a variational quantum circuit Uy. Although Uy can, in general,
be made of any set of parameterized n-qubit quantum gates, in this work, we use the circuits described in Sec.
3.1. The n + 1th (auxilary) qubit is initialized as (|0} — ¢[1}))/v/2. Subsequently, the Hadamard Test is carried
out: U or Up is implemented as a controlled-unitary conditioned on the auxilary qubit, which is then measured to
compute {on+1)w = Im{{(¢|Uw|¢}] or (ont1)ps = Im[(3|Up|4)]. (1d) The M = 2™ SDP amplitude constraints
constraints are approximately enforced with only m ~ poly(n) Pauli string constraints (Eq. 13). These are computed
by collecting n-qubit Pauli-2 measurements and using marginal statistics to estimate the m expectation values.

and solution quality.

Despite the favorable scaling of classical SDPs,
they still become intractable for high-dimensional
problems. A variety of quantum SDP algorithms
(QSDPs) that sample n-qubit Gibbs states to
solve SDPs with up to N = 2" variables and
M ~ O(N) constraints have been devised [19-
23] (Table 1), as have methods for approximately
preparing Gibbs states with near-term variational
quantum computers [25-27]. The former of these

algorithms are based on the Arora-Kale method
[28] and provide up to a quadratic speedup in
N and M. However, they scale significantly
poorer in terms of various algorithm parameters,
such as accuracy, and are not suitable for near-
term quantum computers. Quantum interior-
point methods have also been proposed |29, 30],
in close analogy to the leading family of classical
techniques.

Variational methods have long played a role in
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Table 1: Comparison of common quantum methods for classical optimization. The number of potential variables N
and constraints M are given in terms of qubits n. Whether or not the method provides guarantees on its solutions
is discussed, as is its suitability for near-term quantum devices, (i.e., fewer than hundreds of qubits with limited
error correction [11]). Our Hadmard Test objective function and Approximate Amplitude Constraint Quantum SDP
(HTAAC-QSDP, Fig. 1) ensures SDP approximation ratios, is suitable for near-term variational quantum devices,
and provides efficient objective function evaluation (via the Hadamard Test) and constraints (via a second Hadamard
Test and O(n?) Pauli string constraints).

Method N, M Scaling Solution Guarantee Near-Term Devices
Quantum Adiabatic [12-14] n If Infinitely Slow Sometimes
Quantum Anmnealing [15, 16] n No Yes

QAOA [17] n Sometimes Yes

Boson Sampling [18] n No Yes

QSDPs [19-23] an SDP Approx. Ratios No

Variational QSDPs [24] 27 SDP Approx. Ratios Yes
HTAAC-QSDP (Ours) an SDP Approx. Ratios Yes, poly(n) exp. vals./epoch

quantum optimization protocols [31] (Table 1),
such as adiabatic computation [12-14], annealing
[15, 16], the Quantum Approximate Optimiza-
tion Algorithm (QAQA) [17], and Boson Sam-
pling [18]. However, only recently have varia-
tional QSDPs been proposed [24, 32]. Patel et al
[24] addresses the same optimization problems as
the quantum Arora-Kale and interior-point based
methods, but instead uses variational quantum
circuits, which are more feasible in the near-term.
Like other SDPs, this method offers specific per-
formance guarantees in the form of approxima-
tion ratios [10]. While exact methods are ef-
ficient for some SDPs, for worst-case problems
(e.g., problems with a large number of constraints
M, such as MaxCut) they may require the esti-
mation of up to O(2") observables per training
epoch. Although it has been demonstrated that
solving NP-hard optimization problems on vari-
ational quantum devices does not mitigate their
exponential overhead, problems such as MaxCut
may still retain APX hardness and are upper
bounded by the same approximation ratio of clas-
sical methods [33]. Likewise, while parameter-
ized quantum circuits can form Haar random 2-
designs that result in barren plateaus |34, numer-
ous methods of avoiding, mitigating, or and per-
turbing these systems to effectuate a more train-
able space have been developed [35-37].

Our Approach: We propose a new variational
quantum algorithm for approximately solving
QSDPs that uses Hadamard Test objective func-
tions and Approximate Amplitude Constraints
(HTAAC-QSDP, Fig. 1).

Theorem 1 HTAAC-QSDP for the Goemans-
Williamson algorithm uses n+1 qubils, a con-
stant number of gquantum measurements, and
O(poly(n)) classical calculations to approximate
SDPs with up to N = 2" variables.

The details of the HTAAC-QSDP implementa-
tion must be engineered to each SDP and, in this
work, we focus on the Goemans-Williamson al-
gorithm [6], with particular emphasis on its ap-
plication to MaxCut. In some cases, our method
is nearly an exponential reduction in required ex-
pectation values, e.g., for high-constraint prob-
lems such as MaxCut. As described in Sec. 2, we
achieve this, in part, through a unitary objective
function encoding with the Hadamard Test [38]
(Fig. 1a), which allows for the extremization of
the entire N-dimensional objective by estimating
only a single quantum expectation value (Fig. 1c).
Our quantum Goemans-Williamson algorimth for
MaxCut requires M = N < 2" amplitude con-
straints, which we effectively enforce with only
1) a constant number of quantum measurements
from a second Hadamard Test (Fig. 1b) and 2)
the estimation of a polynomial number of prop-
erly selected, commuting Pauli strings (Fig. 1d).

In Sec. 3, we demonstrate the success of the
HTAAC-QSDP Goemans-Williamson algorithm
(Algorithm 1) by approximating MaxCut [39]
for large-scale graphs from the well-studied GSet
graph library [40] (Fig. 5). In addition to satis-
fying the 0.878 MaxCut approximation ratio [6],
HTAAC-QSDP achieves cut values that are com-
mensurate with the leading gradient-based classi-
cal SDP solvers [11], implying that we reach op-
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Algorithm 1 Goemans-Williamson Algorithm for MaxCut with HTAAC-QSDP

Input: Optimization matrix W, Hadamard Test coefficients «, 3, learning rate n (and additional
optimization hyperparameters, e.g., $1 and (2 with ADAM), constraint magnitude A, number of

epochs T

1: Randomly initialize the variational quantum circuit Uy (1)

2: for t in range(T) do

3: [Ye) @ |0) = Uy (¢)|0) ® |0)

4: Hadamard Test (phase o) Uw — (07 1)w;t

5: Hadamard Test (phase ) Up — (o n+l>Pt

6: Measure I} 07 — (07, pi)?, (05 0%, pi)?

7 E(f) = <0'7L+1>H/,2‘ + <U71+1>1’,1‘ + )‘(Z <()‘ pt> + Zk#] <U]Z'U]§7pt>2)
8: Backprop nVL(t): Uy(t) — Uy (t + 1)

Output: SDP MaxCut vertex solution [ir), sign(|¢r)) = [Uh

T
g

tima that are very near the global optimum of
these SDP objective functions.

Finally, in Sec. 4.1 we discuss the feasibility
of the Hadamard encoding. For general SDPs,
we establish an upper bound (Theorem 2) on
the phase a of our Hadamard encoding, such
that our technique is a high-quality approxima-
tion of the original SDP. The purpose of this up-
per bound is to demonstrate that tractably large
values of the unitary phase a are permissible (i.e.,
o need not become arbitrarily small) for encod-
ing a wide variety of large-scale problems. We
discuss the known difficulty, and thus usefulness,
of graph optimization problems under these con-
ditions. Specifically:

Theorem 2 Our approzimate Hadamard Test ob-
jective function Uw ~ iaW (Sec. 2.1) holds for
graphs with randomly distributed edges if
4
ac NN
N3 T g
where e is the number of non-zero edge weights
and £ is the average number of edges per vertex.

We can view the criteria of Theorem 2 in two
ways: for SDPs with arbitrarily many variables
N, the size of a can be kept reasonably large
while the Hadamard Test objective function (see
Sec. 2.1) remains valid as long as 1) N does not
grow slower than the total number of edges e,
or 2) N does not grow slower than the the cube
of £. Both of these conditions hold for graphs
that are not too dense, meaning that they are
widely satisfiable. For instance, the majority of
interesting and demonstrably difficult graphs for

MaxCut are relatively sparse [10, 39, 40, 42, 43].
We note that for graphs where edge-density is
unevenly distributed, Theorem 2 should hold for
the densest region of the graph, i.e., £ should be
the average number of edges per vertex for the
most highly connected vertices.

2 Efficient Quantum Semidefinite Pro-
grams

The standard form of an N-variable, M-
constraint SDP is [1, 2]

minimizey g+ (W, X)
subject to (A,, X) =b,, Vu<M (1)
X >0,

where W is an N x N symmetric matrix that en-
codes the optimization problem and A, (b,) are
N x N symmetric matrices (scalars) that encode
the problem constraints. (A4, B) denotes the trace
inner product

N

(4,B) =Tr[ATB| =% AyBy.  (2)

In this section, we detail a method of efficient
optimization of the above SDP objective and con-
straints using quantum methods (Fig. 1), specif-
ically by implementing Hadamard Tests and im-
posing a polynomial number of Pauli constraints.
We provide a concrete example in the form of the
Goemans-Williamson [6] algorithm for MaxCut
[39], as summarized in Algorithm 1.
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2.1 The Hadamard Test as a Unitary Objective

In quantum analogy to the objective function
of Eq. 1, we wish to minimize (W,X) over the
n-qubit density matrices p, which are positive
semidefinite by definition. We generate these
quantum ensembles p from an initial density ma-
trix pg such that p = Uy pg U‘f,, where Uy is a vari-
ational quantum circuit. This yields the quantum
objective function

minimize (W, p) = Tr [Wp] . (3)

Throughout most of this work, we consider pure
states such that pg = |0)(0| and |¢p) = Uy|0),
although we detail the case of mixed quantum
states in Sec. 2.6. In the case of pure states, Eq.
3 yields

minimize (|W|1). (4)

The Hadamard Test (Fig. 1c) is a quantum
computing subroutine for arbitrary n-qubit states
|)) and n-qubit unitaries U [38]. It allows the
real or imaginary component of the 2"-state in-
ner product (¥|U|¢) to be obtained by estimat-
ing only a single expectation value (07 ), which
is the z-axis Pauli spin on the n+1th (auxiliary)
qubit. For example, to obtain the imaginary com-
ponent of (1|U|¢), we prepare the quantum state
|Y)® %(lO) —i|1)) and apply a controlled-U from
the n+1th qubit to |¢), followed by a Hadamard
gate on the n+1th qubit. This produces the state

1 ) .
5 (I —i0)[) @ [0) + (I +V)y) @ )]  (5)
upon which projective measurement yields

(on41) = Im [(P|U9)] .- (6)

Rather than estimate the N < 2™ expectation
values required to characterize p and optimize the
loss function of Eq. 3, our method encodes the
N-dimensional objective matrix W as the imagi-
nary part of an n-qubit unitary Uy = exp(iaW)
(Fig. 1a). Here, the phase « is a constant scalar.
Uw is then conditioned on the n+1th (or aux-
ilary) qubit as a controlled-unitary. We then
use the Hadamard Test to calculate the objective
term in the loss function

(on+1)w = Im [(¥|Uw|¢)] = Im [(Uw, p)] . (7)
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Figure 2: The cut values Cg obtained by the HTAAC-
QSDP Goemans-Williamson algorithm with order-k < 2
Pauli constraints compared to max(Cspp), the best re-
sults of classical gradient-based SDPs (specifically, in-
terior points methods) [41]. Our performance on the
skewed binary and integer graphs narrowly exceeds that
of the classical method (max(Cspp) < Cg), while
the classical method narrowly outperforms our quantum
method for the toroid graphs (max(Cspp) > Cg). Over-
all, the performance of our HTAAC-QSDP implemen-
tation and its classical counterpart are commensurate.
HTAAC-QSDP exceeds the Cg/Cmax > 0.878 Max-
Cut approximation ratio (red dashed line) for all graphs,
where Cyax is the true MaxCut of the graph. In this
work, we assume Cmax as the largest-known cuts of the
GSet graphs, which were obtained from intensive and
repeated heuristic searches [44]. The quantum mixed
state implementation detailed in Sec. 2.6 is depicted in
dark blue. It furnishes a higher rank solution and has
marginally improved performance.

The intuition for this objective function is that,
for sufficiently small a, Im[Uw| = aW. By re-
stricting ourselves to quantum circuits with real-
valued output states, we render the single expec-
tation value (07, ;)w proportional to the objec-
tive function of Eq. 3, which requires N expec-
tation values to estimate. In Sec. 4.1, we ana-
lytically prove that, for many optimization prob-
lems, o has a practical upper bound such that
Im[Uw] = oW with a reasonably large o, even
for arbitrarily large W.

2.2  Quantum Goemans-Williamson Algorithm

We now illustrate how Im[Uw] can be a close ap-
proximation of aW, including for optimization
problems with an arbitrarily large number of vari-
ables N. For concreteness, we select the NP-
complete problem MaxCut [39], and specifically
focus on the corresponding NP-hard optimization
problem [45]. This problem is of particular inter-
est due to its favorable 0.878-approximation ratio
with semidefinite programming techniques, no-
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tably the Goemans-Williamson algorithm [6], for
which we now derive an efficient quantum imple-
mentation. The Goemans-Williamson algorithm
is also applicable to to numerous other optimiza-
tion problems, such as MaxSat and Max Directed
Cut [6].

For a MaxCut problem with N vertices w;,
v;, let W be the matrix that encodes the up
to N(N — 1)/2 non-zero edge weights in its en-
tries Wi;. As the vertices lack self-interaction,
W, = 0. The optimization problem is then de-
fined as

1 — 1
maximize ZWiJ%
i<i (8)

subject to v = +£1,

which can be mapped to the classical SDP with
M = N constraints

minimizex s+ (W; X)
subject to X;; =1, Vi < N.

(9)

As described by Eq. 3, we can transform the
optimization portion of Eq. 9 by substituting the
classical positive semidefinite matrix X for the
quantum density operator p. The solution to the
SDP is then stored in |¢), ie., v; = sign(e;)
(for more details, see Sec. 2.3). As detailed in
Sec. 2.1, the evaluation of this objective function
can be optimized by estimating a single expec-
tation value with the Hadamard Test. Likewise,
we now introduce a quantum alternative to the
constraint X; = 1 from Eq. 9. First, note that
due to the orthonormality of quantum states, the
exact quantum equivalent of Eq. 9 is

pi=1/2" < N7L (10)

This rescaling changes neither the effectiveness
nor the guarantees of the semidefinite program,
because the salient feature of the constraint is
that all of the quantum states have the same am-
plitude magnitude |¢;|, such that all of the ver-
tices are of equal magnitude and none are dispro-
portionately favored. The solutions p and X dif-
fer only by a constant factor, such that p = X /2™,
This yields the quantum MaxCut SDP

minimize (W, p)
subject to py; =27, Vi < N.

(11)

As graph weights are real-valued and symmet-
ric (i.e., Wi; = Wy), W is Hermitian. We can
thus use it as the generator of Uy such that
(Fig. 1a)

Uw = exp(ioaW) = ("l;',‘)tw‘
L

io o? iad
W sz - TW3 + O(WH4).

(12)

As W is real, the odd powers of [ in Eq. 12 are
the imaginary components. The condition that
Im[Uw] «x W is upheld iff, for the vast majority
of variables 4,7, aW;; > %(W'?‘),;j. Note that,
when this condition holds, (¢Z . ; }w approximates
(W) with only vanishing error and a rescaling
by a. In Sec. 4.1, we prove Theorem 2, demon-
strating that this condition is achievable with a
tractable o (i.e., o larger than some fixed finite
value that is constant in problem size N) for a
wide variety of graphs.

Next, we note that enforcing the M = N <27
amplitude constraints p; = 27", ¢ < N would
require the estimation of all z-axis Pauli strings
of order & < n (all Pauli strings with k¥ < n
Pauli-z operators) of the state |¢). This would
be a total of N — 1 expectation values. As an al-
ternative to this large overhead, HTAAC-QSDP
proposes the use of Approzimate Amplitude Con-
straints (Fig. 1d). For example, consider the set
of m = n(n—1)/2+n ~ n?/2 Pauli strings of
length £ < 2

(6Z,p)=0, Ya<n

13
(ciog,p) =0, Yb#a, a,b<n, (13)

where o? are the Pauli z-operators on the ath
qubit. We can use these equalities as partial con-
straints for the n-qubit output state |¢). This
set of m ~ n?/2 constraints approximates the
same restrictions as the set of M = N constraints
of Eq. 11 by limiting quantum correlations, as
these indicate subsets of states with unequal pop-
ulations. That is, each such z-axis Pauli string
is the difference of the total populations of two
equal partitions of state space. To gain intu-
ition, let us consider a two-qubit state |¢}) =
[00, Wo1,%10,%11]7 and the & = 1 Pauli string
o ® I. Using the constraints for Eq. 13, we en-

force the equality [¢ao|* + [¢01[* = [t10]* + 411 |?
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Table 2: MaxCut statistics for all 800-vertex graphs studied by the leading gradient-based classical SDP (interior
points) method [41]. The highest known MaxCut values (Cmax, found by intensive heursitics [44]) are greater the
highest results obtained by the classical method (max(Cspp)), but the approximation ratio max(Cspp)/Cmax > 0.878
is satisfied. The largest cut values of our HTAAC-QSDP Goemans-Williamson algorithm (max(Cg)) are comparable

with max(Cspp), as are the average results (mean(Cgp)).

Graph CmAax max(Cspp) max(Cg)/max(Cspp) mean(Cq)/max(Cspp)
Gl11 564 542 0.967 0.940
G12 556 540 0.982 0.953
G13 582 564 0.972 0.933
Gl4 3064 2922 1.011 1.000
G15 3050 2938 1.009 0.996
G20 941 838 1.007 0.983
G21 931 841 1.001 0.978
which, while not fully en.forcing the constraints G11 G14 G20
of Eq. 11 (e.g., not enforcing that all states have

equal populations), does enforce equal popula-
tions among a subset of states. This results in a
lighter-weight and more flexible set of constraints.
As an example, 6§ ® I promotes all state com-
ponents to be populated by disallowing states
where the first qubit is in a computational ba-
sis state, such as |00) or %(|00) + |01)). Like-
wise, the k = 2, z-axis Pauli string 0§ ® of con-
straint produces the equality |tpo|? + |11]? =
|01/ + |110|2, which would, for example, disal-
low the Bell State (]00) +|11))/+/2. We highlight
that the Pauli string constraints of Eq. 13 are
commuting, such that they can be estimated as
m different marginal distributions from a single
set of n-qubit z-axis measurements.

We again emphasize that these ¥ < 2 con-
straints only approximately enforce the SDP con-
straint p;; = 27". Fully satisfying this constraint
would require restricting Pauli-z correlations be-
tween any subset of the n qubits, such that no
states of unequal amplitude magnitudes are per-
mitted. Eq. 10 can be fully satisfied if we con-
strain |1) with all of the Pauli strings of length
k < n. However, as there exist n choose k z-axis
Pauli strings of order k, this requires estimating
Y r—1(%) = 2™ — 1 different expectation values
and greatly decreases the efficiency of the algo-
rithm. Sec. 3 details that, in practice for 800-
vertex graphs, competitive results are obtained
using only k < 2 constraint terms (Fig. 2 and Ta-
ble 2), and optimization performance is largely
saturated with terms k < 4 (Fig. 4 and Table 3).

In order to explicitly see how the m ~ n2/2
constraints of Eq. 13 largely enforce the con-

(Co)max(Cspp)
o
o

8.0 05 1.0 0.0 05 1.0 0.0 05 1.0
Co/max(Cspp)

Figure 3: The cut value estimated by quantum observ-
ables (Cp) obtained by HTAAC-QSDP vs the true SDP
rounded cut value Cg for the G11 (toroid), G14 (binary),
and G20 (integer) graphs. As with classical SDP meth-
ods, low loss function values are correlated with high
cut values. The strong correlation between the observ-
able estimated cut and the rounded true cut value not
only illustrates the convergence of the HTAAC-QSDP
Goemans-Williamson algorithm despite its approximate
nature, it also demonstrates its ability to extract cut val-
ues of many variables from few measurements.

straint p; = 1/2™, let us take the example of
a three-qubit state (n = 3), which can encode up
to eight vertices (N = 2" = 8) using HTAAC-
QSDP. Any real-valued n = 3 state can be writ-
ten generically as

1
hb): Z wrsp|¢rsp>

r?‘s?p:O

and its constraints from Eq. 13 are
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017 Z |'¢0’r‘s| - Z hbl'r's'2
Z [tros” - Z il =0
0'37 Z |'¢r30| - Z |'¢rsl|

(03, p)

01027 Z(Z |'¢T3P|2 Z hbrsp' ) =0
s#r

01037 Z(Z |¢rps|2 Z |’l,brp3|2) =0
s#r

(o703, p Z(Z |¢prs|2 Z |’l,bpr3|2) = 0.
s#r

(14)

Combined with the normalization constraint
(¥]|¥) = 1, the above system of equations nearly
guarantees that Eq. 10 is fulfilled. However, it
still permits a small subset of states that do not
satisfy Eq. 10 due to three-qubit correlations, e.g,.,

*) = [110011011110]

States with higher-order correlations such as |¢*},
which neither satisfy Eq. 10 nor are disallowed
by Eq. 13, can be avoided by adding higher-order
Pauli string constraints. For the above n = 3
example, we would add the kK = n = 3 constraint
(650%0%,p) = 0, which would disallow |¢*) as
(o0§050%,p*) = 1.

Eq. 10 can also be systematically undermined
by the unequal distribution of graph edges among
the quantum states. For instance, the asymmet-
rically distributed edge-weights in skewed graphs
(Fig. 5 left and Sec. 3). With such graphs, the
minimization of the loss function can lead to out-
sized state populations for quantum states that
encode high-degree (high edge-weight) vertices.
Moreover, as the number of classical variables will
not generally be a power of two, there will often
be quantum states that are not encoded with a
classical variable. For example and as detailed in
Sec. 3, we use n = 10 qubits (2" = 1024 states) to
optimize the 800-vertex (N = 800) GSet graphs,
such that the states 801 to 1024 are absent from
the objective function. In such cases, the min-
imization of the loss function can lead to out-
sized state populations of quantum states that are
present in the optimization function. In principle,
these imbalances can be addressed by increasing

7

—

max(Co)/max(Cspp)
=
o
o

< 1.0 S
Gl & S
— Gl14 0.5 o
0.95 — G20 S
0.0 h
2 4 6 8 10 2 4 6 8 10

k (Order Pauli String)

Figure 4: The effect of including higher-order HTAAC-
QSDP Pauli string amplitude constraints in MaxCut
optimization on the Gl11 (toroid), G14 (binary), and
G20 (integer) graphs [40]. (Left) the performance of
HTAAC-QSDP increases as higher-order Pauli strings
are used to constrain state amplitudes. The algo-
rithm's performance saturates with & = 4, indicating
that the benefits saturate with less than a polynomial
number of Pauli string constraints (k¥ < n). As illus-
trated by this work (e.g., Fig. 2 and Table 2), k = 2
(m =~ n?/2) is often sufficient for competitive SDP op-
timization. (Right, solid lines) the variance of state mag-
nitude o, = var(p;;) = var(|y;|?) vs the order k of Pauli
strings constraints. As k increases, o, decreases consid-
erably, although this effect is largely saturated by & = 4.
(Right, dashed line) in the absence of competing dy-
namics (i.e., (ont1)w and (opi1)p), the Pauli string
constraints are fully enforced such that |¢;| — N~1/2
(0p = 0) as k = n.

the magnitude of the Pauli string amplitude con-
straints, but this is known to cause poor objective
function convergence [46].

To redress this systematic skew, we add a
population-balancing unitary Up (Fig. 1b), which
is implemented on |¢) via a second Hadamard
Test (Sec. 2.1, Fig. 1c) and adds the loss func-
tion term (op4+1)p. Specifically, Up = exp(i8P)
where P is some diagonal operator of edge
weights P; = —(Pmas — X_j|wij|), where S
is an adjustable hyperparameter and F,,,, =
max;(3_; |wij|) is the maximum magnitude of
edge weights for any given vertex. Up works to
balance the state populations by premiating the
occupation of states that are lesser represented by
or absent from the objective function (op+1)w

Combining both the efficient Hadamard Test
objective function and the Approximate Ampli-
tude Constraints, we can use simple gradient
descent-based penalty methods [46] to find the
solution. Specifically, we minimize the HTAAC-
QSDP loss function for the Goemans-Williamson
algorithm
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L(t) = (on+1)wg + (Ont1)Ps

+A Dot p0)% + D (oot pr)?
i ey

(15)

at each time step ¢t by preparing a quantum state
p: on a variational quantum computer. The scalar
A is the penalty hyperparameter. While for sim-
plicity we have chosen a single, time-constant A
for all constraints, in principle each constraint j
could be parameterized with a distinct A;, each
of which could also vary as a function of £. The
number of quantum circuit preparations required
to optimize our HTAAC-QSDP protocol is con-
stant with respect to the number of qubits n
(and thus to the maximum number of vertices
N = 2"), as (Uw,p:) and (Up, p:) each require
only the Pauli-z measurement (o7, ;) on the aux-
ilary qubit, and the m ~ poly(n) amplitude con-
straint terms can be calculated from a single set
of n-qubit measurements on the state |¢). The
classical complexity of each training step scales
as just m ~ poly(n), as one marginal expectation
value is calculated from the |4} measurements for
each of the m constraints.

2.3 Retrieving SDP Solutions

At the end of our protocol, the SDP solution is
encoded into |¢). Like in other QSDP protocols,
|4#) may either be used to extract the full N-
variable solution or for less computationally in-
tensive analysis (i.c., to characterize the features
of the solution or as an input state for further
quantum protocols). For many SDPs, such as
MaxCut, a good approximation of the solution
(here, cut value) can also be extracted from the
expectation values comprising the cost function.

To extract this approximate cut value, we note
that Eq. 8 can be rewritten as

W, 1 .

;um - Emm(z Wijviv;), (16)
i<i

where Wyum = 3. j<i Wij- Wenote that this latter

sum can be computed on a quantum device as

W == %(O|H®"WH®"|O), (17)

where H is the Hadamard gate, as H®"|0) is
the positive-phase and equal superposition of all
states. Thus, Wym can be estimated with a

Hadamard test where Uy is applied to the input
state, which we here denote (O‘n.|_1)%3},H . Likewise,
note that the second summation in Eq. 16 is given
by

S Wy = S @Wl,  (18)
i<i
in the case that the constraints are well-enforced.
This allows us to estimate the cut value with
{on+1)w, the Hadamard test using the variation-
ally prepared |¢). Thus, the cost function can be
estimated directly as

(Ca) = 2 (oni)¥ — (omeidw). (19

If the full solution |1} is desired, then full real-
space tomography of |¢/) must be conducted by
calculating the N marginal distributions of all
k < n Pauli strings along the z and z-axes [17],
although partial and approximate methods could
make valuable contributions [48, 49]. We now
show that once |1) is determined, it suffices to as-
sign the partition of each vertex as v; = sign(1);),
or the sign of the state component ;.

In classical semidefinite programming algo-
rithms, such as the Goemans-Williamson algo-
rithm [6], the optimal solution X™* is factorized by
Cholesky decomposition into the product X* =
T1T, where T is an upper diagonal matrix. The
sign of each vertex v; is then designated as

ift,;<g20

. (20)
otherwise,

where t; are the column vectors of T and g is a
length-N vector of normally distributed random
variables g; ~ N(0,1).

We define the quantum parallel by noting that
as p = |t){¢|, its Cholesky decomposition is sim-
ply the 2™ x 2™ matrix that has the first row (1|
and and all other entries equal to zero. In this
decomposition, Eq. 20 reduces to

1,
v = _1,

As MaxCut has Z, symmetry, the cut values
are symmetric under inversion, or flipping the
sign of all vertices. This makes the sign of the
normally distributed go irrelevant to the graph
partitioning. Without loss of generality, we can

if 4 x go 20
otherwise.

(21)
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therefore set go = 1 and classify each vertex as
v; = sign(4y).

2.4 Error Convergence

We now demonstrate that our method has an ap-
proximately O(1/t) error convergence rate. As-
suming that our loss function £ is a convex func-
tion, which is generally only locally and/or ap-
proximately satisfied, it has been established that
it will converge as O(1/t) for ¢ iterations if it is
L-Lipschitz continuous [50].

While parameterized quantum circuits are
known to be L-Lipschitz continuous [24, 34], we
here, in the name or thoroughness, explicitly
demonstrate this for our particular loss function.
Specifically, a function f(z) is L-Lipschitz con-
tinuous if

IVi(z) - Vi)l < Lz -yl (22)

for all parameter inputs =z and . £ will be L-
Lipschitz continuous if each of its components are
independently so.

Starting with the objective
{(oni)w = (¥|Uw|4), note that

function

B(0%41)w /861, = i{0UL [V, UL W UL U 0),

(23)
where Vi is the generator of the unitary ma-
trix parameterized by 0;. Eq. 23 is now com-
posed of two terms, each comprised entirely of
normal matrices and vectors, save for perhaps
the Hermitian generators V4, with some extremal
eigenvalue ax. Then, |8{o} ,,)}w /00| < 2a; and
|Vilog 1)w — Vi{os1)wl| < 4ax. This proof
doubles for the constraint terms, save that we
replace the unitary matrix Uy with some Pauli
string observable.

Fig. 6 (left) demonstrates this approximate
O(1/t) convergence for the cut value of G11. The
approximate nature of this convergence stems
from both the discontinuous rounding process
and the nonconvexities of the optimization space.

2.5 Extensions to Other SDPs

As explained above, the Goemans-Williamson al-
gorithm [6] can be applied to numerous other op-
timization algorithms, such as MaxSat and Max
Directed Cut [6]. Moreover, HTAAC-QSDP can
be adapted to accommodate the constraints of

various other SDPs. The use of our method is
particularly advantageous when the constraints
of a problem are amenable to being expressed
through a tractable number of Pauli strings, or
when these constraints can be approximately en-
forced by such a set of strings. The precise map-
ping of constraints to limited sets of Pauli strings
depends on the problem at hand and may require
some engineering. We here provide a few such
examples.

2.5.1 Max and Min Bisection

As one example, consider the Min/Max Bisec-
tion problems [51]. Min/Max Bisection are par-
ticularly relevant to very-large-scale integration
(VLSI) for integrated circuit design [52], a vital
application area for large-scale SDPs.

The SDPs for estimating the Max Bisection
problem has the standard form:

minimizexegs (W, X)

subject to ZX,;J- < —N/2, (24)
i

and Xﬁ = 1, Vi < N.

The first constraint is equivalent to requiring
that half of the variables of X be partitioned

equally, hence the term “bisection”. In analogy
with Eq. 11, Eq. 24 can be written as

minimize (W, p)

subject to Z pi; < —N/2 (25)

L
and Pii — 2_ﬂ, Vi < N.

The second of these two constraints can be en-
forced by the Pauli strings constraints of Eq. 13.
For large N and assuming no systematic corre-
lations between the ordering of the vertices, the
first constraint can be ensured by adding any sin-
gle Pauli string constraint

(Oz) =0, (26)

where O, is any Pauli string of o operators. To
see how Eq. 26 enforces the first constraint of
Eq. 11, consider that any operator O, induces
a bit-flip on a subset of qubits, such that each
state 9 is mapped to another state iy. This
means that (O;) = (¢|Oy|1) is the sum of 27!
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Table 3: MaxCut statistics for the 800-vertex graphs G11 (toroid), G14 (skew binary), and G20 (skew integer)
for different orders of Pauli string constraints k. We compare the best cut value max(Cspp) produced by the
leading classical method [41] compared to those produced by HTAAC-QSDP, with each entry providing the ratio
max{Cq)/max(Cspp) (mean(Cg)/max(Cspp)). With relatively few Pauli string constraints (¥ = 4), our method

exceeds the performance of classical methods on all graphs studied.

k=4
1.019 (0.984)
1.021 (1.009)
1.025 (0.993)

Graph k=2
Gl11 0.967 (0.940)
Gl4 1.011 (1.000)
G20 1.007 (0.983)

products 2¢¥4);, where for each i, || = 2772,
as enforced by the Pauli-Z constraints of Eq. 13.
If the probability that a random state 15 of |1}
is positive is p, then in the limit of large N and
uncorrelated vertex assignment

(O =p*+(1-p)-2p(1—p).  (27)

The above yields (O;) = 0 iff p = 1/2, which
would correspond to the equal partitioning of the
vertices required by the Bisection problems. In
the case of correlated vertex encodings, the aver-
age of several Pauli-X strings (O,) can be con-
sidered. We note that Eq. 26 can be modified
to enforce any partition ratio by solving for {O,)
(Eq. 27) with the desired p.

25.2 MaxSat

MaxSat problems are another branch of optimiza-
tion tasks with constraints that focus on equally
weighted vertices. In Max k-Sat problems, the
number of logical boolean strings of length k are
maximized over a given set of boolean variables
v; [53]. For example, Max 2-Sat is given by [6]

maximize ) _ [a;;(1 — viv;) + bi; (1 + viwy)]
i<i
subject to v; = +1,
(28)

where a;; and b;; are the coefficients of the prob-
lem. To convert this problem into an SDP, we
optimize the objective function

minimizexes+ (W, X)

. ‘ (29)
subject to Xy =1, Vi < N,

where W;; = ai; — bj;. Note that Eq. 29 is
equal to Eq. 9 and that the number of satisfied

k=6
1.007 (0.999)
1.023 (1.010)
1.032 (0.992)

k=8
1.011 (0.995)
1.022 (1.014)
1.049 (1.000)

k=10
1.022 (0.998)
1.023 (1.012)
1.043 (0.993)

boolean strings can be extracted from an expec-
tation value like Eq. 19, save that it is now paired

with Weum = 354 Wt-:?'-', where Wi}' = a;; + bi;.

2.5.3 Correlation Matrix Calculation

Correlation matrices are key to a wide array of
statistical applications and can be estimated with
limited information using SDPs [54, 55]. In par-
ticular, autocorrelation dictates that correlation
matrices X have unit diagonals (X; =1, Vi <
N), much like MaxCut, Min/Max Bisection, and
MaxSat, and can thus be addressed with the
rescaled quantum version (p; = 27", Eq. 10)
and approximated by the z-axis Pauli string con-
straints. Meanwhile, the extremization of certain
correlations (e.g., maximize/minimize X;;) and
the enforcement of inequality and equality con-
straints (e.g., 0.2 < Xj; < 0.4 or X;; = 0.4) can
be enforced by additional constraints with either
Pauli strings or the tomography of a select few
state components.

2.6 HTAAC-QSDP with Mixed Quantum
States

We now overview the implementation of the
HTAAC-QSDP Goemans-Williamson algorithm
with mixed quantum states, such as might occur
on a noisy quantum device or by interacting the
utilized qubits with a set of unmeasured qubits.
While the formalism for measuring Pauli strings
on such systems is well known, we demonstrate
how the required Hadamard Test remains viable.
We start with ppr, some mixed state equivalent
of the variational state |1/). Upon application of
the controlled-Uyy (without loss of generality for
Up) conditioned on the n+1th qubit, we obtain
the density matrix
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1 -
§(|0)(0| ® Iprl +1|0){(1| @ prU3y

(30)
—i[1){0] ® Uwprl + [1)(1| ® UwpU).

Upon applying a Hadamard gate on the n+1th
qubit and measuring it along the z-axis, we ob-
tain

%ﬁ[PRU;V —Uwpr] = Im[Tx[Uwpg]], (31)

which is proportional to Eq. 3 with the same co-
efficient o as prescribed by Eq. 7. This enables
not only optimization, but also evaluation of the
cut value estimation (Cg) (Eq. 19), which is an
accurate representation of the true cut value (Fig.
3). Alternatively, the element-wise rounded cut
value calculated using Eq. 21 can still be utilized
as an approximation to the traditional Goemans-
Williamson rounding scheme. Although it would
not result in the typical inner-product rounding,
the sign of each vertex could still defined as the
relative sign between each 1; and .

This mixed state formalism of the HTAAC-
QSDP Goemans-Williamson algorithm works not
only in principle, but also in practice. Fig. 2 dis-
plays the best cut value of a mixed state for-
malism with otherwise equal parameters (dark
blue). The mixed state was generated by adding
an unmeasured qubit to the randomly parameter-
ized quantum circuit, which was then traced over
prior to minimization and cut classification. The
higher rank states moderately improved the per-
formance on most graphs, with a mean higher-
rank SDP value of 0.96 (G11), 1.01 (G14), and
0.98 (G20), compared to 0.94, 1.00, and 0.98 in
the rank-1 case.

3 Simulations and Results

The viability of our HTAAC-QSDP Goemans-
Williamson algorithm is displayed in Fig. 2 and
Table 2. We compare Cyg, the cut values obtained
by HTAAC-QSDP, to max{(Cspp), the best re-
sults obtained by the leading gradient-based clas-
sical method [41]. We study all of the 800-
vertex MaxCut problems explored in [41] (Ta-
ble 2) in order to make an extensive compari-
son with the leading classical gradient-based in-
terior point method. These graphs represent a

broad sampling from the well-studied GSet graph
library [40]. Graphs G11, G12, and G13 have
vertices that are connected to nearest-neighbors
on a toroid structure and +1 weights (Fig 3,
right), while G14 and G15 (G20 and G21) have
binary weights 0 and 1 (integer weights =+1)
and randomly distributed edge density that is
highly skewed towards the lower numbered ver-
tices (Fig 5, left).

HTAAC-QSDP with & < 2-Pauli term con-
straints exceeds the performance of its classical
counterpart on skewed binary and skewed inte-
ger graphs, and falls narrowly short of classi-
cal performance on toroid graphs (Fig. 2 and
Table 2). The slight differences between the
HTAAC-QSDP solution quality and those of the
classical solver are typical of comparing different
SDP solvers, which often differ slightly in their
answers due to different numerical factors, includ-
ing sparsity tolerance, rounding conventions (es-
pecially in the context of degenerate SDP solu-
tions), and other hyperparameters [56]. All tra-
jectories converge above the 0.878-approximation
ratio Cg/Cmax (dashed red line) guaranteed by
classical semidefinite programming, where Cmax
is the highest known cut of each graph found
by intensive, multi-shot, classical heuristics [44].
Ags SDPs are approximations of the optimiza-
tion problem, the extremization of the loss func-
tion and the figure of merit (here, cut value) are
highly correlated, particularly for well-enforced
constraints. Fig. 3 demonstrates the strong corre-
lation between the cut values estimated by quan-
tum observables {(Cp) (Eq. 19) and the fully
rounded SDP result Cp, indicating that the
HTAAC-QSDP Goemans-Williamson algorithm
measurement of few quantum observables closely
approximates the rounded and composited cut
values of all variables.

The addition of Pauli string amplitude con-
straints with & > 2 can better enforce Eq. 10,
leading to higher-quality solutions to the SDPs.
Fig. 4 and Table 3 demonstrate that increas-
ing k produces moderately higher Cg values for
the 800-vertex graphs, until the performance in-
creases saturate £k = 4. Moreover, we note
that at k& values = 4, HTAAC-QSDP outper-
forms the analogous classical algorithm for all
graph types, indicating a well-conditioned solu-
tion. Likewise, the population variance (solid
lines) o, = var(|4;|?) decreases substantially un-
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Figure 5: The structure of the G11 and G14/G20 GSet
graphs, where non-zero edges between two vertices are
marked as blue dots. Left) the edges of the toroid graphs
(G11, G12, G13) follow a fixed connectivity, with edges
extending between neighboring vertices on a torus struc-
ture. Right) the skewed graphs have connectivity that is
drawn from a random distribution, with edges extending
between arbitrary vertices (G14 and G15 binary weights
1 and 0, G20 and G21 integer weights 1). The degrees
of each vertex are disproportionately biased towards the
vertices of lower index, with edge density decaying as ver-
tex number increases. We compare with all 800-vertex
graphs considered in the leading classical analog [41].

til saturating near k ~ 4 at around o, ~ N~

Note that, in the absence of the competing ob-
jective function ((¢Z,;)w) dynamics, all Pauli-
z correlations become restricted as £k — n.
This results in the complete constraint |¢;| =
N-1/2, Vi, such that o, — 0 (black dashed line
in Fig. 4, left). We can understand this behavior
in the context of other penalty methods [57]. In
particular, consider the penalty methods formu-
lation q(t, A) = f(z:) + Ag(z:), where in our case
x; are the time-dependent optimized parameters,
f(zt) = (0% 411)wyi, and g(z:) represents the con-
straints. In the limits ¢ — oo and Ay — o0, it is
known that z; — T, where T is the fully enforced
solution of the hard constraints in some neigh-
borhood of zp [58]. That is, the constraint-only
dynamics (black dashed line of Fig. 4) represents
the solution quality with respect to constraints in
the Ay — oo limit.

The HTAAC-QSDP Goemans-Williamson al-
gorithm was also tested against the G81 graph,
a 20,000 vertex graph with a similar structure to
G11-G13, and which is the largest MaxCut graph
available that has been benchmarked against clas-
sical SDP methods. The average ratio between
the HTAAC-QSDP obtained cut value for G81
and that of the classical counterpart was within
1% of the 800-vertex toroid graphs tested (ratio of
0.93). While the requisite circuit-depth for some

quantum objective functions is known to grow lin-
early with the size of the circuit’s Hilbert space
[59], this has not been shown for objective func-
tions of the form of Eq. 15. This is in agreement
with our observation that, while Hilbert space re-
quired to solve the G81 graphs is 32 times larger
than that for G11-G21, it’s circuit-depth is < 8
times larger. This reduction in requisite circuit-
depth could also be due to the influence of con-
straints, which may effectively limit the degrees
of freedom of the quantum circuit, a phenomenon
that has been referred to as a “Hamiltonian in-
formed” model [59].

That being said, even if the worst-case expo-
nential bounds for quantum optimization were
saturated, that would not preclude them from
having lesser overhead than classical SDPs. We
note that classically solving an NP-hard prob-
lem of 2" variables is exponentially hard with
respect to the 2" variables (that is, it scales as
0(2%")) and that, while these problems can be
classically approximated using polynomial time
and memory with respect to the number of vari-
ables, this still yields a classical complexity ~
polynomial(2”). For instance, the leading classi-
cal techniques, interior point methods [56], have
a memory cost that scales as O(N%) ~ O(2*%)
and a computational cost that scales as O(N?) ~
O(22"), making them in fact less efficient than the
exponential bounds put on some worst-case quan-
tum objective functions of O(2"/2) = O(2"1) ~
O(2") memory cost and O(2"!) ~ O(2") com-
putational cost, a quartic and quadratic reduc-
tion, respectively.

Even among the lighter-weight yet often less
powerful first-order methods, the classical over-
head is considerable. For example, the popular
branch of projection-based methods has arith-
metic and memory complexity of O(23") and
O(2%"), respectively, for such 2" variable prob-
lems [60]. Alternative algorithms, such as the
Arora-Kale algorithm, can have time complexity
as efficient as O(M) [61], although for problems
such as MaxCut this still reduces to O(2")). On
a similar topic of scale, we note that G81 was op-
timized with constraints of orders k < 4, which
results in a similar ratio of approximate to exact
constraints as that of smaller experiments.
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Figure 6: (Left) The convergence of the cut value for
the G11 graph. The cut value approaches its maximum
trajectory value as ~ 1/t, with some fluctuations due
to both the discontinuity of the rounding process and
the nonconvexities of the optimization space. The error
convergence is markedly faster than 1/+/%. (Right) Al-
though the general Hilbert space of quantum operators
requires 4™ operators to span (black), in practice, many
SDPs of interest, such as toroid graphs, can be encoded
with a polynomial number of Pauli strings (gray). More-
over, many of these Pauli terms are relatively insignifi-
cant to the problem structure, such that the approximate

matrix Wapprex can be encoded with little error using only
a fraction of the already reduced operator set (red).

3.1 Simulation Details

All simulations are done using a one-dimensional
ring qubit connectivity, such that each qubit has
two neighbors and the nth qubit neighbors the
1st qubit. The circuit ansatz of the simulations
for graphs G11-G21 (G81) is 120 (900) repeti-
tions of two variationally parameterized y-axis
rotations interleaved with CNOT gates, alternat-
ing between odd-even and even-odd qubit con-
trol. The TensorLy-Quantum simulator [62, 63]
is used for graphs G11-G217, while a modified
version of cuStateVec [64] is used for G81. Gra-
dient descent was conducted an ADAM [65] opti-
mizer, with learning rate n = 0.01 (n = 0.005) for
graphs G11-G21 (G81), as well as hyperparame-
ters f1 = 0.9, and By = 0.999.

The evolution angle o was set as a = 0.01
for all graphs. The values of 8 used in this
work were 8 = 1/1.2 for the toroid graphs and
B = 1/3 for the skew binary and skew integer
graphs. We did not employ a unitary Up for
the G81 graph. [ values should be chosen such
that 8 < 1, as diagonal entries are always satisfi-
able (i.e., some population can always be placed
on the state, lowering the loss function), in con-

'Source code at https://github.com/tensorly/
quantum/blob/main/doc/source/examples/htaacqsdp.

Py-

trast to edge cuts, which are not (i.e., not ev-
ery edge can be cut with any given partition for
general graphs). [ values can be tuned on the
device in the real time by monitoring the Pauli
string constraints and choosing a 3 that leads to
largely satisfied Pauli constraints with relatively
small coefficients A, such that the convergence
of the algorithm is not hindered by large con-
straints that outweigh the objective function or
lead to unstable convergence. In this work, we
set A & a/m, to keep the total influence of m
constraint terms in proportion to the objective
term (o2, ,)w ~ aW. Specifically, for the 800-
vertex graphs, we choose A = 100a/m for the
toroid and skew binary graphs and A = 50a/m
for the skew integer graphs. For the G81 graph,
A = 2000/ m.

4  Theoretical Analysis of Hadamard
Test Unitaries

This subsection addresses the implementation of
the Hadamard tests found in this work, includ-
ing the approximation of W by Uy with a finite
phase a, the construction of W for difficult prob-
lems, and the implementation of the prescribed
Hadamard Tests using ZX-calculus.

4.1 Finite Phase a for Unitary Objective Func-
tion

In this subsection, we derive Theorem ??, which
we here restate for completeness:

Theorem 1 Our approximate Hadamard Test ob-
jective function Uy ~ iaW (Sec. 2.1) holds for
graphs with randomly distributed edges if

4

acM_N
N3 T g

where e is the number of non-zero edge weights

and £ is the average number of edges per vertez.

As discussed above, Theorem 2 can be under-
stood in two ways: that « satisfies the approxi-
mation of Eq. 32 while remaining tractably large
for SDPs of arbitrary N, as long as N does not
1) grow slower than the total number of edges e,
or 2) grow slower than the the cube of £&. We
again note that Theorem 2 should hold for the
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densest graph region if the edge density is assy-
metrically distributed, i.e., £ should be the av-
erage number of edges for the densest vertices.
As the conditions of Theorem 2 hold for graphs
that are not too dense, they are widely satisfiable
as the majority of interesting and demonstrably
difficult graphs for MaxCut are relatively sparse
[10, 39, 40, 42, 43]. Many classes of graphs for
which MaxCut is NP-hard satisfy Theorem 2 with
tractably large o, even for arbitrarily large N.

As an example, we consider non-planar graphs,
for which optimization problems like MaxCut are
typically NP-complete. While planar graphs can
be solved in polynomial time [66], a graph is guar-
anteeably non-planar when e > 3N — 6, which
reduces to £ > 3 in the limit of large N [67]%. In
accordance with Theorem 2, constant values of £
actually permit a to grow as N'/2, while for con-
stant o £ can grow as N1/3, such that our approx-
imation is valid for a wide variety of large-scale
non-planar graphs. Indeed, most standard bench-
marking graph sets have a small average num-
ber of edges per vertex, e.g., £ = 3 [40, 42, 43|,
as sparse edge-density is common among graphs
with real-world applications. In fact, solving
MaxCut with many classes of dense graphs (i.e.,
graphs with nearly all non-zero edges) is prov-
ably less challenging, and therefore less interest-
ing, than with their relatively sparse counterparts
[69].

We here sketch a brief proof of Theorem 2
for Erdés—Rényi random graphs [70] with edge
weights W;; ~ Ulgy, where Uy is the uniform
distribution on the interval [0,b]. The edge
density of a graph is described as d = e/F,
where e is the number of non-zero edges e and
E = N(N —1)/2 is the number of total possible
edges. We provide a detailed proof of this and
other graph types in the Appendix A.

Proof sketch of Theorem 2:

e The Hadamard Test encoding is a good ap-
proximation when Uy o iaW.

e This is satisfied when ‘;—?|W3|ij & %|W|ij
for typical edges between vertices 4,5.

20ther families of easy graphs are even more restric-
tive, such as graphs that lack a giant component. In the
limit of large N, these graphs only occur in more than a
negligible fraction of all possible graphs when d > 1/N
and thus £ > 1/2 [68].

¢ The mean of the non-zero elements in W is
Wi; = b/2 4,

e Elements (W?3);; are the sum of ~ N2
terms Wy;W; Wi, with expectation value
Wi;WiuWh = b3d3/8. That is, the addi-
tive error between the Hadamard encoding

terms and the matrix elements Wj; scales as
b3d3/8.

o SWI); < aW; — o < 24/(N?d3).

e Substituting d = 2¢/N(N —1) a~ 2¢/N? and
& = e/N, we obtain Theorem 2.

4.2 Construction of W

While some optimization problems of O(2%) vari-
ables may only be represented by graphs W of
O(4"™) distinct Pauli strings, we here illustrate
that there are many interesting (indeed, NP-hard
optimization problems) for which this is not the
case. In particular, we focus on the MaxCut prob-
lem and discuss toroid and Erdos Renyi random
graphs.

Toroid graphs, or graphs that can be embedded
on a toroid such that none of the edges connect-
ing vertices cross, have a regular, yet still three-
dimensional (non-planar), topological structure
[71]. While encoding difficult problems, these
data sets can often be represented in just poly(n)
Pauli strings, as is the case with the 8100 tourus
family to which G11 pertains (Fig. 6, right, gray).
What is more, the number of Pauli strings can be
reduced even further by instead constructing an
approximate operator Wypprox and permitting a
small amount of error |Wapprox—W|/|W| < 0.015
(Fig. 6, right, red). The population balanc-
ing graphs P are a similar subset of structured
graphs, whose diagonality renders them express-
ible with Pauli strings of only z-axis and identity
gates.

Likewise, we can use similarly few terms to
construct Erdés—Rényi random graphs, in which
edges between any two vertices are equally likely
and occur with probability p [70]. As Pauli
strings are a spanning set, these same statistics
are replicated when such strings are chosen ran-
domly. Moreover, we note that each Pauli string

¥The mean value of all elements of W is W;; = db/2,
however the relevant comparison is between the elements
of W* and the non-zero elements of W.

Accepted in { Yuantum 2023-06-03, click title to verify. Published under CC-BY 4.0. 15



adds O(2") edges, such that the graph is rapidly
populated.

4.3 Construction of Controlled Unitaries

The construction of unitary rotations Uy and Up
follows naturally from ZX calculus [72]. Specif-
ically, Pauli Gadgets can be used to generalize
unitary rotations from the qubit to which they
are applied to multiple qubits through the use
of O(n) CNOT gates, one on either size of each
qubit and its rotated counterparts in a conjugated
ladder scheme [73]. Moreover, rotations along
distinct Pauli axes are achieved by conjugating
these qubits with 7/2 rotation gates along said
axis. The gates are selected to match the terms
of W or P and « is the phase applied.

As this method generalizes to all rotations,
it can also be paired with the controlled gates
required for the Hadamard Test. Specifically,
the Pauli rotation gate applied to the auxiliary-
adjacent qubit is fashioned as a controlled rota-
tion, with the control conditioned on the auxil-
iary qubit. Moreover, the small values of o used
in this work make the addition of multiple Pauli
terms by Trotterization favorable, as the error of
this technique is bounded by o?/2 times the spec-
tral norm [74].

5 Conclusion

The efficient optimization of very large-scale
SDPs on variational quantum devices has to the
potential to revolutionize their use in operations,
computer architecture, and networking applica-
tions. In this manuscript, we have introduced
HTAAC-QSDP, which uses n + 1 qubits to ap-
proximate SDPs of up to N = 2" variables and
M ~ O(N) constraints by taking only a con-
stant number of quantum measurements and a
polynomial number of classical calculations per
epoch. As we approximately encode the SDP
objective function into a unitary operator, the
Hadamard Test can be used to optimize arbitrar-
ily large SDPs by estimating a constant number
of expectation values. Likewise, we demonstrate
that the constraints of many SDPs can also be
efficiently enforced with approximate amplitude
constraints.

Devising a quantum implementation of the
Goemans-Williamson algorithm, we approxi-

mately enforce the M = 2" constraints with a
population-balancing Hadamard Test and the es-
timation of as few as m ~ n?/2 Pauli string ex-
pectation values. We demonstrate our method
on a wide array of graphs from the GSet library
[40], approaching and often exceeding the per-
formance of the leading gradient-based classical
SDP solver on all graphs [41]. Finally, we note
that by increasing the order & of our Pauli string
constraints, we improve the accuracy of our re-
sults, exceeding the classical performance on all
graphs while still estimating only polynomially-
many expectation values.

The approximate amplitude constraints of
HTAAC-QSDP make it particularly helpful for
problems with a large number of constraints M.
The benefits of using the Hadamard Test objec-
tive function depend on the original optimization
problem. The optimization matrix of many NP-
hard problems can be encoded with controlled-
unitaries of polynomially-many Pauli terms, such
that the Hadamard Test would be efficient to im-
plement. While such cases could instead be opti-
mized by directly estimating polynomially-many
different non-commuting expectation values, use
of the Hadamard Test circumvents the need to
prepare an ensemble of output states for each
Pauli term, eliminating these extra circuit prepa-
rations. Conversely, optimizing worst-case objec-
tive functions with the Hadamard Test would re-
quire controlled-unitaries with up to O(2") Pauli
terms. While exact implementation of these
problems with HTAAC-QSDP on purely gate-
based quantum computers would be inefficient,
such objective functions could be engineered as
the natural time-evolution of quantum devices
with rich interactions (e.g., quantum simulators
[75—77] in their future iterations), or by approxi-
mate means.

Due to the immense importance of SDPs in
scientific and industrial optimization, as well as
the ongoing efforts to generate effective quantum
SDP methods that are often limited by poor scal-
ing in key parameters such as accuracy and prob-
lem size, our work provides a variational alter-
native with tractable overhead. In particular,
the largest SDPs solved via classical methods,
which required over 500 teraFLOPs on nearly
ten-thousand CPUs and GPUs [78], could be ad-
dressed by our method with just ~ 20 qubits.

In future work, the techniques of this
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manuscript can be extended to additional fam-
ilies of SDPs. For instance, SDPs that extrem-
ize operator eigenvalues are a natural application
for quantum circuits [79]. Similarly, variational
quantum linear algebra techniques [80] can po-
tentially be adapted to enforce the more general
constraints

(A X)=bu, Yu< M

of Eq. 1. In many cases, more general constraints
are likewise satisfiable with the Pauli string con-
straints, as suggested in this work. For instance,
when the number of requisite constraints M is
much smaller than the number of variables N, or,
as is the case with our quantum implementation
of the Goemans-Williamson algorithm, by enforc-
ing a relatively small subset of the constraints.
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A Appendix: Theoretical Analysis of
Hadamard Test Objective Function

We now derive Theorem 2 in detail. In order for
the efficient encoding Uy = exp(iaW) o iaW
to hold, it is sufficient to enforce that the third-
order term in Eq. 12 is substantially smaller than
the first-order term. That is
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a® s o a? o
§|W lij < ﬁ|W|U =+ F'W iy < |Wli; (32)

for typical edges between vertices i,j. By in-
duction, the criterion in Eq. 32 also guarantees
that odd (imaginary) powers >3 will likewise be
smaller than the first order term, and are thus
also negligible. While this condition can always
be satisfied with an arbitrarily small o, we in
practice require that o« maintain some finite size
to avoid unitary rotations with vanishingly small
gate times 7 & « and imaginary components
{(ont1)w x . We now demonstrate that this
criteria can be met for a wide array of graphs
with NP-complete MaxCut optimization com-
plexity.

First, we consider Erdés—Rényi random graphs
[70] with elements W;; ~ Ujgy, which are uni-
formly distributed on the interval [0,b]. The
graphs are said to have edge density d, which is
the fraction of non-zero edges e over total possible
edges E = N(N —1)/2. Typical elements (W3);;
are the sum of ~ N2 terms Wi Wi Wiy, with ex-
pectation value Wi;W;, Wy = 5°d3/8, such that
the matrix elements of W3 have the expectation
value (W3),;; = N253d3/8. As the mean of the
non-zero elements in W is W;; = b/2, the crite-
rion of Eq. 32 becomes

? N33 2 o 24

1 ST <Sympg
We can rewrite this criterion in terms the number
of non-zero edges e by noting that graph density
d scales as d = e¢/E, where E = N(N -1)/2 ~
N?2/2 is the number of non-zero edges possible for
an N vertex graph. Likewise, the average number
of edges per vertex is then £ = ¢/N, and Eq. 33
can be rewritten as

(33)

» 3N* 3N
T

For graphs where edge density d is not uni-
formly distributed, the above conditions should

hold for the most densely connected vertices of
the graph.

(34)

We briefly illustrate how our approximation
holds for a few other classes of graphs. For in-
stance, graphs with elements Wj; ~ U[_pp drawn

from uniform distributions with both positive and
negative components generally require o ranges
that are even more permissible (i.e., can be even
larger) than those of the positive case, with the
criterion of Eq. 33 serving as a small lower-bound.

Similar proofs of implementability can also
be done for graphs with normally distributed
weights W;; ~ N'(u,0?) of mean p and variance
o2. For the case p & o, (W3);; = N?p*d® and o
need only satisfy

0/.'2N2[I,3d3

= Lp=so’ g

6
N2 (35)
which requires the same permissive scaling be-
tween N and d (e or £) as the condition Eq.
32 (Eq. 33) for positive uniform distributions.
Likewise, for normal distributions where o >> u,
Eq. 35 with 4 = ¢ would be a large upper bound.
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