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Abstract
This paper discusses three points inspired by Skraaning and Jamieson’s perspective on automation failure:
(a) the limitations of the automation failure concept with expanding system boundaries; (b) parallels
between the failure to grasp automation failure and the failure to grasp trust in automation; (c) benefits of
taking a pluralistic approach to definitions in sociotechnical systems science. While a taxonomy of
automation-involved failures may not directly improve our understanding of how to prevent those failures,
it could be instrumental for identifying hazards during test and evaluation of operational systems.
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Introduction

Skraaning and Jamieson (2023) highlight the
challenges in defining automation failure, con-
trasting a narrower conception with broader per-
spectives. They reference aviation case studies and
safety science, illustrating how escalating system
complexity complicates attributing catastrophic
failures solely to automation. I agree with their
characterization of system complexity and the
challenge of failure attribution. I disagree that an
automation failure classification scheme is nec-
essary to make meaningful progress in safety
science and cognitive engineering. However, a
taxonomy of automation-involved failures similar
to what Skraaning and Jamieson propose may
serve as a useful tool to help advance test and
evaluation efforts of operational systems. Building
on this context, the following section delves into
the limitations of defining automation failure,
highlighting the complexities involved.

Limitations of Defining Automation Failure

The efficiency benefits of a common definition are
clear, and working to achieve common ground

within the scholarly literature is worth encourag-
ing. Generally, automation failure is understood as
when the performance of an automation-enabled
system does not meet a widely accepted standard
or expectation. However, the challenge lies in
operationalizing this definition. Key questions
include what constitutes the system—does it en-
compass people and organizational processes?
Who sets and assesses whether an expectation is
met—is it the organization’s evaluators, the judi-
cial system, society at large?

Definitional First Principles. To start, there have been
many definitions of automation, in part shaped by
history and by wider interest in the subject
(Sheridan, 2002). For some, one definition may be
more convenient than others, depending on the
goal:
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· Automation has been defined based on cate-
gories of technology progress or ability, a
definition that is often used to contrast mech-
anistic systems from learning systems. (A
technology-facing view that is helpful for
communicating technological progress and
associated new abilities or concerns.)

· Automation has been defined as a device that
can function without requiring continuous in-
put from an operator. (A work-oriented view
that is helpful for communicating why auto-
mation may be differently problematic than
other types of technology in operational
environments.)

· Automation has been defined as a function
performed by a machine that could conceivably
be completed by a person. (A relationship-
focused view that is helpful for communicat-
ing why automation problematics depend on
people’s expectations of technology relative to
themselves.)

Engineers that want to highlight how ad-
vancements in technology have resulted in novel
capabilities and corresponding concerns may, for
example, prefer to characterize “automation” and
“autonomy” as different concepts, irrespective of
the scholarly history of either word. Scholars
wanting to take a broader concept of automation to
study the effects of technology on human systems
may prefer a more progressive definition that is
robust to technological advancements by centering
the human-automation relationship (Parasuraman
& Riley, 1997). If such definitions might serve as
normative models (Sheridan, 2018), then we might
ask how useful are these definitions, or how
consistently can they be applied, to whom are they
useful, and for what purpose?

Before we can answer that question, how are we
defining failure? Failure implies that an expected
standard is drastically unmet. If system compo-
nents are working to exacting standards, but
brought together fail to achieve broader expecta-
tions, is it useful to describe this as automation
failure? Skraaning and Jamieson cite Leveson
(2004) who describes this type of failure as dys-
functional interactions. For instance, combining
various health monitoring devices in hospitals can
lead to alarm fatigue and medical errors
(Albanowski et al., 2023; Cvach, 2012). This is not

to say that automated components need no im-
provement, but the point made explicit in Leveson
(2004, p. 244), and echoed by Skraaning and
Jamieson (2023), is that “these dysfunctional in-
teractions among system components (system
accidents) have received less attention than com-
ponent failure accidents.”

Attribution of Failure in Complex Systems. This may
be why Skraaning and Jamieson (2023) propose to
include a broader concept (systemic automation
failures) as part of a taxonomy, but attribution is
important. Might “automation failure” uninten-
tionally suggest to reasonable actors that auto-
mation failure is the automation’s failure? What I
like about the initial concept of automation failure
is that it presumes automation is fallible and im-
plies that human operators of automated systems
play a critical role. This implication focuses on the
broader human-automation system beyond the
mechanical or informational components that
comprise the automation, and powerfully counters
the view that frontline operators are the primary
cause of adverse events, or the weakest link in
productive work systems because relative to au-
tomation people are inconsistent, get tired, and
make mistakes.

However, the danger of attributing systemic
failures using either technology-focused (“auto-
mation failure”) or operator-focused (“human
performance challenges”) language is that it may
orient adjudicators to blame correspondingly.
After an accident, a term like “automation failure”
affords inspection of technology development and
testing; “human performance challenges” affords
inspection of operator training or operator re-
sponsibility. What these labels seem less helpful
for is holding organizations or oversight agencies
accountable for known challenges in interopera-
bility (“Medical Device Interoperability,” 2023),
human monitoring performance (Moray, 2003),
and safety culture (Billeaud & Snow, 2023;
“Inadequate Safety Culture,” 2019). That may not
be the intended purpose of the taxonomy, even
though intent does not prevent it from being used
that way. Perhaps the taxonomy is meant as a
common reference point for scholars modeling
human-automation performance.

Yet even in this latter case of scholarly orien-
tation, attribution questions are raised in the
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Skraaning and Jamieson (2023) classification
scheme. Should the examples under “systemic
automation failures” be attributed to automation at
all, or should these be attributed to the organiza-
tion’s failure to test for these situations, or failure
to consider operator expectations in the design?
Similarly, should “operators are unfamiliar with
the automation due to inadequate training” be
attributed to “human and organizational slips/
misconceptions” when this unfamiliarity might
be the result of poor interface design that impedes
learning and discovery on the job? Even within a
single category, the attribution process is not clear.
How do we determine, and who gets to determine,
what is “overly complex” or “unsuitable”?
Questions like these, and the challenge of an-
swering them in an encompassing or unambiguous
way, add uncertainty that this framework will be
useful for guiding system design, understanding,
or communication around automation-involved
systemic failures.

Parallels in Defining Automation Failure and
Trust in Automation

Similar to the varied concepts of automation
failure noted by Skraaning and Jamieson, literature
on trust in automation also reflects diverse con-
cepts. The literature continues to note a lack of
definitional agreement despite there being a robust
one of trust as, “the attitude that an agent will help
achieve an individual’s goals in a situation char-
acterized by uncertainty and vulnerability” (Lee &
See, 2004, p. 54). The main challenge of achieving
consensus, and a reasonable criticism of existing
definitions, is not so much what the definition is
but how to best operationalize it so that it is useful
for practitioners.

Defining and Operationalizing Trust in Human-
Automation Systems. To define means to describe
the nature, scope, or meaning of something. To
operationalize, on the other hand, involves making
an abstract concept observable and measurable.
Therefore, the existence of the abstract concept is
inferred from other phenomena, often incom-
pletely. While broad consensus may exist on
definitions, operationalizations often vary because
they tend to be more context-dependent. A good

definition should be useful within a wide range of
situations and difficult to contradict, whereas good
operationalizations should enable the appropriate
application of the construct within specific
constraints—similar to the respective differences
between a normative model and a descriptive
model (Sheridan, 2018).

Although Lee and See (2004) cover an awe-
some array of trust factors and relationships from a
wide range of sources, their operationalization of
trust in automation could be characterized as a
narrower concept. Their distinctions between trust
in people and trust in automation, and their model
of trust and reliance (2004, pp. 65–67), indicate an
information processing view of trust under su-
pervisory control conditions (Sheridan, 1975).
This concept of trust fits well with human-
automation relationships that are essentially sig-
nal detection type tasks with a human-in-the-loop.
In such tasks, the role of trust in an operator’s
reliance and compliance decisions (or lack of
decision) are of interest; calibrating operator ex-
pectations to automation capabilities, and having
appropriate trust is a primary goal.

However, increasing system complexity has
meant that this narrower concept of trust may fall
short in situations with increasingly autonomous
and interactive information systems. A broader
concept was therefore introduced to include both
the information processing view (i.e., “semiotics”)
and the changing social structure implications of
highly capable automation in more open-world
environments (Chiou & Lee, 2021). In these
more open-world environments, the hypothesis is
that our understanding of trust in the context of
human-automation systems will be less informed
by information processing alone, and more in-
formed by identifying decision interdependencies,
values alignment, and changing situation struc-
tures. While this broader perspective increases the
problem scope and complexity, the point is that the
narrower concept has reached its limit for ad-
vancing our understanding of trust in human-
automation systems, and how to design for or
evaluate these new systems effectively.

Both narrow and broad concepts can coexist, as
Skraaning and Jamieson illustrate in their taxon-
omy for the concept of automation failure. Yet,
even with a well-documented narrative arc, there
will be surprising takes that emerge, no matter how
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many or how thorough are the previous reviews of
empirical literature (Hancock et al., 2011; Hoff &
Bashir, 2013; Huang et al., 2021; Lee & See, 2004;
Madhavan & Wiegmann, 2007). As an example,
take the recent effort to translate tradecraft stan-
dards from Intelligence Community Directive
(ICD) 203 into theMultisource AI Scorecard Table
(MAST), a rating system tool for evaluating ar-
tificial intelligence trustworthiness (Blasch et al.,
2020). MAST is based on a set of nine criteria
traditionally used to evaluate the trustworthiness of
human intelligence analysis, and its justification as
a trust assessment tool is primarily supported by
literature from computer and information science
perspectives, rather than from social science per-
spectives. Setting aside conceptual differences
between trust and trustworthiness for the moment,
the implication is that if AI was assessed as
trustworthy based on this rating system, then
operators could (and would) trust the AI more, and
more appropriately. Despite many of the MAST
criteria comprising what might be considered
distal variables of trust that are open to interpre-
tation (consider the “customer relevance” or “vi-
sualization” criteria as examples), this tradecraft-
derived tool correlates surprisingly well with more
scientifically accepted trust assessment instru-
ments (Chiou et al., 2022). As a result, the tool
joins the many dozens of other tools that have
operationalized trust in automation in various ways
(Alsaid et al., 2023; Kohn et al., 2021).

A Gricean Grasp of Automation Failure

Might the Skraaning and Jamieson taxonomy help
us be more precise when describing what we are
testing, modeling, or analyzing? For abstract
concepts that invite multiple perspectives, it may
be Sisyphean to try and consense the many pos-
sible operationalizations that are each contingent
on their own unique constraints. We see this over
again in the literature for automation (and over-
lapping concepts like autonomy or artificial in-
telligence), for trust (and related concepts like
trustworthiness, reliance, credibility, intent), and
for accountability (and more measurable phe-
nomena like responsibility, consequence, trans-
parency, obligation). Because human language
evolves, and the design of large-scale systems
remains mostly a matter of “experience, art, and

iterative trial and error” (Sheridan, 2018, p. 27),
abstract concepts in this area will continue to be
operationalized in many credible ways, sometimes
unnecessarily separated into “different” concepts,
and at other times inappropriately conflated. To err,
to understand, and to repair is human—and
science.

No matter how committed the effort may be to
iterating a precise taxonomy of automation failure,
there are some benefits to accepting multiple in-
terpretations of a concept. These benefits include
demonstrating that scientific efforts value: dia-
logue and critical thinking as central to sense-
making; openness to new perspectives even if
their premise seems wrong initially; and agility
within and cooperation across disciplines to
achieve shared goals, rather than to assert one way
of thinking over another. Accepting multiple in-
terpretations is not necessarily agreeing to dis-
agree, it means searching for common ground and
embracing ambiguity that has meaningful purpose.

Ambiguity does not necessarily mean a lack of
clarity that will stymy progress. Successful am-
biguity abounds in our language. It means others
are able to say what is needed in as few words as
possible; I am able to read Skraaning and Jamie-
son’s use of the narrower concept of automation
failure throughout their paper, even as they argue
for including a broader concept. I am able to
understand the phrase, “system failure” as being
used to encompass more than one situation, rather
than as a failure attributed to automation alone.
Abstract concepts that are applied to many dif-
ferent areas demand an openness to learning from
multiple co-existing perspectives, rather than effort
spent delineating and dividing all possible ex-
amples. In instances of perceived conflict around
language, our biggest strength as a scientific
community is our ability to calibrate our trust in
others to faithfully apply concepts as they un-
derstand them for a particular purpose, and our
ability to evaluate those applications critically.

The Benefits of an Imperfect Taxonomy of Automation
Failures. In that spirit, a taxonomy that enumerates
examples of automation-involved failures, and
estimates where they sit within a sociotechnical
system, could be a useful tool for those lacking the
language to identify contributors of automation-
involved problems. As is evident from chemistry
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and biology, taxonomies are powerful tools in
science and education, even as new knowledge and
perspectives are discovered, valued, and included
in subsequent versions. A taxonomy of
automation-involved failures can structure a re-
pository of issues to investigate, so that we can
learn from known knowledge and have a place for
new knowledge. There have long been calls for
developing tools that not just human factors and
cognitive engineers can use (Cummings, 2018). As
automation-involved systems become increasingly
complex, influential, and accessible, there will be
even stronger needs for effective test and evalu-
ation. Test and evaluation efforts will likely ac-
celerate if a larger community of technologists,
scientists, and engineers could draw from a cen-
tralized repository of accessible issues.

Even if the categories of Skraaning and Jamie-
son’s taxonomy do not achieve scientific consensus,
they could still be used to intuitively (and impre-
cisely, or even incorrectly) classify problem cases for
test and evaluation efforts. Such a tool could help
promote safety culture within organizations. How-
ever, a more useful structure of the taxonomy might
be to use labels with potential overlap, rather than
having columns that imply mutually exclusive cat-
egories, especially for examples with inherent am-
biguity and complicated attribution. As suggested
above, operators who are unfamiliar with automation
due to inadequate training might fall under both
“human and organizational slips/misconceptions”
and “human-automation interaction breakdown.”
The “inadequacy” of the training may be a tradeoff
that occurs when cognitive task analyses are not
conducted that could have minimized the need for
extensive training. Having the ability to label these
examples under multiple categories could have more
important benefits than side-stepping stringent con-
sensus, specifically, getting the people responsible
for those various system components (elementary,
systemic, interactional, organizational) at the same
table to resolve them together, and making more
salient the workload required to address the dys-
functional system interactions that can arise espe-
cially when automation is involved.

Conclusion

While the effort to define automation concepts
remains in the marketplace of ideas short of

standards development, acknowledging and
understanding the etymology of terms may be a
more meaningful path forward toward consensus
on abstract concepts. The rapidly evolving so-
ciotechnical landscape that affects automation-
involved failures cannot be held constant. In-
stead, it seems more important to identify how
sociotechnical factors and relationships can lead
to failures (Leveson, 2004) rather than catego-
rizing them as caused by elementary, systemic,
interactional, or organizational factors. Fur-
thermore, focusing on failures, performance
challenges, breakdowns, and slips or miscon-
ceptions does not tell us much about how in-
creasing system complexity or changing
capabilities of new automation contribute to
these issues. Understanding what constitutes
“unrealistic operational assumptions” involves
not just quantitative analyses (Moray, 2003) but
also deep understanding of task requirements,
risk tolerance, public relations, and the work-
force context (Ackoff, 1979). As such, failing to
grasp our failure to grasp the concept of auto-
mation failure means seeing multiple concep-
tions of automation failure as part of an ongoing,
collective effort to better understand how
human-designed, automation-involved systems
have failed as many people as they have, and
how to prevent such failures in the future.
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