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Abstract

Alzheimer’s disease (AD) affects Latinos disproportionately. One of the reasons underlying

this disparity may be type 2 diabetes (T2D) that is a risk factor for AD. The purpose of this

study was to examine the associations of T2D and AD blood biomarkers and the differences

in these associations between Mexican Americans and non-Hispanic Whites. This study

was a secondary analysis of baseline data from the observational Health and Aging Brain

Study: Health Disparities (HABS-HD) that investigated factors underlying health disparities

in AD in Mexican Americans in comparison to non-Hispanic Whites. HABS-HD participants

were excluded if they had missing data or were large outliers (z-scores >|4|) on a given AD

biomarker. Fasting blood glucose and glycosylated hemoglobin (HbA1c) levels were mea-

sured from clinical labs. T2D was diagnosed by licensed clinicians. Plasma amyloid-beta 42

and 40 (Aβ42/42) ratio, total tau (t-tau), and neurofilament light (NfL) were measured via

ultra-sensitive Simoa assays. The sample sizes were 1,552 for Aβ42/40 ratio, 1,570 for t-tau,

and 1,553 for NfL. Mexican Americans were younger (66.6±8.7 vs. 69.5±8.6) and had more

female (64.9% female vs. 55.1%) and fewer years of schooling (9.5±4.6 vs. 15.6±2.5) than

non-Hispanic Whites. Mexican Americans differed significantly from non-Hispanic Whites in

blood glucose (113.5±36.6 vs. 99.2±17.0) and HbA1c (6.33±1.4 vs. 5.51±0.6) levels, T2D

diagnosis (35.3% vs. 11.1%), as well as blood Aβ42/40 ratio (.051±.012 vs. .047±.011), t-tau

(2.56±.95 vs. 2.33±.90), and NfL levels (16.3±9.5 vs. 20.3±10.3). Blood glucose, blood

HbA1c, and T2D diagnosis were not related to Aβ42/40 ratio and t-tau but explained 3.7% of

the variation in NfL (p < .001). Blood glucose and T2D diagnosis were not, while HbA1c was

positively (b = 2.31, p < .001, β = 0.26), associated with NfL among Mexican Americans. In

contrast, blood glucose, HbA1c, and T2D diagnosis were negatively (b = -0.09, p < .01, β =

-0.26), not (b = 0.34, p = .71, β = 0.04), and positively (b = 3.32, p < .01, β = 0.33) associated

with NfL, respectively in non-Hispanic Whites. To conclude, blood glucose and HbA1c levels
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and T2D diagnosis are associated with plasma NfL levels, but not plasma Aβ and t-tau lev-

els. These associations differ in an ethnicity-specific manner and need to be further studied

as a potential mechanism underlying AD disparities.

Introduction

Type 2 diabetes (T2D) and Alzheimer’s disease (AD) are among the most common, costly, and

disabling diseases globally [1]. T2D is characterized by chronic insulin resistance and hyper-

glycemia [2] while AD pathologies include Amyloid-beta plaques, Tau tangles, and Neurode-

generation (ATN) in the brain [3]. Despite their seemingly different features, T2D and AD are

crosslinked by insulin resistance and hyperglycemia [2, 4–10], inflammation, and oxidative

stress [3, 4, 6, 11–18]. Many T2D animal studies support that T2D precedes AD [19] and

hyperinsulinemia and hyperglycemia induce Aβ overproduction and cognitive decline [6, 20–

22]. Furthermore, pharmacologic therapies used to treat T2D show some promise for reducing

ATN [23–28].

In humans, abnormal insulin signaling was first reported in postmortem brain tissue of

individuals with AD [4, 5]. Fluorodeoxyglucose Positron Emission Tomography (FDG-PET)

of the brain show that adults with normal cognition but at risk or with T2D experienced

regional cortical hypometabolism that is frequently implicated in AD [29–31]. Hyperglycemia

is associated with cerebral amyloid burden [32] and AD clinical progression [19, 33]. Impaired

insulin signaling is further associated with PET amyloid burden and cerebrospinal fluid (CSF)

biomarkers of AD, hyperphosphorylated tau 181 (p-tau181) and Aβ42/40 ratio [34]. T2D and

higher glycosylated hemoglobin A1c (HbA1c) have been associated with the neurodegenera-

tion characteristics of AD [30, 35, 36]. Further, impaired fasting glucose is associated with

increased cerebral amyloid [32] and accelerates AD clinical progression [19, 33]. HbA1c, lon-

ger T2D duration, poorer glycemic control, and diabetic complications are associated with

more cognitive impairment [19]. In contrast, other studies did not find an association between

T2D or HbA1c with CSF Aβ42 [30]. T2D or its duration was not found to affect memory in

individuals with mild cognitive impairment (MCI) and AD [37]. Some exploratory analyses

even suggest that comorbid T2D might be cognitively and functionally protective in older

adults with mild AD dementia [38, 39]. Nonetheless, studies examining T2D and AD are lim-

ited with mixed findings due to large variations in methods and the clinical phase of AD under

study [30, 40]. The cost and invasiveness of measuring PET and CSF AD biomarkers can now

be somewhat overcome with plasma ATN biomarkers [41–43].

Furthermore, T2D and AD are more prevalent in Hispanic Americans with T2D affecting

22.6% of Hispanics (vs. 11.3% of non-Hispanic Whites) and AD afflicting 14–21% of Hispanics

(vs. 10% in Whites) [44–47]. Hispanic Americans also experience AD at a younger age of

onset of AD, longer disease duration, and worse cognition proximal to death than other ethnic

groups [46]. Despite the disproportionate burden of AD on Mexican Americans, they have

been underrepresented in AD research.

The purpose of this study was to examine the associations of T2D and AD plasma biomark-

ers and differences in these associations among Mexican Americans in comparison to non-

Hispanic Whites. In other words, we were studying if the pathological blood markers of T2D

and AD are associated among individuals who are cognitively normal because the pathological

changes of T2D and AD can take years or even decades to accumulate without producing any

symptoms and may be detectable via blood biomarkers in individuals with normal cognition.
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We hypothesized that: 1) higher blood HbA1c and glucose levels as well as the presence ofT2D

diagnosis would be associated with lower plasma Aβ42/40 ratio and higher plasma t-tau and

neurofilament light (NfL) levels; and 2) the relationships of blood HbA1c and glucose levels as

well as the presence of T2D diagnosis with AD plasma biomarkers would be stronger in Mexi-

can Americans than non-Hispanic Whites.

Materials and methods

Design

This study was a secondary analysis of baseline data from the Aging Brain Study: Health Dis-

parities (HABS-HD). The purpose of the HABS-HD, an observational study, was to investigate

long-term factors underlying health disparities and differential pathways in incident MCI and

AD in Mexican Americans in comparison to non-Hispanic Whites. It enrolled 2076 represen-

tative participants (1039 Mexican Americans, 1037 non-Hispanic Whites) at baseline from

September 2017 to December 2021. During baseline data collection which spanned over 4

months per person, the participant underwent physical exam, functional and cognitive assess-

ment, blood draws, and neuroimaging. A detailed HABS-HD protocol was published previ-

ously [48]. The current study was a secondary analysis of de-identified HABS-HD data. The

Institutional Review Board at Arizona State University (ASU) considered this study non-

human research; hence, waived the requirement for informed consent and exempted the study

(ID STUDY00015500).

Sample

A community-based participatory research approach was used to recruit participants in the

HABS-HD. Multi-pronged recruitment strategies were implemented, including community

presentations and educational events, newspaper, television, and radio advertisements, social

media campaigns, and referrals. Inclusion criteria included self-reported identification as

Mexican American or non-Hispanic White, agreement to blood collections, capacity of partic-

ipating in neuroimaging, 50 years old or older, and fluent in English or Spanish. Exclusion cri-

teria were type 1 diabetes, active infection, current/recent cancer except for skin cancer,

current severe mental illness that could impact cognition except for depression, recent trau-

matic brain injury with loss of consciousness, current/recent alcohol/substance abuse, active

severe medical conditions that could impact cognition, and current diagnosis of non-AD

dementia [48].

For this study, HABS-HD participants were excluded if they had missing data or were outli-

ers (z-scores >|4|) on a given AD biomarker (Aβ42/40 ratio, t-tau, or NfL) within each ethnic

cohort. Of the 2076 HABS-HD participants, 524 (25.2%) participants were excluded for Aβ42/

40 ratio, 506 (24.4%) for t-tau, and 523 (25.2%) for NfL. The analytic sample sizes were then

1,552 for Aβ42/40 ratio, 1,570 for t-tau, and 1,553 for NfL.

Setting

Most data collection for the HABS-HD occurred at the Institute for Translational Research at

the University of North Texas Health Science Center. Blood collections for fasting blood and

clinical labs took place at Quest Laboratories [48]. Deidentified data were shared with the cor-

responding author of the current study through the portal of Institute for Translational

Research. All data analyses for this study were performed at ASU.
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Variables and their measures

Independent variables. Blood glucose and HbA1c levels were obtained from clinical labs.

Fasting blood samples were collected and processed according to the international guideline

[49]. T2D diagnosis was determined by a licensed clinician (MD, DO, or NP) based on medical

history, objective measures, clinical labs, and medications in the HABS-HD. Ethnicity was cat-

egorized as Mexican American or non-Hispanic White [48].

Dependent variables. A custom automated StarPlus system (Hamilton Robotics) was

used to complete assay preparation. Plasma samples were assayed to measure Aβ42, Aβ40, t-tau,

and NfL using the ultra-sensitive Simoa (single molecule array) technology platform

(Quanterix.com) based on previously established methods with coefficients of variations for all

assays were �5% [48, 50]. The Aβ42/40 ratio was calculated by dividing Aβ42 concentration by

Aβ40 concentration.

Potential covariates. Potential sociodemographic covariates included age, sex, education,

marital status, income, homeownership, years living in the U.S., and smoking. Potential clini-

cal covariates were APOE4 positivity defined as the presence of at least one E4 allele, cognition

measured by Mini-Mental State Examination, health status measured by self-report, depressive

symptoms measured by the 30-item Geriatric Depression Scale (GDS) [51], body mass index

(BMI), abdominal circumference in inches. Research medical (hypertension, dyslipidemia,

cardiovascular decease [CVD], anemia, and hypothyroidism) and cognitive diagnoses (mild

cognitive impairment and dementia) were assigned by a study licensed clinician (MD, DO, or

NP) based on collected data, including medical history, objective measures, clinical labs, and

medications, and neuropsychological test results according to published criteria [48].

Power and data analysis plan

Given an alpha of .01, that the other predictors in the model account for 20% of the outcome

variation, and that a given focal predictor accounts for a small proportion of outcome variation

(i.e., ΔR2 = .01), N of 927 would provide power >.80 to detect the effect of a focal predictor.

The analytic sample sizes were then 1,552 for Aβ42/40 ratio, 1,570 for t-tau, and 1,553 for NfL.

To describe the sample and examine associations between each study variable and ethnicity,

we obtained descriptive statistics by ethnicity and conducted bivariate statistical tests (i.e.,

Welch’s independent samples t test and Fisher’s exact test of association) in SPSS.

To test the study hypotheses, regression analyses were conducted separately for Aβ42/40

ratio, t-tau, and NfL, with the same set of predictors included for each outcome. For hypothesis

1, the focal predictors were blood glucose, diabetes diagnosis (coded as 1 = positive; 0 = nega-

tive) and HbA1c. Demographic covariates included in the regression models were ethnicity

(1 = Mexican American; 0 = non-Hispanic white), age, sex (1 = female; 0 = male), education,

marital status (1 = married; 0 = not married), homeowner (1 = homeowner; 0 = otherwise),

and number of years living in the U.S. Other covariates were APOE4 positivity (1 = yes;

0 = no), MMSE, health status, GDS-30, BMI, and abdominal circumference. Diagnosis vari-

ables (each coded 1 = condition is present; 0 = condition is absent) included hypertension,

CVD, anemia, hypothyroidism, mild cognitive impairment, and dementia. The regression

models for hypothesis 2 had these same predictors but also include the product terms

glucose × ethnicity, HbA1c × ethnicity, and diabetes × ethnicity, which were needed to test

two-way interactions of the focal predictors by ethnicity. Values of income were divided by

10,000 and values of Aβ42/40 ratio were multiplied by 100 to reduce the number of leading

zeros in the regression coefficient estimates. The variance inflation factor indicated that exces-

sive multicollinearity was not present, as each variance inflation factor < 5.
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Although we excluded cases having missing data for each outcome, the remaining analytic

sample had > 100 cases with incomplete data on one or more predictors. Given that exclusion

of cases with complete data on an outcome but missing on predictors can lead to biased

parameter estimates [52], we obtained regression model parameters using Bayesian Markov

Chain Monte Carlo (MCMC) estimation to treat this missing data. This Bayesian procedure

(a) yields unbiased parameter estimates and accurate standard error “equivalents” (defined as

the standard deviations of the posterior distributions) when data are missing at random and

(b) does not require that data meet distributional assumptions, such as normality [52–54]. We

monitored model convergence with the potential scale reduction factor [55] with a value less

than 1.05 indicating convergence. Bayesian analysis was conducted with Mplus software [56].

Unlike traditional analyses, Bayesian estimation produces a distribution of values for each

model parameter, and we requested 10,000 random draws to build these posterior distribu-

tions (after 10,000 burn-in iterations). The median of these posterior distributions was used to

represent final parameter estimates (e.g., regression coefficients). Further, we obtained one-

tailed p values based on the posterior distributions of the regression coefficients but doubled

these values to compare them to alpha of .05, commonly reported in traditional inference. To

convey the practical importance, or meaningfulness, of the analysis results, we obtained raw

score (b) and standardized regression coefficients (β), model R2, as well as the incremental pro-

portion of explained variance (i.e., ΔR2), the latter for the set of focal predictors (for hypothesis

1) and the set of two-way interactions (for hypothesis 2). Note that to obtain the incremental

ΔR2 values, we estimated and reported the results for three regression models for each out-

come, with the first model excluding the focal predictors and their interaction terms, the sec-

ond model adding the focal predictors, and the third model adding the set of two-way

interactions. Wald tests were used to assess the significance of the model and incremental R2

estimates. For significant interactions involving a continuous focal predictor, the Johnson-

Neyman technique [57] was used to identify significance regions where outcome differences

between Mexican Americans and non-Hispanic Whites were statistically significant, as deter-

mined with 95% Bayesian highest density credibility bands. We graphed significant interac-

tions with SAS software, version 9.4 M7.

Results

Participant characteristics

Table 1 displays statistics for the sample by ethnicity. Compared to the non-Hispanic White

sample, the Mexican American sample was younger, had less education and income, and lived

in the U.S. for fewer years, with a greater proportion of women, and a smaller proportion of

homeowners. The Mexican American sample also has greater proportions of current smokers

and diagnoses of T2D, hypertension, anemia, mild cognitive impairment, and dementia, a

smaller proportion of those with APOE4 positivity, lower MMSE and self-rated health, as well

as greater GDS, BMI, and Ab circumference, blood glucose and HbA1c, Ab42/40 ratio, t-tau,

and NfL.

Relationships of blood glucose, HbA1c, and T2D diagnosis with plasma

Aβ42/40 ratio, t-tau, and NfL

No convergence problems were encountered with the MCMC estimation, as all values of the

potential scale reduction factor were below 1.05 prior to the 500th iteration of the burn-in

phase. Table 2 shows the results for Aβ42/40 ratio. The model with the covariates and focal pre-

dictors (blood glucose, HbA1c, and T2D) accounted for 6%, Wald χ2(24) = 75.11, p < .001, of
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Table 1. Characteristics of the sample by ethnicity.

Variable N Mean (SD) or Number (Percent) p a

Overall Mexican American Non-Hispanic White

Age (years) 1,570 66.6 (8.7) 64.0 (8.0) 69.5 (8.6) < .001

Biological sex 1,570 < .001

Male 623 (39.7) 291 (35.1) 332 (44.9)

Female 947 (60.3) 539 (64.9) 408 (55.1

Education (years) 1,570 12.4 (4.8) 9.5 (4.6) 15.6 (2.5) < .001

Marital status 1,569 .324

Married 964 (61.5) 500 (60.2) 464 (62.8)

Not married 605 (38.6) 330 (39.8) 275 (37.2)

Income 1,526 57,852 (56,271) 34,595 (32,724) 83,614 (65,002) < .001

Homeowner 1,561 < .001

Yes 1,184 (75.8) 597 (72.3) 587 (79.9)

No 377 (24.2) 229 (27.7) 148 (20.1)

Years living in U.S. 1,529 55.2 (20.5) 43.3 (20.1) 69.0 (9.1) < .001

Smoking currently 1,569 .002

Yes 89 (5.7) 61 (7.4) 28 (3.8)

No 1,480 (94.3) 768 (92.6) 712 (96.2)

APOE4 positivity 1,565 < .001

Yes 370 (23.6) 149 (18.0) 221 (29.9)

No 1,195 (76.4) 677 (82.0) 518 (70.1)

MMSE 1,569 27.4 (3.0) 26.1 (3.5) 28.9 (1.4) < .001

Health status 1,569 2.6 (1.0) 1.9 (1.0) 2.8 (0.8) < .001

GDS 1,568 5.5 (5.8) 6.5 (6.3) 4.4 (4.8) < .001

BMI 1,563 29.8 (5.9) 30.8 (5.8) 28.8 (5.7) < .001

Ab circumference 1,567 39.7 (5.6) 40.2 (5.3) 39.3 (5.9) .002

Diagnosis

Hypertension 1,570 .004

Present 984 (62.7) 548 (66.0) 436 (58.9)

Absent 586 (37.3) 282 (34.0) 304 (41.1)

CVD 1,570 < .001

Present 119 (7.6) 44 (5.3) 75 (10.1)

Absent 1,451 (92.4) 786 (94.7) 665 (89.9)

Anemia 1570 < .001

Present 72 (4.6) 52 (6.3) 20 (2.7)

Absent 1,498 (95.4) 778 (93.7) 720 (97.3)

Hypothyroidism 1,570 .061

Present 247 (15.7) 117 (14.1) 130 (17.6)

Absent 1,323 (84.3) 713 (85.9) 610 (82.4)

MCI 1,570 .001

Present 219 (13.9) 139 (16.7) 80 (10.8)

Absent 1,351 (86.1) 691 (83.3) 660 (89.2)

Dementia 1,570 .033

Present 94 (6.0) 60 (7.2) 34 (4.6)

Absent 1,476 (94.0) 770 (92.8) 706 (95.4)

Glucose 1,563 106.8 (30.0) 113.5 (36.6) 99.2 (17.0) < .001

Type 2 diabetes 1,570 < .001

Present 375 (23.9) 293 (35.3) 82 (11.1)

(Continued)
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the variation in Aβ42/40 ratio, and the incremental variance due the focal predictors was < 1%,

Wald χ2(3) = 0.65, p = .89. None of the focal predictors were significantly related to Aβ42/40

ratio. Among the covariates, Mexican American participants generally had greater values for

Aβ42/40 ratio (b = .42, p < .001, β = .37) as did participants with APOE4 positivity (b = .23, p <

.001, β = .20).

Table 3 shows the regression results for t-tau. The model with the same predictors

accounted for 15%, Wald χ2(24) = 250.95, p < .001, of the variation, and the variance due

uniquely to the focal predictors, less than 1%, was not statistically significant Wald χ2(3) =

6.78, p = .08. Participants diagnosed with T2D generally had greater values for t-tau (b = .16, p
< .05, β = .17). For the covariates, participants who are Mexican Americans (b = .20, p < .01, β
= .21), female (b = .26, p < .001, β = .28), unmarried (b = -.12, p < .05, β = -.13), with greater

BMI (b = .04, p < .001, β = .22), and diagnosis of anemia (b = .78, p < .001, β = .84) had greater

values for t-tau.

Table 4 shows that for NfL, 36%, Wald χ2(24) = 803.15, p < .001, of the variation was

accounted for by the model, and the variance due uniquely to the focal predictors, 3.7%, was

statistically significant, Wald χ2(3) = 84.47, p < .001. A1c (b = 2.21, p < .001, β = 0.25) was pos-

itively related to NfL, as were several covariates, including age (b = 0.44, p < .001, β = 0.38),

years living in the U.S. (b = 0.04, p < .05, β = 0.07), smoking status (b = 2.00, p < .05, β = 0.20),

and anemia diagnosis (b = 6.83, p < .001, β = 0.68), whereas BMI (b = -0.17, p < .05, β =

-0.10), and Ab circumference (b = -0.16, p < .05, β = -0.09), were negatively related to NfL.

Mexican American participants generally had lower NfL values than non-Hispanic Whites (b
= -2.23, p < .001, β = -0.22), whereas participants with mild cognitive impairment (b = 1.90, p
< .01, β = 0.19) or dementia (b = 2.63, p < .05, β = 0.26), had greater NfL values compared to

those with normal cognition.

T2D and AD biomarker relationships by ethnicity

For Aβ42/40 ratio, Table 2 shows that the set of interactions accounted for less than 1% of the

variance, which was not significant, Wald χ2(3) = 2.21, p = .53. None of the specific two-way

interactions were significant (each p > .15). Similarly, for t-tau, Table 3 shows that the set of

interactions accounted for less than 1% of the variance, which was not significant, Wald χ2(3)

= 2.68, p = .44, and that none of the specific interactions were significant (each p > .38).

For NfL, Table 4 shows that the set of interactions accounted for an additional 1.3% of vari-

ance, Wald χ2(3) = 29.77, p < .001, and that each two-way interaction was significant (each p
value < .05). Fig 1 displays the plot of the glucose-by-ethnicity interaction for blood glucose

Table 1. (Continued)

Variable N Mean (SD) or Number (Percent) p a

Overall Mexican American Non-Hispanic White

Absent 1,195 (76.1) 537 (64.7) 658 (88.9)

HbA1c 1,561 5.94 (1.1) 6.33 (1.4) 5.51 (0.6) < .001

Aβ42/40 ratio 1,552 .049 (.012) .051 (.012) .047 (.011) < .001

t-tau 1,570 2.45 (.93) 2.56 (.95) 2.33 (.90) < .001

NfL 1,553 18.2 (10.1) 16.3 (9.5) 20.3 (10.3) < .001

Note. MMSE = Mini-Mental State Examination; GDS = Geriatric Depression Scale, BMI = Body Mass Index; CVD = Cardiovascular disease, MCI = Mild cognitive

impairment.
a Is the p value for the Welch’s independent-samples t test, for numeric variables, or Fisher’s exact test, for categorical variables, assessing differences between Mexican

Americans and Non-Hispanic Whites.

https://doi.org/10.1371/journal.pone.0295749.t001
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Table 2. Regression results for biomarker Aβ42/40 ratio (N = 1,552).

Model 1 Model 2 Model 3

Predictors b SDp β b SDp β b SDp β

Intercept 3.767 .581 — 3.759 .580 — 3.886 .597 —

Ethnicity b .427** .087 .371 .421*** .088 .366 .332** .1083 .299

Age .006 .005 .045 .006 .005 .043 .005 .005 .041

Sexc -.001 .070 -.001 -.002 .070 -.002 -.003 .070 -.003

Education (years) < .001 .010 < .001 < .001 .010 < .001 .001 .010 .004

Marriedd -.043 .068 -.037 -.043 .068 -.037 -.043 .068 -.037

Incomee .010 .007 .049 .010 .007 .050 .010 .007 .049

Homeownerf -.054 .073 -.047 -.053 .073 -.046 -.052 .074 -.045

Years living in U.S. < .001 .002 -.003 < .001 .002 -.004 < .001 .002 -.005

Smoke currentlyg -.054 .129 -.047 -.049 .128 -.043 -.046 .130 -.040

APOE4 positivityh .232*** .069 .200 .233** .070 .203 .232** .070 .202

MMSE .014 .015 .036 .014 .015 .037 .012 .015 .033

Health status -.042 .036 -.038 -.041 .037 -.036 -.041 .037 -.036

GDS total -.002 .006 -.008 -.001 .006 -.007 -.002 .006 -.008

BMI .012 .010 .063 .012 .010 .062 .012 .010 .061

Ab circumference -.007 .011 -.034 -.006 .011 -.031 -.007 .011 -.031

Hypertensionh .041 .063 .036 .042 .065 .037 .041 .064 .036

CVDh -.084 .113 -.073 -.083 .113 -.072 -.089 .115 -.077

Anemiah .072 .148 .063 .066 .149 .057 .069 .150 .060

Hypothyroidismh .078 .082 .068 .073 .081 .063 .074 .082 .064

Cognitive disorder

MCI vs. normal -.014 .089 -.012 -.012 .088 -.010 -.011 .089 -.010

Dementia vs. normal .022 .144 .019 .029 .143 .025 .028 .144 .024

Glucose — — — -.001 .002 -.035 -.002 .004 -.047

A1c — — — .031 .052 .030 .138 .124 .135

Diabetesh — — — .013 .100 .011 -.194 .174 -.169

Glucose × Ethnicity — — — — — — .001 .004 .015

A1c × Ethnicity — — — — — — -.136 .136 -.119

Diabetes × Ethnicity — — — — — — .302 .212 .101

R2 .060*** — — .061*** — — .065*** — —

Δ R2 .060*** — — .001 — — .004 — —

Note. Model 1 excluded the focal predictors and their interaction terms; Model 2 added the focal predictors; Model 3 added the set of two-way interactions.

b is a raw score regression coefficient. SDp is the standard deviation of posterior distribution. β is a standardized regression coefficient. MMSE = Mini-Mental State

Examination; GDS = Geriatric Depression Scale, BMI = Body Mass Index; CVD = Cardiovascular disease, MCI = Mild cognitive impairment.
a Values of Aβ42/40 ratio were multiplied by 100 to reduce the number of leading zeros.
b Coded as 1 = Mexican-American; 0 = non-Hispanic white.
c Coded as 1 = female; 0 = male.
d Coded as 1 = married; 0 = not married.
e Values of income were divided by 10,000 to reduce the number of leading zeros.
f Coded as 1 = homeowner; 0 = otherwise.
g Coded as 1 = yes; 0 = no.
h Coded as 1 = condition is present, 0 = condition is absent.

*p < .05.

**p < .01.

***p < .001.

https://doi.org/10.1371/journal.pone.0295749.t002

PLOS ONE T2D and AD

PLOS ONE | https://doi.org/10.1371/journal.pone.0295749 April 1, 2024 8 / 19

https://doi.org/10.1371/journal.pone.0295749.t002
https://doi.org/10.1371/journal.pone.0295749


Table 3. Regression results for biomarker Tau (N = 1,570).

Model 1 Model 2 Model 3

Predictors b SDp β b SDp β b SDp β

Intercept .792 .442 — .811 .454 — .776 .456 —

Ethnicitya .211** .066 .223 .195** .067 .209 .186* .083 .199

Age .006 .004 .060 .006 .004 .060 .007 .004 .061

Sexb .269*** .053 .288 .263*** .054 .282 .264*** .053 .283

Education (years) .002 .008 .011 .003 .008 .014 .004 .008 .019

Marriedc -.121* .052 -.130 -.124* .052 -.133 -.121* .052 -.130

Incomed -.009 .005 -.052 -.008 .005 -.051 -.009 .005 -.056

Homeownere -.014 .056 -.015 -.012 .056 -.013 -.016 .056 -.017

Years living in U.S. .003 .002 .058 .002 .002 .053 .002 .002 .052

Smoke currentlyf .046 .098 .049 .048 .100 .051 .050 .098 .054

APOE4 positivityg .068 .054 .073 .062 .054 .066 .062 .053 .066

MMSE .012 .011 .038 .012 .012 .038 .011 .012 .036

Health status -.006 .028 -.007 .002 .028 .002 .002 .028 .002

GDS total .003 .004 .020 .003 .004 .018 .003 .004 .016

BMI .035*** .008 .221 .035*** .008 .221 .035*** .008 .223

Ab circumference -.015 .008 -.093 -.016 .008 -.093 -.016 .008 -.093

Hypertensiong .084 .049 .090 .075 .049 .080 .076 .050 .081

CVDg .112 .087 .120 .113 .086 .121 .110 .087 .118

Anemiag .827*** .108 .886 .784*** .109 .839 .784*** .110 .840

Hypothyroidismg .068 .062 .073 .060 .063 .064 .064 .063 .069

Cognitive disorder

MCI vs. normal .013 .068 .014 .018 .068 .019 .022 .069 .024

Dementia vs. normal .119 .110 .127 .127 .110 .136 .118 .110 .126

Glucose — — — -.002 .001 -.067 < .001 .003 < .001

A1c — — — .017 .038 .021 -.064 .095 -.078

Diabetesg — — — .162* .076 .173 .077 .135 .082

Glucose × Ethnicity — — — — — — -.003 .003 -.075

A1c × Ethnicity — — — — — — .088 .103 .096

Diabetes × Ethnicity — — — — — — .142 .163 .059

R2 .147** — — .152*** — — .155*** — —

Δ R2 .147*** — — .005 — — .003 — —

Note. Model 1 excluded the focal predictors and their interaction terms; Model 2 added the focal predictors; Model 3 added the set of two-way interactions.

b is a raw score regression coefficient. SDp is the standard deviation of posterior distribution. β is a standardized regression coefficient. MMSE = Mini-Mental State

Examination; GDS = Geriatric Depression Scale, BMI = Body Mass Index; CVD = Cardiovascular disease, MCI = Mild cognitive impairment.
a Coded as 1 = Mexican American; 0 = non-Hispanic white.
b Coded as 1 = female; 0 = male.
c Coded as 1 = married; 0 = not married.
d Values of income were divided by 10,000 to reduce the number of leading zeros.
e Coded as 1 = homeowner; 0 = otherwise.
f Coded as 1 = yes; 0 = no.
g Coded as 1 = condition is present, 0 = condition is absent.

*p < .05.

**p < .01.

***p < .001.

https://doi.org/10.1371/journal.pone.0295749.t003
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Table 4. Regression results for biomarker Nfl (N = 1,553).

Model 1 Model 2 Model 3

Predictors b SDp β b SDp β b SDp β

Intercept -6.410 4.326 — -3.219 4.228 — -6.898 4.261 —

Ethnicitya -1.146 .640 -.114 -2.267*** .638 -.223 -.720 .766 -.072

Age .456*** .034 .398 .442*** .034 .384 .449*** .034 .391

Sexb -.179 .517 -.018 -.392 .503 -.039 -.465 .502 -.046

Education (years) .092 .074 .044 .089 .073 .043 .096 .072 .046

Marriedc -.244 .501 -.024 -.331 .492 -.033 -.388 .486 -.039

Incomed -.045 .050 -.026 -.032 .049 -.018 -.041 .049 -.023

Homeownere -.797 .542 -.079 -.627 .533 -.062 -.658 .525 -.065

Years living in U.S. .038* .018 .077 .036* .017 .074 .034* .017 .068

Smoke currentlyf 2.127* .969 .212 1.998* .929 .199 2.079* .926 .207

APOE4 positivityg .067 .515 .007 .258 .504 .026 .207 .506 .036

MMSE -.078 .113 -.024 -.007 .109 -.002 .001 .109 .021

Health status -.527 .269 -.054 -.216 .266 -.022 -.274 .263 -.028

GDS total .058 .042 .033 .064 .041 .037 .060 .041 .035

BMI -.177* .075 -.104 -.166* .073 -.097 -.160* .073 -.094

Ab circumference -.080 .081 -.044 -.156* .079 -.087 -.125 .079 -.069

Hypertensiong 1.146* .476 .114 .804 .467 .080 .952 .463 .095

CVDg -.208 .838 -.021 -.146 .819 -.015 .079 .807 .008

Anemiag 7.456*** 1.082 .742 6.826*** 1.074 .679 6.614*** 1.058 .658

Hypothyroidismg .348 .602 .035 .211 .583 .021 .230 .579 .023

Cognitive disorder

MCI vs. normal 1.774** .661 .176 1.896** .639 .189 1.805** .629 .180

Dementia vs. normal 2.055 1.070 .204 2.630* 1.056 .262 2.536* 1.047 .252

Glucose — — — -.024 0.012 -.007 -.087** .027 -.259

A1c — — — 2.205*** .378 .247 .345 .893 .039

Diabetesg — — — .846 .730 .084 3.321** 1.263 .331

Glucose × Ethnicity — — — — — — 0.079* 0.030 .209

A1c × Ethnicity — — — — — — 1.964* .976 .195

Diabetes × Ethnicity — — — — — — -3.079* 1.525 -.119

R2 .321*** — — .358*** — — .371*** — —

Δ R2 .321*** — — .037*** — — .013*** — —

Note. Model 1 excluded the focal predictors and their interaction terms; Model 2 added the focal predictors; Model 3 added the set of two-way interactions.

b is a raw score regression coefficient. SDp is the standard deviation of posterior distribution. β is a standardized regression coefficient. MMSE = Mini-Mental State

Examination; GDS = Geriatric Depression Scale, BMI = Body Mass Index; CVD = Cardiovascular disease, MCI = Mild cognitive impairment.
a Coded as 1 = Mexican-American; 0 = non-Hispanic white.
b Coded as 1 = female; 0 = male.
c Coded as 1 = married; 0 = not married.
d Values of income were divided by 10,000 to reduce the number of leading zeros.
e Coded as 1 = homeowner; 0 = otherwise.
f Coded as 1 = yes; 0 = no.
g Coded as 1 = condition is present, 0 = condition is absent.

*p < .05.

**p < .01.

***p < .001.

https://doi.org/10.1371/journal.pone.0295749.t004
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that are common to each ethnic group and shows that the association between blood glucose

and NfL, as represented by the slope of the lines, is negative for non-Hispanic Whites (b =
-0.09, p < .01, β = -0.26) but not for Mexican American participants (b = -.009, p = .51, β =
-0.03). Further, the significance regions shown in Fig 1 indicate that non-Hispanic Whites

have significantly greater NfL values when glucose is lower than 109, whereas Mexican Ameri-

can participants have significantly greater NfL when glucose is greater than approximately

178.

Fig 2 displays the plot of the HbA1c-by-ethnicity interaction for HbA1c values that are

common to each ethnic group and shows that HbA1c is not related to NfL for non-Hispanic

Whites (b = 0.34, p = .71, β = 0.04) but is positively related to NfL for Mexican American par-

ticipants (b = 2.31, p < .001, β = 0.26). Further, the significance region shown in Fig 2 indicates

that non-Hispanic Whites have significantly greater NfL values than Mexican American par-

ticipants when A1c is below a value of 6.0.

Fig 3 displays a plot of the interaction between T2D and ethnicity and shows that for non-

Hispanic Whites, participants diagnosed with T2D have greater NfL values than those without

T2D (b = 3.32, p < .01, β = 0.33) whereas T2D is not related to NfL for Mexican American

Fig 1. Plasma neurofilament light change with blood glucose by ethnic group. All Other Predictors Held Constant at their Mean.

https://doi.org/10.1371/journal.pone.0295749.g001
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participants (b = 0.25, p = .77, β = 0.02). In addition, for participants without T2D, predicted

NfL values do not differ by ethnicity (b = -0.72, p = .34, β = -0.07). However, for participants

with T2D, non-Hispanic Whites have greater NfL values compared to Mexican Americans

(b = 3.81, p < .01, β = 0.38). Note that including the significant interactions in the model for

hypothesis 2 resulted in trivial changes to the regression results reported for hypothesis 1,

except that Ab circumference (b = -0.13, p = .11, β = -0.07) is no longer related to NfL.

Discussion

The main findings from our study showed that blood glucose, blood HbA1c, and T2D diagno-

sis explained 3.7% of the variation in NfL but were not related to Aβ42/40 ratio and t-tau.

HbA1c was positively associated with NfL among Mexican Americans, but blood glucose and

T2D diagnosis were not associated with NfL. In contrast, blood glucose was negatively associ-

ated with NfL, HbA1c was not associated with NfL, and T2D diagnosis was positively associ-

ated with NfL among non-Hispanic Whites.

Few studies have examined the relationships of blood glucose, blood HbA1c, and T2D diag-

nosis with AD plasma biomarkers. Our study showed that blood glucose, blood HbA1c, and

Fig 2. Plasma neurofilament light change with hemoglobin A1c by ethnic group. All Other Predictors Held Constant at their Mean.

https://doi.org/10.1371/journal.pone.0295749.g002
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T2D diagnosis explained 3.7% of the variation in NfL but were not related to Aβ42/40 ratio and

t-tau, suggesting that T2D may not play a role in Aβ accumulation but may be more important

to neurodegeneration. NfL indicates subcortical large-caliber axonal degeneration [58, 59].

Elevated plasma NfL levels have been established in AD [60, 61], correlate to increasing symp-

tom severity in AD [62], and predicts greater long-term cognitive decline in AD [63–65]. The

positive association between the three T2D indicators and plasma NfL is consistent with exist-

ing evidence that used imaging biomarkers of neurodegeneration [30, 35, 36]. Together, the

current literature and our findings indicate that T2D may contribute to AD pathogenesis

through neurodegeneration, particularly among Mexican Americans. Hence, assessing neuro-

degeneration among Mexican Americans with pre-T2D and T2D is critical for identifying

early signs of neurodegeneration. Early diagnosis and management of T2D may play an

important role in slowing down the progression of AD.

Our findings further show that higher HbA1c levels were not associated with Aβ42/40 ratio

and t-tau but were associated with higher plasma NfL levels. Our findings support the previ-

ously reported lack of association between HbA1c with CSF Aβ42 [30]. Our study used the

more sensitive Aβ42/40 ratio than Aβ42 or Aβ40 concentrations because it normalizes inter-indi-

vidual differences in Aβ production as a more sensitive measure [41]. Moreover, our study

showed higher plasma Aβ42/40 ratio in Mexican Americans than in non-Hispanic Whites, indi-

cating less Aβ burden, but did not identify ethnic difference in the relationships between

Fig 3. Plasma neurofilament light change with type 2 diabetes diagnosis by ethnic group. All Other Predictors Held Constant at their Mean.

https://doi.org/10.1371/journal.pone.0295749.g003
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HbA1c and plasma Aβ42/40. Since decreased plasma Aβ42/40 ratio is believed to reflect higher

Aβ load in the brain [66], it will be important to further examine if cerebral Aβ load differs

between Mexican Americans and non-Hispanic Whites and whether higher plasma Aβ42/40

ratio is associated with better cognition and lower risk of dementia in Mexican Americans.

We further found the association between HbA1c and NfL, but not between blood glucose

or T2D diagnosis and NfL among Mexican Americans only. These findings indicate that ade-

quate, chronic control of T2D may be particularly beneficial for mitigating neurodegeneration

in Mexican Americans, which needs to be further tested. Both T2D and dementia diagnoses

were more common in our Mexican American cohort than the non-Hispanic White cohort,

which is consistent with previous reports of the disproportionate impacts of both conditions

in Hispanic Americans [44–47]. The literature on the associations of T2D diagnosis with cog-

nitive impairment and AD have been mixed [19, 30, 37–39]. Some studies did not find an asso-

ciation of T2D with CSF Aβ42 [30] or memory in individuals with AD [37]. Some suggested

that T2D diagnosis was associated with higher plasma levels of Aβ42, Aβ40, and t-tau among

cognitively unimpaired older adults [67]. Others reported that T2D might be cognitively and

functionally protective in older adults with mild AD dementia [38, 39]. When analyzing

HABS-HD participants with normal cognition (n = 965), a diagnosis of T2D was significantly

associated with plasma Aβ42, Aβ42, t-tau, and NfL [50]. However, we found no associations of

T2D diagnosis with any of the ATN biomarkers. Together, these findings indicate that the

association between T2D diagnosis and ATN biomarkers may vary by populations and T2D

pathologic burden as reflected by glycemic control and diabetic complications may be more

important for understanding the role that T2D plays in AD [19].

Plasma t-tau may reflect Aβ-induced tau secretion in AD [41]. but it is currently considered

a neurodegeneration biomarker [68]. Our study showed that none of the focal predictors sig-

nificantly predicted plasma t-tau. Furthermore, our study did not find any differences in the

relationships of blood glucose, blood HbA1c, and T2D diagnosis with plasma t-tau between

Mexican Americans and non-Hispanic Whites. These findings may be explained by the lack of

understanding of the role of plasma t-tau in AD [67]. Future studies are needed to examine if

the relationships of blood glucose, HbA1c, and T2D diagnosis with plasma phosphorylated tau

exist and whether these relationships are moderated by ethnicity.

There is evidence that impaired fasting glucose is associated with increased cerebral Aβ bur-

den [32] and accelerates AD clinical progression [19, 33]. In this study. plasma Aβ42/40 ratio

and t-tau levels were higher in Mexican Americans than in non-Hispanic Whites, which are

consistent with a previous analysis of HABS-HD participants with normal cognition (n = 965)

[50]. Moreover, we found that fasting glucose was negatively associated with plasma NfL level

among non-Hispanic Whites, but not among Mexican Americans. Our findings may be influ-

enced by other factors which could have affected plasma AD biomarker levels. For example,

kidney function was found to attenuate the association between intensive hypertension treat-

ment and NfL [69]. In our study, estimated glomerular filtration rate was a significant negative

predictor (r = -0.30) for plasma NfL levels. However, including estimated glomerular filtration

rate did not change the study results on NfL. These findings suggest that plasma biomarkers

need to be interpreted within the context of ethnicity and the importance of developing ethnic-

ity-specific normative biomarker values to guide clinical practice and future research [50].

The strengths of this study included a large representative sample of Mexican Americans

and non-Hispanic Whites and rigorous methods in data collections and blood processing fol-

lowing established protocols in the HABS-HD. We were able to examine three clinical indica-

tors of T2D and AD plasma biomarkers, respectively, which are all highly scalable clinical

measures, while controlling for a range of covariates which may affect AD biomarker levels.

Our study was limited by its cross-sectional design and the lack of measures of phosphorylated
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tau. About 25% of HABS-HD participants were excluded due to missing data or as large outli-

ers, which may have affected the study results. Our findings need to be further validated in

other cohorts and longitudinally.

Conclusions

This study found that blood glucose, blood HbA1c, and T2D diagnosis may contribute to neu-

rodegeneration, but probably not Aβ. Fasting blood glucose and T2D diagnosis were associ-

ated with NfL among non-Hispanic Whites, while HbA1c was associated with NfL among

Mexican Americans. These findings add to the existing evidence about the pathological cross-

link between T2D and AD. This preliminary cross-sectional observation needs to be con-

firmed by a prospective cohort study.
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