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of benefits and instrumentation capabilities. Using just carbon and nitrogen isotopic ratios can produce results
that are inconclusive, uncertain, or in the worst cases, even misleading, especially for scientists that are new to
the use and interpretation of stable isotope data. Using sulfur isotope values more regularly has the potential to
mitigate these issues, especially given recent advancements that have lowered measurement barriers. Here we
provide a review documenting case studies with real-world data, re-analysing different biological topics (i.e.
niche, physiology, diet, movement and bioarchaeology) with and without sulfur isotopes to highlight the various
strengths of this stable isotope for various applications. We also include a preliminary meta-analysis of the
trophic discrimination factor (TDF) for sulfur isotopes, which suggest small (mean —0.4 + 1.7 %o SD) but taxa-
dependent mean trophic discrimination. Each case study demonstrates how the exclusion of sulfur comes at the
detriment of the results, often leading to very different outputs, or missing valuable discoveries entirely. Given
that studies relying on carbon and nitrogen stable isotopes currently underpin most of our understanding of
various ecological processes, this has concerning implications. Collectively, these examples strongly suggest that
researchers planning to use carbon and nitrogen stable isotopes for their research should incorporate sulfur
where possible, and that the new ‘default’ isotope systems for aquatic science should now be carbon, nitrogen,

and sulfur.

1. Introduction to sulfur isotopes

An understanding of the ecology and physiology of organisms is at
the core of conservation and management (Horan et al., 2011). Knowing
the drivers of animal movement and their role within food webs can help
limit negative human interactions as well as predict how a changing
planet will impact ecosystems. While many tools such as direct obser-
vation, tagging and diet analyses are available to scientists to under-
stand animal ecology, only stable isotopes can address numerous
ecological aspects concurrently and at relatively low cost. Consequently,
stable isotope ecology as a field has expanded rapidly since the 1980s
(Peterson and Fry, 1987), being widely adopted by ecologists (West
et al., 2006). The vast majority of studies using stable isotopes in ecology
rely on carbon and nitrogen isotopes exclusively (Bird et al., 2021; Sil-
verman et al., 2022), despite numerous other ecologically-relevant iso-
topes being available to researchers. This may potentially limit the
utility of many stable isotope studies and increases the likelihood that
resulting analytical interpretations are incorrect.

While carbon and nitrogen isotopes are prevalent in natural tissues,
there are many other common naturally-occurring stable isotopes that
are of use to understand life. For example, oxygen isotopes are used to
assess temperature differences (Shemesh et al., 1992), and can be used
to trace movement or historical climate patterns (Shackleton, 1967).
Hydrogen isotopes in animal tissues relate to water absorption and can
be used to interpret physiology and movement (Hobson, 2019; Vander
Zanden et al., 2016). Assessing these other isotopes typically requires
specific use-cases since they come at much greater cost to analyse
relative to carbon and nitrogen, and sample processing or interpretation
requirements can make them less attractive than bulk isotope analysis of
carbon and nitrogen. As a result, the analysis of isotopes other than
carbon and nitrogen makes up just a fraction of stable isotope studies.

Sulfur stable isotopes (5°*S) have been used since the 1970s for
ecological applications with interest accelerating in the 1980s (Fry,
1988; Fry et al., 1982; Matrosov et al., 1975; Mekhtiyeva et al., 1976;
Peterson and Fry, 1987). Their incorporation, in theory, can add sub-
stantial value to interpretations. The primary mechanism that modifies
sulfur isotope ratios is bacterial fractionation of inorganic sulfur com-
pounds, usually occurring in anoxic sediments (Fry et al., 1986; Rees,
1973). In practical terms, this means that sediment-bound food webs
have lower 534S values, while pelagic systems not impacted by these
anoxic processes have higher values (Szpak and Buckley, 2020). Thus,
where an ecosystem of interest is connected to sources of low and high
534S values, the incorporation of this isotope may be especially benefi-
cial. This includes pelagic and benthic ecosystems (Szpak and Buckley,
2020), coastal and nearshore habitats (Connolly et al., 2004), freshwater
ecosystems linking terrestrial and estuarine environments (Guiry et al.,
2021), and even in deep hydrothermal vent communities exposed to
chemoautotrophic primary production (Fry et al., 1983; Reid et al.,
2013). Thus, sulfur isotopes are likely the most useful additions to

studies when sources in the ecosystem of interest differ greatly in 53*S
values, allowing mixing calculations with higher fidelity that other
systems that may have less natural variation between sources.

Many aspects of organic sulfur compounds make them attractive for
use in aquatic studies, including the apparent lack of or very low trophic
fractionation in comparison to 5'C and §!°N values. Like nitrogen iso-
topes, sulfur isotopes are transferred through dietary proteins in the
form of the “essential” amino acid methionine (Florin et al., 2011;
Phillips et al., 2021). Despite its potential in many ecological and bio-
logical applications, the use of 5°*S has not proliferated like 5'3C and
51N values (Fig. 1), possibly because of perceived legacy issues with
analytical chemistry separations (e.g., accidental oxidation/fractiona-
tion of S atoms) and measurement (e.g., poor separation on GC col-
umns), which were associated with requiring larger samples, greater
analytical cost, and/or times.

Recent advancements (~10 years) in isotope instrumentation have
significantly lowered analytical barriers to measuring 6°*S values
simultaneously with 5'3C and §'°N. Most commonly, scientists have
relied on an Elemental Analyzer (EA) to combust analytes to SO3 before
online measurement in an Isotope Ratio Mass Spectrometer (IRMS). To
compensate for the gas’ polarity and resulting broad peaks on gas
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Fig. 1. Number of publications per year with 5'3C, 5'°N or 5>*S values in the
key terms, via Web of Science excluding geology and geochemistry fields. Each
isotope is overlaid with LOESS smoothing curves and 95% CI.



V. Raoult et al.

chromatography (GC) columns during separation, traditional measure-
ments have required large sample sizes (~100s of ug of S). However,
elemental analyzer modifications including “purge and trap” (Fourel
et al., 2014), ramped GC columns (Phillips et al., 2021; Sayle et al.,
2019), and dual GC column systems (Fry, 2007) have lowered sample
sizes to as low as 1 pg S (<1 mg of bulk tissue), while maintaining
precision <0.2 %o. Notably, more work is needed to fully optimize
EA-IRMS systems to run simultaneous C, N, and S measurements, as in
practice many labs analyse samples in C and S or C and N modes. Other
emerging innovations in stable isotope geochemistry may solve this
problem, although they are not yet ready for routine use by ecologists.
Namely, MC-ICP-MS (Multi Collector Inductively Coupled Plasma Mass
Spectrometry) and Orbitrap-MS offer the potential for high mass reso-
lution for multiple isotope systems simultaneously and have initial
promising demonstrations with sulfur-containing organic compounds
(Amrani et al., 2009; Neubauer et al., 2018; Rodiouchkina et al., 2023).
Nonetheless, these advancements have made the analysis of 5>*S values
at lower cost, higher precision, and with mostly similar sample
pre-treatments as 5'C and 5*°N values.

Other ecological methodologies, such as those involving DNA tech-
niques, have evolved rapidly in conjunction with improvements in
analytical approaches and computing ability (Washburn et al., 2019). In
contrast, the methods behind stable isotope analyses for life sciences
have remained relatively constant outside of improvements in compu-
tational tools. Although C, H, O, N, and S isotopes are the canonical
toolkit for aquatic ecologists, there has been an overreliance on §'>C and
5N values alone because, rightly or wrongly, many feel that these two
stable isotope ratios will suffice to answer research objectives. This is
perhaps because there are few explicit study examples empirically
testing how integrating 5°*S values relative to §'3C and §°N values
alone may benefit their particular case. Making use of real-world ex-
amples of stable isotope studies re-analyzed with and without 53*S
values, we provide justification to argue that the use of sulfur isotopic
ratios should be as widespread as that of 5'3C and 5'°N values. These will
highlight the marked benefits that broader use of sulfur isotopic ratios
could provide to scientists interested in using stable isotopes to answer a
variety of ecological questions.

2. Ecology and niche space

Consumer resource use, movements, and trophodynamics can be
investigated by considering the spread of a consumer’s isotope values
across multivariate space: its isotopic niche, the multivariate space
where axes are isotopic values for elements and the isotopic composition
of the tissues of an animal (Newsome et al., 2007). The size of the niche
indicates the breadth of resources used, while niche overlap among
co-occurring groups suggests a degree of potential competition (e.g. if
resources are limited). To date, most studies have used 513C and 6'°N
values to generate 2-D isotope niche ellipses (Jackson et al., 2011), but
the addition of a third tracer and axis to generate 3-D ellipsoids may help
reveal individual specialisation in a population (Skinner et al., 2019) or
a wider pool of resource use (Cybulski et al., 2022). The use of sulfur for
isotopic niche analysis is not common, despite the availability of tools to
examine 3-isotope niches in a similar fashion as 2 isotope niches
(Swanson et al., 2015). Conceptually, ellipsoid volumes are still rela-
tively new to isotopic niche analysis, but may better reflect the com-
plexities of ecosystem function (Rossman et al., 2016), although their
interpretation may be more nuanced than the traditional 2-dimensional
format. This may discourage the broader use of 3-isotope (including
sulfur) niche analysis, despite the many benefits that are identified.

In aquatic studies, including 53*S values as a third tracer may be
particularly useful due to the large range in §*S values across different
water sources and aquatic primary producers (Connolly et al., 2004;
Peterson and Fry, 1987). 534S values can therefore further delineate
isotopic niches when §'3C and §'°N values vary minimally. Aquatic
projects that have used 5°*S values found, in many cases, that it revealed

Chemosphere 355 (2024) 141816

new insights that were not present with 5!°C and §'°N values exclu-
sively. In coastal environments, sea turtle niches were more differenti-
ated by 534S values than 6'3C and 6'°N values (Weber et al., 2023), and
534S values drove the largest niche size separation in whales (Borrell
etal., 2021). In estuarine systems, including 53*S values rather than only
5'3C and 8N revealed more precise information on the habitat use of
large marine mammals (Cani et al., 2023), a larger range of individual
variation (Wilson et al., 2017), greater differentiation of large predatory
shark niches (Seubert et al., 2019), and niche separation of adults and
juvenile crabs (Bopp et al., 2023). In freshwater systems, apparent
narrow isotopic niches of some species of fish with 5'>C and 5'°N values
did not necessarily align with the variability of 5>*S values, allowing the
detection of the effects of wet and dry seasons on the isotopic niche (Pool
et al., 2017). Near hydrothermal vents, 5%*s values allowed the sepa-
ration of different chemoautotrophic pathways (Suh et al., 2022), and
large vs small mussel aggregations (Demopoulos et al., 2019). Thus,
across many aquatic ecosystems, including 5>*S values can reveal novel
insights for isotopic niche analysis.

To empirically demonstrate how incorporation of 534S values can
benefit and change the interpretation of isotopic niche analysis, we re-
analyse data from white muscle tissue from four groupers from North
Malé Atoll, Republic of Maldives (Aethaloperca rogaa, Anyperodon leu-
cogrammicus, Cephalopholis argus, and C. miniata from Skinner et al.
(2019)). Isotopic niches were first generated for each species using 5'3¢
and 6'°N, and then, niches were re-generated with the addition of 5%4s
values. When adding §3S values as a third tracer, the isotopic niches of
A. leucogrammicus and C. miniata remained a similar size, while that of
A. rogaa decreased and that of C. argus increased (Table 1). Despite the
additional information a third tracer can convey, it may not always in-
crease the relative size of a group’s isotopic niche.

However, although isotopic niche size did not vary much, the extent
of niche overlap was substantially reduced: mean overlap across all pairs
was 64% when using only 6'3C and 5'°N values but fell to 53% when
5°%S values were introduced (Table 2). Individually, isotopic niche
overlaps among groupers were reduced by ~10-20% (Table 2). Only
one species did not change (C. miniata), indicating that 5>*S values
helped to separate their niche from the others and that they may be
using a wider pool of resources than previously suspected. Furthermore,
overlaps are often considered biologically significant when they are
>60% (Matley et al., 2016; Zaret and Rand, 1971). Here, with ellipses
there were 8 instances of significant overlap, but when §3*S values were
introduced, there were only 3. Clearly, 5°*S values can be fundamental
for understanding the extent of resource competition among sympatric
species in various settings, and the use of 5'3C and §'°N values exclu-
sively can overinflate the likelihood of competition occurring, as has
been identified in other studies (Seubert et al., 2019). Where researchers
are less familiar with the correct interpretation of isotopic niche overlap
and how that may differ from ecological niche overlap (e.g., overlap
does not necessarily equate to competition, Hette-Tronquart (2019)),
the use of 5°*S values reduces the likelihood of this misinterpretation.

Table 1

Median isotopic niche based on 95% Bayesian Standard Ellipse Area (5'3C and
5'®N) and 95% Bayesian Standard Ellipsoid Volume (5'°N, 5'3C, and 5°*S) for
four grouper species (Aethaloperca rogaa n = 22; Anyperodon leucogrammicus n =
20; Cephalopholis argus n = 22; and C. miniata n = 21) across North Malé Atoll,
Republic of Maldives. NB: Values are scaled and mean-centred to allow for a
direct comparison between metrics.

Species Without 5**S With 534S
A. rogaa 0.99 0.80

A. leucogrammicus 0.11 0.10

C. argus 0.28 0.54

C. miniata -1.39 —1.44
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Table 2
Difference in the percentage of isotopic niche overlap between values calculated using ellipses (5'>C and 5'°N) and ellipsoids (5'3C, §!°N, and 5°*S).
A. rogaa A. leucogrammicus C. argus C. miniata
A. rogaa - —8 % —-10 % 6 %
A. leucogrammicus -18 % - -12% 2%
C. argus —-18 % -15% - 0.0 %
C. miniata —-22% 13 % -17 % -

3. Physiology

Stable isotopes are an effective non-lethal tool for studying animal
physiology (Ehleringer et al., 1986; Gannes et al., 1998). Many of the
processes governing diet-tissue isotopic discrimination are physiolog-
ical, and therefore the degree of fractionation of a given isotope will
reflect physiological processes. Stable isotopes can thus be used to study
various animal physiological processes, including stress (Karlson et al.,
2018), metabolism (Trueman et al., 2013, 2023), condition (Cherel
et al., 2005; Feeney et al., 2024), and even gut microbial physiology (de
Graaf and Venema, 2007).

The use of sulfur isotopes in this space is less commonplace, perhaps
because our understanding of sulfuric incorporation pathways is less
than for stable isotopes of C and N, which comprise the bulk of tissue
mass. Unlike 5'3C and 6'°N values that often reflect growth, in bivalves
534S values may be more correlated with sulfide detoxification activities
than normal tissue turnover (Dattagupta et al., 2004), and in vesti-
mentiferans (polychaete tube worms) found near black smokers, 5343

values reflect those of highly variable environmental sulfides absorbed
by symbionts (Becker et al., 2011). These factors, however, highlight
that physiological processes impacting 5°*S values may be separate to
those affecting §'3C and §'°N values exclusively, which offers the po-
tential to use this information to better understand physiological
processes.

For species with high maternal investment such as intrauterine
gestation, isotopic signatures of young-of-the-year individuals may not
accurately reflect their own diet as tissue composition can partly, or
largely originate from their mother’s food sources (Olin et al., 2011;
Raoult et al., 2022a). This is also likely to be not only species-specific
(based on physiology) but also tissue-specific, with turnover rates
influencing the amount of time that maternal signatures will be still
found in juvenile tissues. Identifying when maternal stable isotope sig-
natures are lost can be difficult in systems where multiple food resources
are available to predators, and 5'°N values of prey can be high.

In this example that demonstrates how using 534S values can benefit
physiological studies, Niella et al. (2021) used muscle tissue from
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< 3.5yrs/135 cm were driven by maternal influence rather than diet. Grey shaded area represents size classes that are influenced by maternal isotopes, as confirmed

by the inclusion of sulfur. Figure readapted from Niella et al., (2021).



V. Raoult et al.

juvenile and young-of-the-year bull sharks from the Clarence River es-
tuary (Australia) to assess diet. There was no significant relationship
between §'°N and size, suggesting no changes in trophic level with
ontogeny (Fig. 2). However, changes were observed in 5'3C values, with
individuals smaller than 135 cm (younger than 3.5 years) showing sig-
nificant decreases whereas larger/older individuals had slight increases
(Fig. 2). Young bull sharks are known to remain within their estuarine
nursery systems for several years, prior to starting moving towards
coastal and marine ecosystems as they grow (Werry et al., 2011). Higher
513C values in young-of-the-year and juvenile sharks observed (Fig. 2)
suggest higher use of coastal regions than estuarine environments
(Hussey et al., 2011), and therefore, are likely an artifact of maternal
influence upon juvenile isotopic signatures. Nevertheless, using 5'>C and
515N values alone (as Fig. 2 demonstrates), in this instance, would make
it difficult to confirm that maternal signatures are indeed influencing
juvenile bull shark stable isotope values. By incorporating 5°*S values,
Niella et al. (2021) were able to confirm the influence of maternal stable
isotope values in young-of-the-year and juvenile bull shark isotope
values, with values higher than what is plausible this far upstream in this
estuary (>40 km), especially given the known progressive oceanic
movement of this species with ontogeny, and the pelagic values
measured in adults (Werry et al., 2011), and the known trend towards
higher sulfur isotope values (21 %o) near the ocean.

The segmented regression analysis used by Niella et al. (2021),
showed that §'3C and 5>*S values in bull shark muscle tissues had similar
inflexion points at around 3.5 years (or sharks larger than 135 cm). At
this point, trends in juvenile bull shark isotopic values started to behave
in accordance to what is known about the spatial ecology of this species,
thus indicating the persistence of maternal effects for over 3 years post
parturition, which is much longer than what was previously believed to
be possible with muscle tissues, and especially so for rapidly growing
juveniles. The exclusion of sulfur stable isotopes here would have led to
inconclusive results, rather than those highlighting that tissue turnover
in elasmobranchs is much longer than has been measured in captivity
(usually under 1 yr as in Kim et al. (2012); Logan and Lutcavage (2010)).

4. Mixing models and diet
4.1. Sulfur isotopes and smaller discrimination factors

Assessing resource use (diet, habitat), the contribution of represen-
tative prey groups, or the contributions of different sources of primary
production is perhaps the most common application of stable isotopes.
Carbon and nitrogen stable isotope values are frequently used by
themselves for these purposes. However, some of the key assumptions,
or requirements, of mixing models suggest that including other tracers
like sulfur would be beneficial. Sulfur stable isotope ratios, like carbon,
have often been considered to show a relatively small amount of trophic
discrimination (the trophic discrimination factor (TDF or A34S) between
diet and the consumer’s tissues following assimilation), especially
compared to nitrogen. This has been identified as a major advantage
when tracing the origin of material in food web studies where energy
sources, or the prey that feed on them, differ considerably (e.g. across
habitat gradients such as salinity, depth or between aquatic and
terrestrial habitats). Although not nearly as well studied as for A’>C or
AN, the limited published summaries of A3%S values that exist
(McCutchan Jr et al., 2003; Nehlich, 2015) indicate that values are low
and close to zero. Indeed, in much of the literature there has been an
assumption that A3*S is equal to zero, although tightly controlled
feeding experiments by Florin et al. (2011) showed a strong (R? = 0.89)
negative relationship between dietary 5>*S values and A3*S discrimi-
nation in rats and bears.

Chemosphere 355 (2024) 141816

Here we have collected A3*S values based on controlled feeding
experiments from the literature and summarised them by estimating
mean (£SD) A3*S values from 164 different published estimates (see
Table S1 for individual estimates). These individual estimates of A%*S
vary with regard to the taxon under study (birds, fishes, invertebrates
and mammals), the type of food fed to the consumer (plant, animal,
mixed), the tissue analyzed (blood, brain, collagen, fur, hair, liver,
muscle, whole organism) and to the length and type of feeding experi-
ment. This is likely to lead to considerable noise in the data (cf. Florin
et al., 2011) but reflects a marked increase in the availability of A3s
data compared to earlier summaries (McCutchan Jr et al., 2003; Nehlich,
2015).

Estimates of A3*S varied between —3.8 and 7.3 %o across the 164
different mean values we collected from the literature (Fig. 3). When all
estimates were combined (all taxa, n = 164), the mean (&SD) A3*S was
—0.4 (£1.7) %o. Although biologically similar to zero, this estimate was
statistically different from zero (one-sample t-test: tjg3 = —3.1, P =
0.002). For birds (n = 17), mean empirical A34S values from the liter-
ature varied between —3.8 and 0.6 %o, with a mean A%*S of —1.0 (£1.0)
%o, a value significantly different from zero (t;4 = —4.1, P = 0.008). Fish
(n = 16) A3*S values ranged between —1.1 and 4 %o, and unlike the other
taxa, fish showed a positive mean A%*S 0f 1.3 (£1.3) %o, which differed
from zero (t15 = 3.9, P = 0.002). Estimates of A%*S from invertebrates (n
= 13) showed the widest range (10.5 %o) seen in all taxa (—3.2 to 7.3 %o).
The mean invertebrate A%*S value was 0.6 (£0.3) %o and was not sta-
tistically different from zero (t;2 = 0.73, P = 0.50). Mammals, the taxon
with the largest number of controlled feeding experiments (n = 118)
showed a considerable range of A34S values (—3.7 to 4 %o0). The mean
A3*S for mammals was —0.6 (£1.3) %o and this was statistically distinct
from zero (t;17 = —5.2, P < 0.001) (see Fig. 3).

The ordinary least squares regression of values of empirically esti-
mated A34S on the 534S values of the food fed to the consumers in these
experiments (n = 107) resulted in a noisy (R2 = 0.2) but significant
negative relationship (Figure 3) that differs considerably from that
presented in Florin et al. (2011). Some authors have used Florin et al.
(2011) to estimate A3*S from observed diet in field studies (Yohannes
et al.,, 2014). Our results suggest that although there can be clear re-
lationships between A%*S and diet §*S under tightly controlled condi-
tions, this relationship cannot be applied in general, e.g., to other taxa or
tissues.

Taken together, we have provided new estimates of A>*S that build
on previous summaries (McCutchan Jr et al., 2003; Nehlich, 2015). Our
results show that a small, but statistically significant amount of isotopic
discrimination in sulfur does occur between consumption and assimi-
lation (A34S) and that this varies not only between taxa (Fig. 3A) but also
varies according to the 534S value of the food itself (Fi g. 3B). Overall, the
mean A3*S value across taxa was still notably lower than A'3C or AN
(see Canseco et al., 2022)), meaning in most cases the inclusion of 534
values for studies involving mixing models are less likely to be impacted
by uncertainties associated with isotopic discrimination. These results
underline the benefits of using probabilistic distributions from Bayesian
statistics, and the need to focus on probabilities rather than absolute
values of discrimination factors for mixing models.

We do not have the space here required to make a full examination of
the factors driving these differences in A3*S, but this is an area of future
study that is of key interest to those using 5°*S values to understand the
ecology and behavior of individuals, populations, and communities. The
notable imbalance in the availability of A34S estimates in the literature
reveals a pressing need for more studies of A3*S in non-mammal taxa
including birds, fish, and invertebrates.
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Fig. 3. A) Variation in estimates of A34S, the tissue-diet trophic discrimination factor (TDF) for sulfur estimated for different taxa including birds, fish, invertebrates,
and mammals, and for all tax combined. Each marker relates to an individual empirical estimate from the literature for a certain feeding experiment of condition. Red
circles and lines mark the estimated mean & SD A3“S for a given taxon (values given in the main text), while the boxplots show the median + IQR. A vertical line
marks the commonly used zero value of A%*S. B) Shows a noisy (R? = 0.2) but significant negative relationship between mean A3*S and the mean §3*S value of
experimental diet fed to consumers in each experiment. The regression equation is A4S = 0.43 (+£0.19) - 0.11 (£0.02) x §3*S diet, F1,140 = 36.3, R%?=0.20,P <
0.0001). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

4.2. Sulfur isotopes in mixing models

Smaller discrimination factors between consumer and prey can help
lower uncertainty in mixing model outputs in addition to resolving more
sources with the addition of a third tracer. The basic algebra of a linear
mixing model mass balance model requires an additional tracer (ie.
isotope) for each additional source. Even though the Bayesian mixing
models typical used in modern ecology have allowed some flexibility in
this context, the performance of stable isotope mixing models (e.g.,
simmr, MixSIAR) are typically improved where the optimal number of
sources in a mixing model is n + 1, where n is the number of tracers in
the model (Phillips et al., 2014). The inclusion of sulfur in addition to C
and N isotopes therefore allows for more sources to be included in
mixing models without negative impacts. is The need for some degree of
independence between the isotopes remains (Smith et al., 2013), though
that may not always be the case if secondary effects lead to coupling of
5'3C and 6'°N values (lii and Ferguson, 2012). Being able to incorporate
more sources in mixing models is beneficial for multiple reasons:

Grouping of sources with overlapping isotopic compositions is a key
step in mixing model preparation (Parnell et al., 2010; Stock et al.,
2018). When analysing §'3C and 5'°N values alone, it is highly likely
that some sources overlap, since most biological tissue 5'3C and 5'°N
values are within the constrained range of —30 to —10 %o for §'C, and
0-20 %o for 5'°N. Having to group sources is often not ideal to answer
ecological or biological questions because this reduces the resolution of
outputs (fewer sources than ‘true’ available source). Mathematical
grouping can even make results confusing when two overlapping sour-
ces with known different ecological roles have to be grouped. Including
5%4S values and/or other stable isotope ratios makes this overlap less
likely because it adds another tracer with a broad range (—20 — 20 %o) to
the mixing model, which makes it more likely that sources will be
isotopically distinct.

Another assumption of stable isotope mixing models is that all
sources available to the consumer are in the model (Phillips et al., 2014).
This naturally puts researchers in a complex situation, whereby there are
a lot of biological sources that should be included, which results in
sources more likely to overlap and invalidates the n 4+ 1 source optimal

condition. Including another isotope such as sulfur in addition to carbon
and nitrogen provides a little more leeway to avoid this conundrum.
Together, these factors mean that the incorporation of §3*S values can
further refine mixing model outputs over a two-isotope approach (Pin-
zone et al., 2019; Pizzochero et al., 2018).

4.3. Sulfur isotopes and benthic/pelagic gradients

One of the drivers of fractionation in sulfur isotopes is bacterial
fractionation in sediments (Fry et al., 1986; Matrosov et al., 1975;
Mekhtiyeva et al., 1976), and as a result sulfur isotopes are useful for
separating benthic and pelagic food webs (Fry et al., 2008; Peterson,
1999). Sulfur isotopes may be better at identifying pelagic gradients
than 5'3C values which can be associated with benthic and pelagic
patterns (Szpak and Buckley, 2020). For studies examining
bentho-pelagic coupling, §°*S values can discriminate between fish
consumers feeding on benthic or pelagic sources (Cobain et al. 2024, ),
and reduce credible intervals for assessments of pelagic contributions
relative to 5'°C values alone (Duffill Telsnig et al., 2019).

Here we re-analyzed data from Burke et al. (2024) to demonstrate
how 52*S values can change the interpretation of studies of species
occurring on bentho-pelagic gradients. Two species of sawshark with
poorly understood trophic roles were examined using §'°C, §°N, and
5%4S values, with fatty acid analysis in parallel. Various sources repre-
sentative of pelagic, benthopelagic, and benthic sources were collected
to assess the role of these species in connecting pelagic and benthic
ecosystems. For both species, including sulfur isotopes in analyses
resulted in greater contributions of pelagic sources, which represent
greater than 50 % of contribution to diet in some cases, while not using
sulfur increased the apparent contribution of benthic sources (Fig. 4).
This significant contribution from pelagic sources was corroborated by
fatty acid analysis, which suggested a strong contribution from pelagic
dinoflagellates and cyanobacteria. Here, the inclusion of sulfur isotopes
better represents pelagic contributions to aquatic food webs than using
5'3C and 65N values alone, and any studies where bentho-pelagic
coupling is possible should consider their inclusion.
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4.4. Mixing models to assess contributions of primary producers

Sulfur isotopes, when used with 5'3C and 6'°N values, have a much
greater likelihood of differentiating the contributions of primary pro-
ducers in aquatic food webs (Connolly et al., 2004; Moncreiff and Sul-
livan, 2001). This is because primary producers have a wider range in
sulfur isotope values compared to carbon and nitrogen (Connolly et al.,
2004). Since bacterial processing affects sulfur isotope ratios, 5°*S
values help differentiate benthic production from the rest of the food
web, and can thus distinguish primary producer sources bound to
sediment processes that have otherwise similar carbon pathways (and
therefore similar 6'3C values (Mittermayr et al., 2014; Stribling and

Cornwell, 1997);). For example, without using sulfur isotopes, benthic
organic matter appears to be a large contributor to the diets of fishes
(Raoult et al., 2018), while the incorporation of sulfur isotopes finds
little contribution by benthic production to the diets of fishes (Benstead
et al., 2006; Heimhuber et al., 2024 ; Hewitt et al., 2020; Kharlamenko
et al., 2001; Raoult et al., 2022b; Weinstein et al., 2000). The benefit of
sulfur isotopes for assessing primary consumer contributions also ex-
tends to coastal environments, where researchers have identified the
relative importance of macrophytic production (Kahma et al., 2020),
and freshwater systems (Chanton and Lewis, 2002). Where researchers
are interested in understanding how primary production flows through
food webs, adding 534S values to §'3C and 5'°N values will likely result in
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more informative and accurate results.

To demonstrate how the incorporation, or exclusion, of 534S values
can significantly change the outputs of studies examining contributions
of primary producers, we re-ran Bayesian stable isotope mixing models
using stable isotope data from seven consumer species collected from the
Plum Island Longterm Ecological Research Site located in Rowley,
Massachusetts in the northwest of the USA (https://lternet.edu/site
/plum-island-ecosystems-lter/; (Deegan, 2021)). Collections of pri-
mary producers and consumers are made annually during the peak
growing season from three locations along an estuarine gradient. Using
the same species collected from the mid-estuary site we examined the
effects of running mixing models with and without sulfur isotopes on
samples collected over a seven year period (2009-2015) (Nelson et al.,
2015). Mixing models were run for consumer species from each year
using primary producers collected from that year (i.e. models for con-
sumers collected in 2011 were run using primary producers collected in
2011). Each year, a mixing model was run using 5'C, 5!°N, and 53*S or
just 8'3C and 5'°N values to compare the output of the two models and to
understand the effect of using 5°*S values to estimate the source
contribution of each primary producer to each consumer. Each model
used three primary production sources (benthic microalgae (BMA),
particulate organic matter (POM), and Spartina); therefore, each model
was able to be explicitly solved mathematically.

In general, the mixing models using three isotopes estimated that all
consumers were fuelled less by benthic microalgae and more by par-
ticulate organic matter and Spartina compared to the mixing models
without §2*S values (Fig. 5). The differences in model estimates when
including 5°*S values were larger for benthic microalgae and particulate
organic matter than Spartina. The relative source contributions varied by
year with some being similar (e.g. 2013, Supplemental Table 1) while
others had markedly different results (e.g. 2012, Supplemental Table 1),
more accurately reflecting known production dynamics in Plum Island
Sound. Additionally, the variation of source contribution estimates from
mixing models that included sulfur were smaller than those that did not
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(Supplemental Table 1). In this case the addition of sulfur isotopes
improved both the resolution and confidence in the mixing model
outputs.

5. Assessing movement

Stable isotopes are often used for identifying habitats of origin or
seasonal movement for populations or individuals of interest (Hobson,
2019). This is done either with mixing models comparing stable isotope
values of unknown populations with potential source populations/iso-
scapes, with complex statistical methods like Integrated Nested Laplace
Approximation (INLA (St. John Glew et al., 2019),), or with more
traditional statistical approaches (MacKenzie et al., 2011, 2014). The
use of 5°S values to assess movement has historically relied on using
tissues with higher concentrations of sulfur, namely fur and feathers
(Brlik et al., 2023; Hobson and Kardynal, 2016; Valenzuela et al., 2011).
In these mainly terrestrial applications, 53S values can have large (0-20
%o) spatial gradients which make them useful for spatial analyses (Date
etal., 2022; Kabalika et al., 2020; Zazzo et al., 2011). 5%4S values are also
independent from 5'3C and 6'*N values and thus more informative
(Newton, 2021). Across terrestrial-marine gradients, marine aerosol
transport produces a consistent gradient in 5°*S values detectable at
local to continental scales (Bataille et al., 2021; Bern et al., 2015;
Wadleigh and Blake, 1999). Thus, this terrestrial-marine gradient in 5348
values can be used to assess movement in estuarine systems (Hesslein
et al., 1991). Like the benefits of sulfur isotopes in mixing models, the
addition of §%S values can also improve the resolution of movement
analyses in marine ecosystems (Slesser and Trueman, 2021).

In aquatic systems, sulfur varies spatially in coastal ecosystems as a
result of bentho-pelagic cycles and rates of freshwater input (St. John
Glew et al., 2019). While carbon, hydrogen or oxygen isotopes may be
more useful for large-scale movement studies (e.g., Raoult et al., 2020),
sulfur isotopes are of particular use for movement applications in estu-
aries or freshwater systems, where there is a sulfur gradient between
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Table 3

Results from Linear Discriminant Analysis (LDA) using various isotope combi-
nations to determine the best predictor of habitat.

DFA Variables Hatchery River Floodplain Sum
Location ~ 5'°C 0% 100% 100% 72%
Location ~ 5'*N 100% 50% 100% 82%
Location ~ 5°45 33% 100% 100% 82%
Location ~ §'°C + §'*N 100% 75% 100% 91%
Location ~ §3C + 5% 67% 100% 100% 91%
Location ~ §'*N + 5°S 100% 75% 100% 91%
Location ~ §'°C + §'*N + 5°% 100% 75% 67% 82%

fully freshwater and fully marine systems (Fry and Chumchal, 2011).
To demonstrate how incorporating sulfur isotopes into movement
studies can be beneficial, here we re-analyse data from Bell-Tilcock et al.
(2021) with and without §*4S values. Fish eye lenses were processed to
obtain 513C, 615N, and §*S values, which were then used to identify
which rearing habitats were used by juvenile Chinook salmon (Onco-
rhynchus tshawytscha). In the California Central Valley, Chinook salmon
have three main freshwater rearing pathways depending on hydrologic
conditions that occur i.e., the floodplain, river, or reared in a hatchery
before migrating to the estuary and then the ocean (Bell-Tilcock et al.,
2021; Goertler et al., 2018; Sommer et al., 2001). While in this example,
the results appear to be the same using both §'3C and 5'*N or 5'3C and
5348 values (Fig. 6; Table 3), this result could be deceiving. In the Cali-
fornia Central Valley, there is the potential to have overlapping §'°C
sources due to the detrital inputs in both freshwater floodplains and
other more estuarine wetland habitats (Bell-Tilcock et al., 2021).
Additionally, the invertebrate prey items for juvenile salmon in each of
these habitats tend to occupy the same trophic level, which leads to
overlapping §'°N values (Bell-Tilcock et al., 2021). Whereas with 5%S
values, there is a gradient from freshwater-to-saltwater, with 5>4S values
increasing as the salinity increases (Fry, 2002). This gradient spans ~25
%o, whereas 5'C and §'°N values vary by 15 %o and 4 %o respectively.
This higher variation allows §°S values to be the main discriminator
between freshwater floodplains from other wetland habitats in the

DOM_,_ C:S (molar)

DOM

Chemosphere 355 (2024) 141816

California Central Valley to identify the contributions of freshwater
floodplains as rearing habitats.

In addition, for identifying floodplain contribution, 5*4S values are
the main identifier used to differentiate between hatchery and naturally
spawned Chinook salmon. In the California Central Valley, only a frac-
tion of the fish reared in hatcheries are marked with a fin clip and a
coded wire tag (Satterthwaite et al., 2015). This can make investigations
linking environmental conditions in the freshwater to the success of
progeny from natural spawning salmon difficult to study due to the large
amount of unmarked hatchery fish in the system. In the hatcheries
young salmon are fed a diet of marine based protein, resulting in them
having marine-like 5248 values (Hurd et al., 2008). However, 55N values
can vary across the landscape due to various inputs throughout the
system (Bell-Tilcock et al., 2021 supp material), reducing the utility of
515N values to discriminate hatchery origin salmon. In our example
below, the high S values were permanently recorded in fish eye len-
ses. Having high 53S values in their lenses during their early life history,
gives us a tool to differentiate hatchery origin salmon that can be used
for more accurate reconstructions of growth, survival, and life history
diversity of naturally spawned salmon.

6. Oceanography

To better constrain sources, sinks, and various dynamics within
marine nutrient cycles, oceanographers have studied 5'°C and 5'°N
values in various organic matter pools for over six decades (Beaupré,
2015). Most studies measure bulk pools, like dissolved (DOM) or par-
ticulate organic matter (POM; (Benner et al., 1997), but increasingly
5*3C and 5N values are measured in individual compounds like amino
acids (Ruiz-Cooley et al., 2014; Stahl et al., 202.3). Sulfur, despite being a
large and critical component of all of these organic pools (Ksionzek
et al., 2016), has not been a priority in oceanographic isotope studies
(Mekhtiyeva et al., 1976; Sweeney et al., 1980).

In this example, we explore the potential utility of adding 53*S values
to ongoing oceanographic isotope studies of organic matter, namely
DOM (Fig. 7). Measurements of 5'3C and 6'°N values are common for
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Fig. 7. Adding sulfur to marine dissolved organic matter (DOM). Oceanographers often use stable isotope ratios to elucidate sources to marine DOM. However, the
narrow range of d13C values limits utility. Adding sulfur to measurements allows two new variables, molar C:S ratios and d34S values, which have a greater dynamic

range and produced significantly significant trends at different depth horizons.
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DOM, so much so that they are routinely measured as part of the NSF-led
Hawaii Ocean Time-series (HOT) and Bermuda Atlantic Time Series
(BATS). Yet, prior to 2022, no 534S values of marine DOM had been
reported. Using the same method for isolation and characterization of
DOC and DON (Dittmar et al., 2008), Phillips et al. (2022) measured 100
samples for 5>*S values across ocean basins, including at HOT and BATS.
There were two immediate benefits from this addition of sulfur. First,
the 534S values in marine DOM had more than double the dynamic range
(~5%0) than 513C values (~2 %o), similar to common ranges in 515N
values (~8 %o). Second, adding sulfur to the EA-IRMS analysis allowed
simultaneous determination of molar C:S ratios (complementing typical
C:N ratios). These additional constraints allowed the authors to disprove
a leading hypothesis on sources to DOM that were unresolvable from C
and N alone. For future oceanographic studies, especially existing longer
term time-series, we recommend the expansion beyond C and N alone,
adding S to DOM and POM workflows.

7. Bioarchaeology

Many of the issues discussed in previous sections related to improved
interpretations related to diet, habitat use, and movement in contem-
porary ecosystems apply well in archaeological and palaeontological
contexts. In paleontological fields, the preservation of sulfur isotopes in
mineralized structures, like dorsal spines (Luccisano et al., 2023) or
bones (Goedert et al., 2018), allows answering of questions relating to
the use of euryhaline movements and palaeoecological reconstructions.
Sulfur isotopes have also been used to study early (3.4 billion years ago)
biogeochemical processes in microbial mats (Bontognali et al., 2012)
and euxinic oceanic patterns that may have contributed to mass ex-
tinctions (Sim et al., 2015; Thompson and Kah, 2012). Observations of
mass independent fractionation in sulfur isotopes have also provided
some of the strongest evidence for the Great Oxygenation Event (Far-
quhar and Wing, 2003). Despite its potential use for palaeoecological
questions, sulfur stable isotopes have mostly been used in archaeological
contexts.

Most applications of stable isotopes in archaeological contexts are
focused on humans, especially their diets and mobility patterns. Sulfur
isotope compositions are determined primarily from collagen extracted
from ossified tissues (bones and teeth (Nehlich, 2015)) and less
commonly hair where organic preservation is outstanding (Britton et al.,
2018; Fernandez et al., 1999; Hyland et al., 2021; Wilson et al., 2007).
With respect to human mobility, sulfur isotopes offer a particularly
attractive and relatively unexplored frontier as there is often geographic
variation in terrestrial §°*S values according to proximity to the coast
(Zazzo et al., 2011) or underlying geology (Ebert et al., 2021; Kabalika
et al., 2020). Traditionally, mobility is explored using strontium isotope
measurements of tooth enamel, which forms early in life and does not
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remodel (Bentley, 2006). Bone, which continuously remodels and re-
flects a weighted average of dietary intake over many years before death
(Hedges et al., 2007), does not produce reliable strontium isotope ratios
because of high levels of porosity and the small size of bioapatite crystals
in bone (Hoppe et al., 2003). Therefore, studies of human mobility using
strontium isotopes provide insight into geographic location during the
first ~12 years of life, regardless of the individual’s age at death (Fig. 8).
53*S values of collagen extracted from dentine provide a longer time
series, particularly if serially-sampled (Eerkens et al., 2011), extending
into adulthood. There has been a great deal of interest surrounding
various methodological applications geared towards incremental sam-
pling of tooth dentine for isotopic analysis, but only recently has sulfur
isotope measurements been considered (Cheung et al., 2022). Moreover,
because sulfur isotope compositions can be determined for bone
collagen, the possibility of determining the most recent sulfur isotope
composition exists whereas it does not for strontium (Fig. 8). Sampling
multiple bones with different turnover rates offers another possible
means of resolving diachronic variation in adult diet (Cox and Sealy,
1997), but currently our knowledge of differences in collagen turnover
rates among skeletal elements is highly qualitative (Fahy et al., 2017).

The extraction of aquatic resources by human populations has been
an important aspect of subsistence for millennia (Erlandson, 2001).
Humans have primarily relied on coastal marine fauna and sulfur
isotope analysis offers some distinct advantages with respect to under-
standing how humans interacted with these species and marine envi-
ronments more generally. Guiry et al. (2021) analyzed §'3C, §'°N, and
534S values of sheepshead (Archosargus probatocephalus) from archaeo-
logical sites in the Gulf of Mexico dating from 2500 BP to 1890 CE. They
found that the size of sheepshead landed decreased between the 1720s
and 1830s and there was an expansion of fishing into more distant
seagrass meadows on the basis of high 5'3C and low %S values in
sheepshead postdating 1820 CE. This shift in fishing practices was
clearly resolved by the addition of the 6>*S values as the §'°C and 634S
values alone provided ambiguous results. The addition of a novel isotope
tracer is crucial in addressing the equifinality in interpretations that
often characterizes studies relying on stable isotopes, particularly in
archaeological contexts when dietary sources and the base of the food
web are rarely, if ever, adequately sampled. Given the variation in the
534S values that exist in aquatic organisms among different habitat types
(Barros et al., 2010; Szpak and Buckley, 2020; Yamanaka et al., 2000),
there is great potential for applying similar methods to better under-
stand where and how past human populations were exploiting aquatic
environments.

The importance of aquatic resources during the Mesolithic Period
and the Early Neolithic in Europe have also received considerable
attention. The consumption of freshwater fish has been discussed
extensively in this context and isotopic data have played a major role in
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Fig. 8. Sulfur isotope compositions of bone and tooth collagen provide an opportunity to study diachronic variation in the mobility of past human populations that
would not be possible using strontium isotope systems. The shapes at the top of the figure correspond to different tissues and their relative formation or remodelling
times. The cross hatching on the teeth indicates the diachronic resolution that is afforded by sequential sampling of these tissues.
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testing hypotheses about human diet in these periods. Specifically
because most European sites, especially in central and northern Europe,
are devoid of C4 plants, there tends to be little variation in the §'3C and
55N values in potential plant and animal foods, as well as the humans
themselves. Sulfur isotopes have been particularly attractive in this
context as there may be large differences in the §°*S values of freshwater
and terrestrial resources. Bollongino et al. (2013) used 534S values of
bone collagen to clearly differentiate genetically distinct Neolithic for-
agers from Neolithic hunter-gatherers from Blatterhohle cave in central
Europe. Their interpretations were, however, based on a single §34S
value from a fish bone that could not be identified to a specific taxon.
Similarly, Nehlich et al. (2010)interpreted differences in 5%4S values
between Mesolithic and Neolithic human groups from the Danube
Gorges region of southeastern Europe as evidence for variable reliance
on freshwater fish. As with the previous study, a very small number of
534S values (n = 3) were used to characterize the aquatic resources. The
greater capacity to determine §>*S of collagen, with its very low sulfur
content, accurately and precisely with newer instrumentation with
certainly improve the capacity of such studies to interpret the relative
importance of freshwater resources with less ambiguity caused by
insufficiently characterizing source isotopic compositions. Recently, two
studies have extensively sampled archaeological fauna from different
habitats and urge the consideration of >*S values to better understand
how past human populations used wetland habitats, whether through
the direct collection of faunal resources or via the grazing of livestock in
these environments (Guiry et al., 2022; Lamb et al., 2023). Future
studies that better address and incorporate the biogeochemical pro-
cesses underlying variation in 6°*S across different types of environ-
ments will likely provide useful avenues for research into how ancient
human populations interacted with the landscape.

8. Discussion and strengthening use of sulfur isotopes

Given the broad range of use cases presented above and increasing
feasibility of conducting sulfur stable isotope analysis, it is clear that
more researchers should consider the addition of 63*S values to their
studies. However, there remains a substantial amount of work to do
before sulfur isotopes fully become a standard ecological tool:

One of the key requirements of using stable isotope tracers for
ecological applications is a good understanding of diet-tissue discrimi-
nation factors, trophic enrichment, and any interactive effects of inor-
ganic content (Shipley and Matich, 2020). For C and N stable isotopes,
there are now wide-scale meta-analyses available to inform ecological
studies using these tracers, e.g. Canseco et al. (2022), which not only
gives greater confidence in model outputs, but also a better under-
standing of the uncertainties therein. The preliminary meta-analysis
presented in this review demonstrated that while mean A3*S values
are lower than for other isotopes, there is a considerable variability in
these values across and within taxa. The negative relationship between
A%4S and diet §*S values is also different to other isotopes and warrants
further explanation. Clearly, more targeted studies examining not only
the patterns in A%*S values across different taxa but also causal expla-
nations for their variation are required.

Studies examining effects of chemical pretreatments on sulfur stable
isotopes are still very sparse. Lipid extractions can have large (>5 %o)
effects on 6°*S values in some tissues like liver (Riveron et al., 2022),
possibly due to removal of sulpholipids with differing §>4S values to the
majority of the source tissue. For muscle tissues, lipid extraction does
not seem to have significant effects, but few species have been explicitly
tested ((Larocque et al., 2021) salmonids; (Javornik et al., 2019), bears).
Preservation methods that often include ethanol or formaldehyde can
also have effects on isotopic values, but do not seem to impact §>*S
values (Javornik et al., 2019; ethanol) because KIE is not expressed in
the S atom Further, protein separation of sulfur containing amino acids,
especially cysteine may result in isotope fractionation if sulfur is not
protected - with a 15 %. normal kinetic isotope effect observed during
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oxidation to cysteic acid (Phillips et al., 2021). Acidification of samples,
a common treatment for sediments or organic material that contains
inorganic minerals, can also change sulfur stable isotope values relative
to untreated samples by up to 7 %o (Connolly and Schlacher, 2013).
Studies that explicitly test for the effects of chemical treatment on sulfur
stable isotopes are necessary to correct for the likely effects.

Carbon and nitrogen stable isotope measurements have clear,
internationally-agreed reference samples that allow comparison of re-
sults between studies: VPDB and atmospheric nitrogen (Coplen et al.,
1983; Groning, 2004). Reference values for 534S, however, have been
adjusted repeatedly (Mann et al.,, 2009), and there are numerous
internationally-approved reference materials (e.g. IAEA-S-1, 2, 3) that
may be used in parallel or independently. This has created issues
comparing biologically-sourced samples (Zhao and Zhao, 2021), and
results in different analytical laboratories using different inorganic
standards. This could create uncertainty when comparing studies that
may have used different reference materials, and further highlights that
researchers need to be clear in reporting which reference materials were
used (Skrzypek et al., 2022). These issues are likely to be exacerbated as
instrumentation such as MC-ICP-MS and Orbitrap MS grow in popu-
larity, as the format of existing standards need to be adapted to this new
instrumentation and correctly calibrated (Paris et al., 2013; Silverman
et al., 2022). Cross-laboratory studies that explicitly assess these un-
certainties like those conducted for other isotopes (Orlowski et al., 2018;
Pestle et al., 2014) would help address this issue more broadly to allow
direct cross-study comparisons.

Precision of sulfur isotope measurements (+0.5 %o) are typically
lower than that of carbon and nitrogen (+£0.1 %o, see Raoult et al.
(2019)), and despite these variations being less than
ecologically-meaningful effects, they could lead potential users of sulfur
to avoid its use. More sensitive detectors are becoming more widespread
- advancements in separation of SO from mixture of combusted gases.
EA-IRMS is currently the most robust approach for simultaneous mea-
surements of C, N, and S isotopes at low cost. Future decades may see
even more analytical advancements with GC-MC-ICPMS or OrbitrapMS,
but these still need substantial method development before broad
adoption by laboratories.

A unique concern for stable isotope measurements of biological
samples of ancient origin is the possibility that the isotopic composition
has been altered in the burial environment. A fairly large body of
literature exists that explores how various quality control measures can
be used to ensure the reliability of stable carbon and nitrogen isotope
measurements of bone collagen (reviewed in Guiry and Szpak (2021).
Nehlich and Richards (2009) proposed some quality control measures
for §°*S value measurements of ancient collagen based on sulfur
elemental compositions, but there is no evidence that these criteria
correlated with more or less reliable §3S values. There is, therefore, still
uncertainty with respect to ensuring the authenticity of §**S data
generated from ancient samples and addressing this gap should be a
priority area for future research.

Some of the more logistical barriers to the broader use of sulfur
isotopes in aquatic sciences are the perceived higher analytical costs, as
well as the difficulties associated with storing large quantities of SO,
required for sulfur analysis. Historically, the difficulties associated with
processing samples to measure 5§>*S values meant that analytical costs,
in conjunction with 5'3C and §!°N values, approximately doubled total
cost per sample (for example, UC Davis, one of the World’s most active
service providers, currently charges $9 USD for 5'C and 5'°N values,
but the price increases to $34.5 USD with §3*S values). Improvements in
analytical pipelines and increasing interest in the analysis of this isotope
mean that current costs for determining §>*S values are moving towards
parity with that of 5'C and 5'°N values, or increasing the total cost of
analysing the three isotopes by approximately 30%. In some cases, the
difference in analysing 6>*S in addition to 5'3C and 5'°N values is lower
than parity: for example, at HK University, analysing 5'°C and §'°N
values comes at a cost of $70 HKD per sample, whereas adding 6>%S
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values to this process adds just $15 HKD, or 21% to the total cost (htt
ps://www.biosch.hku.hk/si_lab). Another barrier to broader use of
sulfur isotopes is the difficulties in safely storing SO, gases that are used
for analysis. Since SO3 reacts with water to form sulfuric acid, it poses a
threat to the environment, corrodes nearby metal components, and is a
hazardous material for human health. While these threats are sur-
mountable, institutions may be reluctant to allow the storage of this gas
for analytical purposes. Highlighting the clear advantages that sulfur
isotope analysis can bring to aquatic science is necessary for institutions
to balance the risk of housing SO5 with the benefits.

9. Conclusions

At worst, including 52*S values in analyses will give greater confi-
dence in the results that would have been provided by 5'°C and §'°N
alone. In many cases, as our examples demonstrate, using 5°*S values in
addition to 5'3C and §'°N can lead researchers to completely new in-
sights into various aspects of biological systems. The previous barriers to
the inclusion of §°*S values into studies, namely additional cost and
greater tissue mass requirements, are progressively disappearing, with
many detectors requiring <1.5 mg of tissue for animals or plants (similar
to 6'3C and 8'°N). The analysis of 53*S values are also able to be con-
ducted in parallel with §'3C and 5!°N values at ~30% greater cost. Our
collective experiences with incorporating 5>*S values into studies using
stable isotopes leads us to strongly argue for moving to sulfur, carbon
and nitrogen isotopes as the ‘baseline’ for stable isotope research in
aquatic systems.
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