

1 **SIMS Relative Sensitivity Factors for Al/Mg in Synthetic and Madagascar Hibonite**

2

3

4 G. J. MacPherson^{1*}, J. Beckett², N. T. Kita³, K. Nagashima⁴, A. N. Krot⁴, J. Fournelle⁵, L.

5 Kööp⁶, A. T. Hertwig⁷, T. R. Rose¹, and A. M. Davis⁶

6

7 ¹Dept. of Mineral Sciences, U. S. National Museum of Natural History, Smithsonian Institution,

8 Washington, DC, USA 20560 (macphers@si.edu)

9 ²Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena,

10 CA, USA

11 ³WiscSIMS, University of Wisconsin, Madison, WI 53706, USA

12 ⁴School of Ocean, Earth Science and Technology, Hawai‘i Institute of Geophysics and

13 Planetology, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA

14 ⁵Department of Geoscience, University of Wisconsin, Madison, WI 53706, USA

15 ⁶Department of the Geophysical Sciences, University of Chicago, Chicago, IL 96822, USA

16 ⁷Institute of Earth Sciences, Heidelberg University, 69120 Heidelberg, Germany

17

18 Submitted to: *Chemical Geology* August 1, 2022

19

20 *Corresponding author

21

22

23

ABSTRACT

24 We synthesized three compositions of hibonite, differing in their levels of MgO and TiO₂ that were
25 chosen to cover most of the range of compositions of natural meteoritic hibonite. The goal was to
26 evaluate the appropriateness of the use of terrestrial Madagascar hibonite as a standard in the SIMS
27 analysis of initial ²⁶Al/²⁷Al ratios in calcium-aluminum-rich inclusions, and especially its use for
28 the determination of the ²⁷Al/²⁴Mg relative sensitivity factor (RSF). Concern exists because of the
29 high levels of FeO and rare earth elements (REE) in the terrestrial mineral relative to meteoritic
30 samples. Our results show that, provided the specific Madagascar hibonite samples in a given lab
31 are carefully characterized in terms of mineral chemistry (including Fe, Th, and REE) *via* electron
32 microprobe analysis, the terrestrial mineral gives RSFs that are within 2% of those determined for
33 the synthetic samples. The ²⁷Al/²⁴Mg SIMS/EPMA RSF based on the synthetic hibonite
34 compositions alone is 0.779 ± 0.003 ; combining all synthetic and Madagascar hibonite analyses
35 yields a RSF of 0.777 ± 0.003 . We cannot rule out that RSFs might be somewhat different using
36 different SIMS instruments, or among individual SIMS sessions, so RSFs should be evaluated for
37 each SIMS session by using carefully calibrated hibonite standards.

38

39

40

41 **Key words:** hibonite, Al/Mg relative sensitivity factor, SIMS analysis

42

43

1. INTRODUCTION

44 Hibonite ($\text{CaAl}_{12}\text{O}_{19}$) is a rare mineral on Earth but is common in carbonaceous chondrite
 45 meteorites, as individual crystals and in Calcium-Aluminum-rich Inclusions (CAIs). Hibonite is
 46 the second (after corundum) major-element-bearing phase predicted to condense out of a high-
 47 temperature gas of solar composition (Yoneda and Grossman, 1995). It is very resistant to the
 48 aqueous alteration that affected many carbonaceous chondrites (e.g., Brearley and Jones 1998),
 49 and it even survives the harsh acid treatments used to separate presolar grains from meteorites
 50 (Amari et al., 1994). Its physical durability is such that it faithfully preserves isotopic signatures
 51 from the time of its formation at 4.567 Ga, including oxygen and magnesium. Meteoritic hibonite
 52 tends to be very fine-grained, rarely exceeding 10-20 μm in any dimension, and isotopic analyses
 53 generally are made using secondary ionization mass spectrometry (SIMS; a.k.a. ion microprobe).
 54 The chemical composition of CAI hibonite is close to the ideal formula, with the one significant
 55 substitution being $\text{Mg} + \text{Ti}^{4+} \Leftrightarrow 2\text{Al}$. Some of the titanium is trivalent (see below), implying
 56 formation under highly reducing conditions. Terrestrial hibonite, in contrast, contains weight
 57 percent levels of rare earth elements (REE), thorium, and iron, with some of the iron being ferric.

58 Magnesium isotopes in CAIs are analyzed primarily in order to determine excesses in
 59 ^{26}Mg that resulted from *in situ* decay of the short-lived nuclide ^{26}Al ($t_{1/2} = 0.705$ My) at the time of
 60 CAI formation. The original abundance ratio $^{26}\text{Al}/^{27}\text{Al}$ that can be calculated from the ^{26}Mg
 61 excesses is of great importance because of the implications for early solar system chronology and
 62 planetesimal heating.

63 Terrestrial hibonite from Madagascar (the principal source) is commonly used as a standard
 64 for SIMS analysis of magnesium isotopes in CAI hibonite, but there are two potential problems
 65 with this standard. First, Madagascar hibonite is chemically heterogeneous even withing individual
 66 grains (see below). Second, there is concern that the relative sensitivity factor¹ (RSF) for aluminum
 67 relative to magnesium may be different in the terrestrial *vs.* meteoritic hibonites due to their
 68 differing compositions. For the highest-precision SIMS analyses possible, elimination of any
 69 systematic error due to the use of incorrect RSFs is required. We therefore undertook to synthesize
 70 pure hibonite close to meteoritic hibonite in composition, then accurately determine the RSFs for

¹ RSF in this system is defined as $^{27}\text{Al}/^{24}\text{Mg}_{[\text{SIMS}]} / ^{27}\text{Al}/^{24}\text{Mg}_{[\text{True}]}$, where “True” is the value determined by electron microprobe analysis (corrected for ^{24}Mg /total Mg).

71 this hibonite over a range of Mg and Ti contents, and finally compare those RSFs with ones
72 determined for Madagascar hibonite.

73 **2. METHODS**

74 **2.1 *Synthesis of Hibonite***

75 **2.1.1 *Choice of Compositions***

76 It has long been known (e.g., Allen et al. 1978) that there is a \sim 1:1 correlation between
77 cations of Mg and Ti in meteoritic hibonite, which strongly suggests a charge balanced substitution
78 of $Mg^{2+} + Ti^{4+} = 2Al^{3+}$. Allen et al.'s (1978) assessment utilized 18 hibonite analyses. Figure 1,
79 which shows cations (per 19 oxygens) of Mg vs. Ti for 389 hibonite analyses drawn from the
80 literature, displays the same fundamental feature. The vast majority of hibonite analyses adhere
81 closely to a 1:1 line. There is little evidence in Figure 1 for Ti in excess of Mg, but the presence of
82 Ti^{3+} was postulated by Ihinger and Stolper (1986) as the cause of the blue color characteristic of
83 much meteoritic hibonite. Ti^{3+} has since been directly measured in meteoritic hibonite using
84 electron spin resonance (Beckett et al. 1988), electron energy loss spectroscopy (Giannini et al.
85 2011), and X-ray absorption near edge structure (Doyle et al. 2011).

86 The compositions of our synthetic hibonites were chosen to cover a range of observed
87 natural compositions, which can be well-described in terms of two endmembers, pure $CaAl_{12}O_{19}$
88 (Hib) and magnesium-titanium-hibonite ($CaMgTiAl_{10}O_{19}$; MTH). Figure 2 is a histogram of
89 cations of Ti in meteoritic hibonite, illustrating a wide range of compositions up to \sim 0.8 Ti per 19
90 oxygens (see On-line Supplement 1 for data table and literature references). There is a well-defined
91 peak centered near Ti \sim 0.15, and a broad peak centered on Ti \sim 0.5. Accordingly, we synthesized
92 three compositions corresponding to those two compositions plus an intermediate one of Ti \sim 0.3.
93 All three lie exactly on the binary Hib-MTH and are designated MTH15, MTH30, and MTH50.
94 These bound most of the natural range in Ti contents and provide a basis for interpolation and
95 extrapolation of relationships between the properties of hibonite and their compositions.

96 The Hib-MTH binary does not completely describe the compositions of natural meteoritic
97 hibonite. First, it is well established that natural blue hibonite contains 10-30% Ti^{3+} (Doyle et al.
98 2011; Giannini et al. 2011). For our purposes, the role of Ti^{3+} is irrelevant because all our synthetic
99 hibonites were produced under oxidizing conditions (in air); however, this study does not address

100 the question of whether trivalent titanium might affect the RSF in natural meteoritic hibonite.
101 Second, natural meteoritic hibonite contains minor amounts of Si, V, and Fe. Without a much more
102 extensive collection of precise minor element data, we can only qualitatively assess how close an
103 approximation the Hib-MTH- binary provides for meteoritic compositions. Figure 3 is a histogram
104 of $X_{\text{Hib}} + X_{\text{MTH}}$, where it is assumed that components involving Si, V, and Fe can be described
105 using one cation in an end-member molecule (e.g., $\text{CaMgSiAl}_{10}\text{O}_{19}$, $\text{CaV}^{3+}\text{Al}_{11}\text{O}_{19}$, $\text{CaFe}^{3+}\text{Al}_{11}\text{O}_{19}$).
106 To the extent that $X_{\text{Hib}} + X_{\text{MTH}} < 1$, the other components are significant. Excess Ca, > 1 cation
107 per formula unit, is ignored because this plausibly is a real non-stoichiometric effect (Burns and
108 Burns, 1984; but *cf.* Han et al., 2022). From Figure 3, $X_{\text{Hib}} + X_{\text{MTH}}$ equals or exceeds 0.9 for 94%
109 of meteoritic hibonites and we conclude that this binary provides a good zeroth order
110 approximation of their compositions. Again however, because our goal is to establish the Al/Mg
111 relative sensitivity factors for hibonite, the role of minor element substitution in natural material
112 can be ignored.

113 *2.1.2 Synthesis Procedures*

114 Samples were synthesized from Alfa Puratronic CaCO_3 , MgO , Al_2O_3 , and TiO_2 . The
115 oxides were dried at 400 °C (CaCO_3), 800 °C (Al_2O_3 , TiO_2), or 1000 °C (MgO) and stored in a
116 vacuum desiccator until weighing. MgO is hygroscopic, so it was weighed first. An amount of
117 MgO approximating the desired weight for a 5 g batch was placed onto the weighing pan of a
118 balance and the oxide allowed to hydrate. The weight was plotted as a function of the square root
119 of time and extrapolated back to zero time (i.e., to the initial anhydrous weight). Weights of the
120 remaining oxides were then adjusted to the weight of MgO to retain the desired stoichiometry.
121 Each oxide mix was ground in an automatic alumina mortar 4½ - 6 hours under ethanol, dried in
122 air, and decarbonated at 800 °C for 65 hours. Decarbonated powder of an oxide mix (~1 gram)
123 was poured into a 13 mm stainless steel pellet die (standard for making KBr pellets). The die was
124 then placed in a hydraulic press, hooked up to a vacuum, and this assembly pressed until an internal
125 pressure of ~19,000 psi was achieved. This was maintained for ~5 minutes. The pressure was then
126 released, the pellet removed and then placed in a Pt cage, suspended using Pt wire, and inserted
127 into the hot spot of a Deltech VT-31 1 atm gas mixing furnace at 1000 °C in air. The temperature
128 was then increased to 1603 °C at 500 °C /hour and held for 685 hours, followed by a quench
129 through the bottom of the furnace into deionized H_2O . As shown below, the close match between
130 the desired compositions and the resulting run products demonstrates that no loss of magnesium

131 occurred during synthesis. Also arguing against any loss of magnesium during synthesis is the
132 absence of any modal rutile or other Ti-rich oxide phase. A deficiency of magnesium would have
133 led to excess titanium that could not be incorporated into the hibonite structure by coupled
134 substitution, leading to the formation of such oxides that are not observed.

135 **2.2 *Electron Microprobe Analyses (EPMA):***

136 **2.2.1 *Complicating Factors***

137 Hibonite is structurally more complex than corundum to which it is chemically and
138 cosmochemically similar, containing 6 different cation sites. Burns and Burns (1984) and
139 Bermanec et al. (1996) made detailed structural studies of hibonite, comparing terrestrial and
140 meteoritic varieties. Following the Bermanec et al. model, aluminum occurs in two different 6-
141 fold oxygen-coordinated sites, calcium occupies a 12-fold site, magnesium occupies a spinel-like
142 tetrahedral site, and silicon and Ti^{4+} occupy another 6-fold site. Both Burns and Burns (1984) and
143 Bermanec et al. (1996) speculated that any Ti^{3+} resides in a 5-fold site. Most importantly for
144 present purposes, Mg and Al are light elements whose spectrometer positions (wavelengths) during
145 wavelength dispersive analysis (WDS) vary according to crystallographic site and oxygen
146 coordination numbers. Peak positions for standards and unknowns may not be the same, making
147 precise electron microprobe analysis of hibonite somewhat tricky. This can be ameliorated by
148 using wide slit widths or by analyzing standards and unknowns at their own separate wavelengths.
149 The latter method was employed at the University of Wisconsin and at the Smithsonian, where the
150 most detailed and thorough EPMA analyses were made.

151 Whereas the composition of meteoritic hibonite can be well defined by the Hib-MTH-
152 binary, Madagascar hibonite contains weight-percent levels of iron oxide (both ferrous and ferric)
153 and REE, and it is very heterogeneous (details given below). The analytical problem is that, if the
154 REE are not explicitly analyzed during electron microprobe analysis, the matrix correction factors
155 determined for all of the other elements will be in error. For example, this can lead to weight-
156 percent-level errors in Al_2O_3 . During this study, REE and thorium analyses of Madagascar hibonite
157 were carried out at the University of Wisconsin (only).

158 **2.2.2 *Analytical Protocols***

159 To evaluate the compositions of the synthetic hibonite samples, analyses were carried out
160 on four different instruments: a Cameca SX Five field emission electron microprobe at the
161 University of Wisconsin, JEOL JXA-8500F and JXA-8530F Plus field emission “HyperProbes”
162 at the University of Hawai‘i and the Smithsonian Institution, respectively, and a TESCAN LYRA3
163 field-emission scanning electron microscope with focused ion beam (FE-SEMFIB) equipped with
164 an Oxford Wave-500 wavelength-dispersive spectrometer at the University of Chicago. Analyses
165 of Madagascar hibonite were carried out at the Universities of Hawai‘i and Wisconsin, and the
166 Smithsonian. Analyses on all four instruments were carried out at 15 keV acceleration voltage and
167 a range of beam currents up to 30 nA (for minor elements in Madagascar hibonite), using natural
168 and synthetic minerals as calibration standards, and data reduction *via* conventional matrix
169 correction correction procedures. In some cases, standards were analyzed as unknowns before and
170 after every run to evaluate and if necessary correct for any systematic errors. At Wisconsin and the
171 Smithsonian, the magnesium and aluminum peak positions were determined independently for
172 standards and unknowns, and those different positions were used during calibration and analysis
173 respectively.

174 REE and Th in Madagascar hibonite are not explicitly considered here except insofar as
175 they affect the matrix correction factors used to correctly calculate the abundance of the other
176 elements. This effect really only applies to the Wisconsin sample of Madagascar hibonite, as the
177 Hawai‘i sample analyses consistently gave analytical sums close to 99% (implying that Th + REE
178 are minor in abundance). However, the Wisconsin sample contains ~ 2-8 wt. % total REE oxides.
179 Therefore, complete electron microprobe analyses of Madagascar hibonite, including REE, were
180 acquired with a Cameca SX Five microprobe at the University of Wisconsin - Madison
181 Geoscience, using Probe for EPMA software (v.9.2.7). Analytical conditions were 15 kV, 20 nA,
182 and a focused beam. Characteristic X-ray intensities were acquired with off-peak backgrounds and
183 processed with the XPP matrix correction. Reference standards used were NIST K412 glass (Mg,
184 A, Ca), wollastonite (Si), Harvard U. hematite (Fe), and synthetic TiO₂ (Ti). Oak Ridge National
185 Lab REE-phosphate glass standards were used for La, Ce, Pr, and Nd; Th-1 diopside glass
186 (provided by J. Donovan) was used for Th. REE L α lines were acquired with an LIF crystal, and
187 Th M α with a PET crystal. Interference corrections were made for Nd on Si, La on Pr and La on
188 Ti. PHA settings were in integral mode, except for Al. Detection limits (2 σ) for REE and other
189 minor elements were as follows: SiO₂ 0.04 wt. %, La₂O₃ 0.51 wt. %, Ce₂O₃ 0.53 wt. %, Pr₂O₃ 0.49

190 wt. %, Nd₂O₃ 0.33 wt. %, Th₂O₃ 0.13 wt. %, FeO 0.07 wt. %. In general, most of the REE
191 abundances exceeded detection limits except for Pr.

192

193 **2.3 SIMS Analysis of $^{27}\text{Al}/^{24}\text{Mg}$ ratio**

194 Several locations in each synthetic hibonite standard were selected for SIMS analyses that
195 are 5 μm or larger in size and with relatively constant MgO concentrations at μm scale according
196 to FE-SEM EDS analysis. These areas were then analyzed (as described above) for major elements
197 using the University of Wisconsin-Madison electron microprobe, typically 4-10 times each. After
198 the EPMA analyses (using Probe for EPMA, v.12.1.1), selected locations in MTH15 were marked
199 by using focused ion beam (FIB) at the University of Chicago, because of their finer crystal sizes
200 than those in MTH30 and MTH45, according to the procedure described by Defouilloy et al.
201 (2017).

202 The raw $^{27}\text{Al}/^{24}\text{Mg}$ ratios of synthetic hibonite and Madagascar hibonite standards were
203 determined using the University of Wisconsin Cameca IMS 1280. The primary O⁻ ion beam was
204 set to $\sim 3 \mu\text{m}$ diameter and 60 pA and ^{24}Mg and ^{27}Al were detected using monocollecton electron
205 multiplier (EM) and Faraday cup (FC), respectively, by magnetic field scan (5 s for ^{24}Mg and 3 s
206 for ^{27}Al integrations, 20 cycles). Other instrument parameters were similar to those reported in
207 Kööp et al. (2016). SIMS spots were chosen to exactly correspond with selected EPMA spot
208 locations. For MTH15 with FIB marks, the marked locations were identified and adjusted precisely
209 to the center of primary beam positions by obtaining ^{27}Al ion images on mono EM following the
210 procedure similar to those described in Hertwig et al. (2019). The secondary ^{24}Mg and ^{27}Al
211 intensities were 5×10^4 to 2×10^5 cps and $\sim 4 \times 10^6$ cps, respectively. A single analysis took 11
212 minutes, which is shorter than typical analyses of meteoritic hibonites (e.g., Kööp et al., 2016).
213 The internal errors (2SE) and reproducibility of raw ($^{27}\text{Al}/^{24}\text{Mg}$) ratios of Madagascar hibonite
214 were 0.3% (2SE) and 1% (2SD), respectively.

215 Aluminum-magnesium isotopic ratios in hibonites were also measured with the University
216 of Hawai'i Cameca IMS-1280 SIMS using protocols similar to those in MacPherson et al. (2021).
217 The $^{16}\text{O}^-$ primary ion beam of -13 keV and ~ 60 -80 pA was focused to $\sim 5 \mu\text{m}$ diameter. Secondary
218 $^{24}\text{Mg}^+$, $^{25}\text{Mg}^+$, and $^{26}\text{Mg}^+$ ions were measured with the monocollecton EM in peak jumping mode,

219 and $^{27}\text{Al}^+$ ions were measured with a multicollection FC, simultaneously with $^{25}\text{Mg}^+$ measurement.
220 Counting times were 4 sec for $^{24}\text{Mg}^+$ and 10 sec for others, and the measurements typically
221 consisted of 120 cycles. Entrance and exit slits were set to obtain a mass resolving power (MRP)
222 of ~ 3700 , sufficient to separate interference ions from magnesium-isotope signals. The ^{24}Mg count
223 rate ranged from 4×10^4 to 2×10^5 among the synthetic and Madagascar hibonites. After SIMS
224 analyses, three EPMA measurements were made around each SIMS pit and an averaged Al/Mg
225 ratio from the three EPMA measurements was used to calculate a RSF value. The EPMA analyses
226 were $\sim 3 \mu\text{m}$ away from edges of the SIMS pits.

227 In both labs, EM gains usually are not calibrated, but in general they usually are within
228 1% of FC values. Dead time is always corrected and regardless would not make more than a few
229 permil difference.

230

231 3. RESULTS

232 3.1 *Description and EPMA Analysis of the Samples*

233 3.1.1 *Synthetic Hibonite*

234 Figure 4 shows back-scattered electron (BSE) images of the three synthetic hibonite
235 charges. The ubiquitous presence of plate-like and lath-like (plates seen edge-on) shapes indicate
236 that the samples are entirely crystalline. All contain significant pore space, and rare grains of
237 grossite (CaAl_4O_7) are present, but otherwise all three compositions produced remarkably pure
238 hibonite. In all three cases, the grain size is small, typically $10\text{--}20 \mu\text{m}$, but large enough for SIMS
239 analyses.

240 The averaged EPMA compositions and associated structural formulae measured in all four
241 labs are given in Table 1. All analyses indicate no Si or Fe to be present in any of the samples,
242 within detection limits, typically 0.02 wt. % SiO_2 and 0.03 wt. % FeO . Figure 5 shows
243 stoichiometry diagrams for all three compositions, of two kinds: Mg vs. Ti, and Mg + Ti vs. Al,
244 both in terms of cations per 19 oxygens. The theoretical compositions of MTH15, MTH30, and
245 MTH50 are shown for reference in the respective diagrams. The diagonal lines indicate the
246 expected trend for the ideal coupled substitutions $\text{Mg}:\text{Ti} = 1:1$ and $(\text{Mg} + \text{Ti}) \leftrightarrow 2\text{Al}$. The results
247 from each of the four analytical labs are indicated separately for comparison, although the charts

248 are dominated by the much larger and more comprehensive data set from the University of
249 Wisconsin. All analyses are close to the expected compositions, with none of the labs being
250 systematically closer to ideal than the others. Mg and Ti plot very close to the expected 1:1
251 correlation line and close to the expected values for each composition. Both the Wisconsin and
252 Smithsonian data show slight deficiencies of Al relative to Mg + Ti in the MTH15 and MTH30
253 samples (Fig. 5); it is not clear if this is real or an analytical artifact.

254 All samples show some variability in composition, indicating slight zoning within
255 individual crystals, but within this degree of variability the overall results demonstrate that the
256 synthesis successfully produced the desired compositions.

257 *3.1.2 Madagascar hibonite*

258 Figure 6 shows BSE images of grains from the standard disks used at the Universities of
259 Hawai'i and Wisconsin. The heterogeneity is evident in both disks from the variation in electron
260 albedo, but especially in the Wisconsin disk. Hibonite crystals generally have the morphology of
261 plates, broad and flat perpendicular to the c-axis and thin and tabular parallel to the c-axis. This is
262 illustrated in Figure 7, which shows a close-up BSE image of two of the grains from the Wisconsin
263 disk. One of the grains is oriented such that the plate is lying flat in the plane of the section, whereas
264 the other is edge-on. The extreme heterogeneity seen in the “edge-on” orientation is to a large
265 degree masked in the face-on orientation. This heterogeneity is not so much in the major rock-
266 forming elements as it is in the REE and thorium.

267 Most Madagascar hibonite analyses were obtained at the University of Wisconsin where,
268 in addition to major and minor elements, La_2O_3 , Ce_2O_3 , Nd_2O_3 , Pr_2O_3 , and ThO_2 were
269 quantitatively analyzed. Table 2 gives the mean EPMA composition of the Wisconsin sample of
270 Madagascar hibonite. Because no analyses of very-low-REE Madagascar hibonite were obtained
271 in Wisconsin, several WDS analyses were obtained at the Smithsonian as well as several semi-
272 quantitative analyses obtained by energy-dispersive (EDS) analysis. These were aimed at the
273 darkest regions of the “edge-on” grain shown in Figure 7. The Smithsonian EDS analyses of the
274 low BSE albedo areas showed total REE + Th abundances, ≤ 1 wt. % (as oxides), significantly
275 lower than any of the Wisconsin analyses (presumably because that particular edge-on grain was
276 not analyzed there). Our quantitative WDS analyses (not including REE or Th) of that same dark-
277 albedo hibonite yielded analytical sums on the order of 99%, confirming both that the low albedo

278 hibonite contains only minor amounts of REE + Th and also that the non-analysis of REE had only
279 a minor effect on the matrix correction factors. The Wisconsin quantitative data show that REE
280 contents in Madagascar hibonite are inversely correlated with Ca, presumably because they occupy
281 the Ca crystallographic site as suggested by Bermacec et al. (1996). This inverse correlation is
282 shown in Figure 8a. Such a graph provides one means (the other being analytical sums) for
283 estimating the total REE content in EPMA analyses if the REE + Th are not directly analyzed,
284 which in turn provides a means for recalculating the matrix correction factors (by artificially
285 introducing REE contents into the WDS computer) to get more precise analyses of the major
286 elements during EPMA analysis.

287 Figure 8b is a stoichiometry diagram in which total Mg + Fe + Ti is plotted vs. Al, all as
288 cations per 19 oxygens. All iron is calculated as ferrous, although this almost certainly is not the
289 case (Burns and Burns, 1984). Nevertheless, the correlation is strong and demonstrates a coupled
290 substitution similar to that shown by the synthetic hibonites, but in this case iron is involved as
291 well. The other and more important point demonstrated by Figure 8b is that the Wisconsin and
292 Hawai‘i samples of Madagascar hibonite are very different. The Wisconsin sample analyses plot
293 close to the ideal correlation line correlation $M^{2+} + M^{4+} \leftrightarrow 2M^{3+}$, but the Hawai‘i sample analyses
294 do not.

295

296 **3.2 SIMS analysis and Calculation of Relative Sensitivity Factors**

297 The EPMA $^{27}\text{Al}/^{24}\text{Mg}$ values for all samples were determined somewhat differently at the
298 University of Wisconsin and the University of Hawai‘i. In Wisconsin, EPMA analyses were
299 collected prior to SIMS analysis, by aiming multiple spots within 10-20 μm areas that were
300 identified as relatively homogeneous in Mg concentrations by University of Chicago WDS
301 analyses. Subsequently, the SIMS analysis spots were aimed to exactly coincide with the EPMA
302 analyses areas. Thus, the two kinds of analysis can be directly compared and graphed on a spot-
303 by-spot basis. Madagascar hibonite was analyzed on a few selected grains that had been previously
304 used because they show relatively homogenous EPMA $^{27}\text{Al}/^{24}\text{Mg}$ ratios. In Hawai‘i, EPMA
305 analyses were done subsequent to SIMS analysis, around the SIMS spots $\sim 3 \mu\text{m}$ away from spot
306 edges for both MTH and Madagascar hibonite samples. Average values for each spot were used
307 to calculate RSFs. Because the Hawai‘i Madagascar sample is relatively homogeneous compared

308 with the Wisconsin sample, calculating the three-point post-SIMS averages is not substantively
309 different from having measured the EPMA values prior to SIMS analysis.

310 In the section below, all University of Wisconsin data and SIMS spot images are contained
311 in On-line Supplements 2 and 3 respectively. All University of Hawai'i data are contained in
312 Supplement 4.

313 The RSFs are defined as $(^{27}\text{Al}/^{24}\text{Mg})_{\text{SIMS}}/(^{27}\text{Al}/^{24}\text{Mg})_{\text{EPMA}}$, which is equivalent to
314 $(^{24}\text{Mg}/^{27}\text{Al})_{\text{EPMA}}/(^{24}\text{Mg}/^{27}\text{Al})_{\text{SIMS}}$. Here, we estimate synthetic hibonite RSF as a slope of the linear
315 regression line of the plot $(^{24}\text{Mg}/^{27}\text{Al})_{\text{EPMA}}$ against $(^{24}\text{Mg}/^{27}\text{Al})_{\text{SIMS}}$. In this way, the measured ratios
316 from two instruments are expressed by having the larger and less variable number (^{27}Al) in the
317 denominator and smaller and more variable number (^{24}Mg) in the numerator. Any intercept of the
318 regression line represents a small offset in EPMA analyses relative to SIMS analyses, which are
319 more sensitive to low Mg concentrations than EPMA analyses (detection limits of ~ 10 ppm versus
320 $\sim 0.01\%$). Because of the larger offset when plotting $(^{27}\text{Al}/^{24}\text{Mg})_{\text{SIMS}}$ vs. $(^{27}\text{Al}/^{24}\text{Mg})_{\text{EPMA}}$ the
321 regression line does not provide the same slope as when plotting $(^{24}\text{Mg}/^{27}\text{Al})_{\text{EPMA}}$ vs.
322 $(^{24}\text{Mg}/^{27}\text{Al})_{\text{SIMS}}$. This is illustrated in Supplement 1, using the University of Wisconsin data. We
323 use the $^{24}\text{Mg}/^{27}\text{Al}$ method throughout. Our method assumes the RSF is constant among three
324 synthetic hibonite crystals because the major oxide compositions change only by a few weight %.
325 The fact that data for the three synthetic hibonites lie along straight lines with near-zero intercepts
326 (Figs. 9a, 10a) supports the idea that hibonite composition has an insignificant effect on RSFs.
327 Finally, regression of any one of the three individual synthetic compositions is nearly meaningless
328 anyway because of the very small range of Al/Mg ratios. As shown below (Fig. 11), our
329 assumption is accurate within about 2-3 %.

330 All data referred to in the following section is summarized in the Appendices and given in
331 detail in the on-line Supplementary Materials.

332 The Wisconsin data (Appendix 1) are plotted and shown in Figure 9, for all data combined
333 (Fig. 9a) and for each composition separately (Figs. 9b-e). The dashed correlation line is based on
334 the combined synthetic hibonite compositions only, and was calculated using an Isoplot-R model-
335 1 fit. The individual data points adhere closely to the line, whose slope (the RSF) is 0.785 ± 0.004 ,
336 with an intercept of $(1.81 \pm 0.98) \times 10^{-4}$, and a MSWD of 1.3. The Madagascar hibonite data plot
337 slightly below the correlation line. The RSF for Madagascar hibonite is estimated to be

338 0.7738±0.0037 by comparing SIMS measured ($^{27}\text{Al}/^{24}\text{Mg}$) and EPMA ($^{27}\text{Al}/^{24}\text{Mg}$) ratios, which
339 is $-1.4\pm0.6\%$ relative to the RSF determined from the synthetic hibonites. The data for the
340 Madagascar and synthetic hibonite were collected during the same SIMS run, and in fact the
341 Madagascar hibonite data were used to bracket the synthetic hibonite data, so this difference likely
342 is not due to any SIMS uncertainties. If all data (including Madagascar hibonite) are used to
343 calculate the slope of the correlation line, the resulting slope (RSF) is only marginally different at
344 0.782 ± 0.004 , an intercept of $(2.31\pm0.96) \times 10^{-4}$, but with a larger MSWD of 3.0.

345 The Hawai'i data (Appendix 2) are shown in Figure 10. Like the Wisconsin data, the
346 Hawai'i determination for Madagascar hibonite plots slightly below (although within error of) the
347 correlation line defined by the synthetic hibonite. The slope of the correlation line (RSF) using just
348 the synthetic hibonite is 0.779 ± 0.004 with a MSWD of 5.6. Using all data, including Madagascar
349 hibonite, yields an identical slope of 0.779 ± 0.004 and MSWD = 5.3. The larger MSWD factors
350 in the Hawai'i data may be due, among other things, to very small uncertainties in some of the
351 EPMA values for the MTH15 and MTH50 compositions. It is possible that the errors are
352 underestimated.

353 Combining the Hawai'i and Wisconsin data, the RSF based on the synthetic hibonite
354 compositions only is 0.779 ± 0.003 with MSWD = 7.7. Using both the synthetic hibonite and the
355 Madagascar hibonite data, the resulting RSF is 0.777 ± 0.003 with MSWD = 7.2.

356 Figure 11 shows the correlation between RSF and Al/Mg ratio. The plotted values are
357 averages of individual RSF determinations for each synthetic compositions and are not based on
358 slopes. The Hawai'i data indicate a resolved $\sim 2.5\%$ greater value for the RSF of MTH 15 relative
359 to the other two compositions, whereas the Wisconsin data show no resolved difference. The
360 possibility of RSF being dependent on Al/Mg ratio was raised by Wada et al. (2020), especially
361 for very Mg-poor hibonites in which Wada et al. suggested the possibility that the RSF could be
362 as much as 4% higher than for Mg-rich hibonites. Only the University of Hawai'i data provide
363 some support for this idea; although the Wisconsin data hint as such a correlation, it is not resolved.

364 Because we do not have independent ICP-MS measurements of the magnesium isotopic
365 compositions of either the synthetic or Madagascar hibonites, we cannot quantitatively evaluate
366 instrumental mass-dependent fractionation or its effects on the relative sensitivity factors.

367

368

4. DISCUSSION AND CONCLUSIONS

369 Our results are broadly similar to those of Wada et al. (2020), who used a comparable
370 instrument (Cameca ims-1280HR) at Hokkaido University. They determined the RSF for
371 Madagascar hibonite to be 0.773 ± 0.008 and that for a natural CAI hibonite to be 0.787 ± 0.011 ,
372 a difference of about 1-2%. However, their result was based on an average of RSFs determined for
373 individual spots and was calculated as $^{27}\text{Al}/^{24}\text{Mg}$. Recalculating their data the same way as ours,
374 i.e. as a slope of $^{24}\text{Mg}/^{27}\text{Al}$ (EPMA) vs. $^{24}\text{Mg}/^{27}\text{Al}$ (SIMS), yields a RSF of 0.767 ± 0.008 for all
375 data (i.e. including Madagascar hibonite).

376 Kööp et al. (2016) determined a RSF for Madagascar hibonite of approximately 0.754,
377 which is 2.5% lower than the value obtained in this study (Table S1). The difference was likely
378 caused by the longer analyses time in Kööp et al. (2016) than this work (2 hours vs. 11 min). As
379 shown in On-line Supplement 3 Table S4, the $^{27}\text{Al}/^{24}\text{Mg}$ ratios decrease with time in each analysis.

380 Figure 12 summarizes our RSF determinations along with those of Kööp et al. (2016) and
381 Wada et al. (2020). Two observations emerge. First, the RSF values for synthetic (this work) and
382 meteoritic hibonites (Wada et al., 2020) are within error of each other and close to 0.78. Second,
383 the determined RSFs for Madagascar hibonite are consistently lower than that for either synthetic
384 or meteoritic hibonite, by about 1-2%. As shown below, the difference this bias may cause in
385 inferred initial $^{26}\text{Al}/^{27}\text{Al}$ values in natural CAIs is small. We thus find that Madagascar hibonite is
386 an appropriate standard during SIMS analysis of Al-Mg isotopes in meteoritic hibonite. However,
387 in any lab making such measurements, it is necessary to carefully analyze the Madagascar hibonite
388 via EPMA. During such analysis, the REE + Th must either be measured or else estimated in order
389 for the EPMA data reduction procedure to correctly calculate accurate matrix correction factors
390 for the major elements.

391 The effect of RSF on Al-Mg isotopic measurements is to change the $^{27}\text{Al}/^{24}\text{Mg}$ value of
392 individual hibonite measurements. Increasing the RSF yields a lower $^{27}\text{Al}/^{24}\text{Mg}$ value, which in
393 turn leads to a higher slope for a $^{26}\text{Mg}/^{24}\text{Mg}$ vs. $^{27}\text{Al}/^{24}\text{Mg}$ isochron that is strongly influenced by
394 high Al/Mg hibonites. As an example, Kööp et al. (2016) measured internal isochrons for 8 SHIB
395 (spinel-hibonite) inclusions from the Murchison CM2 chondrite. As noted above, the RSF
396 determined by them for Madagascar hibonite was low by about 2.5%. Had they used an RSF closer
397 to 0.78, their determined isochron slopes would be approximately 1% higher. For an isochron with

398 a slope of 5×10^{-5} , this amounts to a difference of about 0.05×10^{-5} , which is small and has no
399 impact on the conclusions reached by those authors. Another example is shown in Figure 13, which
400 gives Al-Mg isotopic data for a Fluffy Type A inclusion from Allende (TS25-F1, illustrated in Fig.
401 1a of MacPherson and Krot, 2014). In this object, the hibonite is the phase with the highest Al/Mg.
402 The unpublished data are from the University of Wisconsin. When collected, the data were
403 calculated using a hibonite RSF of 0.73, as shown in in the top figure. If recalculated using 0.78
404 (bottom figure), the isochron slope (initial $^{26}\text{Al}/^{27}\text{Al}$) increases from 4.61×10^{-5} to 4.71×10^{-5} . A
405 6% increase in the RSF leads to a 1.5% increase in slope for this CAI. Were hibonite not the highest
406 Al/Mg phase, the effect of course would be smaller.

407 We stress that our measurements were made on identical SIMS instruments. Different
408 instruments and different analytical conditions may yield somewhat different RSFs. Counting
409 times in particular have a significant effect.

410

411 5. ACKNOWLEDGEMENTS

412 We thank Dr. Noriyuki Kawasaki and two anonymous reviewers for helpful and
413 constructive reviews. This work was supported by National Aeronautics and Space Administration
414 (NASA) grants NNX15AH68G (GJM, PI), 80NSSC22K1400 (ANK, PI), and 80NSSC17K0251
415 and 80NSSC21K0374 (AMD, PI). WiscSIMS is partly supported by National Science Foundation
416 grants EAR03-19230 and EAR13-55590.

417

418 COMPETING INTEREST STATEMENT:

419 The authors declare that they have no competing interests.

420

REFERENCES

422 Allen, J.M., Grossman, L., Davis, A.M., and Hutcheon, I.D., 1978. Mineralogy, textures and mode
423 of formation of a hibonite-bearing Allende inclusion. Proc. Lunar Planet. Sci. Conf. 9th,
424 1209-12-33.

425 Amari S., Lewis R. S., and Anders E. (1994) Interstellar grains in meteorites: I. Isolation of Sic,
426 graphite, and diamond; size distributions of Sic and graphite. Geochim. Cosmochim. Acta
427 58: 459–470.

428 Beckett, J.R., Live, D., Tsay, F.-D., Grossman, L., and Stolper, E., 1988. Ti³⁺ in meteoritic and
429 synthetic hibonite. Geochim. Cosmochim. Acta 52: 1479-1495.

430 Bermanec, V., Holtstam, D., Sturman, D., Criddle, A.J., Back, M.E., Scavnicar, S., 1996.
431 Nezilovite, a new member of the magnetoplumbite group, and the crystal chemistry of
432 magnetoplumbite and hibonite. Can. Mineral. 34: 1287-1297.

433 Brearley, A. J., and Jones, R. H. 1998. Chondritic meteorites. In *Planetary Materials* (ed. J. J.
434 Papike) Mineralogical Society of America, Washington, D. C., pp. 1–398.

435 Burns, R.G., Burns, V.L., 1984. Crystal chemistry of meteoritic hibonites. Proc. Lunar Planet. Sci.
436 Conf. 15th, Jour. Geophys. Res. 89. Supplement: C313-C321.

437 Curien, H., Guillemin, C., Orcel, J., Sternberg, M., 1956. La hibonite, nouvelle espèce minérale.
438 Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 242: 2845-
439 2847

440 Defouilloy C., Nakashima D., Joswiak D.J., Brownlee D.E., Tenner T.J., Kita N.T., 2017. Origin
441 of crystalline silicates from Comet 81P/Wild 2: Combined study on their oxygen isotopes
442 and mineral chemistry. Earth Planet. Sci. Lett. 465: 145-154.

443 Doyle P.M., Berry, A.J., Schofield, P.F., Mosselmans, J.F.W., Smith, A.D., Scholl, A., Young,
444 A.T., 2011. The oxidation state of Ti in synthetic and meteoritic hibonite, with application
445 to early solar nebula processes. Workshop on the Formation of the First Solids in the Solar
446 System, #9034.

447 Giannini M., Boffa Ballaran T., Langenhorst F., and Bischoff A. 2011. TEM-EELS measurements
448 of titanium oxidation state in hibonites. Workshop on the Formation of the First Solids in
449 the Solar System, #9067.

450 Grossman L 1972. Condensation in the primitive solar nebula. *Geochimica et Cosmochimica .*
451 *Acta* **36**: 597–619.

452 Han J., Ohnishi I., Yasuhara A., and Keller L. P. (2022) Atomic-scale structure and non-
453 stoichiometry of meteoritic hibonite: A transmission electron microscope study.
454 *American. Mineralogist* **107**: 873–884.

455 Hertwig, A.T., Kimura, M., Ushikubo, T., Defouilloy, C., Kita, N.T., 2019. The ^{26}Al - ^{26}Mg
456 systematics of FeO-rich chondrules from Acfer 094: Two chondrule generations distinct in
457 age and oxygen isotope ratios. *Geochim. Cosmochim. Acta* **253**: 111-126.

458 Ihinger, P.D., Stolper, E., 1986. The color of meteoritic hibonite: An indicator of oxygen fugacity.
459 *Earth Planet. Sci. Lett.* **78**: 67–79.

460 Kööp, L., Nakashima, D., Heck, P.R., Kita, N.T., Tenner, T.J., Krot, A.N., Nagashima, K., Park,
461 C., Davis, A.M., 2016. New constraints on the relationship between ^{26}Al and oxygen,
462 calcium, and titanium isotopic variation in the early Solar System from a multielement
463 isotopic study of spinel-hibonite inclusions. *Geochim. Cosmochim. Acta* **184**: 151-172.

464 MacPherson, G.J. and Krot, A.N., 2014. Distribution of Ca-Fe-silicates in CV3 chondrites:
465 Controls by parent-body compaction. *Meteorit. Planet. Sci.* **49**: 1250–1270.

466 MacPherson, G.J., Krot, A.N., Nagashima, K., 2021. Al-Mg isotopic study of spinel-rich fine-
467 grained CAIs. *Meteorit. Planet. Sci.* **55**: 2529-2538.

468 Wada, S., Kawasaki, N., Park, C., Yurimoto, H. 2020. Melilite condensed from an 16O-poor
469 gaseous reservoir: Evidence from a fine-grained Ca-Al-rich inclusion of Northwest Africa
470 8613. *Geochim. Cosmochim. Acta* **288**: 161-175.

471 Yoneda, S., Grossman L., 1995. Condensation of CaO–MgO–Al₂O₃–SiO₂ liquids from cosmic
472 gases. *Geochim. Cosmochim. Acta* **59**: 3413–3444.

Table 1. Compositions of synthetic hibonites compared with calculated (ideal) equivalents

	MTH15					MTH30					MTH50				
	Ideal	U.H.	U.W.	U.C.	S.I.	Ideal	U.H.	U.W.	U.C.	S.I.	Ideal	U.H.	U.W.	U.C.	S.I.
	Avg	Avg	Avg	Avg		Avg									
	N=3	N=50	N=4	N=25		N=4	N=81	N=8	N=30		N=8	N=39	N=6	N=26	
Al ₂ O ₃	88.95	89.06	88.63	88.22	88.28	86.32	87.09	85.88	86.47	85.55	82.84	83.80	82.81	82.45	82.32
MgO	0.90	0.89	0.92	0.92	0.87	1.80	1.82	1.85	1.88	1.76	2.98	2.93	2.94	2.99	2.83
TiO ₂	1.79	1.87	1.80	1.80	1.77	3.56	3.77	3.65	3.66	3.48	5.90	6.09	5.91	5.98	5.78
CaO	8.36	8.35	8.39	8.19	8.40	8.33	8.41	8.37	8.31	8.38	8.28	8.27	8.26	8.13	8.29
Total	100.00	100.17	99.73	99.13	99.36	100.00	101.09	99.75	100.31	99.25	100.00	101.09	99.92	99.54	99.24
Cations per 19 Oxygens															
Al	11.700	11.695	11.692	11.702	11.692	11.400	11.381	11.376	11.386	11.389	11.000	11.004	11.004	10.996	11.015
Mg	0.150	0.147	0.153	0.154	0.146	0.300	0.301	0.310	0.312	0.297	0.500	0.486	0.494	0.503	0.480
Ti	0.150	0.157	0.151	0.153	0.149	0.300	0.314	0.309	0.307	0.295	0.500	0.510	0.501	0.509	0.494
Ca	1.000	0.997	1.007	0.987	1.011	1.000	0.999	1.008	0.995	1.014	1.000	0.987	0.998	0.986	1.008
Total	13.000	12.996	13.003	12.996	13.003	13.000	12.995	13.003	13.000	13.004	13.000	12.988	12.997	12.994	12.998

U.H. – Univ. of Hawai'i; U.W. – Univ. of Wisconsin; U.C. – Univ. of Chicago; S.I. – Smithsonian Institution.

Table 2. Mean composition of Madagascar Hibonite analyzed at the University of Wisconsin

	Mean [N=77]	Maximum	Minimum
SiO ₂	0.58	0.87	0.48
Al ₂ O ₃	78.22	79.08	77.36
FeO	4.31	4.62	3.92
MgO	2.46	2.56	2.30
CaO	6.28	6.83	5.63
TiO ₂	4.33	4.98	3.59
La ₂ O ₃	1.62	2.46	0.85
Ce ₂ O ₃	2.26	3.41	1.61
Nd ₂ O ₃	0.33	0.58	b.d.
Pr ₂ O ₃	0.12	0.59	b.d.
ThO ₂	0.40	0.71	0.13
TOTAL	100.92		

b.d. – below detection

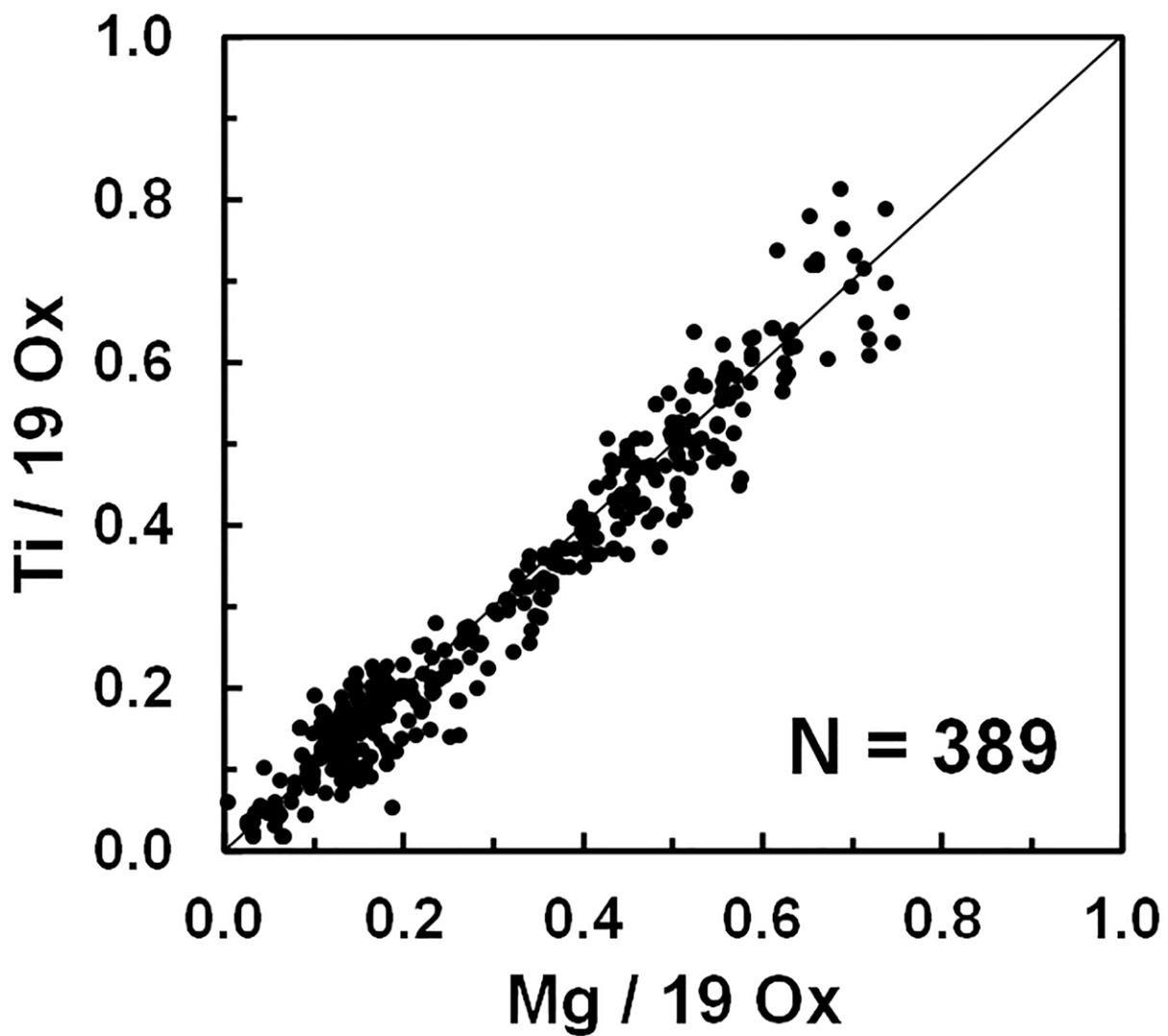


Fig. 1. Cations of Ti per 19 oxygens (calculated as Ti^{4+}) versus cations of Mg in meteoritic hibonite. A 1:1 line is shown for reference. Data are taken from literature; references and data are given in the electronic supplement. Culling criteria are: the nominal oxide total stated by the author(s) agrees with the sum of the oxides ± 0.2 wt.%, the oxide sums are 98-102 wt.%, $\text{SiO}_2 \leq 1.0$ wt. %, Ca cations total 0.96-1.04 per 19 oxygens, and cation sums are 13.00 ± 0.04 . The culled data set contains 389 analyses.

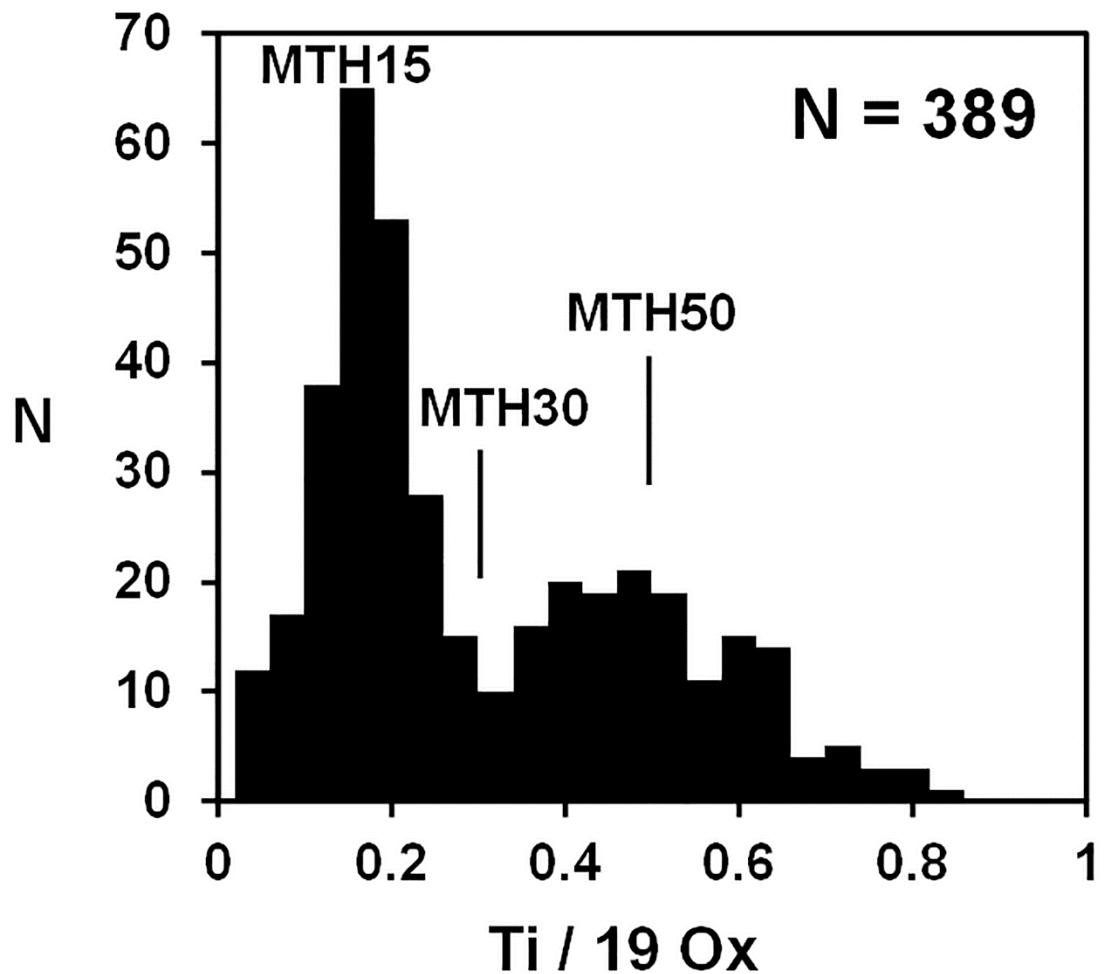


Fig. 2. Histogram of cations of Ti in meteoritic hibonites calculated for a formula with 19 oxygens. Data sources and filtering of analyses as in Fig. 1.

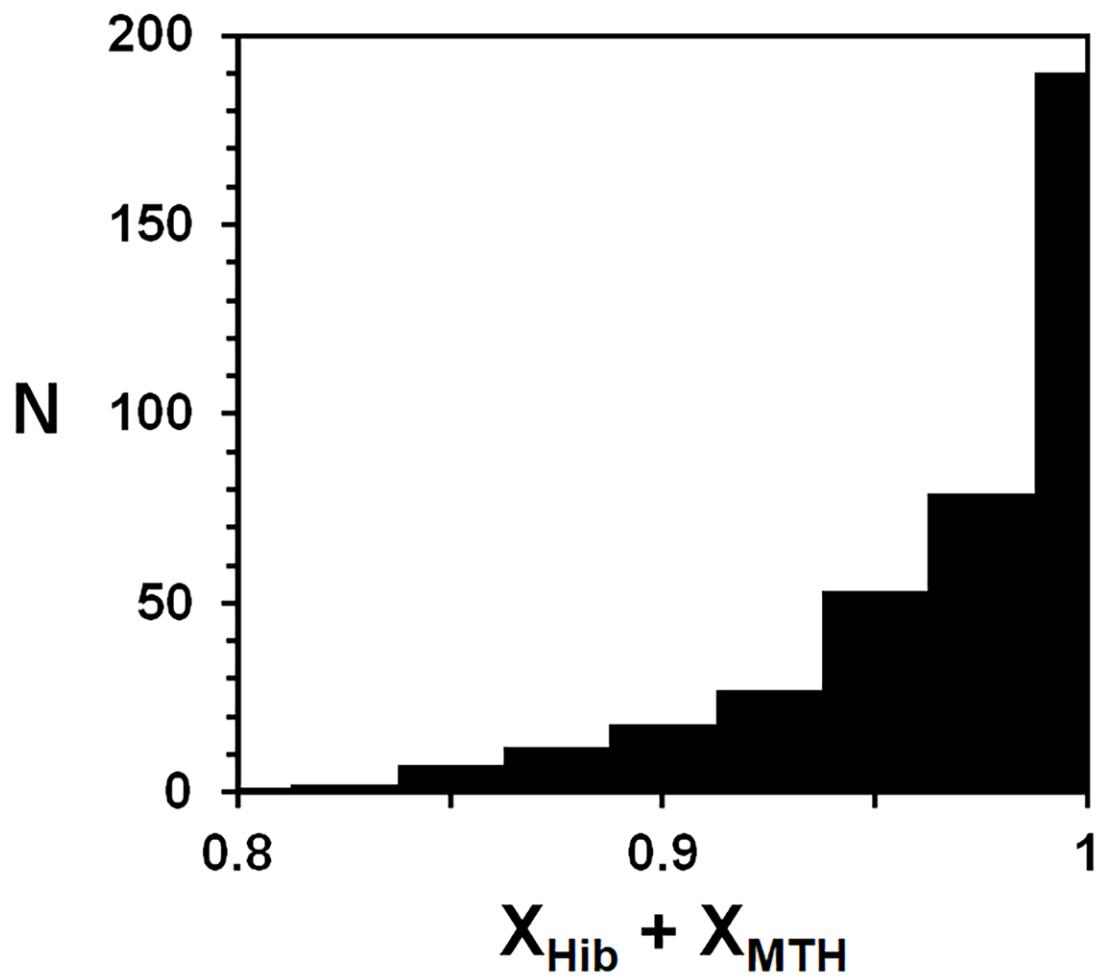


Fig. 3. Histogram of summed hibonite (Hib) + MTH components in natural hibonites. 94% have sums ≥ 0.9 , indicating that components such as Si, Fe, and V are minor. Data sources and filtering of analyses as in Fig. 1.

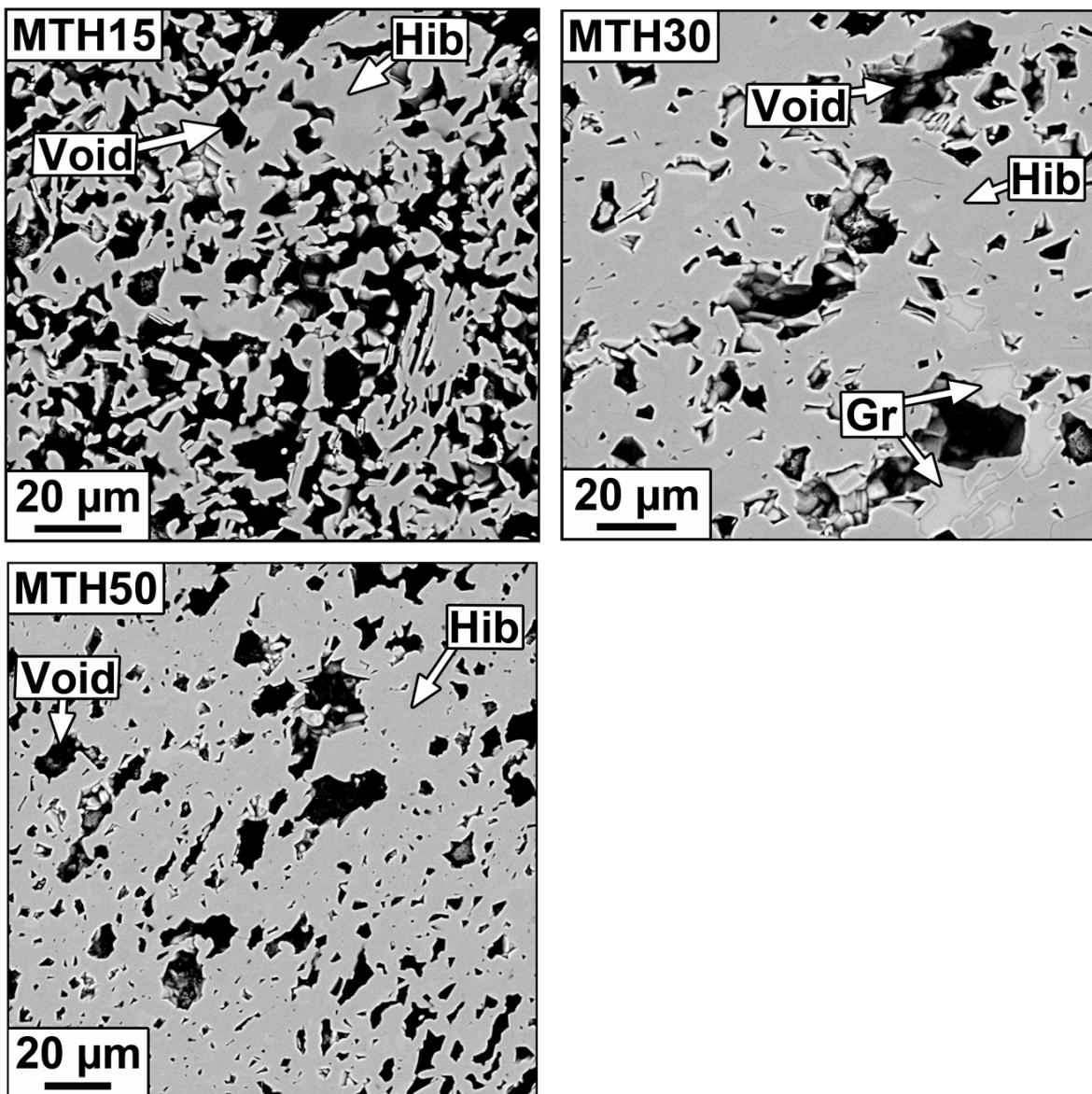


Fig. 4. Back-scattered electron (BSE) images of the three synthesized hibonite (Hib) compositions. Note that well-defined crystal shapes are readily apparent in all three images. Other abbreviations: Gr – grossite

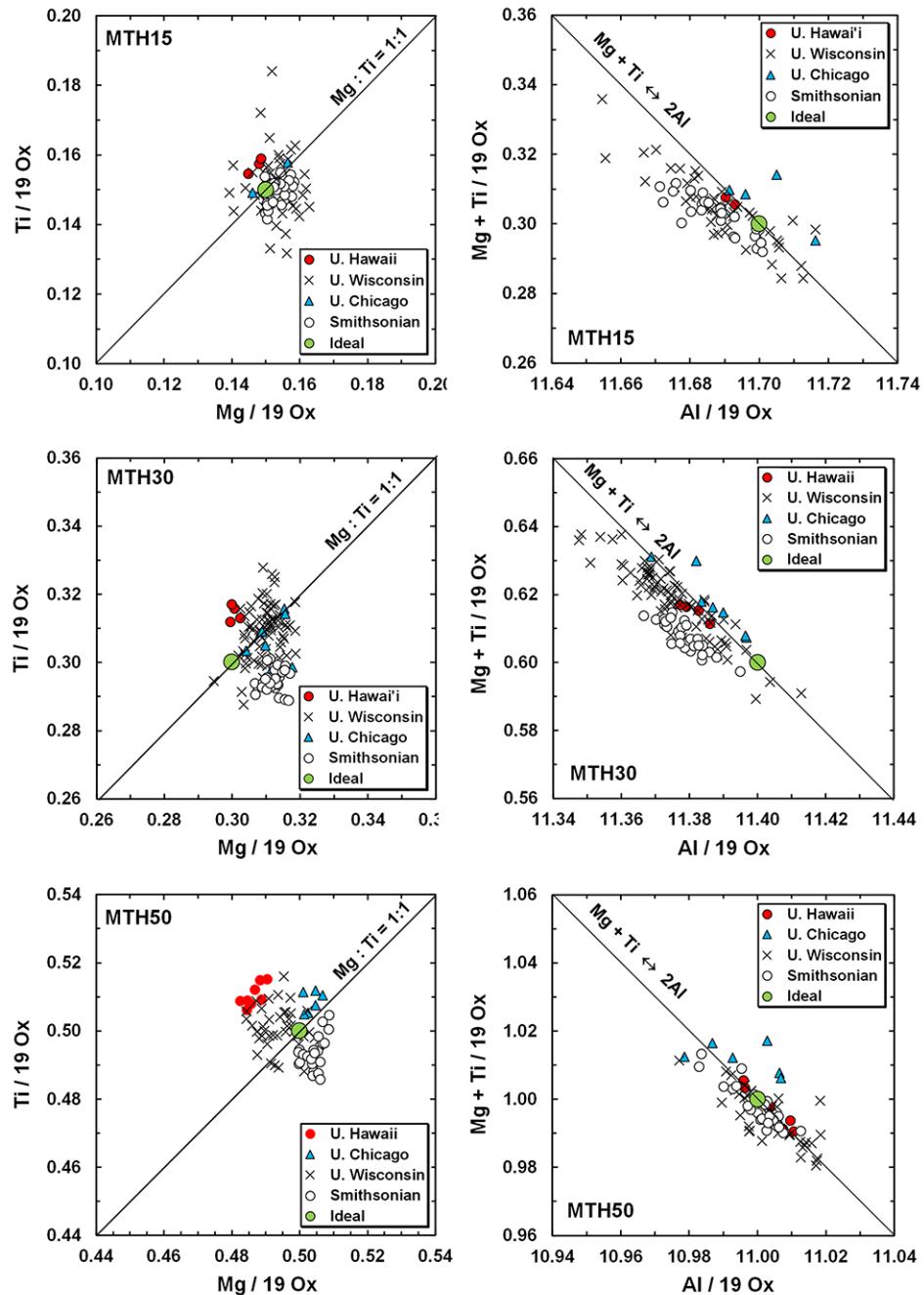


Fig. 5. Stoichiometry diagrams for the three synthesized hibonite compositions, with EPMA data from each of the labs identified.

Madagascar Hibonite

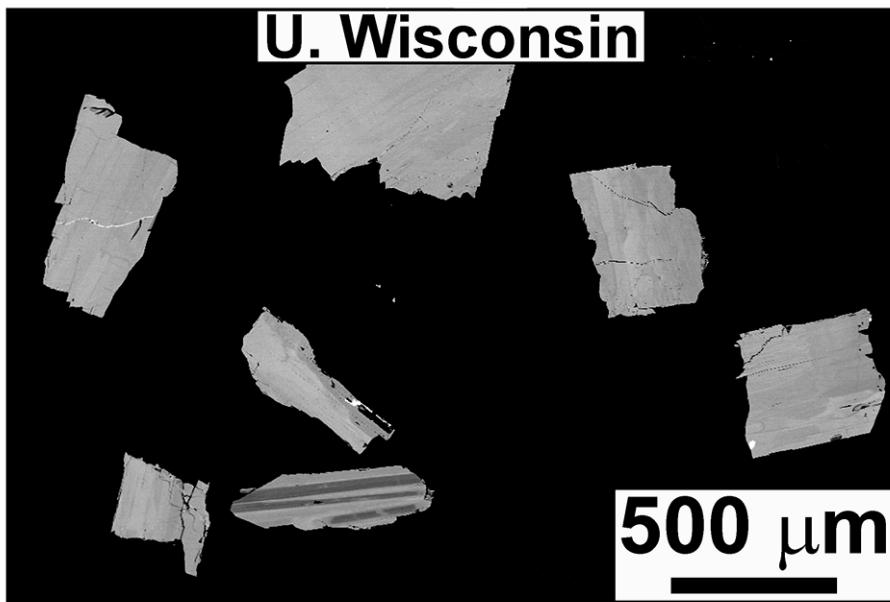
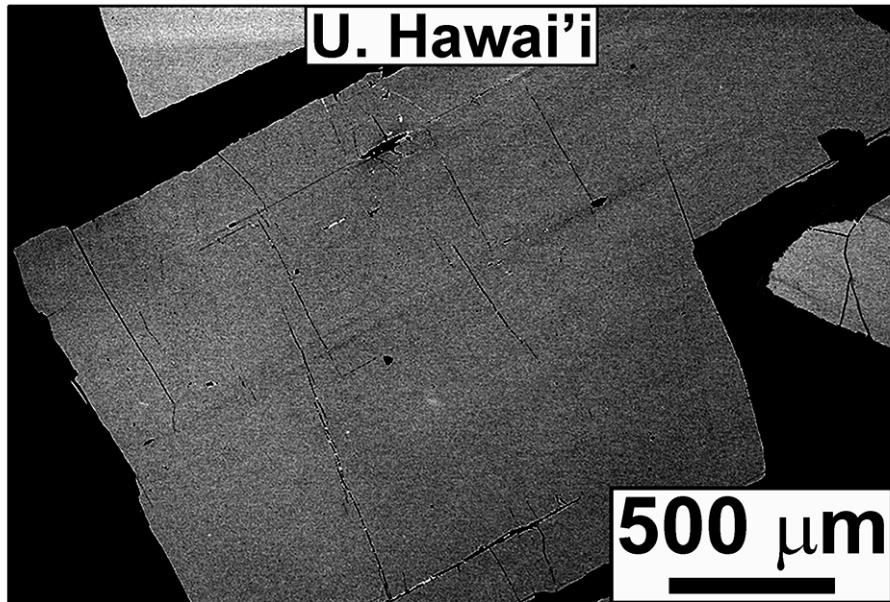
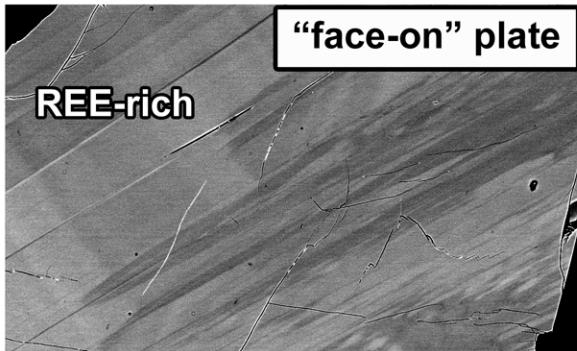
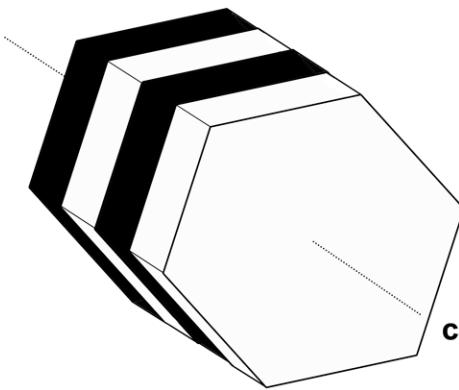





Fig. 6. BSE image of Madagascar hibonite grains in the standard mounts from the University of Hawai'i and University of Wisconsin SIMS labs. The variability in BSE albedo within each image is due primarily to abundance variations in the rare earth elements (REE) and thorium, from < 1 wt. % (total, as oxides) up to ~ 8 wt. %.

Madagascar Hibonite

**REE-rich and REE-poor
zones alternate along
the c-axis**

Fig. 7. Enlarged BSE images of two grains of Madagascar hibonite from the UW Standards mount, showing details of the complex zoning patterns. At right is a sketch showing a hibonite crystal with alternating of REE-rich and REE-poor layers. Seen face on, the differing layers are not visible, but seen edge-on the layers are clear.

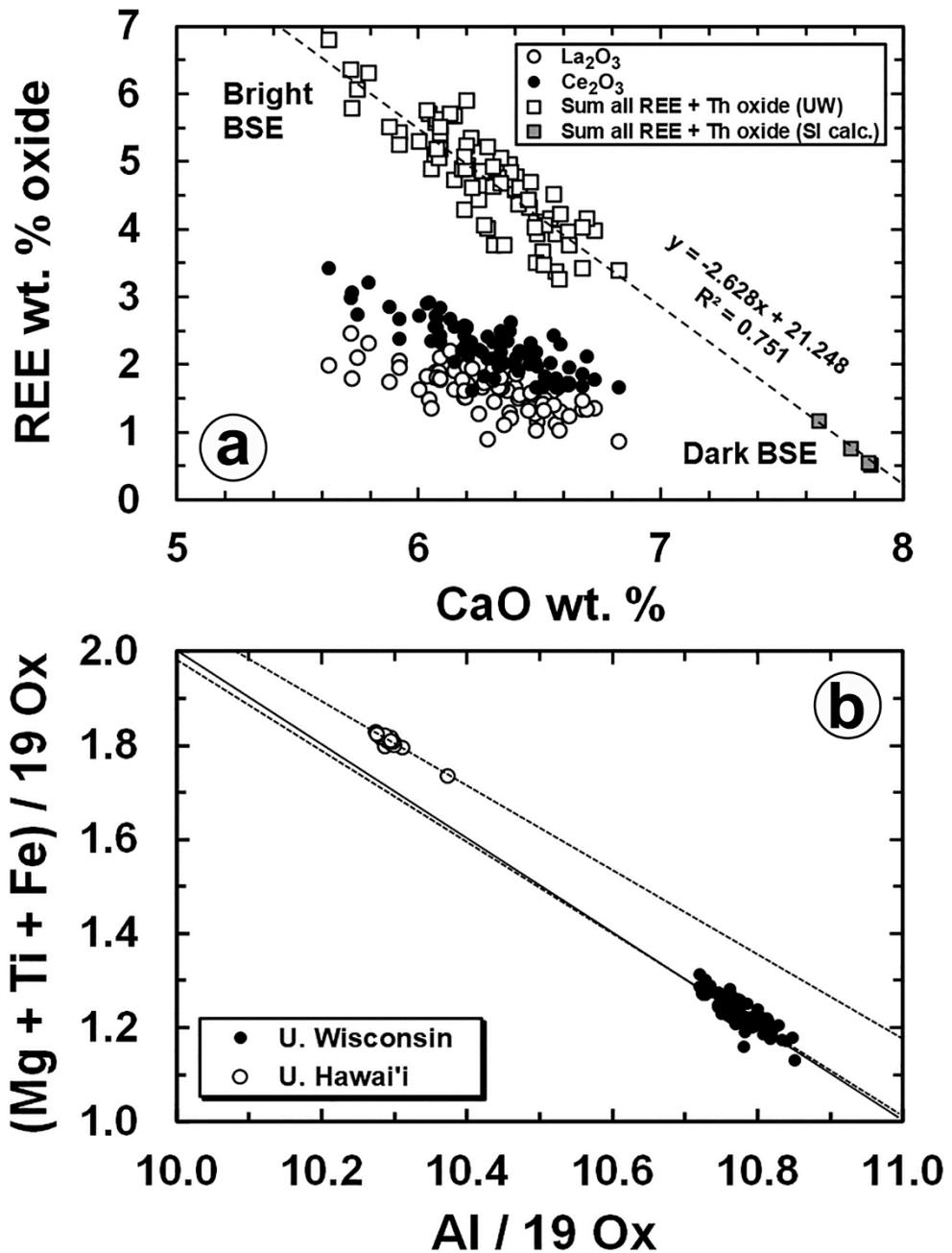


Fig. 8. (a) Plot of weight percent REE + Th oxides vs. CaO in Madagascar hibonite. The inverse correlation indicates that the REE substitute for Ca in the hibonite structure. (b) Plot of total $(\text{Mg} + \text{Ti} + \text{Fe})$ cations vs. Al cations, all as cations per 19 oxygens. The solid black line marks the ideal correlation $M^{2+} + M^{4+} \leftrightarrow 2M^{3+}$. The dashed lines indicate the best fit correlation line for each data set. The Wisconsin data set closely matches the ideal correlation line (solid line), whereas the Hawai'i data set does not. The Smithsonian data are based on WDS analyses where the total REE + Th was calculated by difference from 100% in the analytical sum.

Univ. of Wisconsin Data

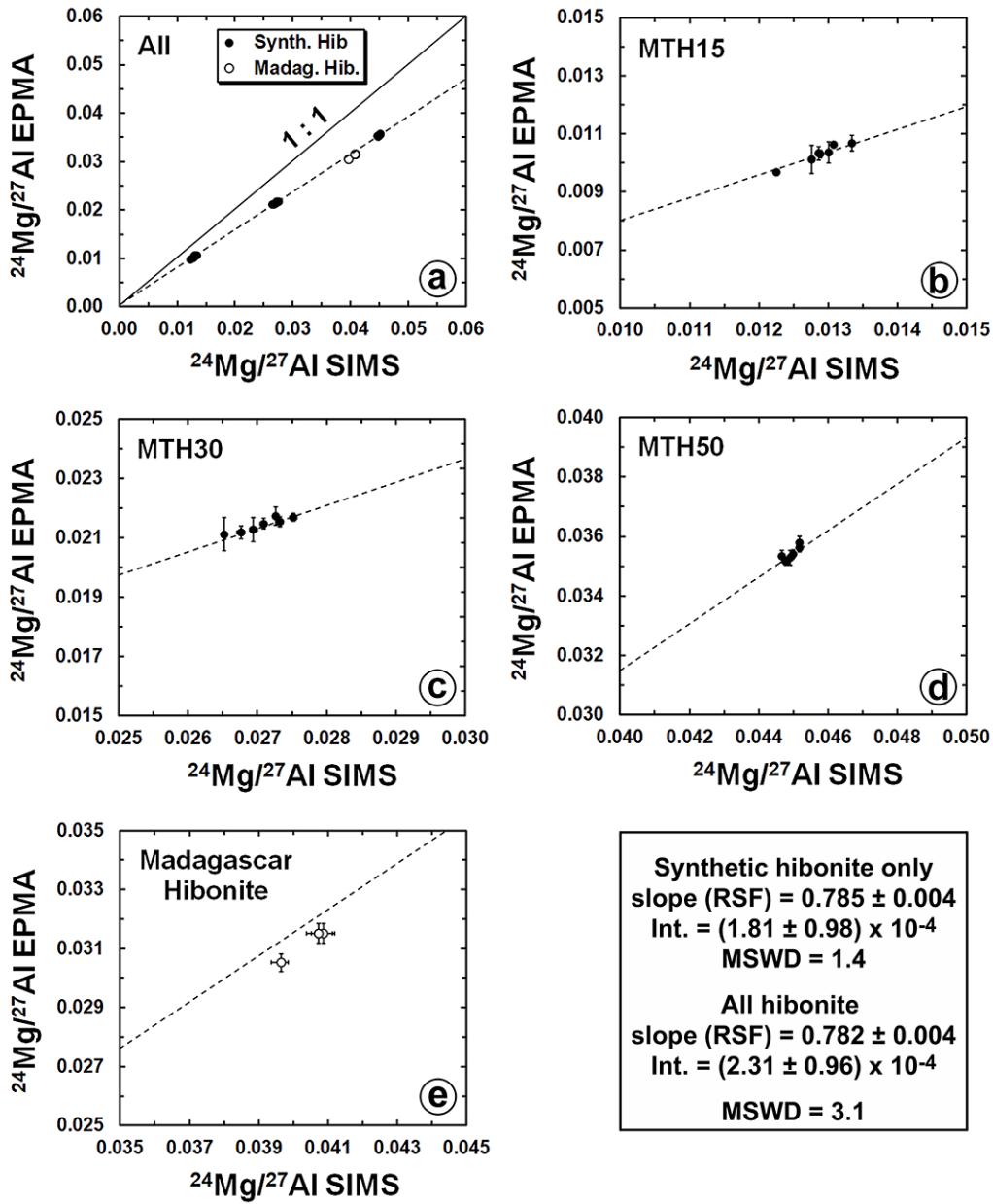


Fig. 9. Plot of EPMA $^{24}\text{Mg}/^{27}\text{Al}$ vs. SIMS $^{24}\text{Mg}/^{27}\text{Al}$, using Univ. of Wisconsin data only. The correlation line (dashed) is based on the synthetic hibonite data only. The slope of the correlation line gives the Relative Sensitivity Factor. All errors are 2σ . The solid reference line in (a) marked 1:1 is the expected correlation if the RSF is 1.0. The RSFs given at bottom right are calculated two ways: using only the synthetic hibonite data (upper) and using all data including the Madagascar hibonite data (lower).

Univ. of Hawai'i Data

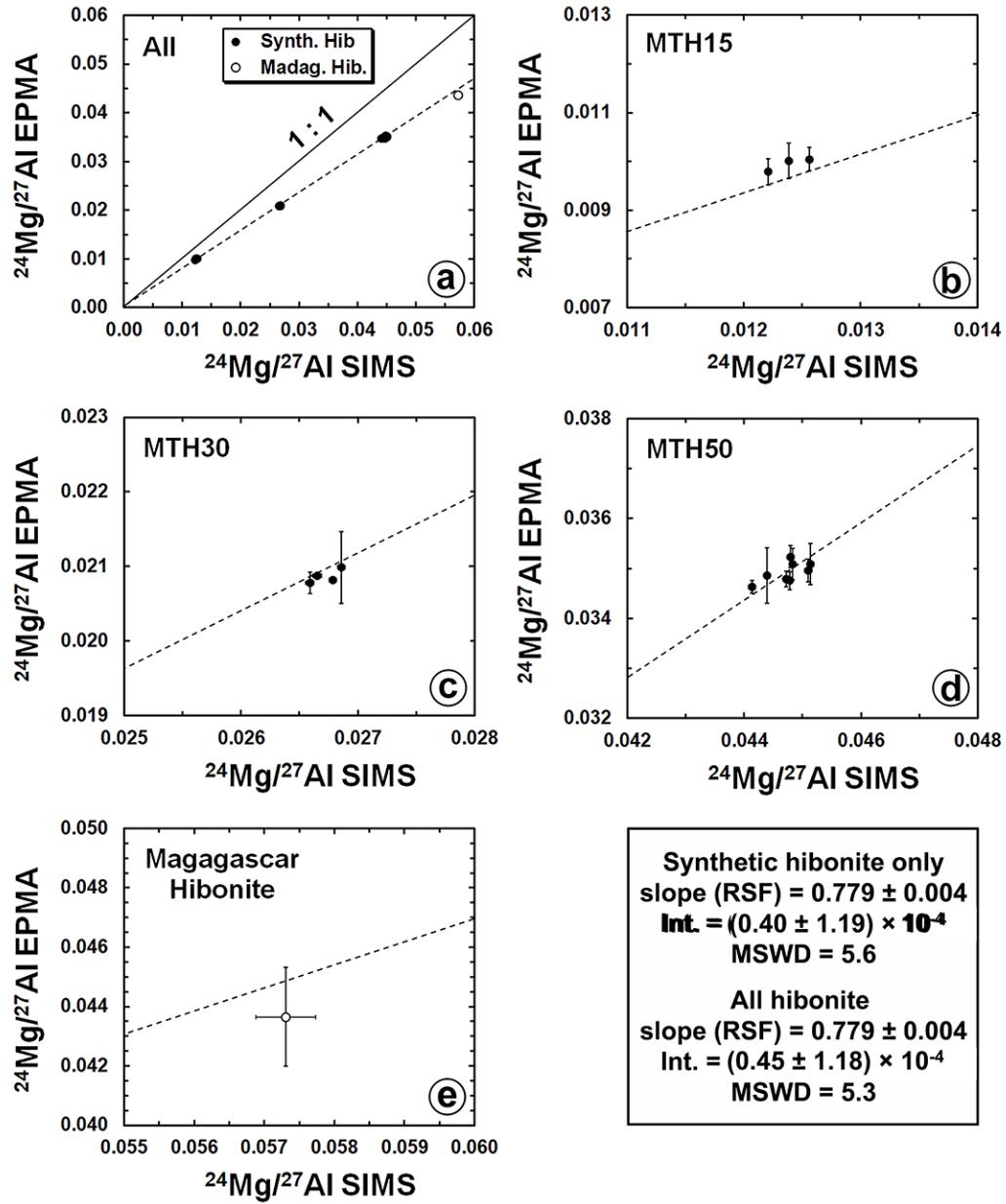


Fig. 10. Plot of EPMA $^{24}\text{Mg}/^{27}\text{Al}$ vs. SIMS $^{24}\text{Mg}/^{27}\text{Al}$, using Univ. of Hawai'i data only. All notations as in Fig. 9.

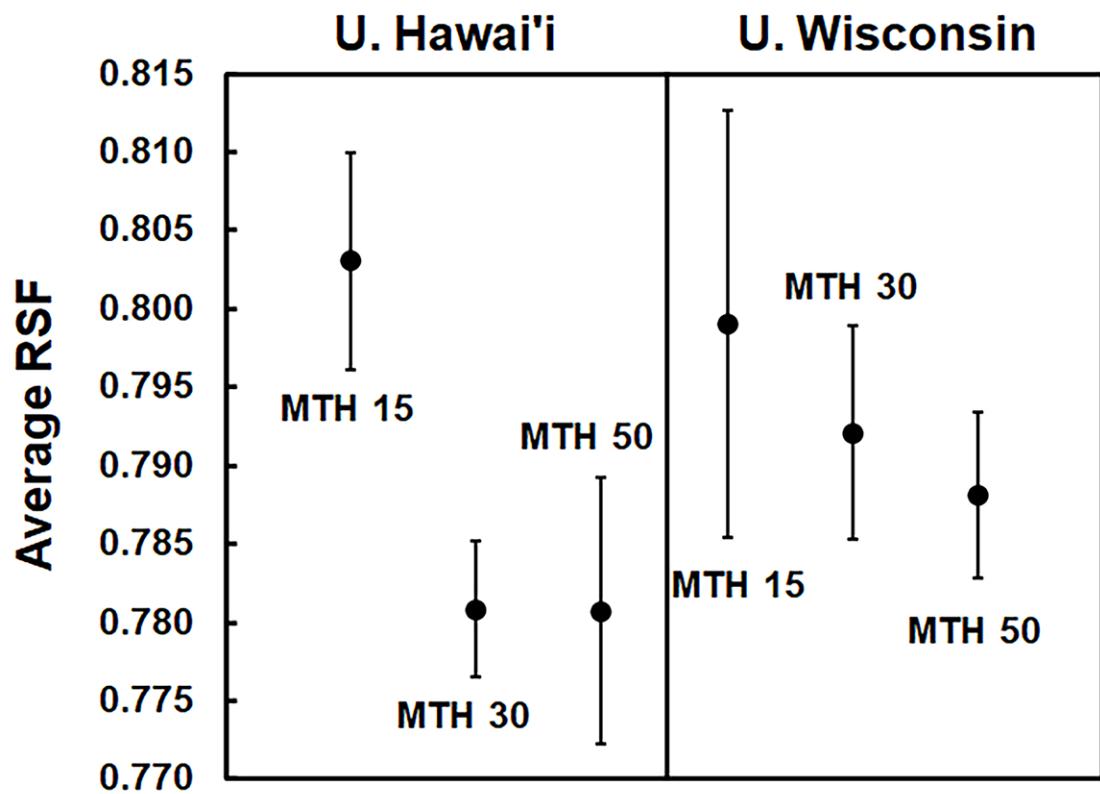


Fig. 11. RSF determinations for individual synthetic hibonite compositions. Values are averages of individual measurements (EPMA/SIMS) and are not based on slopes. Error bars are 2 SE.

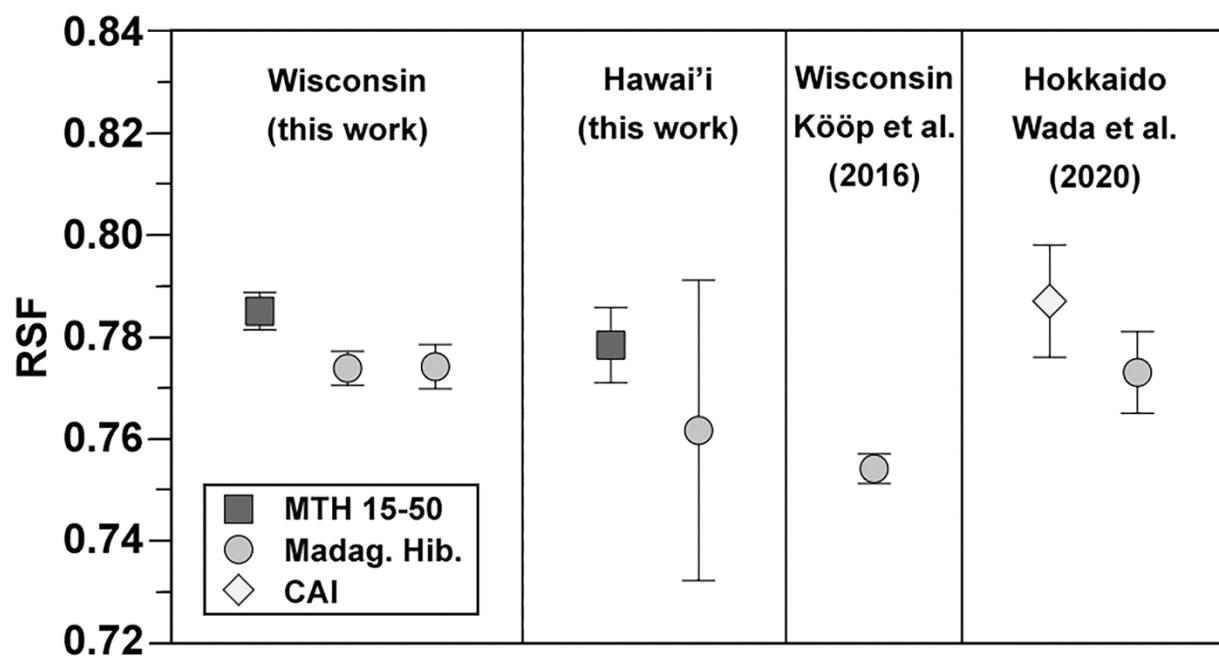


Fig. 12. Summary of hibonite RSF results from this work and from recent literature.

Allende TS25-F1 Fluffy Type A CAI

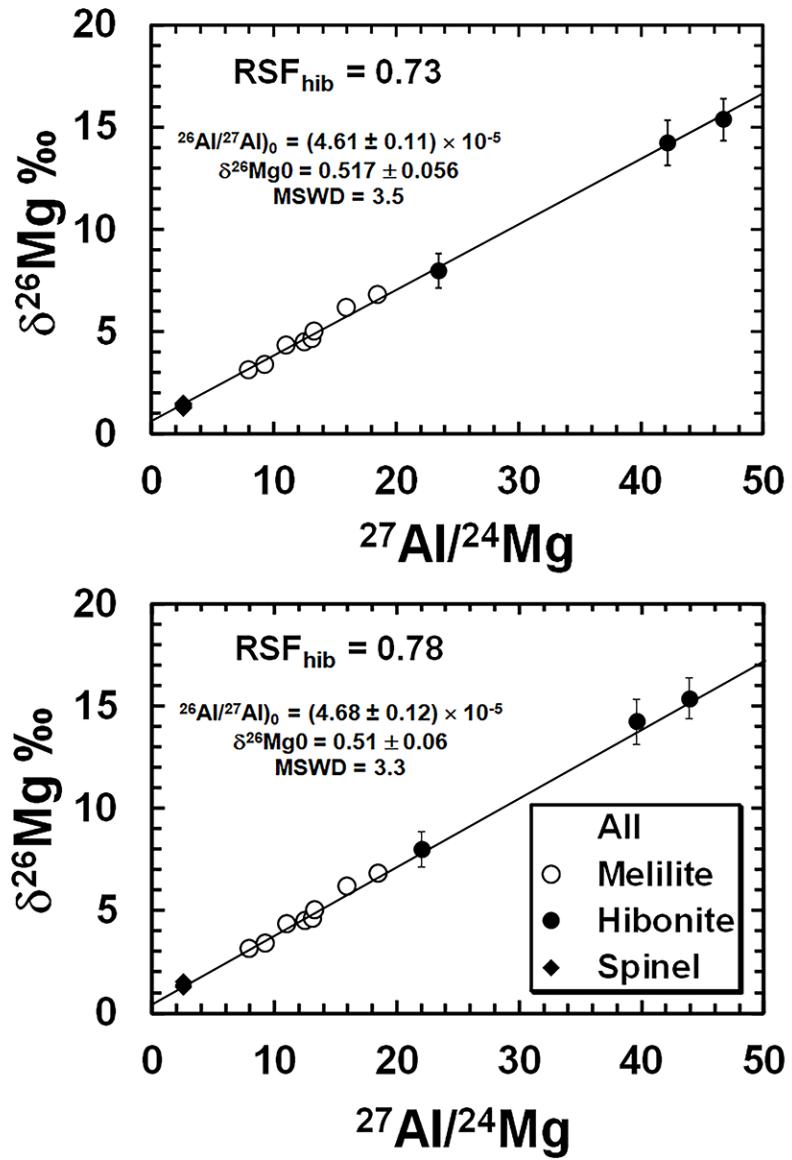


Fig. 13. Plot of $^{27}\text{Al}/^{24}\text{Mg}$ vs. $\delta^{26}\text{Mg}$, for an Allende CAI, showing a 1½% difference in slope caused by a ~6% difference in the RSF used to calculate $^{27}\text{Al}/^{24}\text{Mg}$. The reason a 6% difference in RSF only leads to a 1.5% difference in slope is in part because there are only three hibonite data points compared to 10 spinel + melilite points, and in part because the hibonite points have larger uncertainties in $\delta^{26}\text{Mg}$, so they have less weight in the IsoPlot regression.

Appendix 1: University of Wisconsin summary data

	$^{24}\text{Mg}/^{27}\text{Al}$ EPMA	$^{24}\text{Mg}/^{27}\text{Al}$ 2 SE	$^{24}\text{Mg}/^{27}\text{Al}$ SIMS	$^{24}\text{Mg}/^{27}\text{Al}$ 2SE	$^{27}\text{Al}/^{24}\text{Mg}$ EPMA	$^{27}\text{Al}/^{24}\text{Mg}$ 2SE	$^{27}\text{Al}/^{24}\text{Mg}$ SIMS	$^{27}\text{Al}/^{24}\text{Mg}$ 2 SE
MTH15	0.01035	0.00014	0.01301	0.00003	96.66928	1.26500	76.88378	0.46130
MTH15	0.01032	0.00021	0.01286	0.00004	96.92236	1.91548	77.74323	0.46646
MTH15	0.01067	0.00024	0.01335	0.00004	93.76903	2.14680	74.92872	0.44957
MTH15	0.01063	0.00015	0.01308	0.00004	94.10931	1.29895	76.45015	0.45870
MTH15	0.01030	0.00013	0.01288	0.00003	97.09984	1.24188	77.64178	0.46585
MTH15	0.00969	0.00023	0.01225	0.00003	103.32604	2.41243	81.64334	0.48986
MTH15	0.01011	0.00015	0.01276	0.00004	98.91154	1.47982	78.34862	0.47009
MTH30	0.02169	0.00009	0.02752	0.00009	46.10266	0.18333	36.33477	0.21801
MTH30	0.02154	0.00010	0.02732	0.00009	46.42834	0.20969	36.60035	0.21960
MTH30	0.02147	0.00019	0.02709	0.00009	46.57784	0.40946	36.91527	0.22149
MTH30	0.02112	0.00012	0.02652	0.00008	47.35024	0.25690	37.71189	0.22627
MTH30	0.02119	0.00015	0.02676	0.00008	47.19742	0.32158	37.36551	0.22419
MTH30	0.02128	0.00022	0.02694	0.00008	47.00417	0.48832	37.11878	0.22271
MTH30	0.02174	0.00017	0.02727	0.00009	46.00824	0.35356	36.67653	0.22006
MTH50	0.03578	0.00019	0.04518	0.00013	27.94761	0.14485	22.13478	0.13281
MTH50	0.03515	0.00044	0.04478	0.00013	28.45180	0.35025	22.32899	0.13397
MTH50	0.03533	0.00017	0.04466	0.00013	28.30979	0.13586	22.38954	0.13434
MTH50	0.03528	0.00026	0.04491	0.00012	28.34840	0.20489	22.26642	0.13360
MTH50	0.03541	0.00037	0.04500	0.00014	28.24924	0.29747	22.22162	0.13333
MTH50	0.03562	0.00026	0.04518	0.00014	28.08002	0.20694	22.13494	0.13281

Madag. hibonite	0.03052	0.00029	0.03965	0.00020	32.77000	0.31000	25.21878	0.12474
Madag. hibonite	0.03152	0.00034	0.04087	0.00033	31.73000	0.34000	24.46774	0.19550
Madag. hibonite	0.03152	0.00034	0.04073	0.00041	31.73000	0.34000	24.55355	0.24883

RSF Method: $^{24}\text{Mg}/^{27}\text{Al}$ slope

	RSF	2 SE
(Synth. Only)	0.785	0.004
(All Data)	0.782	0.004

RSF Method: $^{27}\text{Al}/^{24}\text{Mg}$ slope

	RSF	2 SE
(Synth. Only)	0.800	0.006
(All Data)	0.802	0.006

Appendix 2: University of Hawai'i summary data

	$^{24}\text{Mg}/^{27}\text{Al}$ EPMA	$^{24}\text{Mg}/^{27}\text{Al}$ 2SE	$^{24}\text{Mg}/^{27}\text{Al}$ SIMS	$^{24}\text{Mg}/^{27}\text{Al}$ 2SE	$^{27}\text{Al}/^{24}\text{Mg}$ EPMA	$^{27}\text{Al}/^{24}\text{Mg}$ 2SE	$^{27}\text{Al}/^{24}\text{Mg}$ SIMS	$^{27}\text{Al}/^{24}\text{Mg}$ 2SE
	(mean of 3)					(mean of 3)		
MTH15	0.01001	0.00037	0.01239	0.00002	99.96080	3.65746	80.73492	0.10699
MTH15	0.01005	0.00024	0.01256	0.00002	99.56041	2.38754	79.61996	0.10697
MTH15	0.00979	0.00027	0.01221	0.00002	102.19260	2.78661	81.89367	0.10472
MTH30	0.02087	0.00003	0.02665	0.00004	47.90548	0.06192	37.51977	0.05250
MTH30	0.02078	0.00014	0.02659	0.00003	48.12421	0.32246	37.61029	0.04391
MTH30	0.02082	0.00003	0.02679	0.00003	48.02883	0.05827	37.33408	0.04241
MTH30	0.02098	0.00048	0.02686	0.00003	47.65738	1.09418	37.23146	0.03918
MTH50	0.03463	0.00013	0.04413	0.00005	28.87401	0.10926	22.65958	0.02698
MTH50	0.03479	0.00016	0.04472	0.00005	28.74591	0.13158	22.36318	0.02267
MTH50	0.03476	0.00018	0.04478	0.00004	28.77043	0.14801	22.33171	0.02159
MTH50	0.03486	0.00056	0.04440	0.00004	28.68912	0.45914	22.52456	0.01896
MTH50	0.03524	0.00022	0.04480	0.00006	28.37939	0.17480	22.32276	0.02908
MTH50	0.03509	0.00041	0.04514	0.00006	28.50068	0.33576	22.15454	0.02739
MTH50	0.03509	0.00031	0.04483	0.00004	28.50040	0.25417	22.30689	0.02038
MTH50	0.03496	0.00023	0.04510	0.00006	28.60533	0.18439	22.17317	0.02883
	mean of 26		mean of 5		mean of 26		mean of 5	
Madag. hibonite	0.04365	0.00166	0.05731	0.00043	22.91000	0.87000	17.44950	0.13014

RSF Method: $^{24}\text{Mg}/^{27}\text{Al}$ slope		
	RSF	2SE
(Synth. Only)	0.779	0.004
(All Data)	0.779	0.004
RSF Method: $^{27}\text{Al}/^{24}\text{Mg}$ slope		
	RSF	2 SE
(Synth. Only)	0.780	0.004
(All Data)	0.780	0.004
