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Abstract. We introduce three new nonlinear continuous data assimilation

algorithms. These models are compared with the linear continuous data as-

similation algorithm introduced by Azouani, Olson, and Titi (AOT). As a
proof-of-concept for these models, we computationally investigate these algo-

rithms in the context of the 1D Kuramoto-Sivashinsky equations. We observe

that the nonlinear models experience super-exponential convergence in time,
and converge to machine precision significantly faster than the linear AOT al-

gorithm in our tests. For both simplicity and completeness, we provide the key

analysis of the exponential-in-time convergence in the linear case.

1. Introduction. Recently, a promising new approach to data assimilation was
pioneered by Azouani, Olson, and Titi [5, 6] (see also [17, 62, 94] for early ideas in
this direction). This approach, which we call AOT data assimilation or the linear
AOT algorithm, is based on feedback control at the partial differential equation
(PDE) level, described below. In the present work, we propose several nonlinear
data assimilation algorithms based on the AOT algorithm, that exhibit significantly
faster convergence in our simulations; indeed, the convergence rate appears to be
super-exponential.

Let us describe the general idea of the AOT algorithm. Consider a dynamical
system in the form,

du

dt
= F (u),

u(0) = u0.

(1)

For example, this could represent a system of partial differential equations mod-
eling fluid flow in the atmosphere or the ocean. A central difficulty is that, even if
one were able to solve the system exactly, the initial data u0 is largely unknown.
For example, in a weather or climate simulation, the initial data may be measured
at certain locations by weather stations, but the data at locations in between these
stations may be unknown. Therefore, one might not have access to the complete
initial data u0, but only to the observational measurements, which we denote by
Ih(u0). (Here, Ih is assumed to be a linear operator that can be taken, for example,
to be an interpolation operator between grid points of maximal spacing h, or as an
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orthogonal projection onto Fourier modes no larger than k ∼ 1/h.) Moreover, the
data from measurements may be streaming in moment by moment, so in fact, one of-
ten has the information Ih(u) = Ih(u(t)), for a range of times t. Data assimilation is
an approach that eliminates the need for complete initial data and also incorporates
incoming data into simulations. Dated back to the 1970s, the technique called nudg-
ing or Newtonian relaxation were discussed and analyzed in simpler cases in [3, 63]
and the references therein. Essentially the idea was to incorporate the coarse mesh
(low-resolution) measurements into certain dynamical systems in the form of a linear
feedback control term. Other classical approaches to data assimilation are typically
based on the Kalman filter. See, e.g., [4, 31, 74, 84] and the references therein
for more information about the Kalman filter. In 2014, an entirely new approach
to data assimilation—the AOT algorithm—was introduced in [5, 6]. This new ap-
proach overcomes some of the drawbacks of the Kalman filter approach (see, e.g.,
[13] for further discussion). Moreover, it is implemented directly at the PDE level
and is valid for a wide class of dissipative dynamical systems. The approach has been
the subject of much recent study in various contexts. For example, it was adapted
to the setting of geophysical convection in [7, 35, 36, 37, 39, 40, 41, 42, 96, 97],
weather models in [2, 32, 33, 60, 61], magnetohydrodynamics (MHD) in [13, 64],
porous media in [8, 89], the surface quasi-geostrophic (SQG) equations in [71, 72],
and sabra shell models in [24]. It has also been studied in the context of turbulence
models or modified versions of Navier–Stokes [1, 18, 43, 54, 79, 82, 105], stochastic
models or noisy observations [9, 12, 20], moving observers, [11, 10, 51] recovery and
sensitivity of parameters, [19, 21, 38, 90].

Discrete-in-time observations and other discretizations were studied in [20, 47,
67, 83]. The algorithm in has been studied in the 3D case in [15, 82]. The algo-
rithm itself has been studied, modified, generalized, or improved in various works,
including [14, 23, 53, 93]. Computational studies of the AOT algorithm appeared
in [26, 27, 52, 55, 80, 83, 99].

The following system was proposed and studied in [5, 6]:

dv

dt
= F (v) + µ(Ih(u)− Ih(v)),

v(0) = v0,

(2)

where µ is called the nudging parameter whose value has significant influence on the
performance of the nudging technique/AOT algorithm as well as in our nonlinear
data assimilation. The central message of the current paper is the emphasis on
the nonlinearity in the nudging/data assimilation term and details discussions and
analysis on the nudging parameters for more complicated dynamical systems will be
the contents of a forthcoming paper. The above system, used in conjunction with
(1), is the AOT algorithm for data assimilation of system (1). In the case where
the dynamical system (1) is the 2D Navier-Stokes equations, it was proven in [5, 6]
that, for any divergence-free initial data v0 ∈ L2, ∥u(t)−v(t)∥L2 → 0, exponentially
in time, under the assumption on the interpolation operator Ih(·) either as

∥ϕ− Ih(ϕ)∥L2 ≤ ch∥ϕ∥H1 , (3)

for all ϕ ∈ H1, or, as

∥ϕ− Ih(ϕ)∥L2 ≤ ch∥ϕ∥H1 + ch2∥ϕ∥H2 , (4)

for all ϕ ∈ H2. In particular, even without knowing the initial data u0, the solution u
can be approximately reconstructed for large times. We emphasize that, as noted in



NONLINEAR DATA ASSIMILATION 331

[5], the initial data for (2) can be any L2 function, even v0 = 0. Thus, no information
about the initial data is required to reconstruct the solution asymptotically in time.

The current work is based on the authors’ preliminary manuscript [78], in which
the following new algorithm was invented for the first time, and which has inspired
subsequent work such as [34, 64]. Our principal goal in the current article, is to
provide the full scope, after overcoming some computational difficulty encountered
in [78], of a new class of nonlinear algorithms for data assimilation. The main idea
is to use a nonlinear modification of the AOT algorithm for data assimilation to try
to drive the algorithm toward the true solution at a faster rate. In particular, for a
given, possibly nonlinear function N , we consider a modification of (2) in the form:

dv

dt
= F (v) + µN (Ih(u)− Ih(v)),

v(0) = v0.

(5)

To begin, we first focus on the following form of the nonlinearity:

N1(x)

x

N (x) = N1(x) := x|x|−γ , x ̸= 0, 0 < γ < 1, (6)

with N1(0) = 0.

Remark 1.1. Note that by formally setting γ = 0, one recovers the linear AOT
algorithm (2). The main idea behind using such a nonlinearity is that, when Ih(u)
is close to Ih(v), the solution v is driven toward the true solution u more strongly
than in the linear AOT algorithm. In particular, for any c > 0, if x > 0 is small
enough, then N1(x) > cx, so no matter how large µ is chosen in the linear AOT
algorithm, the nonlinear method with N = N1 will always penalize small errors
more strongly.

As a preliminary test of the effectiveness of this approach, in this work we demon-
strate the nonlinear data assimilation algorithm (5) on a one-dimensional PDE;
namely, the Kuramoto-Sivashinsky equation (KSE), given in dimensionless units
by:

ut + uux + λuxx + uxxxx = 0,

u(x, 0) = u0(x),
(7)

in a periodic domain Ω = [−L/2, L/2] = R/LZ of length L. Here, λ > 0 is a dimen-
sionless parameter. For simplicity, we assume that the initial data is sufficiently

smooth (made more precise below) and mean-free, i.e.,
∫ L/2

−L/2
u0(x) dx = 0, which

implies
∫ L/2

−L/2
u(x, t) dx = 0 for all t ≥ 0. This equation has many similarities with

the 2D Navier-Stokes equations. It is globally well-posed; it has chaotic large-time
behavior; and it has a finite-dimensional global attractor, making it an excellent
candidate for studying large-time behavior. It governs various physical phenomena,
such as the evolution of flame-fronts, the flow of viscous fluids down inclined planes,
and certain types of crystal growth (see, e.g., [77, 101, 102]). Much of the theory
of the 1D Kuramoto-Sivashinsky equation was developed in the periodic case in
[29, 30, 59, 103, 104, 68] (see also [5, 16, 25, 46, 48, 49, 57, 58, 66, 69, 70, 73, 77,
85, 86, 92, 95, 101, 102, 65]). For a discussion of other boundary conditions for (7),
see, e.g., [77, 101, 100, 98, 81]. Discussions about the numerical simulations of the
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KSE, can be found in, e.g., [44, 50, 45, 87, 75]. Data assimilation in several different
contexts for the 1D Kuramoto-Sivashinsky equation was investigated in [69, 88, 91],
who also recognized its potential as an excellent test-bed for data assimilation.

Using the nonlinear data assimilation algorithm (5) in the setting of the
Kuramoto-Sivashinsky equation, with the choice (6) for the nonlinearity for some
0 < γ < 1, we arrive at:

vt + vvx + λvxx + vxxxx = µ sign(Ih(u)− Ih(v))|Ih(u)− Ih(v)|1−γ ,

v(x, 0) = v0(x).
(8)

We take Ih to be either orthogonal projection onto the low Fourier modes k with
k ≤ c/h, for some constant c > 0, or linear interpolation of nodal observations
separated by a distance h > 0. Other physically relevant choices of Ih, such as local
volume averages, have been considered in the case of the linear AOT algorithm (see,
e.g., [5, 55]).

Remark 1.2. We emphasize a crucial point of this work. Indeed, the initial impres-
sion of some of our computational work might show that the linear AOT algorithm
outperforms our newly-introduced nonlinear DA algorithm. However, we point out
that the faster convergence (at exponential rate) of the linear AOT is due to the
optimal µ-value, which in practice is not easily obtained. Thus, in view of

1. the convergence at the same precision level, as well as the super-exponential
rate of our nonlinear algorithm, without any optimization or fine-tuning of
the parameter µ;

2. the significantly fast convergence of our nonlinear algorithm in comparison
with that of the linear AOT, both with the same µ-value;

3. the fact that this new nonlinear scheme opens the door to a dynamic µ that
may depend on the measured error;

we may infer the nontrivial superiority of the new nonlinear algorithm over the
linear AOT algorithm.

Remark 1.3. We note that we performed calculations with nodal interpolation
(i.e., Ih is piecewise-linear interpolation on a small number of nodes in physical
space), but the results were very similar; hence they are not reproduced here for
the sake of brevity.

Remark 1.4. We note that in our convergence plots, we plot with respect to
simulation time, as opposed to CPU time. This is due to the fact that our codes
make no significant effort to optimize calculations. However, we did track CPU
time on every simulation, and the differences in the plots using CPU time instead
of simulation time were minor and showed no major qualitative differences. Hence,
they are not reproduced here for the sake of brevity.

Remark 1.5. Nonlinear AOT-style data assimilation was first introduced by the
authors in a preprint [78] of this paper, originally released on the arXiv [https:
//arxiv.org/abs/1703.03546] in March 2017, where the super-exponential con-
vergence of the scheme was observed for the first time. For various reasons, the paper
was not submitted until much later. We note that several other works [64, 34, 22]
have been released since then (which cited our original preprint), continuing in-
vestigations into nonlinear data assimilation. Moreover, [34] only investigates the
Lorenz equations (not any partial differential equations), and [64, 22] use a different
form of the nonlinearity involving an (inherently nonlocal) L2 norm rather than an

https://arxiv.org/abs/1703.03546
https://arxiv.org/abs/1703.03546
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absolute value. Therefore, to the best of our knowledge, the present work is the only
one to investigate nonlinear AOT-style data assimilation using a local nonlinearity.

2. Preliminaries. In this work, we compute norms of the error given by the dif-
ference between the data assimilation solution and the reference solution. We focus
on the L2 and H1 norms, defined by

∥u∥2L2 =
1

L

∫ L/2

−L/2

|u(x)|2 dx, ∥u∥H1 = ∥∇u∥L2 .

(Note that, by Poincaré’s inequality, ∥u∥L2 ≤ C∥u∥H1 , which holds on any
bounded domain, ∥u∥H1 is indeed a norm.)

We briefly mention the scaling arguments used to justify the form (7). For a > 0,
b > 0, L > 0, consider an equation in the form

ut + uux + auxx + buxxxx = 0, x ∈ [−L/2, L/2]. (9)

Choose time scale T = L4/b, characteristic velocity U = L/T = b/L3, and
dimensionless number λ = aL2/b. Write u′ = u/U , x′ = (x + L/2)/L, t′ = t/T ,
where the prime denotes a dimensionless variable. Then

U

T
u′t′ +

U2

L
u′u′x′ +

aU

L2
u′x′x′ +

bU

L4
u′x′x′x′x′ = 0, x′ ∈ [0, 1] (10)

Multiply by L4/(bU). The equation in dimensionless form then becomes

u′t′ + u′u′x′ + λu′x′x′ + u′x′x′x′x′ = 0, x′ ∈ [0, 1]. (11)

Thus, λ acts as a parameter which influences the dynamics, in the same way that
the Reynolds number influences dynamics in turbulent flows.

Another approach is to set ℓ = (b/a)1/2, T = ℓ4/b = b/a2, and U = ℓ/T =
a3/2/b1/2. Then, we define dimensionless quantities (denoted again by primes)
u′ = u/U , x′ = (x+ L/2)/ℓ, t′ = t/T . The equation now takes the form

U

T
u′t′ +

U2

ℓ
u′u′x′ +

aU

ℓ2
u′x′x′ +

bU

ℓ4
u′x′x′x′x′ = 0, x′ ∈ [0, Lℓ ]. (12)

Multiplying by ℓ4/(bU) yields

u′t′ + u′u′x′ + u′x′x′ + u′x′x′x′x′ = 0, x′ ∈ [0, Lℓ ]. (13)

Thus, equation (12) is similar to equation (10), with λ = 1, except that the
dynamics are influenced by the dimensionless parameter L/ℓ. In particular, the dy-
namics can be thought of as influenced by parameter λ with L fixed, or equivalently
influenced by the length of the domain L with λ fixed, where λ ∼ (L/ℓ)2. In this
work, for the sake of matching the initial data used in [76], we choose the domain
to be [−16π, 16π], so L = 32π is fixed, and we let λ be the parameter affecting the
dynamics.

Next, we summarize and specify the well-posedness and regularity results of
system 7 from the references listed in the previous section. We also state the main
theorems regarding the exponential-in-time convergence in L2- and H1-norms of the
linear AOT data assimilation solution to that of the reference solution, of which the
proof will be given in Section 4, which is similar to the proof of null controlability
given in [88]. Note that the global existence, uniqueness, and convergence of the
nonlinear schemes (5), (8), etc., presented here for the KSE are still open. However,
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we also note that very recently in [22], super-exponential convergence for a related1

nonlinear data assimilation scheme was rigorously established in the context of the
Navier-Stokes equations.

We first state the frequently-used Agmon’s inequality in one dimension. For
ψ ∈ H1, there exists some constant K such that

∥ψ∥2L∞ ≤ K∥ψ∥L2∥ψ∥H1 . (14)

Next, we define the weak and strong solutions of system 7 as follows.

Definition 2.1. For mean-free initial data u0 = u(0) ∈ L2, we say u(t) is a weak
solution to system 7 on the time interval [0, T ), T > 0, if

u ∈ L∞(0, T ;L2) ∩ L2(0, T ;H2),

and if it also satisfies the following weak formulation for the test function ϕ ∈ H2:

d

dt
(u, ϕ)− 1

2
(u2, ϕx) + λ(u, ϕxx) + (uxx, ϕxx) = 0.

If we further assume u0 ∈ H1, then we say u(t) is a strong solution to system 7,
if

u ∈ L∞(0, T ;H1) ∩ L2(0, T ;H3).

We state the following well-posedness and regularity results regarding system 7.
Global well-posedness was proved in [103] (see also [16, 56] and the references
therein). Also, by Theorem 3.1 of [28], the Gevrey norm is uniformly bounded
in time, which automatically implies a uniform bound on the L∞ norm and all
Sobolev norms (see also [29, 59] and the references therein).

Theorem 2.2. For all T > 0 and mean-free initial condition u(·, 0) = u0 ∈ H1,
there exists a unique strong solution u(t) defined on the time interval [0, T ) as in
Definition 2.1, to systems 7. If we further assume u0 ∈ Hk for any k ∈ N+, then
the solution

u ∈ L∞(0, T ;Hk) ∩ L2(0, T ;Hk+2).

Moreover, the Hk-norms (k=1,2,. . . ) are all bounded uniformly, i.e., indepen-
dent of time T .

By similar arguments from the reference mention above Theorem 2.2, which we
omit for the sake of simplicity, we have the well-posedness results of the linear AOT
data assimilation equation of the 1D Kuramoto-Sivashinsky equation as follows.

Theorem 2.3. For all T > 0 and for (smooth) initial condition v(·, 0) = v0 = 0,
there exists a unique strong solution (defined analogously to Definition 2.1) v(t) ∈
L∞([0, T ], H1) ∩ L2([0, T ], H3) to systems 8 with γ = 0.

Our main convergence results for linear AOT are the following theorems.

Theorem 2.4. Let γ = 0, i.e., consider the linear AOT case. Suppose µ > C(λ2+
∥u∥2L∞(0,∞;H1)) and h > 0 is such that h4µ < c, where c, C are absolute constants

(determined below). Suppose Ih satisfies condition 3. Then

lim
t→∞

∥u(t)− v(t)∥L2 = 0

1In [22], the authors use a nonlinearity of the form N (u) = βu + µu∥u∥−γ

L2 , whereas this

nonlinearity in the present work does not involve an L2 norm, only an absolutle value. Note also
that [64] used an L2 norm rather than an absolute value.
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exponentially fast in time, where u(t), v(t) are solutions to (7) and (8), respectively,
for any mean-free initial data u0, v0 ∈ L2.

Theorem 2.5. Under the same assumption of Theorem (2.4), and if we further
assume

µ > C(λ2 + ∥u∥2L∞(0,∞;H1)),

and h is such that

h2µ < min
{1

2
,
λ1
8c

}
,

where c, C are absolute constants, and with Ih satisfying condition 4, then, we have

lim
t→∞

∥u(t)− v(t)∥H1 = 0

exponentially fast in time, where u(t), v(t) are solutions to (7) and (8), respectively,
respectively, for any mean-free initial data u0, v0 ∈ H1.

3. Computational results. In this section, we demonstrate some computational
results for the nonlinear data assimilation algorithm given by (8).

3.1. Numerical methods. It was observed in [55] that no higher-order multi-
stage Runge-Kutta-type method exists for solving (8) due to the need to evaluate
at fractional time steps, for which the data Ih(u) is not available. Therefore, we
use a semi-implicit spectral method with Euler time stepping. The linear terms
are treated via a first-order exponential time differencing (ETD) method (see, e.g.,
[76] for a detailed description of this method). The nonlinear term is computed
explicitly, and in the standard way, i.e., by computing the derivatives in spectral
space, and products in physical space, respecting the usual 2/3’s dealiasing rule.
We use N = 213 = 8192 spatial grid points on the interval [−16π, 16π), so ∆x =
32π/N ≈ 0.0123. We use a fixed time-step respecting the advective CFL; in fact,
we choose ∆t = 1.2207×10−4. For simplicity, we choose µ = 1, however, the results
reported here are qualitatively similar for a wide range of µ values. For example,
when µ = 10, convergence times are shorter for all methods, but the error plots
are qualitatively similar. In [76], the case λ = 1 is examined. However, to examine
a slightly more chaotic setting, we take λ = 2, which is still well-resolved with
N = 8192. Our results are qualitatively similar for smaller values of λ.

Let Ih be the projection onto the lowest M = ⌊32π/h⌋ Fourier modes. In this
work, we set M = 32 (i.e, h = π); so only the lowest 32 modes of u are passed to
the assimilation equation via Ih(u).

One can consider a more general interpolation operator as well, such as nodal
interpolation, but we focus on projection onto low Fourier modes.

To fix ideas, in this paper we mainly use the initial data used in [76] to simulate
(7); namely

u0(x) = cos(x/16)(1 + sin(x/16)); (15)

on the interval [−16π, 16π]. However, we also investigated several other choices of
initial data. In all cases, the results were qualitatively similar to the ones reported
here.

Note that explicit treatment of the term µ(Ih(u)−Ih(v)) imposes a constraint on
the time step, namely ∆t < 2/µ (which follows from a standard stability analysis
for Euler’s method). This is not a serious restriction in this work, since we choose
µ = 1.
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All the simulations in the present work are well-resolved. In Figure (1) we show
plots of time-averaged spectra of all the PDEs simulated in the present work. One
can see that all relevant wave-modes are captured to within machine precision.

(a) Time-averaged spectrum of the reference so-

lution u to the 1D-Kuramoto-Sivashinsky equa-
tion.

(b) Time-averaged spectrum of the data assimi-

lation solution v with nonlinear pure-power (N1)
algorithm.

(c) Time-averaged spectrum of the data assimi-
lation solution v with nonlinear hybrid (N2) al-

gorithm.

(d) Time-averaged spectrum of the data assimi-
lation solution v with nonlinear concave-convex

(N3) algorithm.

Figure 1. Log-log plots of the energy spectra for the above scenarios. the

mode amplitude |ûk| is on the y-axis, and the wave number k is on the x-axis
(shifted to k + 1 to accommodate the k = 0 mode on a log scale). Plots are

averaged over all time steps between times t = 20 and t = 60. (λ = 2)

3.2. Simple power nonlinearity. We compare the error in the nonlinear data
assimilation algorithm (5) with the error in the linear AOT algorithm. We first
focus on nonlinearity given by a power according to (6); i.e., we consider equation
(8) together with equation (7). In Figure 2(a), the solution to (7) (which we call
the “reference” solution) evolves from the smooth, low-mode initial condition (15)
to a chaotic state after about time t = 20. In Figure 2(b), the difference between
this solution and the AOT data assimilation solution is plotted. It rapidly decays
to zero in a short time.

We observe in Figure 3 that errors in the linear AOT algorithm (2) and the
nonlinear algorithm (5) solutions both decay. The error in the nonlinear algorithm



NONLINEAR DATA ASSIMILATION 337

(a) A chaotic solution to

the Kuramoto-Sivashinsky
equation evolving in time.

(b) Error in data assimilation

solution using linear AOT algo-
rithm (γ = 0).

(c) Error in data assimilation

solution using nonlinear algo-
rithm (5) (γ = 0.125).

Figure 2. Data Assimilation for the Kuramoto-Sivashinsky equation (λ =

2) using linear and nonlinear algorithms. The difference rapidly decays to zero

in time, and visually the errors look similar. The assimilation equations were
initialized with v0(x) = 0. Ih is the orthogonal projection onto the lowest 32

Fourier modes. Similar results appear in tests of a wide variety of initial data,

and for 0 < γ < 0.125.

has oscillations for roughly 5 ≲ t ≲ 15 which are not present in the error for the
AOT algorithm. However, by tracking norms of the difference of the solutions,
one can see in Figure 3 that the nonlinear algorithm reaches machine precision
significantly faster than the linear AOT algorithm, for a range of γ values. When

(a) Errors in L2-norm vs. time. (b) Errors in H1-norm vs. time.

Figure 3. Error for the linear AOT (γ = 0) solution and the nonlinear (5)
(γ > 0) solution for various values of γ. Resolution 8192. (Log-linear scale.)

γ > 0.2, our simulations appear to no longer converge (not shown here). The error
in the linear AOT algorithm (i.e., γ = 0) reaches machine precision at roughly time
t ≈ 49.8. For 0 < γ < 0.2, there seems to be an optimal choice in our simulations
around 0.075 ≲ γ ≲ 0.1, reaching machine precision around t ≈ 27.3, a speedup
factor of roughly 49.8/27.3 ≈ 1.8. Moreover, the shape of the curves with γ > 0
indicate super-exponential convergence, indicated by the concave curve on the log-
linear plot in Figure 3, while for the linear AOT algorithm, the convergence is only
exponential, indicated by the linear shape on the log-linear plot. Currently, the
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super exponential convergence is only an observation in simulations. An analytical
investigation of the convergence rate will be the subject of a forthcoming work.

3.3. Hybrid linear/nonlinear methods. In this subsection, we investigate a
family of hybrid linear/nonlinear data assimilation algorithms. One can see from
Figure 3) in the previous subsection that, although the nonlinear methods converge
to machine precision at earlier times than the linear method, the nonlinear method
suffers from larger errors than the linear method for short times. This motivates
the possibility of using a hybrid linear/nonlinear method. For example, one could
look for an optimal time to switch between the models, say, perhaps around time
t ≈ 18 ± 2, according to Figure 3), but this seems highly situationally dependent
and difficult to implement in general. Instead, the approach we consider here is to
let N (x) be given by (6) for |x| ≤ 1 but let it be linear for |x| > 1. The idea is
that, when the error is small, deviations are strongly penalized, as in Remark (1.1).
However, where the error is large, the linear AOT algorithm should give the greater
penalization (i.e., N1(x) < x when x > 1). Therefore, we consider algorithm (5)
with the following choice of nonlinearity, for some choice of γ, 0 < γ < 1 (we take
γ = 0.1 in all following simulations).

N2(x)

x

N (x) = N2(x) :=


x, |x| ≥ 1,

x|x|−γ , 0 < |x| < 1,

0, x = 0.

(16)

We see the improvement this yields in the error in the plots below.

(a) Error in L2-norm vs. time. (b) Error in H1-norm vs. time.

Figure 4. Error in linear (γ = 0), nonlinear (γ = 0.1), and hybrid (γ = 0.1)
algorithms (λ = 2). Resolution 8192. (Log-linear scale.)

In Figure 4, we compare the linear algorithm (2) with the nonlinear algorithm (5)
with pure-power nonlinearityN1, given by (6), and also with hybrid nonlinearityN2,
given by (16). The convergence to machine precision happens approximately at t ≈
49.8 (for AOT), t ≈ 27.3 (for N1), and t ≈ 20.0 (for N2), respectively. In addition,
one can see that the hybrid algorithm remains close to the linear AOT algorithm for
short times. Moreover, after a short time, the hybrid algorithm undergoes super-
exponential convergence, converging faster than every algorithm analyzed so far.
The benefits of this splitting of the nonlinearity between |x| > 1 and |x| < 1 seem
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clear. Moreover, this approach can be exploited further, which is the topic of the
next subsection.

3.4. Concave-convex nonlinearity. Inspired by the success of the hybrid method,
in this subsection, we further exploit the effect of the feedback control term
µN (Ih(u) − Ih(v)) by accentuating the nonlinearity for |x| > 1. We consider the
following nonlinearity in conjunction with (5) for the Kuramoto-Sivashinsky equa-
tion.

N3(x)

x

N (x) = N3(x) :=


x|x|γ , |x| ≥ 1,

x|x|−γ , 0 < |x| < 1,

0, x = 0.

(17)

Note that this choice of N3 is concave for |x| < 1, and convex for |x| ≥ 1. The
convexity for |x| ≥ 1 serves to more strongly penalize large deviations from the
reference solution. In Figure 5, we see that at every positive time this method has
significantly smaller error than the linear AOT method, and the methods involving
N1 and N2. Convergence to machine precision happens at roughly t ≈ 17.4, a
speedup factor of roughly 49.8/17.4 ≈ 2.8 compared to the linear AOT algorithm.

(a) Error in L2-norm vs. time. (b) Error in H1-norm vs. time.

Figure 5. Error in linear AOT (γ = 0) algorithm, and the non-linear algo-

rithm with nonlinearities N1, N2, and N3 (each with γ = 0.1) (Modal case).

(λ = 2) Resolution 8192. (Log-linear scale.)

3.5. Comparison of all methods (Modal observations). Let us also consider
the error at every Fourier mode. In Figure 6, one can see these errors at various
times. We examine a time before the transition to fully-developed chaos (t ≈ 4), at
a time during the transition (t ≈ 14), a time after the solution has settled down to
an approximately statistically steady state (t ≈ 24), and a later time (t ≈ 34). At
each mode, and at each positive time, the error in the solution with nonlinearity
(17) is the smallest.

Next, we point out that our results hold qualitatively with different choices of
initial data for the reference equation (7). Therefore, we wait until the solution
to (7) with initial data (15) has reached an approximately statistically steady state
(this happens roughly at t ≈ 20). Then, we use this data to re-initialize the solution
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(a) t = 4 (b) t = 14

(c) t = 24 (d) t = 34

Figure 6. Error in spectrum (mode amplitude vs. wave number) at different

times for all methods.

to (7) (in fact, we use the solution at t = 30 to be well within the time interval of
fully developed chaos). We still initialize (8) with v0 ≡ 0. Norms of the errors are
shown in Figure 7. We observe that, although convergence time is increased for all
methods, the qualitative observations discussed above still hold.

3.6. Comparison of all methods (Nodal observations). For the sake of com-
parison, we also consider nodal observations in Figure 8. That is, we take observa-
tions of u on a uniform grid in space with separation h > 0. The operator Ih is then
taken to a piece-wise linear interpolation of these observations. In our simulations
on the domain [−16π, 16π), we choose h = π for a total of M = 32 grid points, the
same number of observations as in the modal case. Note that, because the domain
is periodic, the linear interpolation on the last point (x = 15π) must wrap around
to the first point (x = −16π). This was done using Matlab’s interp1 function by
duplicating the data of the first point x = −16π and placing it at location x = 16π
for a total ofM+1 = 33 observation points, performing the interpolation, and then
deleting the redundant point.

The results for the nodal case are qualitatively similar to the modal case. Hence
to avoid redundancy but still give some validation, we only include one figure (Figure
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(a) Error in L2-norm vs. time. (b) Error in H1-norm vs. time.

Figure 7. Error in all algorithms with chaotic initialization for reference
solution, plotted against CPU time. Modal observations. (λ = 2) Resolution

8192. (Log-linear scale.)

8) showing the results in the nodal case, which we note is qualitatively quite similar
to the modal case in Figure 5.

(a) Error in L2-norm vs. time. (b) Error in H1-norm vs. time.

Figure 8. Error in all algorithms with chaotic initialization for reference

solution. Nodal observations. (λ = 2) Resolution 8192. (Log-linear scale.)

4. Analytic results: Proof of Theorem 2.4 and Theorem 2.5. In this section,
for the sake of completeness, we provide the key a priori estimates for the proof of
both of our convergence theorems, which follow almost line-by-line the estimates
in [88], though the context here is slightly different in that we consider a data
assimilation algorithm rather than the problem of null controlability. We point out
that constants c and C below may vary from line to line, but are absolute, and are
compatible with the condition of the theorem.
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As above, u is the reference solution and v is the solution to the linear data
assimilation system. Let w = u − v, and subtract equation (8) from equation (7),
we have

wt + uwx + wux − wwx + λwxx + wxxxx = −µ Ih(w), (18)

with w0 = w(·, 0) = u0 − v0.
Taking the inner-product of equation (18) with w in L2, integrating by parts,

using the fact that (wwx, w) = 0 due to the periodic boundary conditions, and
rearranging terms, we obtain

1

2

d

dt
∥w∥2L2 + ∥wxx∥2L2 = (uwx, w)− λ(wxx, w)− µ(Ih(w), w)

≤ ∥u∥L∞∥wx∥L2∥w∥L2 + Cλ∥wxx∥L2∥w∥L2

− µ∥w∥2L2 + µ|w − Ih(w)∥L2∥w∥L2

≤ C∥u∥2H1∥w∥2L2 +
1

8
∥wxx∥2L2 + Cλ2∥w∥2L2 +

1

8
∥wxx∥2L2

− µ∥w∥2L2 + µ∥w − Ih(w)∥L2∥w∥L2 ,

where we used Cauchy-Schwarz and Young’s inequalities, as well as Poincaré’s
inequality and Morrey’s inequality in the last step. Then, by condition (3) and
Sobolev-type inequality, we bound the last term in the above inequality as

µ∥w − Ih(w)∥L2∥w∥L2 ≤ chµ∥wx∥L2∥w∥L2

≤ chµ∥w∥3/2L2 ∥wxx∥1/2L2 ≤ 1

4
∥wxx∥2L2 + c(hµ)4/3∥w∥2L2 .

Thus, combining the above estimates, we obtain

d

dt
∥w∥2L2 + ∥wxx∥2L2 ≤ C

(
∥u∥2H1 + λ2 + c(hµ)4/3 − µ

)
∥w∥2L2 .

Therefore, by our assumption on h and µ, and in view of Grönwall’s inequality,
we have

∥u(t)− v(t)∥2L2 ≤ e(c(hµ)
4/3−µ

2 )t∥u0 − v0∥2L2 ,

which gives the desired exponential rate of the convergence in L2-norm.
Next, we show H1 convergence in Theorem 2.5. Taking the inner product of (18)

with −wxx in L2, and integrating by parts, we obtain

1

2

d

dt
∥wx∥2L2 + ∥wxxx∥2L2

= −(uw,wxxx) +
1

2
(w2, wxxx)− λ(wxxx, wx) + µ(Ih(w), wxx)

≤ C∥u∥2H1∥w∥2L2 + C∥w∥3/2L2 ∥wx∥1/2L2 ∥wxxx∥L2 + Cλ2∥wx∥2L2 +
1

8
∥wxxx∥2L2

− µ∥wx∥2L2 + µ∥w − Ih(w)∥L2∥wxx∥L2 ,

where we used Cauchy-Schwarz, Young’s inequalities, as well as Agmon’s inequal-
ity 14. For the second term on the right side of the above inequality, we further
bound it by

C∥w∥3/2L2 ∥wx∥1/2L2 ∥wxxx∥L2 ≤ C√
λ1

∥w∥2L2∥wx∥2L2 +
1

8
∥wxxx∥2L2
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while for the last term, we apply condition (4) on the interpolator and bound it by

µ∥w − Ih(w)∥L2∥wxx∥L2 ≤ chµ∥wx∥L2∥wxx∥L2 + ch2µ∥wxx∥2L2

≤ Ch2µ2

λ1
∥wx∥2L2 +

1

8
∥wxxx∥2L2 +

ch2µ

λ1
∥wxxx∥2L2 ,

where we used Poincáre’s inequality and λ1 is the first eigenvalue of the negative
Laplacian operator.

Therefore, by combining all the above estimates, we have

d

dt
∥wx∥2L2 + ∥wxxx∥2L2 ≤ Cλ1

(
∥u∥2H1 + λ2 + ∥w∥2L2 + h2µ2 − µ

)
∥wx∥2L2 ,

where we used the second condition on our parameters

ch2µ

λ1
≤ 1

8
.

Note that our first condition on the parameters implies h2µ2 <
µ

2
and

µ

2
> ∥u∥2L∞(0,∞;H1) + λ2,

and after some time T > 0, ∥w∥2L2 < ϵ becomes sufficiently small. Hence, Grönwall’s
inequality implies the desired H1-convergence result after inflating the absolute
constant C. (c.f., details in [88], Section 4.2).

5. Conclusions. Our results indicate that significant advantages might be gained
by using nonlinear data assimilation. We used the Kuramoto-Sivashinsky equa-
tion as a proof-of-concept for this method; however, in future work, we will extend
the method to more challenging equations, including the Navier-Stokes equations
of fluid flow. Mathematical analysis of these methods will also be subject of fu-
ture work (and see [22] for analysis in the 2D Navier-Stokes case of a norm-based
nonlinear data assimilation algorithm).

Our findings seem to indicate that, of the nonlinear functions we considered,
namelyN1, N2, andN3, there seems to be a clear progression of improvement in con-
vergence times from N1 through N3. However, for other more complex systems, this
might not be the case. Moreover, depending on discretization, implementation, etc.,
some algorithms may have better computational performance than others, which is
why we presented all three algorithms here. It may also be the case that certain
versions of N are easier to handle analytically. Indeed, in [22], only for N2 (mod-
ified to divide by a norm rather than an absolute value) could super-exponential
convergence be proved, while proofs for the N1 and N3 cases were intractable. In
addition, this progression of improvements indicates that even “better” choices of
nonlinearity may be possible. Indeed, one may imagine a functional given by

F(N ) = t∗

where t∗ is the time of convergence to within a certain error tolerance, such as to
within machine precision. (One would need to show that admissible functions N
are in some sense independent of the parameters and initial data, say, after some
normalization.) One could also consider a functional whose value at N is given by
a particular norm of the error. By minimizing such functionals, one might discover
even better data-assimilation methods.
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