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The Kondo lattice is one of the classic examples of strongly correlated electronic systems. We
conduct a controlled study of the Kondo lattice in one dimension, highlighting the role of excitations
created by the composite fermion operator. Using time-dependent matrix product state methods,
we compute various correlation functions and contrast them with both large-N mean-field theory
and the strong-coupling expansion. We show that the composite fermion operator creates long-lived,
charge-e and spin-1/2 excitations, which cover the low-lying single-particle excitation spectrum of
the system. Furthermore, spin excitations can be thought to be composed of such fractionalized
quasi-particles with a residual interaction which tend to disappear at weak Kondo coupling.

I. INTRODUCTION

Kondo insulators are an important class of quantum
material, which historically, foreshadowed the discovery
of heavy fermion metals and superconductors [1]. These
materials contain localized d or f electrons, forming a
lattice of local moments immersed in the sea of conduc-
tion electrons [2–5]. Remarkably, even though the high
temperature physics is that of a metallic half-filled band,
at low temperatures these materials transition from local
moment metals to paramagnetic insulators. In the 1970s,
theorists came to appreciate that the origin of this behav-
ior derives from the formation of local singlets through
the action of an antiferromagnetic exchange interaction
between electrons and magnetic moments [2, 3, 6, 7], a
model known as the Kondo lattice Hamiltonian.

The Kondo lattice model

H = �tc
X

hi,ji�

(c†
i,�

cj,� +H.c) + J
X

j

(c†
j
~� cj) · ~Sj (1)

contains a tight-binding model of mobile electrons cou-
pled antiferromagnetically to a lattice of local moments
via a Kondo coupling constant J . The deceptive sim-
plicity of this model hides many challenges. Pertur-
bative expansion in J , reveals that the Kondo cou-
pling is marginally relevant, scaling to strong coupling
at an energy scale of the order of Kondo temperature
TK ⇠ We�1/J⇢. Moreover, the localized moments, with
a two-dimensional Hilbert space, do not allow a tra-
ditional Wick expansion of the Hamiltonian, impeding
the application of a conventional field-theoretic methods.
The strong-coupling limit of this Hamiltonian, in which J
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is much larger than the band-width, J/tc � 1 provides a
useful caricature of the Kondo insulator as an insulating
lattice of local singlets. In the 1980s [8–11], new insight
into the Kondo lattice was obtained from the large-N
expansion. Here, extending the spin symmetry from the
SU(2) group, with two-fold spin degeneracy, to a family
of models with N fold spin-degeneracy allows for an ex-
pansion around the large-N limit in powers of 1/N . The
physical picture which emerges from the large-N expan-
sion accounts for the insulating behavior in terms of a
fractionalization of the local moments into spin-1/2 ex-
citations, ~Sj ! f†

j↵
(~�/2)↵�fj� which hybridize with con-

duction electrons [7, 9–12] to form a narrow gap insula-
tor. However, the use of the large-N limit provides no
guarantee that the main conclusions apply to the most
physically interesting case of N = 2.

In this paper we use matrix product state methods to
examine the physics of the one-dimensional Kondo insu-
lator. Our work is motivated by a desire to explore and
contrast the predictions of the strong coupling and large-
N descriptions with a computational experiment, taking
into account the following considerations:

• Traditionally, Kondo insulators are regarded as an
adiabatic evolution of a band-insulating ground
state of a half-filled Anderson lattice model. We
seek to understand the insulating behavior, which
is akin to a “large Fermi surface”, from a purely
Kondo lattice perspective without any assumptions
as to the electronic origin of the local moments.

• What are the important di↵erences between the ex-
citations of a half-filled Kondo insulator and a con-
ventional band insulator?

• Many aspects of the Kondo lattice suggested by
the large-N expansion, most notably the formation
of composite fermions and the associated fraction-
alization of the spins, have not been extensively
examined in computational work. In this respect,
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our work complements the recent study of Ref. [13],
highlighting the mutual independence of the con-
duction electron and composite fermions through
the matrix structure of the electronic Green’s func-
tion. We extend this picture even further by ex-
amining the dynamical spin susceptibility, provid-
ing evidence for fractionalization of the spin into a
continuum of quasi-particle excitations.

A. Past studies

Our work builds on an extensive body of earlier stud-
ies of the 1D Kondo lattice that we now briefly review.
An early semi-classical field theory of the 1D Kondo in-
sulator was carried out by Tsvelik[14], who identified the
low energy physics as a gapped fluid of S = 1/2 spin
polarons co-existing with a fluid of gapped spin excita-
tions described by an O(3) sigma model. The ground-
state phase diagram of this model was first established
by Tsunetsugu, Sigrist, and Ueda [15], who established
the stability of the insulating phase for all ratios of
J/tc, while also demonstrating that upon doping, the 1D
Kondo insulator becomes a ferromagnet. More recently,
the 1D KL has been studied using Monte Carlo [16–18],
density matrix renormalization group (DMRG) [19–23],
bosonization [24, 25], strong-coupling expansion [15] and
exact diagonalization [26]. Additionally, renormalization
and Monte Carlo methods have also been used to exam-
ine the p-wave version of the 1D Kondo lattice, which
exhibits topological end-states [27–29].

The Kondo insulator can be driven metallic by dop-
ing, which leads to a closing of charge and spin gaps,
forming a Luttinger liquid with parameters that evolve
with doping and J/tc [22, 26]. Both the insulating phase
at half-filling and the doped metallic regime are non-
trivial, as the kF , extracted from spin and charge cor-
relation functions corresponds to a large Fermi surface,
which counts both the electrons and spins vFS/⇡ = ne+1.
The weak-coupling J/tc ⌧ 1 regime at finite doping
continues to be paramagnetic, but the strongly-coupled
J/tc � 1 regime becomes a metallic ferromagnetic state
for infinitesimal doping. In this regime, the spin-velocity
goes to zero, characteristic of a ferromagnetic state [30],
as inferred from spin susceptibility.

An early study of the excitation spectrum of a one
dimensional Kondo insulator by Tsvelik[14], examined a
spin S Kondo lattice, screened by M spin-1/2 conduction
channels, showing that in the semi classical limit, the spin
physics is described by an O(3) Sigma model with a topo-
logical term which vanishes in the case of case of perfect
screening 2S = M , giving rise to gapped spin excitations
which co-existing with a band of charged spin-polarons.
Later work on the original S = 1/2 model by Trebst et
al. [31] employed a strong coupling expansion in J/tc to
examine the one and two-particle spectrum. Their stud-
ies found that beyond tc/J > 0.4, the minimum in the
quasi-hole spectrum shifts from k = ⇡ to k < ⇡. Further-

more, they extracted the quasi-particle weights showing
that Z ! 0 right at tc/J = 0.4 when the dispersion is
flat around k ⇠ ⇡. Smerat et al. [32] used DMRG to com-
pute the quasi-particle energy and lifetime to verify these
results and extend them to partial filling. They pointed
out that the exchange of spin between conduction elec-
trons and localized moments leads to formation of “spin-
polarons” as envisaged in the early work by Tsvelik[14],
here referred to as “composite fermions”.

B. Motivation and summary of results

The appearance of an insulator in a half-filled band
goes beyond conventional band-theory and requires a new
conceptual framework. A large body of work, dating back
to the 1960s recognized that there are two ways to add an
electron into a system containing localized moments [33–
36], either by direct “tunneling” an electron into the sys-
tem, formally by acting on the state with the conduction
electron creation operator c†

�
, or by “cotunneling” via

the simultaneous addition of an electron and a flip of the
local moment at the same site F †

�
⇠ c†�̄S��̄ = c†�̄ |�i h�̄|.

Both processes change the charge by e and the spin by
one half. The object created by F † has also alternately
referred to as a “composite fermion” or a “spin-polaron”
[14, 32]. Here we will employ the former terminology,
introducing

F †
�
=

2

3

X

↵=",#
c†
↵
~�↵� · ~S. (2)

as the composite fermion creation operator: F †
�

trans-
forms as a charge e and spin S = 1/2 fermion, and with
the above normalization the expectation value of its com-
mutator with the conduction electron operator vanishes
h{c↵, F †

�
}i = 0, while that of commutator with itself is

unity h{F↵, F
†
�
}i = �↵� , in the strong Kondo coupling

limit.
Co-tunneling lies at the heart of the Kondo problem,

and insight into its physics can be obtained by observing
that in the interaction, the object that couples to electron
in the Kondo interaction is a composite fermion, for

J(c†
j
~� cj) · ~Sj ⌘

3J

4
[F †

j�
cj� + c†

j�
Fj�]. (3)

In certain limits, such as the large J limit and large-N
limit, F behaves as a physically independent operator,
suggesting that the Kondo e↵ect involves a hybridization
of the conduction electrons with an emergent, fermionic
field. The large-N limit accounts for the emergence of
the independent composite fermions as a consequence of
a fractionalization of the local moments, and in this limit,
both the composite fermion and the local moments are
described in terms of a single f -electron field,

Fj ⇠ fj ,
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2

◆

↵�

fj� . (4)

Though the Kondo Lattice is a descendent of the
Anderson lattice, it exists in its own right. In particu-
lar, rather than the four-dimensional Hilbert space of an
electron at each site, the spins have a two-dimensional
Hilbert space. If there are “f” electrons they are by defi-
nition, Z = 0 quasiparticles, as there is absolutely no lo-
calized electron Hilbert space. Field theory and DMRG
of single impurity provide a clue: the presence of many
body poles in the conduction self-energy can be inter-
preted in a dual picture as the hybridization of the con-
duction electrons with fractionalized spins.

One of the key objectives of this work is to shed light
on the quantum mechanical interplay between the com-
posite fermion, the conduction electron and the possi-
ble fractionalization of local moments in a spin-1/2 1D
Kondo lattice (1DKL). This is achieved by carrying out a
new set of calculations of the dynamical properties of the
Kondo lattice while also comparing the results with those
of large N mean-field theory and strong coupling expan-
sions about the large J limit. In each of these methods,
we evaluate the joint matrix Green’s function describ-
ing the time evolution of the conduction and composite
fermion fields following a tunneling or cotunneling event.

Matrix-product states are ideally suited to one dimen-
sional quantum problems, permitting an economic de-
scription of the many-body ground-state with su�cient
precision to explore the correlation functions in the fre-
quency and time domain. Here, we take advantage of
this method to compute Green’s function matrix between
conduction electrons and composite fermions and to com-
pare the spin correlation functions of the local moments
and composite fermions. For simplicity, we limit our-
selves to zero temperature T = 0. At the one-particle
level we find that by analyzing the Green’s function ma-
trix between c and F , we are able to show that these op-
erators define a hybridized two-band model, in agreement
with the large-N limit. The evolution of our computed
one-particle spectrum with tc/J is consistent with ear-
lier strong-coupling expansions. Rermarkably, the shift
in the minimum of the quasiparticle dispersion seen in
the strong-coupling expansion at tc/J = 0.4 [31] can be
qualitatively accounted for in terms of the evolution of
the hybridization between conduction electrons and com-
posite fermions.

Moreover, by calculating the dynamical spin suscep-
tibility using MPS methods, and comparing the results
with mean-field theory, we are able to identify a contin-
uum in the spin excitation spectrum that is consistent
with the fractionalization of the local moments into pairs
of S = 1/2 excitations. Our strong coupling expansion
coincides with the matrix product state calculation in
the large J limit and we also see signs of the formation
of S = 1 paramagnon bound-states below the continuum:
a sign of quiescent magnetic fluctuations.

SVD

gate contraction

U � VF†
x2 |0�e�iHt

2

(a)

(b) (c)
F†

x2 |0��0 |cx1

G>
cF = � ieiE0t � e�iHt

2 e�iHt
2

FIG. 1. Diagrammatic representation of calculating the Green
function by MPS methods. The MPS |0i (blue) is the ground
state found using DMRG. The small circles in (a) represent
the single-site operators |F †

x2
i (magenta circle) and cx1 (green

circle). They can be placed at any sites x1 and x2 (though
requiring separate computations), giving access to the Green
function in real space. The time evolution operator (orange
rectangle) is split into two halves, each half approximated
by a sequence of unitary gates (dark green rectangles) using
a Trotter approximation. The Green functions is found by
computing the overlap of the two independent time-evolved
wavefunctions. In the bottom right region, we demonstrate
the procedures during every step in the time evolvolution (red
shaded region). The gate tensors are contracted with MPS
tensors, followed by a singular value decomposition (SVD)
to reorganize the tensors back into MPS form but with a
increased bond dimension to maintain accuracy.

II. MODEL AND METHODS

The model we consider is deceptively simple. It is
given by the one-dimensional Kondo lattice Hamiltonian

H = �tc
X

i�

(c†
i,�

ci+1,� + h.c.) + J
X

i

(c†
i
~� ci) · ~Si (5)

where c†
i,�

creates an electron of spin � at site i and tc
controls the electron tunneling between sites. The oper-
ator ~Si is an immobile S = 1/2 spin located at site i and
(c†

i
~� ci)·~Si is a Heisenberg coupling between the spin mo-

ment of an electron at site i and the spin ~Si. In the limit
of large J/tc the half-filled ground-state is composed of
a product of Kondo singlets at every site, a state that
is self-evidently an insulator. The challenge then, is to
understand how this state evolves at finite J/tc.

A. Matrix Product State Methods

The primary tool we will use to study the properties
of the Kondo lattice model will be matrix product state
(MPS) tensor networks. An MPS is a highly compressed
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FIG. 2. Strong coupling diagram. (a) Ground state is com-
prised of local singlets between spins and conduction elec-
trons. (b) The hopping term in the Hamiltonian creates
doublon-holon pairs whose corresponding spins are together
in a singlet states, i.e. charge-0, spin-singlet admixture.

representation of a large quantum state as a contraction
of many smaller tensors and is the seminal example of a
tensor network. In contrast to other numerical or analyt-
ical approaches, MPS methods work well for both weakly
and strongly correlated electronic systems and do not suf-
fer from a sign problem as in the case of quantum Monte
Carlo methods. The main limitation of MPS is that they
are only e�cient for studying one-dimensional or quasi-
one-dimensional systems.

The two key MPS techniques we use in this work are
the density matrix renormalization group (DMRG) al-
gorithm for computing ground states in MPS form [37],
and the time-evolving block decimation (TEBD) or Trot-
ter gate method for evolving an MPS wavefunction for-
ward in time [38–40]. Our implementation is based on
the ITensor software [41].

Our computational approach is illustrated at a
high level in Fig. 1, using the example of comput-
ing G>

cF
= i eiE0t h0|cx1e

�iHtF †
x2
|0i. After computing an

MPS representation of the ground state |0i using DMRG,
we act with F †

x2
on one copy of |0i and with c†

x1
on an-

other copy of |0i. The first copy is evolved forward in
time by acting e�iHt/2 using a Trotter decomposition of
the time evolution operator, and the second is evolved
similarly but acting with eiHt/2. Finally, the Green func-
tion is computed from the overlap of the resulting MPS.
We give additional technical details of our computational
approach in Appendix H.

B. Strong coupling expansion

An insight into the nature of ground state and its ele-
mentary excitations can be obtained in the strong Kondo
coupling limit. At tc/JK = 0 the ground state is a prod-
uct state of local Kondo singlets The ground state is

|�i0 =
Y

j

|Kji , |Kji =
1p
2
|*j#j � +j"ji (6)

Here, * and + refer to the spins (magnetic moments)
and " and # refer to conduction electrons. The spin-1/2
excitations corresponding to addition/removal of elec-
trons and spin-1 excitations of changing local singlets into
triplets. At finite tc/JK electrons hop to nearby sites,
creating holon-doublon virtual pairs [Fig. 2(b)]. Conse-
quently, the vacuum contains short-lived holon-doublon
pairs, which lead to short-range correlations.

III. COMPOSITE FERMIONS:
SINGLE-PARTICLE PROPERTIES

A. More details on the composite fermion operator

To characterize the single-particle excitations of the
Kondo lattice, observe that acting on the ground state by
the operators c†" and c†#S

+ each create charge-1, spin-1/2

excitations. However, instead of c†#S
+, we will find that

the composite fermion operator

F †
�
=

2

3

X

↵=",#
c†
↵
~�↵� · ~S (7)

is the more natural operator to consider. One motivation
is that F †

�
transforms under the S = 1/2 representation

of SU(2). A more intuitive motivation is that the spin-
electron interaction term in the Kondo lattice Hamilto-
nian Eq. (5) can be written as (~S ·c†~�c) / (F †

�
c
�
+h.c.),

thus F †
�
is the operator which couples to electronic exci-

tations. The factor of 2/3 in Eq. (7) has been chosen so
that the commutator (see Appendix A for the proof)

{F
↵
, F †

�
} = �↵� (8)

� 4

9

h⇣
~S · c†~�c+ 3

2

⌘
�↵� + (n̂� 1)~S · ~�↵�

i
.

is unity in the strong coupling limit J/tc � 1. The sec-
ond line spoils the canonical anti-commutation of F oper-
ators, however, in the strong coupling limit J/tc � 1 the
expectation value of the second term is zero in the ground
state, indicating that h{F

↵
, F †

�
}i = �↵� has canonical

anti-commutation on average. Fig. 3 shows the numeri-
cal calculation of the expectation value h{F

n↵
, F †

n↵
}i with

respect to the Kondo lattice ground state. This is shown
for ↵ =", # as a function of site number n for two dif-
ferent values of J/tc. As expected the anti-commutator
is closer to unity for JK/tc = 2 than for JK/tc = 0.9.
Furthermore, the anti-commutator is closer to one at the
two ends, presumably due to the weakness of inter-site
correlations at the boundaries. This result substantiates
the emergence of the composite fermions in 1D Kondo
insulator.

Within the triplet sector, the expectation value of
the anticommutator becomes �↵�/9 and within the
holon/doublon manifold, the expectation value of the an-
ticommutator depends on the state of the magnetic mo-
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FIG. 3. Numerical calculation of Eq. 8 on 30-sites 1D chain
for JK/tc = 2, 0.9. Only the same-spin anti-commutators
F�, F

†
� are plotted, while o↵-diagonal or mixed-spin anticom-

mutators {F", F
†
# } = {F#, F

†
" } are zero.

ment. The overlap between the original c and the com-
posite F electrons is

{c↵, F †
�
} =

2

3
~S · ~�↵� . (9)

The right-hand side has zero average (but finite fluctu-
ations) in the strong-coupling ground state, suggesting
that c and F create independent excitations in average.
However, F� and c� overlap due to quantum fluctuations,
motivating us to compute the full Green’s function ma-
trix involving both operators to study their associated
excitations in a controlled way.

This approximately particle-like behavior of the
composite-fermion F� has strong resemblance to the two-
band model of heavy-fermions obtained in the large-N
mean-field theory. In such a model the spin is represented
using Abrikosov fermions ~S = 1

2f
†~�f and the constraint

f†f = 1 is applied on average using a Lagrange mul-
tiplier. Within mean-field theory, the Kondo interaction
leads to a dynamic hybridization between f -electrons and
c-electrons [c.f. Eq. (3)]

3

4
JF †

�
c
�
= V f†

�
c
�

(10)

The similarity of the two results suggests F� ⇠ f�, imply-
ing the fact that the spin is fractionalized into spinons.
In fact we can define

~SF =
1

2
F †~�F (11)

In the rest of this section we will confirm the picture
outlined above by computing the full Green function us-
ing two approaches. We first use time-dependent matrix
product state techniques on finite systems, then carry
out a strong-coupling analysis to shed further light on
the results.

k /�
�

�
�

k /�

(a) (b)

(c)

(d) (e)

Acc (k, �) AFF (k, �)

Acc (k, �)

AFF (k, �)
�Im[G�1 (k, �) |FF ]�1

�Im gF(k, �)Re gF(k, �)

J=2

FIG. 4. Numerical results for the spectral function for J/tc =
2. (a) The conduction electron component of spectral function
(b) The composite f fermion component of spectral function.
(c) The line plots of both c(blue) and f(red) fermion spectral
functions. (d) and (e) The real and imaginary part of gF (k,!)
defined in Eq. (25)

B. Matrix Spectral Function

To examine the independence of the c and F fields, it
is useful to combine them into a spinor

 �(x) =

✓
cx�
Fx�

◆
, (12)

allowing us to define a retarded matrix Green’s function

[G(x1, x2, t)]↵� = �i✓(t)h{ ↵�(x1, t), 
†
��

(x2, 0)}i

⌘
✓
Gcc GcF

GFc GFF

◆
, (13)

where ✓(t) is the step function. G defines a matrix of
amplitudes for the c and F fields. The GcF component

GR

cF
(x1, x2, t) = �i ✓(t) h{cx1(t), F

†
x2
(0)}i , (14)

determines the amplitude for a composite F to convert
to a conduction electron.

We are primarily interested in the properties of a
translationally invariant Kondo lattice, with momentum-
space Green’s function

G(k, t) = �i✓(t)h{ k�(t), 
†
k�
(0)}i

=
1

L

X

i,j

eik(xi�xj)G(xi, xj ; t) (15)
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In our numerical calculations, we estimate this Green’s
function using the expression for a translationally invari-
ant system simply applied to finite size Green’s function
G(xi, xj ; t). We then perform a discrete Fourier trans-
form on G to obtain

G(k,!) =
X

j=1,Nt

�t ei!tjG(k, tj), (16)

where �t = T/Nt is the spacing of the Nt time-slices over
the total duration T of the time evolution, tj = j�t and
the frequencies are sampled at the values !n = 2⇡n/T .

Although we independently compute the four com-
ponents of G(k,!), the kinematics of the Kondo lattice
imply that they are not independent, which provides us
a means to test and interpret our calculations. From
the Heisenberg equations of motion of the conduction
electron operators in the translationally invariant limit,
i@tck↵ = [ck↵, H],

i@tck↵ = ✏c(k)ck↵ + (3J/2)Fk↵, (17)

where ✏c(k) = �2tc cos(k) is the dispersion of the con-
duction electrons and Fk↵ = L�1/2

P
x
e�ikxFx↵ is the

Fourier transform of the composite fermion. It follows
that

[i@t � ✏c(k)]Gcc(k, t) = (3J/2)GFc(k, t) + �(t),

k /�

�
�

�

k /�

(a) (b)

(c)

Acc (k, �) AFF (k, �)

Acc (k, �)

AFF (k, �)

�Im gF(k, �)Re gF(k, �)(d) (e)

J=0.9

FIG. 5. Numerical results for the spectral function for J/tc =
0.9. (a) The conduction electron component of spectral func-
tion. (b) The composite f fermion component of spectral func-
tion. (c) The line plots of both c(blue) and f(red) fermion
spectra functions. (d) and (e) The real and imaginary part of
gF (k,!) defined in Eq. (25)

[i@t � ✏c(k)]GFc(k, t) = (3J/2)GFF (k, t). (18)

When we transform these equations into the frequency
domain, replacing i@t ! z = !+ i⌘, we see that Gcc and
GcF are entirely determined in terms of GFF ,

Gcc = gc + gc(3J/2)GFF (3J/2)gc
GcF = GFc = gc(3J/2)GFF (19)

where we have suppressed the (k, z) label on the prop-
agators, and gc = [z � ✏c(k)]�1 is the bare conduction
electron propagator. Although these equations closely
resemble the Green’s functions of a hybridized Ander-
son model, with hybridization 3J/2, we note that GFF

represents a composite fermion.
From these results, it follows that without any ap-

proximation, the inverse matrix Green’s function can be
written in the form

G�1(k, z) =

✓
z � ✏c(k) �3J/2
�3J/2 g�1

F
(k, z)

◆
(20)

where gF (k, z) is the one-particle irreducible composite
Green’s function, determined by

gF (k, z) =
h 1

GFF (k, z)
+

(3J/2)2

z � ✏c(k)

i�1
. (21)

This quantity corresponds to the unhybridized composite
fermion propagator. By reinverting (20) we can express
the original Green’s functions in terms of gF (k, z) as fol-
lows

Gcc(k, z) =
1

z � ✏c(k)� (3J/2)2gF (k, z)

GFF (k, z) =
1

g�1
F

(k, z)� (3J/2)2

z�✏c(k)

. (22)

These are exact results, which even hold for a ferromag-
netic, J < 0, Kondo lattice. By calculating G and invert-
ing it, we can thus check the accuracy of our calculation,
and we can extract the irreducible F propagator gF (k, z).

From this discussion, we see that the GR matrix o↵ers
information about both the individual excitations and
their hybridization. If the Kondo e↵ect takes place, i.e if
J > 0 is antiferromagnetic, then we expect the formation
of an enlarged Fermi surface, driven by the formation of
sharp poles in the composite fermion propagator gF . For
example, in the special case where the Green’s function
gF develops a sharp quasiparticle pole, then we expect
gF (k,!) ⇠ Zf/[! � ✏f (k)], allowing us to identify V =
Z(3J/2) as an emergent hybridization.

C. Spectral Functions: Numerical Results

The spectral function is associated with the Green’s
function by

Acc(q,!) = � 1

⇡
Im
h
GR

cc
(q,! + i�)

i
(23)

AFF (q,!) = � 1

⇡
Im
h
GR

FF
(q,! + i�)

i
. (24)
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The set of (q,!) values for which the spectral function
has a maximum is the analogue of a band structure
for an interacting system. We show the spectral func-
tions computing using MPS for the cases of J/tc = 2 and
J/tc = 0.9 in Fig. 4 and Fig. 5 respectively.

Figs. 3(e) and 4(e) show the quantity

Im[gF (k,! + i⌘)] = Im
1

[(GR)�1(! + i⌘)]FF

(25)

where the denominator is (2, 2) entry of 2-by-2 matrix
(GR)�1. This quantity can be interpreted as the Green’s
function of the unhybridized F electrons.

The most striking feature of spectral functions in Figs.
4 and 5 is the sharp and narrow bands indicative of long-
lived and dispersing quasiparticles. For the larger Kondo
coupling of J/tc = 2, the spectra consist of two cosine dis-
persion curves � cos(k) ± �E/2 shifted to positive and
negative frequencies. For the smaller Kondo coupling of
J/ = 0.9, the dispersion can be thought to arise as the
hybridization of a dispersing band (mostly c content) and
a localized band (mostly F content). It is apparent that
in both cases, the dispersion can be approximately re-
produced using a two-band fermionic model. Assuming
that this is so, the quantity Im[gF (k,! � i⌘)] shown in
panels 4(d) and 5(d) can be interpreted as the bare dis-
persion the putative F fermion would need to have in
order to reproduce the observed spectral functions. In
both cases, a non-zero dispersion is discernible which is
more significant in the J/tc = 0.9 case. Since in absence
of Kondo interaction, composite fermions are localized
hF

i
F †
j
i / �ij , this bare dispersion is naturally associated

with dynamically generated magnetic coupling between
the spins due to RKKY interaction which gives rise to
dispersing spinons.

D. Comparison with strong coupling and
mean-field

It is natural to expect some of the numerical results
to match those obtained in the strong Kondo coupling
limit JK/tc � 1. When tc = 0 the decoupled sites each
have the spectrum

H =

8
<

:

J/2, S = 1, n = 1,
0, S = 1/2, n = 0, 2
�3J/2, S = 0, n = 1.

(26)

where the quantum numbers S and n are the total spin
and charge at that particular site. Creating or annihi-
lating a particle from the ground state has the energy
cost of E1 = 3J/2. To understand how the ground state
and single-particle excited states evolve for a finite t, we
have carried out a perturbative analysis for the full 2⇥ 2
Green’s function in the Appendix C and found that to
lowest orders in tc/J ,

G�1(k, z) = z1 �H, H =

✓
✏k V
V 0

◆
, (27)

where V = E1. The eigenenergies are

E±(k) =
1

2

h
✏k ±

q
✏2
k
+ V 2

i
, (28)

which confirms the picture of two hybridized bands. Here
z is the complex frequency and ✏k = �2tc cos k is the bare
dispersion of the conduction electrons. Note that to this
order, the dispersion of the bare F band is not captured
in agreement with previous results [31].

The quasi-particle spectrum (28) has the same form
as in the large-N mean-field theory, with the di↵erence
that the value of V is determined from self-consistent
mean-field equation [see Appendix E]. We have plotted
AFF (k,!) spectra in Fig. (6) along with predictions from
strong-coupling expansion and mean-field theory. Over-
all, a good agreement is found albeit deviations start to
appear at lower Kondo coupling of J = 0.9.

One artifact of the mean-field theory is that the hy-
bridization V is systematically underestimated which can
be traced back to the relation between F and f in Eq. (3)
and (10). For example, at the strong coupling limit, the
mean-field theory predicts V = J/2 [see Appendix E]. In
order to get an agreement, we had to re-scale V ! 3V/2
when comparing mean-field results to numerical results
on the interacting system. One can alternatively moti-
vate this rescaling by viewing the mean-field theory as an
e↵ective model, where the V parameter in the mean-field
is “renormalized” from the bare hybridization.

FIG. 6. A comparison of AFF (k,!) with the dispersion
from mean-field theory (solid line) and strong-coupling ex-
pansion (dotted line). Left and right panels are J/tc = 2 and
J/tc = 0.9, respectively. For J/tc = 0.9, there is a noticeable
deviation of the perturbative or mean-field results from the
numerical results near k = 0 for the upper band and near
k = ⇡ for the lower band.

E. Evolution of Single Particle States

A vivid demonstration of the particle nature of F ex-
citations can be seen by a calculating the motion of a
composite fermion wavepacket. Here, it proves useful to
take account of the spatially dependent normalization of
the composite fermions, defining a normalized composite
fermion as follows

fx� =
1p
Z(x)

Fx�, (29)
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where the normalization, is calculated from the measured
expectation value of the anticommutator

Z(x) = hGS|{Fx�, F
†
x�
}|GSi = 2hGS|Fn�F

†
n�

|GSi. (30)

Here the second expression follows from particle-hole
symmetry. This normalization guarantees that the ex-
pectation value of the anti-commutator is normalized
h{fx1�, f

†
x2�

0}i = �x1x2���0 . In the ground-state, Z(x)
is a constant of motion, which with our definition of Fx�

(7), is unity in the strong-coupling limit. However, at in-
termediate coupling, Z(x) becomes spatially dependent
near the edge of the chain.

Consider a wave packet

|wi =
X

n

�f (xn)f
†
xn�

|GSi (31)

where

�f (xn) =
1p
N

eik0xne�
(xn�y)2

4�2 (32)

is a normalized wave-packet centered at y with momen-
tum k0. The time-evolution of this one-particle-state will
give rise to a state of the form

|w(t)i = e�iHt|wi
=
X

n

⇥
�f (xn, t)f

†
xn�

+ �c(xn, t)c
†
xn�

⇤
|GSi

+ . . . (33)

where the . . . denotes the many-particle states that lie
outside the Hilbert space of one conduction and one
composite fermion. Taking the overlap with the states
f†
xn�

|GSi and c†
xn�

|GSi, the coe�cients of the wave
packet can be directly related to the Green’s functions
as follows

�f (xn, t) = hGS|fxn�e
�iHtf†

xn0�|GSi
= ie�iEgt

X

n0

G>

ff
(xn, xn0 ; t)�f (xn0), (34)

and similarly

�c(xn, t) = ie�iEgt
X

n0

G>

cf
(xn, xn0 ; t)�f (xn0), (35)

where Eg is the ground-state energy and

G>

ff
(xn, xn0 ; t) = �ihfx�(t)f†

x0�(0)i,
G>

cf
(xn, xn0 ; t) = �ihcx�(t)f†

x0�(0)i, (36)

Using the Green’s functions computed from the MPS
time evolution, we can thus evaluate the time-evolution
of the wave packet.

Figure 7 shows the evolution of the probability density
|�f (x, t)|2 + |�c(x, t)|2 of an initial Gausian wave packet
for two values of J/tc = 2 and J/tc = 0.9. In the former
case the composite fermion wave packet moves ballisti-
cally until it is scattered by the boundary of the system.

FIG. 7. Evolution of a composite fermion wave-packet for
(a) J = 2.0 and (b) J = 0.9. The initial wavefunction is
Gaussian with �

2 = 7 and momentum k0 = 1.4, in units
where the lattice spacing a = 1 is unity.

In the J/tc = 0.9 case, however, the wave-packet under-
goes significant dispersion and decay with distance, ap-
pearing to ”bounce” long before reaching the wall. One
possible origin of this e↵ect, is the break-down of the
Kondo e↵ect in the vicinity of the wall, due to a longer
Kondo screening length ⇠ = vF /TK .

F. Interpretation of single-particle results

One of the most remarkable aspects of this compar-
ison, is the qualitative agreement between the spectral
functions derived from the matrix product, strong cou-
pling and large N expansion. In all three methods, we
see that the description of the spectral function requires
a two-band description. Our matrix product simulation
shows that the composite fermion propagator gF contains
sharp poles at k = ±⇡/2, ! = 0, which reflect a forma-
tion of composite fermion bound-states, as if the F fields
behave as sharp bound-states.

The single-particle excitation spectrum exhibits a co-
herent two-band fermionic model which continues to low
J/tc. This suggests that the composite F -excitations,
behave as bound-states of conduction electrons and spin
flips of the local moments, forming an emergent Fock
space that is e↵ectively orthogonal to that of the conduc-
tion electrons, so that c and F fermions are e↵ectively
independent fields. In e↵ect, the microscopic Hilbert-
space of the spin degrees of freedom has morphed into
the Fock-space of the F-electrons.

In the large N limit, the composite fermion F is syn-
onymous with a fractionalization of the local moments
into half-integer spin fermions, moving under the influ-
ence of an emergent U(1) gauge field that imposes the
constraints. From the single-particle excitation spectrum
alone, aside from hybridization with conduction elec-
trons, these emergent F fermions appear to be free exci-
tations: the comparison with mean-field theory suggests
that the original spin is fractionalized to ~SF = F † ~�

2F .

As shown in A, in the strong coupling regime ~SF ⇠ 1
3
~S.

How accurate and useful is this picture? If F electrons
are indeed free beyond one-particle level, their higher-
order Green’s functions (including two-point functions of
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~S) would factorize into spin-1/2 fermions. We now inves-
tigate this possibility.

IV. COMPOSITE FERMIONS: TWO-PARTICLE
PROPERTIES AND SPIN SUSCEPTIBILITY

Next, we turn to the two-particle spectrum and focus
on the spin susceptibility

�S(q,!) =
X

n,m

Z 1

0
dt ei[(!+i⌘)t�q(n�m)]�(xn, xm, t)

�(x1, x2, t) = �i h[S�(x1, t), S
+(x2, 0)]i . (37)

which can be probed experimentally. This function sat-
isfies the sum-rule

R
d!�00

S
(q,!) = 2⇡ hSzi = 0 for any

q. Fig. 8 shows �00
S
(q,!) for two values of J/tc, com-

puted from the Fourier transform of �(x1, x2, t) and us-
ing the same Fourier transform procedure as in Eq. (H9).
A broad incoherent region and at least one sharp dispers-
ing mode (at low positive frequency) is visible. The lat-
ter is more pronounced at higher J/tc = 4 compared to
J/tc = 1.8. A spin-flip creates a localized triplet. Since
only the total magnetization is conserved, the triplet can
move in the lattice forming a coherent magnon band.
However, in this interacting system, the magnon can de-
cay into many-body states and the reduced weight of the
coherent band is compensated by the incoherent portion
of the spectrum.

In the previous section, based on the behavior of F
particles we conjectured that the spin ~S is proportional
to ~SF = 1

2F
†~�F . The relationship ~SF = 1

3
~S is in fact

correct in the strong Kondo coupling limit (appendix A).
To test its validity beyond this limit, we compare �S(q,!)
with (9�F (q,!)) defined in terms of composite fermions
as

�F (q,!) ⌘ �i
X

n,m

Z 1

0
dt ei[!+i⌘)t�q(n�m)]�F (xn, xm, t)

(38)
where

�F (xn, xm, t) = i h[S�
F
(n, t), S+

F
(m, 0)]i . (39)

and involves four-point functions like

hF †
n#(t)Fn"(t)F

†
0"(0)F0#(0)i . (40)

We see that the two are exactly equal, demonstrating the
relation ~S ⇠ 3~SF at least within the two-particle sector.

However, while this relation seem to hold, fractional-
ization as seen in 1D Heisenberg AFM requires the four-
point function �F to be expressible in terms of the convo-
lution of two single-particle propagators. To examine this
possibility, we compare the spin susceptibility �00

S
(q,!)

with the mean-field spin susceptibility �00
MF

(q,!) com-
puted from the convolution of two f-electron propagators
Fig. 9. The mean-field dynamical susceptibility contains
a continuum of excitations bordered by two sharp lines

(a) (b)

(c) (d)

J = 0.9 �S(q, �)

J = 0.9 �F(q, �)J = 2 �F(q, �)

J = 2 �S(q, �)

k /� k /�

�
�

FIG. 8. (a,b) The spin susceptibility �S(q,!) and (c,d) the
composite fermion susceptibility 9�F (q,!) for two values of
J/tc = 1.8 and J/tc = 4 case. The two are nearly identical
with minor di↵erences at small momenta and high frequency.

that result from the indirect gap between the f-valence
and f-conduction bands (lower sharp line) and the c-
valence and c-conduction bands (upper sharp line) of the
fractionalized Kondo insulator. A particularly marked
aspect of the mean-field description in terms of fractional-
ized f-electrons is the continuum at q ⇠ 0 which stretches
from the hybridization gap (2V ) out to the half band-
width of the conduction band. At finite q this continuum
evolves into a characteristic inverted triangle-shaped con-
tinuum. At strong coupling, J/tc = 2 �00

S
(q,!) contains

a sharp magnon peak, and the triangle-shaped contin-
uum is absent. This is clearly di↵erent from �00

MF
(q,!).

However at weaker coupling J/tc = 0.9, the MPS suscep-
tibility is qualitatively similar to the mean-field theory,
displaying the triangle-shaped continuum around q ⇠ 0
and a broadened low energy feature that we can associate
with the indirect band-gap excitations of the f-electrons.
It thus appears that at strong-coupling, the f-electrons
are confined into magnons, whereas at weak-coupling the
spins have fractionalized into heavy fermions.

A. Strong coupling and mean-field perspective

To gain further insight into the dynamical spin sus-
ceptibility, we discuss the two-particle sector from both
strong coupling and mean-field perspectives. It is useful
to generalize the Hamiltonian of Eq. (5) by including a
Coulomb repulsion U > 0, i.e.

Hgeneralized = H + U
X

j

(c†
j"cj" + c†

j#cj# � 1)2 (41)

which favors one electron per site. We assume U is small
enough so that the ground state is smoothly connected
to the original problem with U = 0.
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.

k /�

�

k /�

�
�

(a) (b)

(c) (d)

(e) (f)

J = 2 TN

J = 2 MF

J = 2 RPA

J = 0.9 TN

J = 0.9 MF

J = 0.9 RPA

FIG. 9. Spin susceptibility �S(q,!). The first rwo shows
tensor network results for (a) J/tc = 2 and (b) J/tc = 0.9.
This is compared with large-N mean-field theory (MF) re-
sults in (c) J/tc = 2 and (d) J/tc = 0.9, and random-
phase approximation (RPA) results in (e) J/tc = 2 and (f)
J/tc = 0.9. The parameters in (e) and (f) are U 0

/tc = �2 and
U

0
/tc = �0.75 sin(q/2). A generally q-dependent interaction

between quasi-particles within RPA captures both magnon
branch and the details of the correlation function at q ⇠ 0.

The starting point is that at the strong coupling, all
sites are singlets, and therefore the relation

(~S + c†
~�

2
c) |Kji = 0 (42)

holds. This means that ~S can be replaced by � 1
2c

†~�c
in �S defined in Eq. (37), creating the following strong-
coupling picture: A S+ spin-flip can be considered as a
creation of a local doublon-holon spin-triplet T+ pair at
the same site. Such a state has energies around E2 = 2E1

as shown in Fig., 10. Under time-evolution, the dou-
blon and holon can move around and recombine at site
n where the T+ triplet is annihilated. Such a T+ triplet
is described by

|F+i =
X

n1n2

 +(n1, n2)c
†
n1"cn2# |⌦i . (43)

Including the U interaction, each holon or doublon costs
an energy E1+U/2 and E2 ! 2E1+U . By acting on this
with the Hamiltonian H |F+i = E |F+i and projecting
the result to within the two-particle excitations, we find
that the wavefunction  (n1, n2) obeys the first-quantized

FIG. 10. The spin-flip is equivalent to creation of a triplet
doublon-holon pair at the same site. The pair can move to-
gether as a magnon or decay into fractionalized doublon and
holon. The former has lower energy if U 0 = JK + 2U > 0.

Schrödinger equation

t

2

h
 (n1 + 1, n2) +  (n1 � 1, n2)�  (n1, n2 + 1) (44)

� (n1, n2 � 1)] + U 0�n1,n2 (n1, n2) = (E � E2) (n1, n2).

This is a two-particle problem, where the particles inter-
act via the U 0 = �JK � 2U term. Note that a repul-
sive/attractive interaction among electrons is an attrac-
tive/repulsive interaction among doublon and holon.

In the usual regime (U � 0) the interaction U 0 < 0 is
attractive. While a continuum of excited states exists, the
ground state is a stable magnon boundstate between dou-
blon and holon, with a correlation length that diverges
as U 0 ! 0. The continuum is essentially a fractionalized
magnon into doublon and holon pairs as can be seen in
the U 0 = 0 case. It is natural to expect that due to inter-
actions not considered, the doublon-holon pair decay into
the ground state. For an attractive U  �JK/2, the in-
teraction between doublon and holon U 0 > 0 is repulsive,
rendering the bound-state highly excited and unstable.

The eigenstates |F+i can be used to compute the spin-
susceptibility �S . The result is shown in Appendix D.
The result at the strong coupling J/tc = 2 contains a
magnon band in good agreement with MPS results. This
indicates that while a spin-flip has fractionalized into a
doublon-holon pair, there are residual attractive forces in
a Kondo insulator that bind the two.

On the other hand, at the weak coupling J/tc = 0.9
limit, the strong-coupling analysis is incapable of repro-
ducing MPS results around q ⇠ 0. This suggests that U 0

renormalizes to zero in the small momentum limit. As
seen in Fig. 9(b) in the weak-coupling limit, the strong
magnon-like resonance in the MPS dynamical spin sus-
ceptibility, broadens and merges with the triangular fea-
ture around q ⇠ 0, in sharp contrast to the strong cou-
pling results and more closely resembling the mean-field
theory [Fig. 9(d)].

To capture the doublon-holon interaction and the
magnion band, the mean-field theory be improved by
including a momentum-dependent residual interaction
U 0(q) between f-electron quasi-particles within a random-
phase-approximation (RPA) framework. The resulting
susceptibility can be written as

�RPA
q

(! + i⌘) =
1

[�MF
q

(! + i⌘)]�1 � U 0(q)
(45)
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The RPA results is shown in Fig 9(e,f) for a constant U 0

in the strong coupling J/tc = 2 case and U 0(q) ⇠ q in the
weak-coupling J/tc = 0.9 case, both in good agreement
with the MPS results.

Overall, these results indicate that the low-lying spin-
1 charge-neutral excitation of the ground state can be
regarded as fractionalized into spin-1/2 charge-e single
particle excitations that have some residual attraction
in one-dimension, forming a magnon branch in the dy-
namical spin-susceptibility. The disappearance of this
magnon branch at q ! 0 in the weak-coupling regime and
its comparison with RPA suggests that at long distances
the residual interaction disappears, leading to deconfined
quasi-particles.

V. CONCLUSION

By contrasting strong coupling, mean-field theory and
matrix product calculations of the dynamics of the one
dimensional Kondo insulator, we gain an important new
perspective into the nature of the excitations in this
model. There are a number of key insights that arise
from our results.

Firstly, we have been able to show that the composite
fermion, formed between the conduction electrons and
localized moments behaves as an independent fermionic
excitation, giving rise to a two-band spectrum of charge e,
spin-1/2 excitations, with hybridization between the elec-
trons and the independent, composite fermions. Our re-
sults are remarkably consistent with the mean-field treat-
ment of the Kondo insulator.

By contrast, our examination of the dynamical spin
susceptibility paints a more nuanced picture of the multi-
particle excitations. At strong-coupling, we can explicitly
see that the triplet holon and doublon combination cre-
ated by a single spin-flip form a bound magnon, giving
rise to a single magnon state in the measured dynamical
susceptibilty. Thus at strong coupling, the spin exci-
tation spectrum shows no sign of fractionalization. On
the other hand, it can be easily checked that spin-singlet
charge-2e excitations are always deconfined. Essentially,
two dobulons (or two holons) can never occupy the same
site, very much as same-spin electrons avoid each other
due to Pauli exclusion, and thus do not interact.

However, at weaker coupling, the dynamical suscep-
tibility calculated using MPS methods, displays a dra-
matic continuum of triplet excitations with an inverted
triangle feature at low momentum, characteristic of the
direct band-gap excitations across a hybridized band of
conduction and f-electrons, and high momentum feature
that resembles the indirect band-gap excitations of heavy
f-electrons. These results provide clear evidence in sup-
port of a fractionalization picture of the 1D Kondo in-
sulator at weak coupling. Based on these results, it is
tempting to suggest that there are two limiting phases of
the 1D Kondo insulator: a strong coupling phase in which
the f-electrons are confined into magnons, and a decon-

fined weak-coupling phase where the local moments have
fractionalized into gapped heavy fermions The emergence
of a continuum in the spin-excitation spectrum at weak
coupling may indicate that that the confining doublon-
holon interaction at strong coupling, either vanishes, or
changes sign at weak coupling, avoiding the formation of
magnons.

A. Further Directions

It would be very interesting to extend these results
to two dimensions. The strong-coupling analysis of the
composite fermion Green’s function and the doublon-
holon bound-states can be extended to higher dimen-
sions, where it may be possible to calculate a critical J
at which confining doublon-holon bound-state develops.
Further insight might be gained into the two-dimensional
dimensional Kondo insulator using matrix-product states
on Kondo-lattice strips, or alternatively, by using fully
two dimensional tensor-network approaches or sign-free
Monte-Carlo methods [13].

B. Discussion: Are heavy fermions in the Kondo
lattice fractionalized excitations?

The 1D Kondo lattice is the simplest demonstration
of Oshikawa’s theorem [42]: namely the expansion of a
Fermi surface through spin-entanglement with a conduc-
tion electron sea. Traditionally, the expansion of the
Fermi surface in the Kondo lattice is understood by re-
garding the Kondo lattice as the adiabatic continuation
of a non-interacting Anderson model from small, to large
interaction strength[43]. Yet viewed in their own right,
the “f-electron” excitations of the Kondo lattice are emer-
gent.

Our calculations make it eminently clear that in the
half-filled 1D Kondo lattice, the f-electrons created by
the fields

f†
j�

=
1p
Z(j)

F †
j�
, (46)

form an emergent Fock space of low energy, charge e
excitations that expand the Fermi sea from a metal,
to an insulator. Less clear, is the way we should re-
gard these fields from a field-theoretic perspective. From
the large-N expansion it is tempting to regard heavy-
fermions as a fractionalization of the localized moments,
~Sj ! f†

j↵

�
~�

2

�
�
fj� . Our calculations provide support for

this picture in the weak-coupling limit of the 1D Kondo
lattice, where we see a intrinsic dispersion of the under-
lying F electrons, reminiscent of a spin liquid, and a
continuum of S = 1 excitations in the dynamical spin
susceptibility.

Yet the concept spin-fractionalization, when used in
the context of the Kondo lattice requires care, for the
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excitations so-formed are self-evidently charged. Field-
theoretically, the spinons transform into heavy fermions,
acquiring electric charge and losing gauge charge via an
Anderson-Higgs e↵ect that pins the internal U(1) and
external electromagnetic gauge fields together[44, 45].

Why then, can we not regard the f-electrons of the
Kondo lattice as both “Higgsed” and fractionalized? This
is because the classical view of confinement [44, 46, 47]
views the confined and Higgs phases of compact U(1)
gauge theories as a single common phase: i.e. the excita-
tions of a Higgs phase are confined. On the other hand,
we can clearly see the one and two-particle f-electron ex-
citations, born from the localized moments, not only in
the large N field theory, but importantly, in the ma-
trix product-state calculations of the 1D Kondo lattice.
Moreover, a recent extension of Oshikawa’s theorem to
all SU(N) Kondo lattices [48], suggests that the large N
picture involving a fractionalization of spins into heavy
fermions is a valid description of the large Fermi surface
in the Kondo lattice. How do we reconcile these alter-
nate viewpoints? Further work, bringing computational
and analytic techniques together, extending our work to
higher dimensions will help to clarify these unresolved
questions.

Y. K. acknowledges discussions with E. Huecker. This
research was supported by the U. S. National Science
Foundation division of Materials Research, grant DMR-
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the research).

Appendix A: Composite Fermion F Operator
Commutation Relations

The composite fermion operators have the expression

F↵ =
2

3
~S · ~�↵�0c�0 , and F †

�
=

2

3
c†
↵0~�↵0� · ~S (A1)

which means

F" =
2

3
(Szc"+S�c#), F# =

2

3
(�Szc#+S+c"). (A2)

The same factor of 2/3 appears in strong coupling expan-
sion of multi-channel lattices [49]. The anti-commutation
relations are

{F
↵
, F †

�
} =

4

9
�a

↵�0�b

↵0�(S
aSbc

�
c†
↵0 + SbSac†

↵0c�0) (A3)

We use the identities

c†
↵0c�0 =

 
c†"c" c†"c#
c†#c" c†#c#

!

↵0�0

= [
n

2
1 + ~s · ~�T ]↵0�0

= [
n

2
1 + ~s · ~�]�0↵0 , (A4)

and

c�0c†
↵0 = [(1� n

2
)1 � ~s · ~�]�0↵0 , (A5)

to recast (A3) as

{F
↵
, F †

�
} =

4

9
(�a�b)↵�

h
SaSb

n

2
+ SbSa(1� n

2
)
i

�4

9

h
[Sa, Sb]sc(�a�c�b)↵�

i
(A6)

Using

[Sa, Sb] = i✏abdSd, and �a�a = 31 (A7)

we can simplify the anti-commutator to

{F
↵
, F †

�
} =

1

3
�↵� (A8)

�4

9

h
(n̂� 1)~S · ~�↵� + i✏abdSdsc(�a�c�b)↵�

i

Now, we have

�a�c = �ac1 + i✏acf�f (A9)

from which we conclude

�a�c�b = (�ac�b + �bc�a � �ab�c) + i✏acb1. (A10)

When inserted into (A8), the terms in the parenthesis
give zero (last term vanishes under antisymmetrization
and the first two cancel one-another), so that

{F
↵
, F †

�
} =

1

3
�↵� (A11)

�4

9

h
(n̂� 1)~S · ~�↵� � ✏abd✏acbSdsc�↵�

i

Now since ✏abd✏acb = �2�cd and 2~s = c†~�c we have

{F
↵
, F †

�
} =

1

3
�↵��

4

9
(n̂�1)~S·~�↵��

4

9
(~S·c†~�c)�↵� (A12)

which we can write as

{F
↵
, F †

�
} = �↵� (A13)

�4

9

h
(~S · c†~�c+ 3/2)�↵� + (n̂� 1)~S · ~�↵�

i
.

In the strong-coupling limit, the first and second term
inside the square brackets vanish, and in this limit the
anticommutator is normalized to unity.

Appendix B: Equivalence between the F-spin and
local moment at strong coupling.

The spin operator of the F electrons is

~SF = F †~�

2
F (B1)

Using (A1), we can write the c component of ~SF as

Sc

F
=

2

9
c†
↵0c�0(�a�c�b)↵0�0SaSb (B2)
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Using Eq. (A10) for the terms in parenthesis and Eq. (A7)
for SaSb we find

~SF =
2

9

h
� c†

~�

4
c+ ~S

i
(B3)

At the strong Kondo coupling limit (~S + c† ~�2 c) |⌦i = 0.

Therefore, we conclude that as long as ~SF acts on the
product-state ground state

~SF =
1

3
~S. (B4)

Appendix C: Strong coupling expansion -
Single-particle excitations

At strong coupling, the ground state is

|�i0 =
Y

j

|Kji , |Kji =
1p
2
|*j#j � +j"ji , (C1)

where * and + refer to the spins (magnetic moments) and
" and # refer to conduction electrons. To determine the
energy of this state, note that

HK = 2J
X

j

~Sj · ~sj

=
X

j

8
<

:

J/2 Sj = 1, nj = 1
0 Sj = 1/2, nj 6= 1
�3J/2 Sj = 0, nj = 1.

(C2)

Therefore the state |�i0 has energy E0/L = �3JK/2
where L is the length of the system. The action of Ht

on |�0i creates doublon-holon pairs |Cn,n+1i whose cor-
responding spins are in a spin-singlet, i.e.

Ht |�i0 = �tc
X

n

|Sn+1,ni |Cn+1,ni
Y

j 6=n,n+1

|Kji , (C3)

where

|Cn+1,ni =
|2n+10ni+ |0n+12nip

2
, (C4)

|Sn+1,ni =
|*n+1+ni � |+n+1*nip

2
(C5)

This excited state has energy E� = E0 + 3J , so the
second-order correction to the strong-coupling ground
state energy is

�E = �
X

� 6=0

h�0|Ht|�i h�|Ht|�0i
E� � E0

= �t2
1

3J
⇥Ns (C6)

leading to the energy Eg/N = �3J/2� t2/3J . The cor-
rection to the wavefunction is

|�i1 = |�i0 +
X

�

1

E0 � E�

|�i h�|Ht|�i0

=
h
1 +

t

3J

X

n

|Sn,n+1;Cn,n+1i hKn;Kn+1|
i
|�i0

FIG. 11. Graphical illustration of what is done here. (a) | gi
is the strong coupling ground state. (b) the result of acting
with Ht on | gi. (c) Acting with cj� or Fj� creates a holon.
(d) The holon moves due to Ht moving around singlets, but
also high-energy triplets. (f) The final result after projection
to low-energy singlet sector.

i.e. there will be virtual doublon-holon pairs |Cn+1,ni
whose corresponding spins are in a singlet state |Sn+1,ni.
What are the single quasi-particle excitations of this
ground state? We act on the ground state with

c†
n�

, and F †
n�

=
2

3
[�̃Sz

n
c†
n,�

+ S�̃

n
c†
n,��

] (C7)

Note that {cn�, F †
n�

} = �̃Sz

n
, where �̃ = ± for � =", #.

Assuming k is a good quantum number we can find

p
2c†

k�
|�i1 = (1� ✏k

6J
) |2; k,�i1 (C8)

p
2�̃c

k�
|�i1 = (1� ✏k

6J
) |0; k,�i1 (C9)

p
2F †

k�
|�i1 = (1 +

✏k
6J

) |2; k,�i1 (C10)
p
2�̃F †

k�
|�i1 = (1 +

✏k
6J

) |0; k,�i1 (C11)

in terms of single doublon and holon states defined as

|2; k,�i =
p
2c†

k�
|�0i =

X

m

'k(m) |2;m,�i (C12)

|0; k,�i =
p
2c

k�
|�0i =

X

m

'k(m) |0;m,�i (C13)

with energy

h2/0; k,�| (H0 +Ht) |2/0; k,�i = E0 +
3J

2
+

1

2
✏k (C14)

Using these and the spectral representation
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G↵�(z; k) =
h�| ↵|2; k,�ih2; k,�| †

�
|�i

z � [E2(k)� E�]

+
h0; k,�| ↵(k)|�ih�| †

�
|0; k,�i

z + [E0(k)� E�]
(C15)

we find the Green’s function
✓

Gcc Gcf

Gfc Gff

◆

(k,z)

=
1

z � (V + ✏k/2)

✓
1 + ✏k

2V 1
1 1� ✏k

2V

◆

+
1

z + (V � ✏k/2)

✓
1� ✏k

V
�1

�1 1 + ✏k
V

◆

where V ⌘ 3J/2. This can be written as

G(k, z) =
1

(z � ✏k/2)2 � V 2

✓
z V
V z � ✏k

◆
. (C16)

So to lowest order in t we get

G�1(k, z) = z1 �H, H =

✓
✏k V
V 0

◆
, (C17)

and we can interpret V as a hybridization between the
conduction and composite f-electron. The real-space
Green’s function can be computed from G(z, k) via

G↵�(z;x1, x2) =
X

k

'k(x1)'
⇤
k
(x2)G↵�(z; k). (C18)

Appendix D: Strong coupling expansion -
Two-particle excitations

Single particle excitations are holons and doublons.
The corresponding wavefunctions are

|Di
�
=
X

n

 d(n)c
†
n�

|⌦i , |Hi
�
=
X

n

 h(n)cn� |⌦i

and these have the energies Ed/h(k) = E1 ± ✏(k) where
✏(k) = �tc cos(k) and E1 = E0 + 3JK/2 + U .

Spin-excitations belong to the two-particle excitation
spectrum. A T+ spin-triplet excitation has the wavefunc-
tion

|F+i =
X

n1n2

 (n1, n2)c
†
n1"cn2# |⌦i (D1)

Such a state has energies around E2 = E0+3JK+2U . By
acting on this with the Hamiltonian H |F+i = E |F+i
and projecting to stay within two-particle excitations,
we find that the wavefunction  (n1, n2) obeys the first-
quantized Schrödinger equation

t

2

h
 (n1 + 1, n2) +  (n1 � 1, n2)�  (n1, n2 + 1) (D2)

� (n1, n2 � 1)] + U 0�n1,n2 (n1, n2) = (E � E2) (n1, n2)

We solve this equation using the following ansatz

 k1k2(n1, n2) = ✓(n1 < n2)[Aeik1n1�ik2n2 +A0eik
0
1n1�ik

0
2n2 ]

+ ✓(n2 < n1)[Beik1n1�ik2n2 +B0eik
0
1n1�ik

0
2n2 ]

+ �n1n2Cei(k1�k2)n1 . (D3)
This wavefunction is labelled by quantum numbers k1
and k2 for doublon and holon respectively. However, note
that in a typical scattering event k1 k0

i
= ⇡�ki. By plug-

ging this wavefunction into the Schrödigner equation, we
find that the doublon-holon pair state has energy

Edh(k1, k2) = E2 � tc cos(k1) + tc cos(k2) (D4)

Furthermore, C = A+A0 = B +B0 and
✓

B
B0

◆
=

✓
1 + u u
�u 1� u

◆✓
A
A0

◆
, (D5)

where

uk1k2 ⌘ U 0/2it

sin k2 � sin k1
. (D6)

The right-hand side has to be this form, because after L
shift to the right n1 + L > n2. So, we find

Ae�ik1L = B, and A0eik2L(�1)L = B0 (D7)

But we could also go left with the holon. It folows that

Ae�ik2L = B, and A0eik1L(�1)L = B0 (D8)

Combining these equations we see that

ei(k1�k2)L = 1 (D9)

Comparing this and the action of the translation operator
on wavefunction, this is nothing but (P̂ )L = 1. Using
these, the Schrodinger equation becomes

M =

✓
1 + u u
�u 1� u

◆
�
✓

e�ik1L

eik2L(�1)L

◆
,

(D10)

M

✓
A
A0

◆
= 0. The detM = 0 gives

2� (e�ik1L + eik2L) = �uk1k2(e
�ik1L � eik2L) (D11)

We can also find the corresponding eigenvector:

A0 = �1� e�ik1L

1� eik2L
A = e�ik1LA (D12)

where we have used ei(k1�k2)L = 1. This can be used to
find that A0 = B and B0 = A. We also have

C = A+A0 = A(1 + e�ik1L) (D13)

This fixes the wavefunction up to a normalization factor
which is easily determined. So, we choose A = 1/

p
2L.

In the following, we label the doublon-holon state with
center of mass and relative momenta k̄ and p respectively.

k1 = k̄ + p/2, k2 = �k̄ + p/2. (D14)
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Spin-susceptibility

We are interesting in computing the zero-temperature dynamic spin susceptibility defined by

�S(n, ⌧) ⌘ h�T⌧S
+
n
(⌧)S�

0 i , (D15)

= �h⌦|c†
n"(⌧)cn#(⌧)c

†
0#c0"|⌦i , (D16)

In the second line we have used the identity

⇣
~Sn + c†

n

~�

2
cn
⌘
|⌦i = 0. (D17)

By inserting the completeness relation,

1 =
X

k̄,p

|F
k̄,p

i hF
k̄,p

| (D18)

we find

�S(n, ⌧) =
X

k̄,p>0

e�⌧�E2p(k̄) h⌦| c†
n"cn# |Fk̄,p

i hF
k̄,p

| c†0#c0" |⌦i

=
1

4

X

k̄,p>0

e�⌧�E2p(k̄) 
k̄,p

(n, n) ⇤
k̄,p

(0, 0)

=
1

4

X

k̄,p>0

e�⌧�E2p(k̄)e2ik̄n
��C

k̄,p

��2 , (D19)

where

�E2p(k̄) ⌘ Edh(k̄ + p/2,�k̄ + p/2)� E0

= E2 � E0 + 2tc sin(k̄) sin(p/2), (D20)

where Edh(k̄ + p/2,�k̄ + p/2) is the doublon-holon energy defined in (D4). After taking the Fourier transform

�S(q, i⌫p) =
X

n

e�iqn

Z
�

0
d⌧ei⌫pGn(i⌫p), (D21)

noting that 2k̄ = k1 � k2 = q, this expression becomes (the positive freq. part only)

�S(q, i⌫p) =
X

p>0

|Ap(�q/2)|2 cos2(k1L/2)
i⌫p ��E2p(�q/2)

. (D22)

Appendix E: Mean-field theory

Representing the spin in Eq. (1) with fermionis S↵� =
f†
↵
f� along with a constraint f†

↵
f↵ = Qf = 1 and de-

coupling the resulting four-fermion interaction using a
Hubbard-Stratonovitch transformation, we arrive at

H =
X

k�

�
c†
k�

f†
k�

�✓ ✏c V
V ✏f

◆✓
ck�
fk�

◆
+

V 2

JK
+ �Qf ,

(E1)
where ✏c = �2tc cos k and ✏f = 0 and the Lagrange mul-
tiplier � imposes the constraint on average. At p-h sym-
metry, considered here, � = 0. The Hamiltonian (E1) can

be diaganalized using a SO(2) rotation

✓
ck�
fk�

◆
=

✓
cos↵k � sin↵k

sin↵k cos↵k

◆✓
lk�
hk�

◆
(E2)

and the eigenenergies are

El/h

k
=
✏c
k
+ ✏f

k

2
±

s
⇣✏c

k
� ✏f

k

2

⌘2
+ V 2. (E3)

Due to ⇡-periodicity of the tan 2↵k, we are free to choose
either the period 2↵k 2 (0,⇡) or 2↵k 2 (�⇡/2,⇡/2).
We choose the former interval, because the angle evolves
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more continuously in the Brillion zone. Therefore,

sin 2↵k =
2V

El

k
� Eh

k

, cos 2↵k =
✏c
k
� ✏f

k

El

k
� Eh

k

, (E4)

The relation between Kondo couling and the dynamic
hybridization is given by

1

J
= �@V 2

X

k

Eh

k
=

1

L

X

k

1q
(✏c

k
� ✏f

k
)2 + 4V 2

. (E5)

Assuming ✏f = 0, ✏c = �2tc cos k, in the continuum limit,

J/tc = ⇡

p
(V/tc)2 + 1

K(1/
p

(V/tc)2 + 1)
. (E6)

where K(k) is the complete elliptic integral of the first
kind. The strong-coupling (large V ) limit of this inte-
gral is V ! J/2. We can use this mean-field theory to
compute the retarded Green’s function

Gf (k,!+ i⌘) =
sin2 ↵k

! + i⌘ � El(k)
+

cos2 ↵k

! + i⌘ � Eh(k)
(E7)

as well as (anti-)time-ordered Green’s functions

GT

f
(n, n0; t > 0) = h�if(n, t)f†(n0)i

=
�i

L

X

k

�k(n)�
⇤
k
(n0) sin2 ↵ke

�iE
l
kt

GT̃

f
(n, n0; t > 0) = hif†(n0)f(n, t)i

=
i

L

X

k

�k(n)�
⇤
k
(n0) cos2 ↵ke

�iE
h
k t. (E8)

with

�k(n) =

r
2

N
sin(nk). (E9)

These together with GR = ✓(t)(GT � GT̃ ) can give the
spectral function.

Appendix F: Two-particle excitations - Random
phase approximation

In this section, we discuss how the RPA approach
can be combined with the non-interacting results. In the
non-interacting limit, the only contribution to Eq. (D16)
is the disconnected part coming from Wick’s contraction

�S(q, ⌧) = h�T⌧ cn#(⌧)c
†
0#i hT⌧ c

†
n"(⌧)c0"i (F1)

For non-interacting systems, we get the usual result

�0
S
(q,! + i⌘) =

X

k

f(✏k+q)� f(✏k)

! + i⌘ + ✏k+q � ✏k
(F2)

Therefore, we could assume that this is just the
non-interacting G0

q
(⌧) but multiplied by the factor

e�(3JK+2U)⌧ . Furthermore, the hopping of holons and
doublons is exactly the same. So, we propose

�dis.

S
(q,! + i⌘) =

X

k

1

! + i⌘ � (Ed

k+q
+ Eh

k
)

(F3)

where

Ed

k
=

3J

2
+U�tc cos k, Eh

k
=

3J

2
+U+tc cos k (F4)

The attractive interaction between doublon and holon
can be taken into account using RPA approximation:

�RPA
S

(q,! + i⌘) =
1

[�dis
S

(q,! + i⌘)]�1 � U 0 . (F5)

The result agrees qualitatively with the strong coupling.
However, for a better quantitative agreement with the
sctrong coupling and the tensor network data, the RPA
scheme has to be applied to the mean-field susceptibility,
computed in Eq. (G5).

Appendix G: Dynamical Spin-susceptibility within mean-field theory

We have

�+�
ff

(n, ⌧) = h�T⌧S
+
n
(⌧)S�

0 (0)i
= h�T⌧f

†
n"(⌧)fn#(⌧)f

†
0#f0"i = h�T⌧fn#(⌧)f

†
0#i hT⌧f

†
n"(⌧)f0"i (G1)

So that

�+�
ff

(q, ⌧) =
X

k

Gf (k + q, ⌧)Gf (k,�⌧) (G2)
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Switching to the real frequency domain, the retarded dynamical spin susceptibility is

�(q,! + i⌘) = �
X

k

Z
dx

⇡
f(x)G00(k, x)

n
Gf (x+ ! + i⌘, k + q) +Gf (x� ! � i⌘, k � q)

o
(G3)

For the mean-field calculations, we employ the notation of [Wugalter et al. PRB 2020] introduced in Appendix F.
The Gf within mean-field is given by

Gf (k,! + i⌘) =
sin2 ↵k

! + i⌘ � E+(k)
+

cos2 ↵k

! + i⌘ � E�(k)
(G4)

where ↵k, E±(k) are defined in appendix E. Inserting (G4) into (G3), we find

�+�
ff

(q,! + i⌘) =
X

k

cos2 ↵k

h sin2 ↵k+q

! + i⌘ + E�(k)� E+(k + q)
� sin2 ↵k�q

! + i⌘ � E�(k) + E+(k + q)

i
(G5)

For ! > 0 only the first term contributes to the imaginary part of the dynamical susceptibility

�00
ff
(q,! > 0) = ⇡

X

k

cos2 ↵k sin
2 ↵k+q�

⇣
! + E�(k)� E+(k � q)

⌘
(G6)

In figure 12 we plot this function assuming ✏f = 0.

FIG. 12. Dynamical spin susceptibility from the strong cou-
pling expansion. (a) U = 0 (b) U/JK = �0.4 (c) U/JK =
�0.5 (d) U/JK = �0.6.

Appendix H: MPS Methods for Computing Green
Functions

In order to calculate the Green’s function G(q,!),
spin susceptibility �(q,!), and F (q,!), we first calcu-
late the ground state by the DMRG method [37]. The
ground state is represented by a 2N site matrix product
state (MPS). The spin sites of dimension 2 are located

on the odd sites with the remaining conduction electron
sites of dimension 4 are located on the even sites. The
bond dimensions are automatically adjusted, depending
on truncation error threshold i.e. cuto↵ of ✏ = 10�12

in the ground state calculation. The maximum bond di-
mension � used in the ground-state calculations ranged
between � = 300 and � = 600 depending on di↵erent
Hamiltonian parameters J/tc.

The Green’s functions are defined in Eq. (13). To
obtain the retarded GR(x, t) and �(x, t), we need to cal-
culate di↵erent components of Green’s function, such as
G>

cc
, G>

cF
, G<

cc
, etc. These terms account for the presence

of both F and c degrees of freedom, and also we need to
both greater and lesser Green’s function to compute the
retarded Green’s function. Without loss of generality,
we take G>

cF
as an example. The other components are

calculated by a similar approach.

G>

cF
= �i hcx1(t)F

†
x2
(0)i (H1)

= �i hcx1(t/2)F
†
x2
(�t/2)i (H2)

= �i heiHt/2cx1e
�iHt/2e�iHt/2F †

x2
eiHt/2i (H3)

= �ieiE0t h0| cx1e
�iHt/2e�iHt/2F †

x2
|0i (H4)

where E0 is the ground state energy. The second equals
sign holds because of time translation invariance. From
the third line, we choose the Heisenberg picture. The
expression for G> can then written into the overlap of
two time evolved MPS as

G>

cF
= �ieiE0t

⇣
eiHt/2c†

x1
|0i
⌘† ⇣

e�iHt/2F †
x2

|0i
⌘

.(H5)

To calculate the expression above, we first apply one
on-site operator (either c†

x1
or F †

x2
) to the ground state.

Two groups of MPS are obtained depending on x1 and x2,
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then we use the time evolving block decimation (TEBD)
[38, 40] algorithm to time evolve for + t

2 and � t

2 . Thus in
our calculation, instead of time evolving the right ket for
t, we evolve the bra for �t/2 and ket for t/2. Recalling
that the bond dimension of an MPS generically grows ex-
ponentially under real-time evolution, splitting the time
and equally distributing gates onto the bra and ket al-
lows us to work with two MPS with significantly smaller
bond dimension rather than one MPS with a large bond
dimension. We obtain u(x, t

2 ) and v(x, t

2 ), which are de-
fined as

|u(x, t/2)i = eiHt/2c†
x1

|0i (H6)

|v(x, t/2)i = e�iHt/2F †
x2

|0i . (H7)

The total time t/2 we wish to evolve each state is split
into many time slices of size ⌧ . For every time step ⌧ , we
compute the Green’s function by calculating the overlap
between MPS. In our calculation, we took ⌧ = 0.05.

The time evolution reaches a certain time Tmax.
The resolution in frequency domains depends on Tmax,
namely �! = 1/Tmax. The longer time we run, we can
resolve finer details as a function of !. In our calculation,
we checked the measurement results for di↵erent Tmax up
to Tmax = 500 and confirmed our results converged when
Tmax > 100.

The MPS bond dimension grows so the MPS bond di-
mension requires truncation. During the time evolution,
we tried di↵erent MPS (or SVD) cuto↵ errors ranging
from ✏ = 10�4 to 10�8. We found the Green’s function
converged once the cuto↵ typically reached ✏ = 10�5.
The maximum bond dimension used in these calculations
was � = 2000.

Having obtained G> and G<, the retarded Green’s

function can be derived by

GR(x1, x2, t) = ⇥(t)
�
G>(x1, x2, t)�G<(x1, x2, t)

�
.

(H8)
We can calculate the retarded Green’s function GR(q,!)
in the (q,!) domain by Fourier transform

GR(q,!) =

Z
dt
X

x1,x2

eiq(x1�x2)�i!tGR(x1, x2, t) . (H9)

Appendix I: Parallelization of MPS Calculations

The Green’s function at a given time is a matrix de-
fined in (x1, x2) domain. The calculation of each entry
(x1, x2) involves independent time-evolution calculations
and overlaps of di↵erent wave functions |u (x, t)is and
|u (x, t)is. These wavefunctions originate with creation
and annihilation operators acting on di↵erent sites x).
So we can parallelize these calculations and significantly
reduce the time to solution. For each time slice or value
of t, the computation contains two parts, the time evo-
lution and measurement.

The time evolution of |u (x, t)is and |u (x, t)is are
independent of each other and consume approximately
same amount of time, which can run in di↵erent threads
with minor data exchange. In total, there are O(N) num-
ber of wave functions, which can be parallelized with no
overhead cost, and scale well with increasing number of
threads.

The measurement of the Green’s functions matrix in-
volves calculating the overlap of |u (x, t)is at di↵erent
sites x1 and x2. Both x1 and x2 run from 1 to N . And
the computation of these overlaps are independent, which
can be computed with O(N2) threads.

The time evolution step takes the dominant amount of
time, because each time evolution requires application of
series of gates and repeating singular value decomposition
to keep bond dimension increasing, which contributes to
a large prefactor before O(N). Though the measurement
scales as O(N2), the overlap operation is much faster.
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