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Abstract .  We investigate the properties of discretizations of advection equations
on non-cartesian grids and graphs in general. Advection equations discretized on non-
cartesian grids have remained a long-standing challenge as the structure of the grid can
lead to strong oscillations in the solution, even for otherwise constant velocity elds. We
introduce a new method to track oscillations of the solution for rough velocity elds on any
graph. The method in particular highlights some inherent structural conditions on the
mesh for propagating regularity on solutions.

1. Intro duction.
1.1. Discretized advection equations. We introduce a new framework to study the

regularity of discretized advection equations. Our method is able to provide quantitative
regularity estimates by extending the kernel based approach initially introduced at the
continuum level in [5, 4] and further studied in [35, 31]. This is particularly helpful when
investigating the convergence of numerical schemes for coupled non-linear systems.

To  be more specic, we study discretizations of the classical linear continuity equation,
@tu(t; x) +  divx 

 
b(t; x)u(t; x)

 
=  0;      t 2  R + ; x  2  Rd ;                         (1.1)

Those discretized equations usually involve calculating the dynamics of a discrete density
ui that is dened on each cell of a grid or mesh. We specically focus on upwind schemes that
read

dt 
=  

i      i 0

ai; i0  ui0      ai0 ; i  ui : (1.2)
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The factor i  represents some notion of volume of the cell i  on the mesh and the coe-cients
ai;i0  ; ai0 ;i are related to the ux between two cells i  and i0. We refer to Section 1.4 for the
precise formulas for the schemes that we consider.

The continuity equation constitutes a key relation in a large variety of models, in
which the velocity eld b(t; x) is typically related to the density u(t; x) in dierent ways. As
mentioned above, it is this coupling between b and u that makes strong compactness of the
density, instead of weak convergence, an essential ingredient and one of the com-mon
diculties when trying to prove convergence for the whole system, whether from numerical
approximations or some other approximate system. We present a few typical examples
below that motivate our investigations and have natural applications in biology and uid
mechanics.

The velocity eld b in (1.1) can rst be related to the density u by some convolution b
=  K  ? g(u) for some non-linear function g or by the Poisson equation

b(t; x) =  r x ( t ; x ) ;  x (t; x) =  g(u(t; x)); (1.3)

which corresponds to choosing the fundamental solution of the Laplacian as the kernel K .
There exist already many examples of such systems in applications: We briey mention [43]
for swarming or [16, 38] for models of chemotaxis. The function g represents a non-
linear dependence on the density u in the equation for b, which can capture more
complex phenomena in the model such as logistic eects.

In a somewhat similar spirit, non-linear continuity equations may be considered such
as

@tu(t; x) +  divx 
 

b(t; x)f (u(t; x))
 
=  0; t 2  R + ; x  2  Rd : (1.4)

This type of non-linear ux combines non-linear scalar conservation laws with linear
advection. Models such as (1.4) are found for example in some biological settings, where
the speed of micro-organisms is impacted by their local density; see, for instance, the
discussion of Keller-Segel model in [38]. We expect that the results in this paper can
be extended to such non-linear models, but for the sake of simplicity in this article, we
consider only the linear continuity equation and exclude such nonlinearity in the ux
from the rest of our discussion.

The continuity equation (1.1) is also naturally a critical component of compressible
uid dynamics such as the barotropic compressible Navier-Stokes system

8

>  @t 
+  div(bu) =  0

@t
(bu) +  div 

 
(b

 b)u
 
+  r p       div((b)) =  f  p =  P (u);

with appropriate boundary conditions if considered in a bounded domain. In this system,
the velocity eld b is coupled with the density u by another evolution P D E ,  leading to an
even more complex non-linearity than in the previous examples.
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A  related model is the Stokes system,
8

<  @t 
+  div(bu) =  0

     b +  r p  =  f
: p  =  P (u);

which considerably simplies the momentum equation and the relation between b and u.
There exists a large literature on the numerical analysis of compressible Navier-Stokes

system to which we cannot do justice in a few sentences.     We only briey mention
[28, 27] for the compressible Navier-Stokes and [24, 25, 29] for the Stokes system. To
the best of our knowledge however, the numerical analysis of these systems is only well-
understood on Cartesian meshes or staggered grids, for example in [30], that still rely
on Cartesian mesh for the density. Generally speaking, the regularity of discretized
continuity equations such as (1.2) remains poorly understood on non-cartesian meshes,
which leads to the main motivation and focus in the present work.

1.2. Renormalized solutions. Even without discretization, the well-posedness for ad-
vection equations such as (1.1) is in itself a delicate question when the velocity eld b is not
Lipschitz. By introducing the concept of renormalized solution, the uniqueness and
compactness of (1.1) was rst obtained in [23] for velocity elds b 2  W 1;p. This was later
improved in [2, 7] to only b 2  B V with div b 2  L1 .

Renormalized solutions are based on a simple but essential observation: Assume that
b and u are smooth and satisfy the continuity equation (1.1). Then for all  2  C 1 (R),
(u) is a solution of

@t(u) +  div(b (u)) +  div b (0(u)u      (u)) =  0: (1.5)

A  weak solution of (1.1) with a non-smooth eld b is said to be renormalized i (1.5) holds in
distributional sense for all  2  C 1 (R)  with j()j  C jj. Moreover, equation (1.1) with a

xed eld b is said to be renormalized i all its weak solutions are renormalized. Basically,
the renormalization property consists in stating that if u is a weak solution then non-

linear functions of u are also solutions, with appropriate corrections if div b =  0. This
directly implies the uniqueness of a weak solution u: Consider two weak solutions u; v

with u(0; x) =  v(0; x), if u      v is a renormalized solution, then ju      vj is also a weak
solution. Hence ku(t; :)   v (t; :)kL 1 (R d )   ku(0; :)   v (0; :)kL 1 (R d )  =  0 and u =  v. Com-

bining the uniqueness and the renormalization property directly provides compactness
in the appropriate L l o c  sense as one can prove that

weak-* lim (un ) =  (weak-* lim un):

A  common critical part in the proof of the renormalization property is a so-called
commutator estimate. Consider a classical convolution kernel K  together with K  ?x u
where u solves (1.1). Commutator estimates arise when trying to write a similar equation
on K  ?x u: One then has that

@t(K ?x u) +  div 
 

b K  ?x u
 
=  R;
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where the remainder term R  can be written as a commutator

R ( x )  =  
Z  

b(x)      b ( y ) r K ( x       y)u(y) dy +  
Z 

divx b ( x ) K ( x       y)u(y) dy:

Commutator estimates then consists in proving that R  !  0. If it is possible to prove
this, then it is straightforward to deduce the renormalization property (1.5) by writing
an equation on ( K  ?x u) and passing to the limit  !  0.

Renormalized solutions are also connected to some form of propagation of quantita-
tive regularity. It had already been noticed in [3] that renormalized solutions lead to
some approximate dierentiability on the solution. But the rst explicit propagation of
regularity was obtained in [20] at the level of the characteristics ow. The characteristics
method used in [20] proved very fruitful with many later extensions. One can mention
the study of SDEs  in [18, 26, 44], the question of mixing under incompressible ows in [11,
32, 40], well-posedness for velocity elds with less than 1 derivative in [17, 33], and velocity
elds obtained through a singular integral in [6, 8, 19].

The corresponding regularity at the P D E  level can be derived by directly quantifying
oscillations on the solution. A  rst method to do so was introduced in [5, 4] for non-linear
continuity equations of the form (1.4). In the linear case, sharper estimates were obtained
in [35] and [15] through a somewhat similar approach. We also mention [13, 14] which
combines those methods with a new notion of weights; this was applied to the com-pressible
Navier-Stokes equation with a large variety of laws of state and stress tensors. A  very
dierent quantitative approach at the P D E  level was studied in [41, 42], using certain
optimal transport distances. Al l  those results only propagate a weaker notion of
regularity, weaker than full dierentiability, usually some sort of log of derivative. It is
indeed not possible in general to bound any kind of Sobolev regularity on density when
the velocity eld is merely Sobolev; see some counterexamples for example in [1, 34].

The approach that we follow in the present paper is inspired by the quantitative
semi-norms introduced in [5, 4], which we briey describe for this reason. The local
compactness of a sequence of bounded functions uk 2  Lp (R d )  with 1  p <  1  follows from
the following property:

Z
lim sup K h ( x       y)jun (x)      un(y)jp dxdy !  0 as h !  0; (1.6)

R 2 d

where f K h g h > 0  is any family of classical convolution kernels. Scaling (1.6) with a given
rate of convergence in h leads to various notions of semi-norms that measure intermediate
regularity between L p  and W s;p for any s >  0, and all of such regularities are strong
enough to imply local compactness in Lp .

The particular family of kernels f K h g  proposed in [5, 4] results in semi-norms corre-
sponding to a sort of log-scale derivatives that we denote here by Wlog;. The Wlog;-
regularity dened by kernels f K h g  was then proved to be propagated by (1.1) when the
velocity eld b 2  W 1;p, div b is bounded and div b is compact or enjoys some similar
Wlog;-regularity.

Hence with such assumptions on b, the solutions of (1.1) are compact if the initial
data are Wlog;-regular. The bounds in [35] and [15] yield some more precise log-scale
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derivatives based on somewhat similar semi-norms. The corresponding spaces have also
received increasing attention in other settings, see for instance [9].

When trying to extend the idea of quantifying oscillations in [5, 4] to our discrete
setting, it appears natural to introduce an approximation of the continuous kernel K h  on
the mesh. In other words, we would like to estimate the regularity of the discrete
density by something like

l im sup
X

K i ; j ; ( n ) ju i ; ( n )       u j ; ( n ) jp
i ; ( n ) j ; ( n )  !  0; as h !  0; (1.7)

i ; j

where ( K i ; j ) i ; j  is an approximation of kernel K h  and the double integral is replaced by
a double summation over the mesh.

The main issue however is to identify the right family of kernels ( K i ; j ) i ; j  so that the
corresponding semi-norms are propagated by the discrete advection equation. This turns
out to be extremely challenging on non-cartesian grids as a straightforward discretization of
the kernels f K h g  used for the continuous equation does not appear to work. The main
technical contribution of this paper is a general method to nd admissible approximation
( K i ; j ) i ; j ,  extending the results in [5, 4] to upwind schemes. This leads to the study of a
non-symmetric diusion equation on the mesh which we can solve and bound when the
mesh show periodic patterns (the exact denition is given in Section 1.4).

1.3. Some of the issues with non-cartesian grids. At rst glance, it may not be appar-ent
why non-cartesian meshes lead to such additional diculty. Eq. (1.2) may in fact be seen as
an advection equation on a graph where the actual velocity eld is correspond to some
projection of the original velocity eld that incorporates the structure of the graph. This
means that the graph’s topology can lead to additional oscillations in the solution in
itself. This is made apparent in the following straightforward example, that we are
grateful to T .  Gallou•et and R.  Herbin for pointing out. This shows that even for very
smooth or actually constant velocity elds at the continuous level, one may have strong
oscillations in the solution at the discrete level.

E x a m p l e  1.1. Consider the constant velocity eld b(x)  (1;0) in dimension 2 and the
following non-cartesian discretization: Let h0 be the discretization parameter, and

use Z2  to index the cells. The cell indexed by ( i ; j )  2  Z2  is given by
(

[jh; ( j  +  1)h)  [kh; (k +  1)h) if k is even;
( j ; k ) [jh=2; ( j  +  1)h=2)  [kh; (k +  1)h) if k is odd:

That simply means that we keep the vertical discretization h, but alternate a row with
horizontal discretization h, with another row with discretization h=2.

Consider a discrete density (uj ; k ) j ; k  solving the upwind scheme (1.2) over such a mesh
for a discretization of the constant velocity eld b =  (1; 0). Assume that the initial data

(uj ; k (0)) j ; k  is bounded in discrete W 1;1-norm, uniformly in h0. Then for any t >  0,
(uj ; k (t)) j ; k  is bounded in the discrete W s;1-norm, uniformly in h0, if and only if s <  1=2.

This type of spurious oscillations created by the mesh itself are one of the reasons
why the aforementioned quantitative methods (either in ODE or P D E  level) have not
been extended to non-Cartesian meshes. In fact, there exist only very few qualitative

results of strong convergence for non Lipschitz velocity elds and non-Cartesian meshes.
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One can nevertheless mention [10] which relies on the renormalization property at the
limit. However because this kind of approach is not quantitative, it requires some a priori
knowledge of the compactness of the divergence of the velocity eld. This appears to
make handling coupled non-linear models such as (1.1)-(1.3) out of reach.

When one is not trying to handle at the same time non-Cartesian meshes and non-
Lipschitz coecients, stronger results can be obtained. On non-Cartesian meshes, we refer
for instance to [36, 37] for divergence-free velocity eld that are Lipschitz in both space
and time, and to [21] for autonomous (time-independent) Lipschitz velocity elds with
non-zero divergence. For non-Lipschitz velocity elds on Cartesian meshes, one can
obtain quantitative convergence results in some suitable weak distances. When the
velocity eld is in the appropriate Sobolev space with one-sided bounded divergence, the
upwind scheme was proved to converge at rate of 1=2 in [39] in some weak topology.
When the velocity eld is one-sided Lipschitz continuous, the convergence with rate 1=2 of
the upwind scheme in Wasserstein distance was proved in [22].

To  the best of our knowledge however, this article is the rst to provide a general ap-
proach to the compactness of solutions to discrete advection equations with non-Lipschitz
coecients and non-Cartesian meshes, even if we still require some restrictions on the
mesh such as periodic patterns.

Furthermore, the compactness result in this paper is directly applicable to some of the
coupled systems discussed at the beginning of this introduction. We are in particular able
to derive the compactness of discretizations of the non-linear coupled system (1.1)-(1.3).
The exact result is stated later in this rst section. We remark here that the velocity eld b
obtained from u through (1.3) is naturally bounded in W 1;p for all 1 <  p  1 ,  if we assume
g(u) 2  L 1  \ L 1 .  Of course we cannot know a priori the compactness of div b but we have
the simple relation div b =  g(u). This is where quantitative, explicit estimates prove
critical as we are able to conclude through some sort of Gronwall argument.

However more complex coupled systems would present unique challenges for our ap-
proach: This is notably the case of compressible uid dynamics. Energy estimates would
provide Sobolev, H x  bounds on the velocity. However the divergence of velocity is gener-
ically unbounded, which would prevent us from applying our method in any straightfor-
ward manner. Instead this would likely require the introduction of weights such as was
done in [13, 14] at the continuous level.

1.4. A  basic example of setting for the linear continuity equation. Considering the
linear continuity equation (1.1), we introduce here its basic discretization on a polygon
mesh (C ; F ) =  fV i g i 2 V ; fS i ; j g ( i ; j ) 2 E       over a bounded domain
  Rd , which we dened as the following:

 The pair of indices (V ;E ) form a nite graph.
 Each cell Vi is a d-dim polygon in Rd . The intersection of two cells Vi and Vj  is

nonempty if and only if ( i ; j )  2  E. In that case S i ; j  =  Vi \  Vj  is a (d   1)-dim
polygon in Rd .

 The domain is covered by the mesh:
 i 2 V  Vi .

We dene the discretization size of the mesh as x  =  supi2V diam(Vi), where diam()
represents the diameter.
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As a rst example, we consider the following semi-discrete upwind scheme
8

ui (t) = ai;i0  (t) ui0 (t)      ai0 ;i (t) ui (t) ; if i  2  V and V i + B x

; i  i0 : ( i ; i 0 ) 2 E

<u i ( t )   0; if i  2  V but V i + B x  *
;

Z Z +

ai; j (t) =
jBx j  B x         S i ; j  

b(x +  y; t)  N i ; j  dydx ; if ( i ; j )  2  E and S i ; j  + B x

;

: u i ( 0 )  =  
jVij

u0 (x) dx; if i  2  V and V i + B x

;
(1.8)

where (ui (t)) i 2 V  are the discrete density on the mesh, N i ; j  is the unit normal vector on
S i ; j ,  satisfying N i ; j  =   N j ; i .  The functions b(t; x) and u0 (x) are respectively the velocity
eld and initial condition in the linear continuity equation (1.1). Also, throughout the
paper, for s 2  R  we use the notation s +  =  s _  0 =  maxfs; 0g and s  =   (s ^  0) =
     minfs; 0g.

The total mass on the mesh is given by       i 2 V  uijVij. It is easy to verify that the
scheme conserves mass except near the boundary of

, where some leaking may occur.
Such leaking eect can be controlled by no ux (no outward ux) condition of the velocity eld
or by a priori estimating the distribution of density.

Before we can rigorously state any compactness result, we still need to clarify our
assumptions on the mesh. Throughout the paper, for A ; B   Rd , we use the notation

A  +  B  =  f x  2  Rd ; x =  a +  b; a 2  A; b 2  B g:

Also, for x  2  Rd  we denote A  +  x  =  A  +  fxg, which is a translation of set A  on Rd.
We say that a mesh has a periodic pattern if the following holds:
Def ini t ion 1.2. Let (C ; F ) =  fV i g i 2 V ; fS i ; j g ( i ; j ) 2 E        be a polygon mesh over

  Rd  and let V0  V. The mesh is periodic with pattern V0 if it satises the following
properties: The set i 2 V  Vi is connected and one has i 2 V  Vi     +  B x

. There exists a translation group action

[m](Vi) =  Vi +  
X

m k L k ; 8m 2  Zd ; i 2  V;
k = 1

where L  ; : : : ; L 2  Rd  are linearly independent vectors, such that
X  X  

1[m]Vi (x )  =  1     for a.e. x  2  Rd :
m 2 Z d  i 2 V 0

Moreover, there exists an injective map

 : V !  Z d   V0;
i  !  ([n]; i0):

If ( i )  =  ([n]; i0) and ([m] +  [n]; i0) 2  (V ), dene [m](i) =   1
 

([m] +  [n];i0)
 
2  V. Then

one has
[m](Vi) =  V[m](i) ; if i  2  V and [m](i) 2  V:
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If the mesh is periodic with pattern V0 we call jV0j the pattern size; of course for a
given mesh, the choice of V0 and jV0j may not be unique. If one can choose V0  V; E0  E such
that (C0; F 0) =  fVi g i 2 V 0  ; fS i ; j g ( i ; j ) 2 E 0         forms a mesh over
0

, and is a periodic mesh by the denition above, then we say that (C ; F ) is periodic over
0.

We also require some additional assumptions on the meshes, though those are rather
standard. Throughout the discussion, any mesh (C ; F ) of our interest should satisfy that
for all i  2  V and x  2  Rd :

C  1 x diam(Vi)  C x ; C  1 (x)d  jVij  C (x)d ; fk  2
V : B (x ; x )  \  Vk =  ? g   C ; (1.9)

for some uniform constant C .  These conditions exclude some pathological situations
where some parts of the mesh would be too singular in some regard.

Finally, we observe that since we are considering the limit to the continuous equation,
then we naturally expect the discretization size to vanish. Namely, let 

C ( n ) ; F ( n )  
=  

 
fV i ; ( n ) g i 2 V ( n )  ; f S i ; j ; ( n ) g ( i ; j ) 2 E ( n )  ; n 2  N +

be a family of meshes and let x ( n )  , n 2  N +  denote the discretization sizes, then we ask
that

x ( n )  !  0 as n !  1 : (1.10)

We are now ready to state a rst example of our compactness result:

Theorem 1.3. Consider T >  0 and a bounded domain
  Rd  with piecewise smooth boundary. Let b(t; x) be a velocity eld with b 2  L t  L x

\ Lq (W 1;q ) \ L1 (W s;1 )([0; T ]
)  and divergence divx b 2  L 1 ( L 1 ) \ L 1 ( W s ; 1 ) ( [ 0 ; T ]
), for some 1 <  q  1 ,  0 <  s  1. Let u0 2  L 1  \  W s;1 (
)  be the initial data.

Consider a sequence of polygonal meshes f ( C ( n ) ; F ( n ) ) g 1  
1 over

, having discretiza-tion size x ( n )  !  0, satisfying the structural assumptions (1.9) with
some uniform con-stant, and being periodic on
 with their pattern size also uniformly bounded. Let
(u i ; ( n ) ( t ) ) i 2 V ( n )      be solutions to the semi-discrete scheme (1.8) and denote by u(n) (t; x)
the piecewise constant function extending (u i ; ( n ) ( t ) ) i 2 V ( n )  . Assume nally that the total
mass i 2 V ( n )  ui;(n) (T )jVi; (n) j !  ku0kL1 as n !  1 .  Then

u(n) (t; x) is compact in L1([0; T ]
):

The proof of the theorem is postponed to Section 2.3, where it follows from the prop-
agation of some discrete regularity of the form (1.7).

1.5. The more complete setting. We demonstrate the potential of our method by also
deriving the compactness for a simple non-linear coupled system, namely

@tu(t; x) +  divx     b(t; x)u(t; x) =  0

b(t; x) =  r x ( t ; x ) ;  x (t; x) =  g(u(t; x)):

However, the setting of polygon meshes described above may no longer be the most
appropriate. The diculty comes from the coupling of numerical schemes between the
elliptic Poisson equation, for which one may want to use nite elements for example, and the
hyperbolic advection equation for which we use upwind schemes. This is one of the
motivations for our more general formulation.
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We dene cell functions, face functions and meshes that replace the polygonal cells. We
discuss later in subsection 1.6 how the previous polygon meshes can be related to this
formulation.

Def ini t ion 1.4. Consider a piecewise dierentiable function  with value 0    1
and vector values functions f n j g j = 1  on Rd . Then  is said to be a cell function with
f n j g j = 1  as its face functions if

P
j = 1  n j ( x )  =   r ( x )      for a.e. x  2  Rd and supp nj  supp ; 8j 2  V:

With the cell functions and face functions dened, we give the following denition of
meshes.

Def ini t ion 1.5. We dene as a generalized mesh over
  Rd  a pair (C ; F ) =  f i g i 2 V ; f n i ; j g ( i ; j ) 2 E       satisfying the following conditions:

 The pair of indices (V ;E ) forms a nite graph.
 If i  2  V and supp i

, then i  must be a cell function with f n j ; i g ( j ; i ) 2 E  as its face functions.
 Finally,

P
i 2 V  i ( x )  =  1; 8x 2

and n i ; j  =   n j ; i ; 8i; j 2  V:

We also extend f n i ; j g ( i ; j ) 2 E  to f n i ; j g i ; j 2 V  by dening n i ; j  =  n j ; i  =  0 for ( i ; j )  2= E.
The discretization size of a mesh (C ; F )  is dened as x  =  maxi 2 V  diam(supp i). The

volume of cell i  2  V is dened as i  =  k i kL 1  .
The semi-discrete scheme we consider in this paper is of form
8
< ui (t) = ai; j (t) uj (t)      aj; i (t) ui (t) ; if i  2  V and supp i

; i  j : ( i ; j ) 2 E

ui (t)  0; if i  2  V but supp i *
:
(1.12)

Given b(t; x) and u0 (x) as the eld and initial condition in linear continuity equation
(1.1)

respectively, we
choose the
coecients and
initial data in the
scheme as 8 Z

>u i (0 )  = i (x) u0 (x) dx; if i  2  V and supp i
;

Z (1.13)
: a i ; j ( t )  = b(t; x)  n i ; j ( x ) dx; if ( i ; j )  2  E and supp ni;j

: R d

Notice that if supp i

, then for all j  2  V, either one has ( i ; j )  2  E, supp ni;j   i

 or one has ( i ; j )  2= E, n i ; j  =  0 and supp ni;j

 trivially holds. Hence ai ; j  and ai ; j  in (1.12) are always well-dened. In addition, we let

ai; j (t)  0     if ( i ; j )  2= E or supp ni;j  *
:

Then the summation in (1.12) can be taken over all j  2  V, instead of only j  such that
(i ; j )  2  E, and the scheme is essentially unchanged. In some of the later calculations,
this adaption can be convenient.

The structural assumptions to meshes we have made should also be adapted. In



particular, the new denition of being periodic is the following:
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Def ini t ion 1.6. Let (C ; F ) =  
 

f i g i 2 V ; fn i ; j g ( i ; j ) 2 E
 

be a mesh over
  Rd  and let V0  V. We say that (C ; F ) is a periodic mesh with pattern V0 if it satises the
following properties:

 The set i 2 V  supp i is connected and one has i 2 V  supp i

.
 There exists a translation group action

8  <
([m]i ) x  =  i       x                m k L k       ;

8[m] 2  Z  ; i; j 2  V;
([m]ni; j )  x  =  n i ; j       x         k = 1  m k L k       ;

where L1 ; : : : ; Ln 2  Rd  are linearly independent vectors, such that
X  X

[ m ] i ( x )  =  1     8x 2  Rd :
[ m ] 2 Z d  i 2 V 0

 Moreover, there exists an injective map

 : V !  Z d   V0;

i  !  ([n]; i0):
If ( i )  =  ([n]; i0) and ([m] +  [n]; i0) 2  (V ), dene [m](i) =   1

 
([m] +  [n]; i0)

 
2  V. Then

one has

[m]i =  [m]( i ) ; [m]ni; j  =  n[m] ( i ) ; [m] ( j ) ; if i; [m](i) 2  V:

If the mesh is periodic with pattern V0 we call jV0j the pattern size. As before, for a
given mesh, the choice of V0 and jV0j may not be unique. If one can choose V0  V; E0  E such
that (C0; F 0) =  f i g i 2 V 0  ; fn i ; j g ( i ; j ) 2 E 0         forms a mesh over
0

, and is a periodic mesh by the denition above, then we say that (C ; F ) is periodic over
0.

The other structural assumptions on the mesh can be adapted in a straightforward
manner. We limit our discussion to meshes (C ; F )  that satisfy that for all i  2  V, (j; j 0 ) 2  E
and x  2  Rd :

C  1 x  diam(supp i)  C x ; C  1 (x)d  k i kL 1   C (x)d ; x kn j ; j 0

k L 1   C ; fk 2  V : (supp k ) \  B (x ; x )  =  ? g   C ; (1.14)

for some uniform constant C .  Also, we assume that the discretization size vanishes when
considering a family of meshes, 

C ( n ) ; F ( n )  
=  

 
f i ; ( n ) g i 2 V ( n )  ; fn i ; j ; ( n ) g ( i ; j ) 2 E ( n )  ; n 2  N +

that (1.10) holds where x ( n )  , n 2  N +  denote the discretization sizes as given in Deni-
tion 1.5.

With this more general formulation, one can couple the upwind scheme for advec-
tion and the nite elements for Poisson equation in the following way: Consider convex
bounded domains with piecewise smooth boundary
v

e  Rd . Let (P ; N )  be a nite element discretization of
e, where P  is the set of shape functions and N  is the set of nodal variables. Choose the
mesh (C ; F ) =  f i g i 2 V ; fn i ; j g ( i ; j ) 2 E       over
v  as in Denition 1.5 such that C  P .
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The coupled system (1.11) is numerically discretized through by (1.12). The coe-
cients (a i ; j ) i ; j 2 V  derive (1.13) where the eld b(t; x) is now a solution of the variational

problem
8 Z Z

(t; ) 2  P ; r v ( x )   r ( t ; x )  dx = v(x)g(t; x) dx; 8v 2  P ;
<                              R d                                                                                               R d

g(t; x) = g ui (t) i (x); (1.15)
i 2 V

b(t; x) =  r ( t ; x ) :

We only consider here Dirichlet boundary conditions for (1.15), as Neumann boundary
conditions would require an extra condition d  g(t; x) dx =  0 for all t, which does not
naturally hold when g contains some nonlinear function of the density u.

When investigating this more complex coupling, we require further structural assump-
tions on the pair of nite element (P ; N )  and the mesh (C ; F )  of our interest. Namely, the
exact solution of   =  g and its approximated solution  of the nite element variational
method

Z Z
 2  P ; r v ( x )   r ( x )  dx =  R d v (x)u(x) dx; 8v 2  P ;

R d

are assumed to satisfy the priori estimates

k      kH 1 (

e )   C xkkH 2 (

e ) ;

kk W 1 ; 1 (

e )   C k k W 1 ; 1 (

e ) :

(1.16)

Such a priori estimates can be proved under rather mild conditions on the nite element
discretization; we refer to Section 5.4 and 8.1 of [12].

We are now ready to state our main theorem on this coupled system, whose proof is
again postponed to Section 2.3.

Theorem 1.7. Consider bounded domains
v

e  Rd  with piecewise smooth bound-ary, a sequence of nite element discretizations
f ( P ( n ) ; N ( n ) ) g 1  

1 on
e and a sequence of meshes

f ( C ( n ) ; F ( n ) ) g 1  
1 =  f  f i ; ( n ) g i 2 V ( n )  ; fn i ; j ; ( n ) g i ; j 2 V ( n )      gn = 1

over
v  as in Denition 1.5, satisfying C ( n )   P ( n ) .  Assume that the discretization size x ( n )  !  0,
the meshes f ( C ( n ) ; F ( n ) ) g 1  

1 satisfy the structural assumptions (1.14) by some uniform
constant, and each mesh (C ( n ) ; F ( n ) )  is periodic on
v  with pattern size uniformly bounded. Moreover, assume that the nite element
discretization (P ( n ) ; N ( n ) )
satisfy the a priori estimates (1.16) with some uniform constants.

Consider bounded, Lipschitz and concave nonlinearity g : [ 0 ; + 1 )  !  R  with g(0) =  0.
Assume that the initial data u0 satises u0 2  L 1  \  W s;1 (
v ) for some s >  1, and dist(supp u0; @
v ) >  0. For all n 2  N+ ,  let (u i ; ( n ) (t ) ) i 2 V ( n )       and (a i ; j ; ( n ) ) i ; j 2 V ( n )       be the solution of the
coupled scheme (1.12), (1.13) and (1.15) solved on (C ( n ) ; F ( n ) )  and (P ( n ) ; N ( n ) ) .  Dene

u(n) (t; x) = i ; (n) (x)ui ; ( n ) (t):  i 2 V ( n )



 

S

 

jB  (0)j

Z

i

1

P

1
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Then there exists T >  0 such that

u( n )  is compact in L1([0; T ]  Rd ):

Moreover, T could be arbitrarily large by choosing large
v such that dist(supp u0; @
v ) !  1 .

1.6. Connection between the two settings. We now discuss why the polygon meshes in
Section 1.4 can be understood as a special case of the more general setting in Section 1.5.

Starting with any polygon mesh (C ; F ) =  fV i g i 2 V ; fS i ; j g ( i ; j ) 2 E        over
  Rd  with discretization size x, one can construct a mesh as in Denition 1.5 through the

following
process. First, add more cells to (C ; F ) if necessary, to ensure
+ B x  i 2 V  Vi . Second,
construct the extended mesh f i g i 2 V ; fn i ; j g ( i ; j ) 2 E       with the cell and face functions

i (x )  =
1

1V (x       y) dy; 8i 2  V;

Z 
r B r ( 0 ) (1.17)

n i ; j ( x )  =  
S i ; j  

jBr (0)j
1B r ( 0 ) (x      y ) N i ; j  dy; 8(i; j ) 2  E:

where N i ; j  is the unit normal vector of S i ; j .  It is then straightforward to check that if
i  2  V and supp i
, then i  is indeed a cell function with f n j ; i g ( j ; i ) 2 E  as its face functions. Also, one has

i 2 V  i ( x )  =  1, 8x 2
 and n i ; j  =   n j ; i ,  8i; j 2  V. Therefore, this construction does yield a mesh over
 as in Denition 1.5.

With this construction, the upwind scheme (1.12) for ( f i g ; fn i ; j g )  with coecients
(1.13) and the upwind scheme (1.8) for (fVi g; fS i ; j g)  are very similar. The conditions
supp i

 and supp ni;j

 are now nothing but Vi +  B x

 and S i ; j  +  B x

. It is also immediate to see that Z
i  = i (x )  dx =  jVij:

Finally, the coecients ai ; j  in (1.13) (when supp ni;j

)  now read ai ; j  =  
jBx (0)j B x         S i ; j  

b(x +  y)  N i ; j
+

dydx;

which is only slightly dierent from the coecients ai ; j  in (1.8), though we do emphasize the
order of ( ) +  and integration in this formula. Notice that if b(x) is constant, then the
integrand b  N i ; j  is also constant, hence ai ; j  given by (1.13) and (1.8) coincide. So, when
b(x) has W 1;p regularity, we can naturally expect the two ways of determining ai ; j  to dier
only by a term that is vanishing in L p  as discretization size goes to zero.

As mentioned earlier, both compactness results in Theorem 1.3 and Theorem 1.7 are
derived by propagating some discrete regularity like (1.7), where the discrete density
(u i ; ( n ) ( t ) ) i 2 V ( n )  are both governed by the upwind scheme, with the coecients originally
dened in dierent ways but now formulated all in the setting of Section 1.5. In Section 2, we
give the precise denition of such regularity as Denition 2.3 and state the propagation of such
regularity by the upwind scheme as Theorem 2.9. Theorem 2.9 can then be applied to prove
both Theorem 1.3 and Theorem 1.7.

While the main elements of the proofs rely on the same result, namely Theorem 2.9,
we do need to mention that some settings in Theorem 1.3 and Theorem 1.7 are not
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identical. Apart from the aforementioned choice of ai; j , the way we extend discrete
density to continuous functions are also slightly dierent: In Theorem 1.3, un is dened as
piecewise constant on each cell, while in Theorem 1.7, u is reconstructed from cell
functions and is thus not piecewise constant. Nevertheless, these dierences are only
minor issues once all necessary denitions and notations are properly introduced, which we
do in Section 2.

Let us also remark that u and un could be made identical by formally choosing i
=  IV i  . However such choice would come with some additional issues. The indicator
functions are not cell functions according to Denition 1.4 because they are not even
continuous. One may still try to understand the gradients r i  and n i ; j  in distributional
sense to have that r i  = n i ; j  and

Z                                           Z
f ( x )   n i ; j ( x )  dx = f ( x )   N i ; j  dx     8(i; j ) 2  E ; f 2  C 1 ( R d ; R d ) :

R d                                                                                   S i ; j

In such cases we formally have

ai ; j  = b(x)  N i ; j
+  

dx: S i ; j

where the extra mollication in the current choice is removed. But this extra mollication
appears to be necessary for our formulation. For example integrating on S i ; j  without
any mollication would require trace embedding and in turn more stringent conditions on
the mesh, which we try to avoid.

2. Main  technical results of the paper. The goal of this section is to introduce
the technical setting that we need for our approach and to state the main precise, quanti-
tative results that underlies our compactness results. First, we introduce some necessary
notations. Then in subsection 2.2, we introduce the discrete kernel and semi-norm we
use to prove compactness, which is modied from the continuous kernel and semi-norm
introduced in [5, 4]. We next state Theorem 2.9 about the the propagation of regularity
on periodic meshes. This is the main quantitative result in the paper and, in particular,
Theorem 1.3 and Theorem 1.7 are deduced from it. The proof of Theorem 2.9 depends
on multiple lemmas and theorems, which we state in subsections 3.1, 3.2 and 3.3. But
the actual proofs of these lemmas and theorems are postponed to later sections.

2.1. Denitions and notations. Consider a mesh (C ; F )  over
  Rd  as in Deni-tion 1.5. We introduce the following notations:

V

 =  f i  2  V : supp i \

 =  ?g; V

 =  f i  2  V : supp i

g; V

 =  f i  2  V : 9j; j  =  i  or ( i ; j )  2  E; s.t. supp j \

 =  ?g ;

E
 =  f ( i ; j )  2  E : supp k \
 =  ?  for k =  i; j g; E
 =  f ( i ; j )  2  E : supp ni;j

g:

For a function f  2  L l o c (Rd ) (or Llo c (Rd ; Rd )), dene the \projection-to-cell operator"
PC f  as 8 Z

(PC f ) i  =  i       R d  
f ( x ) i ( x )  dx; 8i 2  V ;

(2.1)



0; 8i 2  (V n V ):
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Moreover, for f  2  Llo c (Rd ; Rd ), dene the \projection-to-face operator" P F f  as

( P F f ) i ; j  =  R d         
f ( x )   n i ; j ( x ) dx; 8(i; j ) 2  E

;
(2.2) 0;

8(i; j ) 2  (V 2 n E ):

With these notations, the coecients and initial data in (1.13) can be rewritten as
(a i ; j ) i ; j 2 V  =  P F b  and (ui (0)) i 2 V  =  PC u0. Next, we dene the discrete divergence of
(a i ; j ) i ; j 2 V  as

8
< a      a ; 8k 2  V

D k  =  D  (a i ; j ) i ; j 2 V = k  i 2 V (2.3)
0; 8k 2  (V n V ):

The denition of discrete divergence is justied by the following observation: When
choosing (a i ; j ) i ; j 2 V  =  PF b,  one has

8k 2  V
; D k  = b(x)  n i ; k (x ) dx  b(x)  n k ; i ( x ) dx

i 2 V  
Z Z

=                              b(x)  n i ; k ( x )        dx              b(x)  n i ; k (x )        dx
k  i 2 V  Z 

R d R d

= b(x)  n i ; k (x )  dx dx 
k  i 2 V       R

d

Z
=   b ( x ) r k ( x )  dx = divx b(x)k (x)  dx: k

R d                                                                               k       R d

Hence, at least on V
,

D ( P F b )  =  PC
 

divx b: (2.4)

For any (v i ) i 2 V ,  we dene its discrete L p  norm by
! 1 = p

k(v i ) i 2 V kL p ( C )  = vi
p

i :
i 2 V

In addition, we dene the L p  norm for the discretized velocity eld (a i ; j ) i ; j 2 V  by 0
11=p

k(a i ; j ) i ; j 2 V k L p ( F )  =  @ai ; j
p A (x)d=p (d 1);

i ; j 2 V

where the factor (x)d=p (d 1) attempts to account for the expected size of the faces.
One motivation to dene the discrete norms as above, and especially the scaling factor

in L p ( F ) ,  is that we can easily bound them by their continuous counterparts. It is easy
to verify the following proposition when p =  1 and p =  1 ,  and the general case follows by
an interpolation.

Propos i t ion 2.1. Let (C ; F ) be a mesh satisfying (1.14), then one has the following
inequalities:

kP F b k L p ( F )   C kbkL p (

) ; kPC ukLp (C )   C kukL p (

) ;



1

X

(x)

p;

X

e h

e h

p

h

X
e h

A D V E C T I O N  O N  N O N - C A R T E S I A N  G R I D S 15

where the constant C  in the above inequalities only depends on the constants in the
structural assumptions (1.14).

In this paper, we consider a sequence of discrete densities u( n )  =  (u i ; ( n ) ( t ) ) i 2 V ( n )

dened on a sequence of meshes (C ( n ) ; F ( n ) ) .  Since the n-th density is always dened on
the n-th mesh, as an abuse of notation, we write ku( n ) kL p ( C ( n ) )  as ku( n ) kL p (C )  for
simplicity. Similarly, for the discrete coecients a( n )  =  (a i ; j ; ( n ) ) i ; j 2 V ( n )      on the meshes we
write ka ( n ) k L p ( F ( n ) )  as ka( n ) kL p ( F ) .

The following notations are also useful in later discussions: For each i  2  V, dene the
\barycenter" of cell function i  by

Z
x i  =  

i
x i ( x )  dx:

For any (v i ) i 2 V ,  dene its extension to Rd  by

v = vi i : i 2 V

2.2. Compactness via quantitative regularity estimates. In this subsection we intro-
duce the explicit semi-norms that we are going to use in the paper, together with lemmas
and propositions about some basic properties of those objects. The proof of all lemmas
and propositions are postponed to Section 7.

The following continuous kernels and semi-norms are introduced in [5, 4] to prove the
compactness of density:

Def ini t ion 2.2. Dene the kernel K h  for all h >  0 by

K h ( x )  =  
(jxj +  h)d ; 8x 2  Rd ;

where  is some smooth function with compact support in B (0; 2) and s.t.  =  1 inside
B(0; 1). Then for 1  p <  1 ,  0 <   <  1, the semi-norm k  kp; for density u 2  L p ( R )  is dened as

Z
kukp       =  sup j log hj K h ( x       y)ju(x)      u(y)jp dxdy: (2.5)

h1=2 R 2 d

We dene the corresponding discretization of such kernels and semi-norms.
Def ini t ion 2.3. Consider a mesh (C ; F ) over
  Rd , on which there exists a discrete

density (u i ) i 2 V  such that supp ui  V
. Assume that

i (x )  =  1; 8x 2
 +  B(0; 4): (2.6) i 2 V

Given any so-called virtual coordinates xe =  (xei ) i 2 V  2  (Rd )V , we dene an approximate
kernel K i ; j  on the mesh by

K i ; j  =  K h ( xe i       xej ); 8i; j 2  V:

Then for 1  p <  1 ,  0 <   <  1 and 0 <  h0 <  1=2, the discrete semi-norm k  kh0 ;p;;xe on the
mesh is dened as

kukh0 ;p;;xe =  
h 0  

sup
1=2 

j log hj  

i ; j 2 V  

K i ; jju i       uj jp
i j : (2.7)
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The following lemma is the cornerstone of deriving compactness from the discrete
regularity in Denition 2.3, in the particular case where xe 2  (Rd )V  in Denition 2.3 is
simply chosen by the barycenters, i.e. xei  =  x i .  In that case, we use the specic notation

K i ; j  =  K h ( x i       x j ) and k  kh0 ;p; =  k  kh 0 ; p ; ; ( x i ) i 2 V  to

specify the discrete semi-norm derived from the barycenters (x i ) i 2 V .

Lemma 2.4. Let (C ; F ) be a mesh as in Denition 1.5 over
  Rd  such that (1.14) and (2.6) hold. Consider a discrete function (u i ) i 2 V  on the mesh,
satisfying the bound

k(ui )i2V kh 0 ;p;   L

for some 0 <  h0 <  1=2. Dene the renormalized kernel K h ( x )  =  K h ( x ) = k K h k L 1  and let u
be the extension of (ui (t)) i 2 V  to Rd . Then

8h >  h0; ku      K h  ? ukL p   C j log hj 1

where the constant C  only depends on L  and the constant in structural assumptions
(1.14). If the mesh is given by a polygon mesh (fVi g; fS i ; j g)  via (1.17), then the above
inequality also holds when u is replaced by the piecewise constant extension.

Consider a sequence of meshes (C ( n ) ; F ( n ) )  and a sequence of discrete density u( n )  =
(u i ; ( n ) ) i 2 V ( n )  dened on them. It is just natural to study the compactness of such discrete
densities on dierent meshes by some sort of extension on Rd .

To  see how Lemma 2.4 helps to derive compactness of such sequence, assume that one
has uniform boundedness

sup lim sup ku(n)kh ;1; <  1 ;
0 < h < 1 =2

and uniform boundedness of discrete Lp (C ) norm. Then for any xed h >  0, the dier-ence
between extended functions u( n )  and their mollications are uniformly bounded by C j log hj
1 up to discarding nitely many terms of the sequence. On the other hand for any xed h
greater than 0, the sequence of mollied functions is locally compact. Therefore, the
sequence of extended functions is also locally compact.

However there are several big issues that one should be aware of when moving from
the continuous to the discrete setting:

 The kernel parameter h has to be bounded from below in Denition 2.3, because a
kernel too sharp is not suitable for a coarser grid. Generically h0 should be
chosen much greater than the discretization size x. But for a sequence of meshes
with x  converging to zero, h0 could be chosen converging to zero as well (with a
possibly much slower speed). As we just discussed below Lemma 2.4, this sort of
regularity in asymptotic sense would be sucient to continue our discussion of
compactness.

 Moreover, in Denition 2.2 the integral is taking on R2d, while in Denition 2.3 we
are restricted to a nite double summation. Nevertheless, any kernel K h  has

bounded support in ball B(0; 2), hence for any density u with bounded support,
the double integral in (2.5) can be taken on     supp u +  B(0; 2) 2 instead of R2d.
Therefore, to reasonably approximate the integral in (2.5), it is natural to made
the additional assumption (2.6) for the summation in (2.7). The larger ball
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B(0; 4) is used for the convenience of later analysis. Starting from a mesh (C ; F )
over
  Rd  on which the upwind scheme (1.12) is dened, one can always put additional
cell functions to make (2.6) hold. The scheme is not really aected

as the density is set as zero at any i  2= V
. For this reason, when discussing quantitative regularity, we always add (2.6)

as part of our assumption to meshes.
 The more delicate issue and the one that leads to most technical diculties in this

paper is how to choose the virtual coordinates (xei ) i 2 V .  While it would seem
natural to take (xei ) i 2 V  =  (x i ) i 2 V ,  the corresponding semi-norm does not seem
to be propagated well on the scheme (1.12). This will force the use of (xei ) i 2 V  =
( x i ) i 2 V  to obtain semi-norms that we can propagate well. On the other hand, by
Lemma 2.4 we can clearly see compactness from the semi-norms induced by
(x i ) i 2 V ,  but not from semi-norms induced by arbitrary (xei ) i 2 V .  Therefore, we will
also have to show that the approximate kernels K h ( xe i    xej )  are equivalent to
K h ( x i       x j ) ,  for a choice of virtual coordinates (xei ) i 2 V  that are only slightly
dierent from the barycenters (x i ) i 2 V .

We can make the last issue somewhat more precise by a more general estimate that
consider the discrete kernels as some sort of perturbation of the continuous kernels.

Lemma 2.5. Consider measurable functions f i ; g i  : Rd  !  Rd , i  =  1; 2 and 0 <  h1 <  1=4,
such that jx      f i (x ) j   h1, jx      gi (x)j  h1, 8x 2  Rd ; i =  1; 2. Consider the kernels

K f  (x; y) =  K h (f1 (x) ; f2 (y ))  =  
(jf1 (x)      f2 (y)j +  h)d ;

K g  (x; y) =  K h (g1 (x); g2 (y )) =  
(jg1 (x)      g2(y)j +  h)d :

Then for 1  p <  1  and 0 <  h <  1=2,
Z Z

K h (x; y )ju(x)       v(y)jp dxdy  (1 +  Ch1=h) K h (x; y )ju(x)       v(y)jp dxdy;
2 d                                                                                                                                                                                      2 d

(2.8)
where the constant C  only depends on the xed choice of  in the denition of kernels K h .

Notice that the double summation in (2.7) can be rewritten as a double integral form
by carefully choosing some function f  =  f1  =  f2  and a piecewise constant, which we
state as the next lemma:

Lemma 2.6. Consider a mesh (C ; F )  as in Denition 1.5 over
  Rd  with discretization size x  <  1=16, such that (2.6) hold. Introduce some measurable
sets (V i ) i 2 V   Rd  such that

Z
jVij =  i  = i ; sup jx      x i j  <  2x; 8i 2  V; and Vi \  Vj  =  ? ; 8i; j 2  V:

R d                         x 2 V i

Dene the piecewise constant extension uV = i 2 V  ui1Vi     for the discrete density func-
tion. Then

supp uV

 +
B(0; 1)
 +
B(0; 3)

Vi     :
i 2 V



2

f ( x )  = S

e
i ;

R 2 d

i i

i

pX X
h h 1 1

i jR Rd d
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Assume that the virtual coordinates (xei ) i 2 V  are such that jxei      x i j  <  h2, 8i 2  V and for
some 0 <  h <  1=16. Dene f  : Rd  !  Rd  as

(
xe i ; for x  2  Vi ; i  2  V;

x; for x  2= i 2 V  Vi :

Then jx   f (x ) j   2x +  h2 <  1=4, 8x 2  Rd . Moreover the double summation in (2.7)
can be rewritten as a double integral:

X  
K h

j ju i       uj jp
i j  =  

Z
K h  

f ( x )       f (y)juV (x)       uV (y)jp dxdy;
i ; j 2 V

for all 1  p <  1  and 0 <  h <  1=2.

From these two lemmas, one may deduce the following proposition supporting our use
of (xei ) i 2 V  =  (x i ) i 2 V .

Propos i t ion 2.7. Consider a mesh (C ; F )  with discretization size x  <  h2 <  1=16, such
that (1.14) and (2.6) hold. Let (xe(1 ) ) i 2 V , (xe( 2 ) ) i 2 V  2  (Rd )V  be two sets of virtual
coordinates on the mesh such that

8i 2  V; k =  1; 2; xe( k )       x i  <  h2:

Then for 1  p <  1 ,  0 <   <  1 and 0 <  h0 <  1=2, the two resulting semi-norms and
equivalent and satisfy

kukh0 ;p;;xe( 2 )   (1 +  Ch2 =h0 ) kukh0 ;p;;xe(1)  ;

where the constant C  is xed.

The proposition implies that the equivalence of semi-norms can be derived from the
closeness of virtual coordinates.     Therefore, a large part of our technical analysis is
actually devoted to nding appropriate (xei ) i 2 V  ensuring the propagation of regularity
while remaining reasonably close to barycenters (x i ) i 2 V .

The next proposition is also a consequence of Lemma 2.5:

Propos i t ion 2.8. Consider a mesh (C ; F ) such that (1.14) and (2.6) hold. Then for
1  p <  1 ,

Z
K h (x; y )ju(x)       u(y)jp dxdy  (1 +  C x=h) 

X  
K h ( x i       x j )jui       uj jp 

i j ;  R 2 d

i ; j 2 V

and
Z Z p

K i ; j(P C u) i       (PC u)j  i j  =            K i ; j                u(x) i (x)  dx                 u(y)j (y) dy i j
i ; j 2 V i ; j 2 V

Z
 (1 +  C x=h) K h (x; y )ju(x)       u(y)jp dxdy:

R 2 d

for some constant C  depending only on p and the constants in the structural assumptions
in (1.14).
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This proposition ensures that the regularity of the extended function is comparable
to the regularity of the discrete density and vice versa, which is needed in our proof of
Lemma 2.4 and Theorem 1.7.

2.3. Our main quantitative regularity result. We are now ready to state our main
quantitative theorem about the propagation of regularity on periodic mesh.

Theorem 2.9. Consider T >  0, and a bounded domain
  Rd  with piecewise smooth boundary. Let f ( C ( n ) ; F ( n ) ) g 1  

1 be a sequence of meshes over
  Rd  as in Denition 1.5, having discretization size x ( n )  !  0, satisfying the structural
assumptions (1.14) and (2.6) by some uniform constant, and being periodic on
 with pattern size uniformly bounded.

For all n  N+ ,  t 2  [0; T ], let (a i ; j ; ( n ) ( t ) ) i ; j 2 V ( n )      be the coecients of the upwind scheme
(1.12) on (C ( n ) ; F ( n ) )  and let D( n ) ( t )  =  (D i ; ( n ) ( t ) ) i 2 V ( n )  be the discrete divergence dened as
in (2.3). Let u( n )  =  (u i ; ( n ) (t ) ) i 2 V ( n )  be a sequence of discrete density solved by
the upwind scheme. With some 1  p <  q  1  and 0 <  s  1, assume that there exists a sequence
of velocity eld b(n) (t; x), bounded uniformly in L t  (W 1;q )\Lp (W s;p )([0; T ]
), and approximating the coecients (a i ; j ; ( n ) (t ) ) i ; j 2 V ( n )  with vanishing error

( a i ; j ; ( n ) )
i ; j 2 V ( n )       P F ( n )  b( n )  L p ( [ 0 ; T ] F ( n ) )  

!  0     as  n !  1 :

Assume moreover that the solutions have uniformly bounded norms supn k u ( n ) k L
1

L p  
( [0 ;T ]C

(n) )  <  1 ,
and that mass leaking vanishes

ku(n) (0)kL 1 (C )       ku(n) (T )kL 1 (C )  !  0     as n !  1 :

Then for all   maxf1   1=q; 1=2g, 0 <  h0 <  1=2, there exists suciently large N  2
N +  such that for all n  N ,

 ku(n) (t)kh0 ;1;

ku(n) (0)kh0 ;1;

Z t

+  C k div b( n ) (s)kL 1 (C ) ku( n ) (s)kh 0 ;1 ;  +  kb(n) (s)kW 1 ; q  ku( n ) (s)kL p  (C )

+  kD( n ) (s)kL 1 (C ) ku( n ) (s)kh 0 ; 1 ;  +  ku( n ) (s)kL p  (C ) kD(n) (s)kh 0 ;p;p( 1=p) ds
+  L 2  +  L 3  ;

(2.9)
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with additional terms due to discretization
Z t  

L  =  C  j log h0j =h2 (x ( n ) ) ka( n ) (s)kL q ( F )  +  kb(n) (s)kW 1 ; q        ku(n) (s)kL q  (C )  ds 0

+  C (j log h0j1 )  ku(n) (0)kL 1 (C )       ku(n) (t)kL 1 (C )  ;

L  =  C (j log h0j =h0) a( n )       P F ( n )  b ( n )  L p ( [ 0 ; T ] F )  +  (x ( n ) ) s = ( 1 + s ) kb ( n ) kL p ( Ws ; p )

#
+  ( x ( n ) ) 1 + ( 1 = p      1 = q )         ka( n ) kL q ( [0; T ]F )  +  kb( n ) kL q ( W 1 ; q ) ku( n ) kL t  L p  

([0;t]C) ;
 =  exp

 
C (1=h0 )(x( n ) )s=(1+s) :

(2.10)
The constant C  in (2.9) only depends on
, the exponents p; q and the constant in the structural assumption (1.14), while the
constant C  in (2.10) also depends on T , the exponent s and the constant bounding
pattern size. Nevertheless, none of the constants depends on h0 or x ( n ) .  The index N
2  N +  is chosen to make x ( n )  suciently small, which only depends on h0 and the
constant bounding pattern size.

In particular, for any xed h0 >  0, the additional terms L ; L  converge to zero and
converges to one as n !  1 .

Proving Theorem 2.9 is the main technical challenge of the paper. We split our proof
into three theorems, namely Theorem 3.1, 3.3 and 3.4. These three theorems are stated
in subsection 3.1, 3.2 and 3.3 and we conclude Section 3 by how they are used to prove
Theorem 2.9. Each of the three theorems requires its own proof on which we spend an
entire section after Section 3.

Before we move to the proof, we conclude this section by showing how to deduce
Theorem 1.3 and Theorem 1.7 from Theorem 2.9.

Proof of Theorem 1.3. Let us begin with the discussion of mesh properties as Theo-
rem 1.3 is stated in the setting of polygon meshes. We rst recall the construction (1.17) in
Section 1.6, restated here

Z
i (x )  =  

jBr (0)j B r ( 0 )  
1Vi ( x       y) dy; 8i 2  V;

n i ; j ( x )  =  
S i ; j  

jBr (0)j
1B r ( 0 ) (x      y ) N i ; j  dy; 8(i; j ) 2  E:

for the entire sequence f ( C ( n ) ; F ( n ) ) g 1  
1. As an abuse of notation, we still use f ( C ( n ) ; F ( n ) ) g 1  

1

to denote the generated sequence f  f i ; ( n ) g i 2 V ( n )  ; fn i ; j ; ( n ) g ( i ; j ) 2 E ( n )      gn=1 . It is easy to verify
that if the polygon meshes satisfy the structural assumptions (1.9), then the con-structed
new meshes as in Denition 1.5 satisfy the structural assumptions (1.14), with
a possibly larger constant. Moreover, as explained in Section 2.2, one can always put
additional cell functions to make (2.6) hold. This yields a sequence of meshes that fullls the
requirements of Theorem 2.9.
Now we dene a linear operator P 0 as an alternate of the \projection-to-face operator" P F ,

such that in Theorem 1.3, the coecients of upwind scheme on each (C ( n ) ; F ( n ) )  is
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chosen exactly by (a i ; j ; ( n ) ) i ; j 2 V ( n )  =  P 0 
( n )  b. Such operator P 0    

 is given by

(P
0

 f ) i ; j  =  
<

Z

R d  
f ( x )   n i ; j ( x )  d x

+  

; 8(i; j ) 2  E

;
0; 8(i; j ) 2  (V 2 n E):

It is easy to verify the divergence identity D ( P F b )  =  PC
 

divx b
 
by the same approach

with which we obtain (2.4). Also, it is straightforward that kP F b k L p ( F )   kP F b k L p ( F )

C kbkL p (

) .
We can then do some a priori estimates for the norms required by Theorem 2.9. To

avoid writing too many index (n) in the calculation, let (C ; F ) =  f i g i 2 V ; fn i ; j g ( i ; j ) 2 E  be
any mesh in the sequence of meshes we consider. Firstly, notice that for i  2  V
, one has

0 1
dui =  

1 X   
ai ; j  uj       aj ; i  ui

 
 

1 @sup uk 
X  

ai ; j       ui 
X  

a j ; i
A

i  j 2 V
     

i k 2 V j 2 V j 2 V (2.11)
=   D i  sup uk +               aj ; i       sup uk      ui     ;

k 2 V i  j 2 V k 2 V

and for all i  2  V
 n V
, one has ui  0. By the assumption divx b 2  L t  L x  , one can conclude kD (t )k L 1 ( C )

C k divx b k L 1  and

d 
sup uk  sup( D j )  sup uk  

C
k divx b k L 1  sup uk: (2.12)

k 2 V i 2 V k 2 V k 2 V

The constants C  just above do not depend on (n), so that (u i ; ( n ) ) i 2 V ( n )  and ( D i ; ( n ) ) i 2 V ( n )

have uniform a priori bound in L 1 L 1 ( [ 0 ; T ] C ( n ) ) .  By Ho•lder estimate one can obtain
uniform bound in any L 1 L p ( [0 ; T ]   C ( n ) )  where 1  p  1 .

Secondly, for any s >  0 and   1      1=p, the semi-norm of the divergence is bounded by
k(Di (t)) i 2 V kh  ;p;p( 1=p)  C k divx b(t)kp;p( 1=p)  C k divx b(t)kW s ; p  :

The rst inequality is an application of the divergence identity D ( P F b )  =  PC
 

divx b
and Proposition 2.7, while the second inequality is due to Sobolev estimates. Similarly,

k(ui (0))i2V kh 0 ;1;   C ku0 kW s ; 1  :

The constants C  again do not depend on (n). This gives uniform bounds to the semi-
norm of (D i ; ( n ) ( t ) ) i 2 V ( n )  and (u i ; ( n ) (0)) i 2 V ( n )  .

We want to apply Theorem 2.9 with b(n) (t; x) =  b(t; x), p =  1 and q =  q (recall that
b 2  Lq (W 1;q ) \  L1 (W s;1 )). But the issue remains is that our newly dened P 0     is not
identical to P F .  Hence, the L 1  dierence

(a i ; j ; ( n ) ) i ; j 2 V ( n )       P F ( n )  b ( n ) L 1 ( [ 0 ; T ] F ( n ) )  =  P F ( n )  b      P F ( n )  b L 1 ( [ 0 ; T ] F ( n ) )

is not zero, and one has to argue it converges to zero as n !  1  and as x ( n )  !  0. This
is guaranteed by the following proposition whose proof is postponed to Section 7.
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Propos i t ion 2.10. Let (C ; F )  be a mesh as in Denition 1.5 over
  Rd  such that (1.14) hold. Assume that each face function n i ; j  2  F  is of form n i ; j ( x )  =
N i ; j w i ; j (x ) ; 8x  2  Rd , where N i ; j  2  S d 1 is a unit vector and wi ; j  is a scalar function. Then
for 1  p  1 ,

P F b       P F b L p ( [ 0 ; T ] F )   C xkbkL p ( W 1 ; p ) ;

where the constant C  only depends on p and the constant in the structural assump-
tion (1.14).

We only have to observe that the construction (1.17) indeed ensures that any n i ; j  2
F  is of form n i ; j ( x )  =  N i ; j w i ; j ( x ) .  Hence this proposition applies to the setting of
Theorem 1.3. And we can nally apply Theorem 2.9 to obtain (2.9) with b(n) (t; x) =
b(t; x), p =  1 and q =  q.

By Gronwall estimate one can conclude

C 1 = sup lim sup ku(n) (t)kh ;1; <  1
0 < h 0 < 1=2

for some 0 <   <  1. This directly implies compactness in space of the density u(n) .
Compactness in time now follows by reproducing the Aubin-Lions argument in the semi-
discrete setting.

For any 0 <  h <  1=2, let h0 =  h. By the previous estimates, one can choose N (h) 2  N +

such that

sup ku(n) (t)kh;1; <  2C 1 :
n N ( h )

By Lemma 2.4, one has

k K h  ?x u(n) (t)      u( n ) (t)kL 1   C j log hj 1 for n  N (h); t 2  [0; T ]; (2.13)

where C  depends on Clog ;  and the total mass of u(n) .
On the other hand for any xed h >  0, Uh ; C ;

 =  f K h  ? u : k u k L 1  <  C; supp u
g is a compact set by Arzela{Ascoli theorem, on which we consider t !  K h  ?x u(n) (t), the
trajectory of mollied density. Notice that

Z Z
Vh (t) = K h  ?x u(n) (t; x) dx =

R d R d       
i 2 V ( n )

!

K h ( y       x)dy
d 

ui; (n) (t) dx:
i ; ( n )



R d

X 1 1
i i 0

X
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By (1.2) we can bound Vh (t) by

Z Z !

Vh (t) =                       K
h ( y       x)dy                            ai ; i 0 ; (n)  ui 0 ; (n)       ai 0 ; i ; (n)  ui ; ( n )   dx

i 2 V ( n ) i ; ( n ) i0 : ( i ; i 0 ) 2 E ( n )

Z Z Z
= K h ( y       x)dy  K h ( z       x)dz ai; i 0 ; (n)  ui 0 ; (n)   dx R d        

( i ; i 0 ) 2 E ( n )

C i ; ( n )                                                                       C i 0 ; ( n )

Z Z Z
K h ( y       x)dy  K h ( z       x)dzdx ai; i 0 ; (n)  ui 0 ; (n)

( i ; i 0 ) 2 E ( n )               R d                       C i ; ( n )                                                                       C i 0 ; ( n )

L h x ( n )  ai ; i 0 ; (n)  ui 0 ; (n)

( i ; i 0 ) 2 E ( n )

 C Lh kb(t)kL 1  ku( n ) ( t )kL 1 ( C ( n ) ) ;

where L h  denotes the Lipschitz constant of K h  and C  depends on the constant in Propo-
sition 2.1. Since we assume b 2  L 1 L 1  and have obtained uniform a priori bound of
(u i ; ( n ) ) i 2 V ( n )  in L 1 L 1 ( [ 0 ; T ]   C (n) ), we have Vh (t) uniformly bounded in t.

Therefore, for any xed h  0, K h  ? u(n) is equicontinuous as a trajectory in Uh ; C ;

  L1 (Rd ).  By Arzela{Ascoli theorem, f K h  ? u(n) g is compact for all h >  0, which implies
fu( n ) g is also compact thanks to (2.13).

We now turn to the proof of Theorem 1.7 which requires more work but follows
somewhat similar steps.

Proof of Theorem 1.7. As in the proof of Theorem 1.3, our goal is to apply Theo-rem
2.9. As a comparison, this time we begin with a sequence of meshes as in Deni-tion 1.5 so
the mesh properties are obvious, but since we are discussing a coupled system, we also need
to actually derive regularity estimates on the velocity eld.

As before, when there is no ambiguity, we omit the index (n) by letting (C ; F ); (P ; N )
be any pair of mesh and nite element in the sequence, and let (ui ) i 2 V ,  (a i ; j ) i ; j 2 V  be the
discrete solution.

Step 1: Discrete a priori bounds. The discrete divergence at i  2  V
 is given by

D i  =  
1 X   

ai0 ; i       ai;i0  

 
=  

1 X  Z  
b(y)  n i 0 ; i (y ) +       

 
b(y)  ni 0 ; i (y )   dy 

i

i 0 2 V  Z
i  i 0 2 V      R

d          

Z
= r ( y )   ni 0 ; i (y ) dy = r ( y )   (  r i ( y ) )  dy i

i 0 2 V      R
d                                                                                            i       R d

=  
1  

     g(y)i (y) dy: i
R d

The last identity is due to the assumption that i  2  C  P  and (1.15).
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By Proposition 2.8, for all h  x, one has
Z Z

K i ; j j D i       D j j  i j  = K i ; j  g (x) i (x)  dx  g(y)j (y) dy i j

i ; j 2 V i ; j 2 V

 C K h (x; y )jg (x)       g(y)j dxdy
R 2 d

 C K i ; j jg (u i )       g(uj )j i j
i ; j 2 V

 C L g K i ; jju i       uj j i j :
i ; j 2 V

where L  be the Lipschitz constant of g. Hence,
 D i ( t)

i 2 V h 0 ; 1 ;   C L g
 
ui( t)

i2V h 0 ;1; (2.14)

Also, from the above discussion it is straightforward to see that
Di (t )  =      g(y) i (y ) dy =  g uj (t) j (y )  i (y ) dy i

R d                                                                                             i       R d                     
j 2 V

=   A i ; j  g uj (t) ;

where the coecients satises

A i ; j   0;

j 2 V

X  
A i ; j  =  1:

j 2 V

Thus
sup

 
D i ( t ) i 2 V   sup

n 
     g(a) j a 2  [ inf 

 
ui (t) i 2 V ; sup

 
ui (t) i 2 V ]

o
; 

inf

D i ( t ) i 2 V   inf 
n  

     g(a) j a 2  [ inf 
 
ui (t) i 2 V ; sup

 
ui (t) i 2 V ]

o
:

Since we assumed that g 2  L 1 ( R ) ,  this means that the divergence is bounded uniformly
in n. By (2.11) and (2.12), we also obtain a uniform in n bound of (u i ) i 2 V  in L1 ([0; T ]C ) for
any T >  0.

Recalling moreover that  is the solution of   =  g (with Dirichlet B C  on
e), one also has a uniform bound on r  in L t  L x  \  L t  H x .

Step 2: Control of mass leaking by Markovian interpretation. The discrete scheme
can also be represented by a Poisson random process model. Without loss of generality,
we may assume that the total mass i 2 V  ui (0)i  =  1 and dene the initial condition of the
random process X ( t )  by P f X ( 0 )  =  ig =  ui (0)i . We choose the rate of the Poisson process
as

i 0 ; i (t) =  
ai0 ;i (t)

: i
Dene now the stopping time and number of jumps through

 =  inf ft : X ( t )  2= V
v  g;

N ( t )  =  supfN : 0 =  s0 <  s1 <   <  sN   t; 81  i   N ; X ( s i )  =  X ( s i  1)g:
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Then we have a straightforward identity of the density for t >  0 by

ui (t) =  
1 

Pf  >  t; X ( t )  =  ig: i

By the fact that r  is bounded in L 1  and (1.16), one can conclude that b =  r  is also
uniformly bounded in L 1 .  Denote Mb the a priori bound of k b k L 1  , then

i 0 ; i (t) =  
ai (t) 

 
x  

;

where M =  CMb.
Dene L@

v  =  dist (supp u0; @
v ). By its denition, dist (X0 ; @
v )  L@

v  , so that it requires at least L@

v  =x jumps to reach the boundary, i.e.

  t only if N ( t )  
x      

:

In particular, one can bound the probability of T   t by a homogeneous Poisson process,
i.e.

Pf   tg  P
x  

;
x

v      1 ;

where P (; :) denotes the probability distribution of a homogeneous Poisson process with
rate  and starting from 0.

Consider T >  0 such that L@

v    MT >  0, and let T  =  (L@

v    MT )=2. Then one can deduce
P f  T g  C  exp( T  =x);

by standard estimates for homogeneous Poisson processes.
Hence choosing T s.t.      >  0, we obtain the mass leaking estimate, for any t  T

0  1      
X

i  ui (t)  C  exp( T  =x)  !  0; as n !  1 :
i 2 V

Step 3: Regularity of the continuous velocity eld. We choose the continuous velocity eld
in Theorem 2.9 as b =  r ,    =  g (with Dirichlet B C  on
e). By our discussion in Step 1, we have uniform in n bounds on b =  r  in L 1 L 1  \  L 1 H 1 .

Moreover, by our assumption (1.16) on the nite elements, one can bound the L 2

dierence between (a i ; j ) i ; j 2 V  =  P F b  and P F b  by

(a i ; j ) i ; j 2 V       P F b L 1 L x ( [ 0 ; T ] F )  =  P F b       P F b L 1 L 2  
(
[0 ; T ]F )

 C k r       r k L t  L x  
 C x k k L 1 H x  

;

which converges to zero as n !  1  and x  !  0.
We can also show that our choice of b has Sobolev regularity in time, namely b =

r  2  W s;1L1 ([0; T ]
 )  for any s <  1. Notice that

  =  g =  
X

i g ( u i ) ;
i 2 V

so that the issue is to show that 
P

i 2 V  i g (ui ) 2  W 1;1W  1;1(
e).
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Any solution u of the rst-order scheme (1.12) satises the following identity for all i, 
d

ui =  
1 X  

ai ; j uj       aj ; i ui

 
     1V nV

 
( i )  

1 X  
ai; j uj :
j 2 V j 2 V

When i  2  V
, the above equality is exactly the upwind scheme. When i  2  (V n V
), one
has u  0 and the above equality reduce to 0 =  0. Therefore,

0 1 0 1
d 

g(ui ) =  g0(ui)
dui =  @g0(ui) 

1 X   
ai ; j uj       a j ; i u i A       @1V nV

v 
(i)g0 (ui ) 

1 X  
a i ; j u j A

j 2 V j 2 V

=  Gint       Gbd:

The term Gbd measures the possible leaking at boundary. It is non-negative and from
the previous step, it satises

X
G b d ( t ) i ( x )  dxdt =  

X
G b d ( t ) i  dt  C L g  exp( T  =x);

R d         
i i 2 V

which implies that 
P

i 2 V  Gbd
i  2  L 1 L 1 .

In addition, the term G i can be reformulated as

Gint =  g0(ui) 
1 X   

ai ; j uj       aj ; i ui
i  j 2 V

= ai; j g (uj )      aj; i g (ui ) + ai ; j       aj ; i        g0(ui)ui      g(ui )
i  j 2 V                                                                                    i  j 2 V

+
1 X  

ai ; j
 

g0(ui)(uj      ui )      [g(uj )      g(ui )]
 
i

j 2 V

=  G i  +  G i  +  G i  :

Since jGi  j  2 supi jDi jLg M  2(Lg M )2, it is straightforward that 
P

i 2 V  G i  i  2  L t
L x  . Also, by the concavity of nonlinearity g, one has G i        0. Furthermore,

Z T  Z
G M  (t) i (x)  dxdt 0

=  
Z T  X

G M  (t)i  dt 0
i 2 V

=
T  X  d 

g(ui (t))      G A (t )       G B ( t )  +  Gbd (t)i dt
0     

 i 2 V
Z T Z T

 g(ui (T ))      g(ui (0))  +  0 +  G B ( t ) i  dt +  Gbd (t)i  dt
i 2 V                                                                                          0     

 i 2 V                                                0     
 i 2 V

 2Lg M +  2T (Lg M )2 +  C T L g  exp( T  =x);

where in the rst inequality we use the observation that 
P

i 2 V  G i  (t)i   0.     As a
consequence, one has i 2 V  G i  i  2  L t  L x .
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Finally, for any test function ’  2  W 1 ; 1 ,

’ ( x )
X

G A ( t ) i ( x )  dx

e i 2 V

= ’ ( x )  
X  1  

ai ; j g (uj (t))      aj ; i g (ui (t)) i (x) dx
e                       i ; j 2 V       i

Z
= ai; j g (uj (t))      aj; i g (ui (t)) ’ ( x ) i ( x )  dx

i ; j 2 V
Z

i

e

Z

= ai; j g (uj (t)) ’ ( x ) i ( x )  dx  ’ (y ) j (y )  dy 
i ; j 2 V

i

e  

Z Z                        
j

e

= ai; j g (uj (t)) ’ ( x )       ’ ( y )  i (x) j (y )  dxdy     :
( i ; j ) 2 E                                                  i       j
e
e

By our structural assumptions, the number of terms in the last sum is at most C ( x )  d

and each term is bounded by C ( x ) d L g M 2 k ’k W 1 ; 1  . Hence

’ ( x )
X

G A ( t ) i ( x )  dx  C L g M 2 k ’k W 1 ; 1  ;
e i 2 V

which means i 2 V  G A
i  2  L 1 W  1;1.

By combining all estimates above, we conclude that

dt
g =  

dt 
i 2 V  

i g (ui ) 2  L1 W  1;1:

It is also straightforward that g 2  L 1 L 1 .  Thus one indeed has that g 2  W 1;1W  1;1,
which implies that b =  r  2  W s;1 L1 for any s <  1.

Step 4. (Compactness) Combine the previous results and apply them to (C ( n ) ; F ( n ) )
and (P ( n ) ; N ( n ) )  for all n 2  N+ .  Since all functions are dened on a bounded domain,
Sobolev embeddings also directly apply. We may then use Theorem 2.9 with p =  1, q =  2
and and s <  1, yielding the following asymptotic estimate for  >  1=2,

lim sup ku(n) (t)kh0 ;1;  lim sup ku(n) (0)kh0 ;1;

Z t   +
C  

0         
ku(n) (s)kL 1 (C ) ku( n ) (s)kh 0 ;1;  +  kb(n) (s)kW 1 ; 1  ku( n ) (s)kL 1 ( C )        ds ;

where we used step 1 to bound the discrete divergence terms in Theorem 2.9 by the
corresponding bound on u(n) .

By Gronwall estimate we conclude that

C 1 = sup lim sup ku(n) (t)kh ;1; <  1 :
0 < h 0 < 1=2

The last part is to argue that t !  K h  ?x u(n) (t), the trajectory of mollied extended
density, is equicontinuous on a compact subset of space L1 (Rd ),  which is performed in
the same manner as in the proof of Theorem 1.3.
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3. P r ov i n g  Theorem 2.9. In this section we start the proof of Theorem 2.9, which
is spread into Section 3, 4, 5 and 5. We introduce in this section three theorems that
each corresponds to a specic step and explain why they together prove Theorem 2.9.

The rst step in the proof is naturally an estimate of the time evolution of ku(t)kh0 ;1;,
which we state as Theorem 3.1. Most terms in the estimate behave as one can expect
from the continuous model. However, there is one additional term involving what we call a
residue ri (t) which given by linear equation (3.2) and restated here,

X  
(xe

( k)       

x

e
( k

) )ai 0 ; i (t) =  bi (t)i  +  ri (t) i ;8i 2  V; t 2  [tk 1; tk]; 1  k  m:
i 0 2@ fig

We need to control this residue to conclude the bound on ku(t)kh0 ;1; through Gronwall
lemma. The study of the residue is where our proof fully deviates from the continuous
setting.

In essence the size of the residue follows from the choice of virtual coordinates x~i . We
correspondingly introduce two theorems: The rst one identies some good assumptions for
the virtual coordinates to make the residue small, which we state as Theorem 3.3. The
second theorem 3.4 shows that virtual coordinates satisfying such assumptions actually
exist, at least where the mesh has periodic patterns.

3.1. Step 1: Propagation of regularity in the discrete setting. Our rst result repro-
duces the propagation of regularity in [4] for scheme (1.12) but with additional terms
caused by the discretization. The proof of the theorem is postponed to Section 4.

Theorem 3.1. Consider the semi-discrete scheme (1.12) on a mesh (C ; F ) over a bounded
domain
  Rd  with piecewise smooth boundary as in Denition 1.5, having discretiza-tion size x  and
satisfying the structural assumptions (1.14) and (2.6). Let (a i ; j ( t) ) i ; j 2 V  be the coecients of
scheme (1.12) and D (t)  =  (D i ( t ) ) i 2 V  be the discrete divergence given by (2.3). Let b(t; x) be
a continuous velocity eld on Rd  and denote its discretization by (b i (t)) i 2 V  =  PF b(t; ).

Choose M; M >  0, such that x   M  M <  1=32. Divide the time interval [0; T ] as 0 =
t0 <  t1 <   <  tm =  T . For each interval [tk 1; tk], let (xe( k ) ) i 2 V  be virtual coordinates on the
mesh satisfying

jxe(k )       xe(k ) j   2M;

jxe(k )       x i j   2M;

8(i; i0) 2  E; (3.1a)

8i 2  V: (3.1b)

Let (r i (t)) i 2 V ; t 2  [0; T ] be the residue function given by

X  
(xe

( k)       

x

e
( k

) )ai 0 ; i (t) =  bi (t)i  +  ri (t)i ; 8i 2  V; t 2  [tk 1; tk]; 1  k  m: (3.2)i 0 2@ fig

Let k(t) =  minfk : t <  tkg; 8t 2  [0; T ]. Then any solution u(t) =  (ui (t)) i 2 V , t 2  [0; T ] of
the semi-discrete scheme (1.12), satises for 0 <  h0 <  1=2

ku(t)kh0 ;1;  ( L 0  +  L 1  +  L 2  +  L3 ); (3.3)
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where

L 0  =  ku(0)kh0 ;1;;  =  
 

1 +  C (M=h0 )
k

(t)+1 ;

t
L 1  =  C k div b(s)kL 1 (C ) ku(s)kh ;1; +  kb(s)kW 1;q ku(s)kLp  (C )

0

+  kD(s)kL 1 (C ) ku(s)kh 0 ;1 ;  +  ku(s)kLp  (C ) kD(s)kh0 ;p;p( 1=p) ds

L 2  =  C  
Z t   

j log h0j M 2 =h2 xk(ai ; j (s)) i ; j 2 V kL q ( F ) ku(s)kL q  (C ) 

0      

+
j log h0j M=h2kb(s)kLq ku(s)kLq  (C )

+  (j log h0j x=h2)kb(s)kW 1;q ku(s)kLq  (C ) ds

+  C (j log h0j1 )  ku(0)kL1 (C )      ku(t)kL1 (C )     ;
Z t

L 3  =  C  (j log h0j =h0 )k(ri (s)) i2V kL p (C ) ku(s)kL p  (C )  ds; 0

(3.4)

provided that 1  p <  q  1 ,    maxf1   1=q; 1=2g, M  h0 <  1=2. The constant C  depends
on
, the exponents p; q and the constant in structural assumptions (1.14).

What we have exhibited in this subsection is a rather incomplete result. The terms
; L 2  and L 3  in Theorem 3.1 are due to the discretization error. The term L 2  would
tend to zero as the discretization size x  !  0, provided that the virtual coordinates are
chosen such that maxfM=(x)1=2;M 1=2g !  0 and h0 are chosen decaying to zero with an
even slower speed.

Unfortunately, L 3  will not vanish so easily. To  eliminate it asymptotically, one should
nd a sophisticated way to determine suitable division 0 =  t0 <   <  tm =  T and virtual

coordinates (xe( k ) ) i 2 V  on each [tk 1; tk], making the norm of residue krkL 1 L x ( [0 ; T ]C )

decay. To  control the term , one should also control the number m in the division of
[0; T ].

Finally we emphasize that we do not need to assume that the coecients ai; j (t) be
given from the discretization of the velocity eld b. The connection between ai ; j  and b
stems only from the denition of the residue in (3.2). And in fact, as we will see in the

conclusion of the proof, the ai ; j  are typically derived from a slightly dierent eld b =  b.
3.2. Step 2: Controlling the residue through virtual coordinates. It remains to investi-

gate in what circumstance Theorem 3.1 give useful results, in the sense that all the ad-
ditional terms due to the discretization error vanish asymptotically. The main question
is how to control the so-called residue through a proper selection of virtual coordinates.

We rst introduce the key notion of admissible family of virtual coordinates that works
for any constant eld.

Def ini t ion 3.2. Consider a mesh (C ; F ) over
  Rd . Let

(x̂ i (bc )) i 2 V  2  (Rd )V ; 8bc 2  Rd
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be a family of virtual coordinates. We say that it is an admissible family of virtual
coordinates on
 for constant elds with relative drift M, absolute drift M and residue bound M in L p  if the
following properties are true:

(1) For each n 2  N +  and any vector bc 2  Rd , one has

x̂ i (bc ) =  x̂ i (bc ); 8 >  0; i 2  V:

(2) The following bounds hold:

sup x̂ i (bc )      x̂ i0  (bc)  M;
j b c j = 1 ; ( i ; i 0 ) 2 E

sup jx̂ i (bc )      x i j   M:
j b c j = 1 ; i 2 V

(3) For any vector bc 2  Rd , let (ai ; j (bc )) i ; j 2 V  =  P F b  and (bi (bc )) i 2 V  =  PC b be the
discretization of the constant velocity eld b(x)  bc. Dene (r̂  (b c )) i 2 V  as

X  
x̂ i 0  

(

bc

)

      x̂ i (bc )ai0 ;i (bc ) =  bi (bc )i +  r

^

 (bc )i ; 8i 2  V: (3.5)
i 0 2 V

Dene the maximal residue function (( r̂ max ) i ) i 2 V  by

(r̂ max )i  =  sup jri (bc )j; 8i 2  V;
j b c j = 1

then its L p  norm is bounded by

k(r̂ max ) i kL p (C )   j
j1=pM:

By assuming that an admissible family of virtual coordinates exist, we have the fol-
lowing theorem that controls the residue for any Sobolev velocity eld and whose proof is
performed in Section 5.

Theorem 3.3. Consider the semi-discrete scheme (1.12) on a mesh (C ; F ) over a bounded
domain
  Rd  with piecewise smooth boundary as in Denition 1.5, having discretiza-tion size x  and
satisfying the structural assumptions (1.14) and (2.6). Let (a i ; j ( t) ) i ; j 2 V  be the coecients
of scheme (1.12) and D (t)  =  fD i ( t )g i 2 V  be the discrete divergence given by (2.3).
Assume that u(t) =  (ui (t)) i 2 V , t 2  [0; T ] is a solution of the semi-discrete scheme (1.12).

Moreover, with some 1  p <  q  1  and 0 <  s  1, assume that there exists a
continuous velocity eld b(t; x) bounded in Lq (W 1;q ) \  Lp (W s;p)([0; T ]
), and an
admissible family of virtual coordinates on
 for constant elds, dened in Denition 3.2, with relative drift M, absolute drift M and
residue bound M in L1=(1=p 1=q). In addition, let   maxf1      1=q; 1=2g, and assume that M
h0 <  1=2.

Then one can choose a division of time interval [0; T ] as 0 =  t0 <  t1 <   <  tm =  T , and
on each interval [tk 1; tk], virtual coordinates (xe( k ) ) i 2 V ,  such that the terms  and
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L 3  in estimate (3.3) are bounded by
"

L 3  =  C (j log h0j =h0) (M=x)(a i ; j ) i ; j 2 V       P F b L p ( [ 0 ; T ] F )

+  (M s M=x)1=(1+s) kbk
 
( W s ; p )

+  M(x)     1 + ( 1 = p      1 = q ) k(ai ; j (t)) i ; j 2 V kL q ( [0 ; T ] F )  +  kbkL q ( W 1 ; q ) (3.6)
#

+  MkbkL q ( L q  )  k u k L
1

L p  
([0;t]C) ;  =

exp
 

C (1=h0 )(M s M=x)1=(1+s) ;

where the constant C  depends on T;
, the exponents p; q; s, and the constant in struc-tural assumption (1.14).

3.3. Step 3: Constructing admissible virtual coordinates for periodic meshes. It re-
mains to study how to nd admissible virtual coordinates for constant elds as in Deni-tion
3.2. At this moment, it is still unclear to us whether this is possible for any arbitrary mesh.
Nevertheless, for a mesh with periodic pattern, we are able to ensure that one can nd an
admissible family of virtual coordinates such that the residue (r̂ max )i actually vanish on
any inner cell of the mesh.

Theorem 3.4. Let (C ; F )  be a periodic mesh over
  Rd  as in Denition 1.6. Let (ai ; j (bc )) i ; j 2 V  =  P F b  be the discretization of the constant
velocity eld b(x)  bc. Then for any constant velocity eld bc 2  Rd , there exist virtual
coordinates (x̂ i (bc )) i 2 V  2  (Rd )V  solving the linear system

X  
x̂ i 0  (bc)      x̂ i (bc )ai0 ;i (bc ) =  bc i; 8i 2  V0; (3.7)

i 0 2 V

and satisfying the following properties:
(1) The virtual coordinates are homogeneous in the sense that

x̂ i (bc ) =  x̂ i (bc ); 8bc 2  Rd ;  >  0; i 2  V:

(2) The virtual coordinates are uniformly bounded by

sup jx̂ i (bc )      x i j  <  C (jV0j)x;
j b c j = 1 ; i 2 V

where x  is the discretization size and C (jV0j) depends only on the number of
cell functions in a period.

(3) The virtual coordinates are periodic in the sense that

x̂ [m]( i ) (bc ) =  x̂ i (bc ) +  
X

m k L k ; 8bc 2  Rd ; i; [m](i) 2  V;
k = 1

where L1 ; : : : ; Ln 2  Rd  are given as in Denition 1.6.
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Notice that for constant velocity eld, one has a[m](i 0 ) ; [m]( i )  =  ai0 ; i  when [m](i0); [m](i) are
well-dened. Hence (3.7) can be naturally extend to all i  2  V . That is, the maximal residue
function (( r̂ max ) i ) i 2 V  in Denition 3.2 vanishes at all i  2  V .

3.4. Proof of Theorem 2.9. We are now ready to complete the proof of Theorem 2.9.
Proof of Theorem 2.9. We apply Theorem 3.4, Theorem 3.1 and Theorem 3.3 succes-

sively:
 A p p l y  Theorem 3.4: Let (C ; F ) be one mesh in the sequence of meshes we

consider in Theorem 2.9 and let x  be the discretization size. Since the meshes
have periodic patterns over
, one can choose x̂ i (bc ) as the periodic solution in Theorem 3.4 when i  2  V
, and choose x̂ i (bc ) =  x i  as barycenter when i  2  V n V
. Then the maximal residue function (( r̂ max ) i ) i 2 V  in Denition 3.2 vanishes at all i
2  V
. Notice that

sup jx̂ i (bc )      x i j  <  C (jV0j)x
j b c j = 1 ; i 2 V

where C (jV0j) is the constant in Theorem 3.4.
By our denition of discretization size and barycenter one has

sup x i       x i 0    2x:
( i ; i 0 ) 2 E

Moreover, if i  2  V n V
, by denition, one has (PC b)i  =  0 and (PF b) i 0 ; i  =  0 for all i0 2  V. Hence, one has bi

0, ai0 ; i   0 in (3.5) and the residue (( r̂ max ) i ) i 2 V  in Denition 3.2 actually vanishes on
all i  2  V n V
.

In summary, the residue can be non-zero only at i  2  V
 n V
. Thus one has that

0 1 1 = r  j
j 1=r k(r̂ max ) i kL r (V )   @j
j 1                          sup                 x̂ i 0  (bc)      x̂ i (bc ) ai0 ;i (bc )      bc i     A

i 2 V

nV  j b c j =1 i 0 2 V

0                                          1 1 = r

 @j
j 1 C ( x ) d A

i 2 V
nV

 C  
 
j

j 1j@
jx1=r :

Let r  =  1=(1=p      1=q) as required in Theorem 3.3. One can see that such choice
of x̂ i (bc ) forms an admissible family of virtual coordinates in Denition 3.2, with
relative drift M, absolute drift M and residue bound M in L1=(1=p 1=q) given by

M =  M =  2
 

C (jV0j) +  1x; M =  C  
 
j

j 1j@

jx1=p 1=q :

The constant C  here depends on
, the exponents p; q, the constant in structural assumption (1.14), and, in



particular, the number of cell functions in a period. This is why the constant
bounding pattern size is part of the requirement of Theorem 2.9.
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Moreover, to fulll the requirement in Theorem 3.1, the discretization size x
needs to be chosen small so that M  minfh0; 1=32g, which is why the inequality
only holds asymptotically.

 A p p l y  Theorem 3.1 and Theorem 3.3: We have proved the existence of an
admissible family of virtual coordinates for constant velocity elds. Recall that
Theorem 3.3 shows how to reduce the residue term for non-constant velocity elds
provided such family exists. Hence, we choose the coecients a(t) =  (a i ; j ) i ; j 2 V ,  b(t)
and the solution u(t) =  (ui (t)) i 2 V  as in Theorem 2.9. Then the rest condi-tions
required in Theorem 3.3, namely the boundedness of their Lebesgue and Sobolev
norms and the boundedness of

(a i ; j ) i ; j 2 V       PF b L
q
( [ 0 ; T ] F ) ;

are directly guaranteed by the assumptions in Theorem 2.9. According to The-
orem 3.3, one can choose virtual coordinates for specic coecients, such that the
propagation of regularity (3.3) in Theorem 3.1, is bounded by (3.6).

For clarity, we recall the full result,

ku(t)kh0 ;1;  ( L 0  +  L 1  +  L 2  +  L3 );

where the precise formulations of these terms are given by

L 0  =  ku(0)kh0 ;1;;
t

L 1  =  C  
0

k div b(s)kL 1 (C ) ku(s)kh 0 ;1;  +  kb(s)kW 1;q ku(s)kLp  (C )

+  kD(s)kL 1 (C ) ku(s)kh 0 ;1 ;  +  ku(s)kLp  (C ) kD(s)kh0 ;p;p( 1=p) ds;
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where the constant C  depends on
, the exponents p; q and the constant in structural assumptions (1.14). Also,

 =  exp
 

C (1=h0 )(M s M=x)1=(1+s) ;

L 2  =  C  
t  

j log h0j M 2 =h2 xk(ai ; j (s)) i ; j 2V kL q ( F ) ku(s)kL q  (C )  0

+  j log h0j M=h2 kb(s)kLq  ku(s)kLq  (C )

+  (j log h0j x=h2)kb(s)kW 1;q ku(s)kLq  (C ) ds

+  C (j log h0j1 )  ku(t)kL1 (C )      ku(0)kL1 (C )     ;

L 3  =  C (j log h0j =h0) (M=x)(a i ; j ) i ; j 2 V       P F b L
q
( [ 0 ; T ] F )

+  (MM=x)1=(1+ s ) kbkL p ( W s ; p )

+  M(x)     1 + ( 1 = p      1 = q ) k(ai ; j (t)) i ; j 2 V kL q ( [0 ; T ] F )  +  kbkL q ( W 1 ; q )

#

+  MkbkL q ( L q  )  kukL
t

 L x
 
([0;t]C):

where the constant C  depends on T;
, the exponents p; q; s, the constant in structural assumption (1.14) and the
constant bounding pattern size.

 Conclude Theorem 2.9 We can now make all the constants explicit in the
propagation of regularity with,

(MM=x)1=(1+s)  .  (x)1=(1+ s ) ;

M(x)     1 + ( 1 = p      1 = q )  .  ( x ) 1 + ( 1 = p      1 = q )  ;

M =x; M .  x;

M .  (x)1=p 1=q .  ( x ) 1 + ( 1 = p      1 = q )  :

Thus ; L2 ;  L 3  can be expressed as

 =  exp
Z

C (1=h0 )(x)s=(1+s) ; 

L 2  =  C j log h0j =h2 (x)  ka(s)kL q ( F )  +  kb(s)kW 1;q       ku(s)kLq  (C )  ds
0

+  (j log h0j1 )  ku(t)kL1 (C )      ku(0)kL1 (C )     ;

L 3  =  C (j log h0j =h0) a      P F b L
q
( [ 0 ; T ] F )  +  (x) s = (1 + s ) kbkL x ( W s ; p )

#
+  ( x ) 1 + ( 1 = p      1 = q )         ka(t)kL q ([0;T ]F )  +  kbkL q ( W 1 ; q ) kukL

t

 L p  (
[0;t]C) :

One can check that this exactly corresponds to (2.9) of Theorem 2.9.Applying
the argument to the entire sequence of meshes (C ( n ) ; F ( n ) )  concludes the proof
of Theorem 2.9.
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4. Proof of Theorem 3.1. In this section we complete the proof of Theorem 3.1. For
simplicity we omit the variable t in the derivation when there is no ambiguity. Through-
out the calculation, C  denotes a generic constant that only depends on
, the exponents p; q and the constant in the structural assumptions (1.14).

4.1. The Kruzkov’s doubling of variables for the semi-discrete scheme. Notice that
any solution u of the rst-order scheme (1.12) satises the following identity:

d 
ui =  

1 X  
ai ; j uj       aj ; i ui

 
     1V nV  ( i )  

1 X  
ai; j uj : (4.1)

j 2 V j 2 V

When i  2  V
 the above equality is the upwind scheme. When i  2  (V n V
), one has ui  0 and the above equality reduce to 0 =  0. In this section let us use the
notation

R i  =   1V nV  ( i )  
1 X  

ai; j uj :
j 2 V

The term R i  measures the possible leaking of mass at boundary. It is easy to verify that
R i   0 and

d
ui i  = R i i : ( 4.2)

i 2 V i 2 V

The next proposition explains how to bound the time derivative of our semi-norms.

Propos i t ion 4.1. For any solution u of the rst-order scheme (1.12) and any non-
negative discrete kernel f K i ; j g i ; j 2 V ,  the following inequality holds in the sense of distri-
bution:

d X  
K i ; j ju i       u j j i j   2 

X  X
( K i 0 ; j       K i ; j )a i 0 ; i ju i       uj j j

i ; j 2 V i ; j 2 V  i 0 2 V

+  ( 2) K i ; j  sgn(ui      u j ) (D i u j ) i j  i ; j 2 V

+  2 K i ; j  sgn(ui      u j ) R i i j  i ; j 2 V

=  A K  +  D K  +  R K :

Proof of Proposition 4.1. The following equality holds in distributional sense:

d X  
K i ; j ju i       u j j i j

i ; j 2 V

= K i ; j  sgn(ui      uj ) ai; i0  ui0      ai0 ; i ui      +  R i   aj ; j 0  uj 0      aj 0 ; j uj            R j i j

i ; j 2 V                                                            i  i 0 2 V                                                                               j  j 0 2 V

=  2 K i ; j  sgn(ui      uj ) ai; i0  ui0      ai0 ; i ui      +  R i i j :
i ; j 2 V                                                           i  i 0 2 V

Proving the rst equality is nothing but the chain rule applied to the semi-discrete
scheme. The second equality follows from symmetry, by switching the indexes i  and j ,
i0 and j0.
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The next step is to check that this can be further decomposed into our sum A K  +
D K  +  R K  plus a non-positive term. Indeed,

!
K i ; j  sgn(ui      uj ) ai; i0  ui0      ai0 ; i ui i j

i ; j 2 V                                                           i  i 0 2 V

=  
X  X

K i ; j  sgn(ui      uj )ai; i 0  ui0  K i ; j  sgn(ui      uj )ai 0 ; i ui       j
i ; j 2 V  i 0 2 V

=  
X  X

K i 0 ; j  sgn(ui      uj )ai 0 ; i ui   K i 0 ; j  sgn(ui      uj )ai 0 ; i uj
i ; j 2 V  i 0 2 V                                                                                                                                                        

)

 K i ; j  sgn(ui      uj )ai 0 ; i ui  + K i ; j  sgn(ui      uj )ai 0 ; i uj       j

+  
X  X  

(  

 K i ; j  sgn(ui      uj )ai 0 ; i uj  + K i ; j  sgn(ui      uj )ai; i 0  u j

)

j
i ; j 2 V  i 0 2 V

+  
X  X

 K i ; j  sgn(ui0      uj )ai; i 0  ui0 + K i ; j  sgn(ui      uj )ai; i 0  ui0        j
i ; j 2 V  i 0 2 V                                                                                                                                                    

)

+ K i ; j  sgn(ui0      uj )ai; i 0  uj   K i ; j  sgn(ui      uj )ai; i 0  uj       j

=  A K  +  D K  +  N K :

By our assumption, K i ; j   0, ai ; j   0 for all i ; j  2  V. It is easy to verify that the third
term

N K  =  
X  X  

(  

 K i ; j  sgn(ui0      uj )ai; i 0  ui0 + K i ; j  sgn(ui      uj )ai; i 0  ui0 

)

j
i ; j 2 V  i 0 2 V

)

+ K i ; j  sgn(ui0      uj )ai; i 0  uj   K i ; j  sgn(ui      uj )ai; i 0  uj       j

=  
X  X  

Ki ; j sgn(ui 0       uj )       sgn(ui      uj )ai; i 0  (uj       ui0 ) j
i ; j 2 V  i 0 2 V



K K

K

K

X  X

!

0 0

X X

0 0
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e h e h

(4.3)

K

X
e h

X
e h

e h

2

e h

2

A D V E C T I O N  O N  N O N - C A R T E S I A N  G R I D S 37

is always non-positive, and it does not vanish only at edges that sgn(ui0      uj )  =  sgn(ui

uj ). In addition, one can reformulate A0     
 and D0     

 as

A0      =  
X  X  

(  

K i 0 ; j  sgn(ui      uj )ai 0 ; i ui   K i 0 ; j  sgn(ui      uj )ai 0 ; i uj
i ; j 2 V  i 0 2 V

)

 K i ; j  sgn(ui      uj )ai 0 ; i ui  + K i ; j  sgn(ui      uj )ai 0 ; i uj       j

=  
X  X

( K i 0 ; j       K i ; j )a i 0 ; i ju i       uj jj ;
i ; j 2 V  i 0 2 V  

( )

D0     =                          K i ; j  sgn(ui      uj )ai 0 ; i uj  + K i ; j  sgn(ui      uj )ai; i 0  uj       j

i ; j 2 V  i 0 2 V

=    
X  

K i ; j  sgn(ui      uj )
X   

ai0 ; i       ai;i0  

     
u j i j :

i ; j 2 V                                                       i 0 2 V

It is straightforward to see that A K  +  D K  =  A K = 2  +  D K =2.  Hence 
!

K i ; j  sgn(ui      uj )
1

ai;i0  ui0      ai0 ; i ui      +  R i i j

i ; j 2 V                                                           i  i 0 2 V

=  A K  +  D K  +  N K  +  R K = 2

A K = 2  +  D K = 2  +  R K =2:

Multiplying both sides by 2, one obtains the inequality in the proposition.
From now on we x the kernel K i ; j  in the above proposition as K i ; j  in Denition 2.3 for

0 <  h <  1=2 and xe =  (xei ) i 2 V  2  (Rd )V . Moreover, assume that h  maxfx; supi2V jxei

xi jg. Then the term R K  can be bounded by

j R K j  =  2 
X  

K i ; j  sgn(ui      u j ) R i i j   2
X  X  

K i ; j j j R i j i

 
i ; j 2 V i 2 V

j 2 V

 C j log hjk(Ri ) i 2 V kL 1 (C ) :

Moreover, the term D can then be estimated through
j D K j  =   2 K i ; j  sgn(ui      u j ) (D i u j ) i j

     
i ; j 2 V

=  K i ; j  sgn(ui      u j ) (D i u j       D j u i ) i j
i ; j 2 V

=   
X  

K i ; j  
D i  +  

D
j  jui      uj j i j

(4.4)

i ; j 2 V

+  
X  

K i ; j ( D i       D j )
u i  +  uj  sgn(ui      uj )  i j

i ; j 2 V

 C j log hj     kDkL 1 (C ) kukh 0 ; 1 ; ; xe  +  kukL p  (C ) kDkh0 ;p;p( 1=p);xe     :



e h

2
X e h

e h

2
X

e h
X

e h u +  ui j

2

p

e h

e h K h
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The last inequality is a consequence of the following two estimations: Using the bound
on the divergence, one has

 X  
K i ; j  

D i  +  D j  jui      uj j i j
i ; j 2 V

 k D k L 1 ( V ) K i ; jju i       uj j i j   j log hjkDkL 1 (C ) kuk;1; ;xe : i ; j 2 V

Also, by Ho•lder estimate X  
K i ; j ( D i       D j )

u i  +  uj  sgn(ui      uj )  i j
i ; j 2 V

1=p  1=p

K i ; j j D i       D j jp  
i j K i ; j i j

i ; j 2 V                                                                           i ; j 2 V

 C j log hjkukLp (C ) kDkp;p( 1=p);xe:

The above H•older estimate is for 1 <  p <  1  but can be extended to p =  1 in the obvious
way.

4.2. Bounding the discrete commutator term. We now investigate the discrete com-
mutator term A K  when K i ; j  is chosen as K i ; j  in Denition 2.3 for xe =  (xei ) i 2 V  2  (Rd )V

and maxfx; supi2V jxei      xi jg  h <  1=2. Recall that

A K = 2  =  
X  X

( K i 0 ; j    e
i; j )ai 0 ; i jui      uj jj : (4.5)

i ; j 2 V  i 0 2 V

We begin by a short lemma about the scaling of the continuous kernel K h .

Lemma 4.2. Take x; y; s 2  Rd  such that 0 <  h <  1=2 and jsj <  h. Then

K h ( x       y)       K h ( x       y  +  s )  +  r K h ( x       y)   s   
(jx      yj +

h)d+2 :

( 4.6

)  Also,

r K h ( x       y  +  s )       r K h ( x       y)   
(jx      yj +  h)d+2 : (4.7)

We are going to use this lemma to reduce a few terms to simpler forms, with a tolerable
error. In particular, the following lemma mimics the continuous commutator estimate in
[4], provided that one can nd suitable auxiliary functions (xei ) i 2 V  and (b i ) i 2 V .

Lemma 4.3. Consider the semi-discrete scheme (1.12) on a mesh (C ; F ) over
  Rd  as in Denition 1.5, having discretization size x  and satisfying the structural
assumptions (1.14). Let (a i ; j ) ( i ; j ) 2 E  be the coecients of the scheme and let D  =  ( D i ) i 2 V

be the discrete divergence dened as in (2.3). Let b(x) be a continuous velocity eld on Rd

and denote (b i ) i 2 V  =  PV b. Choose virtual coordinates (xei ) i 2 V  on the mesh satisfying

jxei      xei0  j <  M;

jxei      x i j  <  M;

8(i; i0) 2  E;

8i 2  V:
(4.8)
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Let K i ; j  be as in Denition 2.3 corresponding to (xei ) i 2 V  and let (r i ( t ) ) i 2 V  be the residue
function given by

X  
(xei 0       

x

ei )ai 0 ; i  =  b i i  +  r i i ; 8i 2  V: (4.9)i 0 2@ fig

Then the discrete commutator term A K  given through (4.5) can be bounded by

jA K j   C j log hj     
 k div b k L 1  kukh0 ;1;;xe +  kbkW 1;q kukL p  (C )

+  C
 
M =h2 xk(ai ; j ) i ; j 2 V kL q ( F ) kukL q  +  C

 
M=h2 k(bi )i2V kL q (C ) kukL q

+  C (1=h)krkL p  kukL p  ;
(4.10)

provided that 1  p <  q  1 ,    maxf1      1=q; 1=2g, and M <  M <  h0 <  h.

Note that conditions (4.8) and (4.9) exactly correspond to (3.1) and (3.2) in Theo-
rem 3.1 once the time-dependency is removed.

Proof. We have that

A K = 2  =  
X  X

( K i 0 ; j       K i ; j )a i 0 ; i ju i       uj j j
i ; j 2 V  i 0 2 V

= r K h ( xe i       xej )   (xei 0       xei )ai0 i jui      uj j j
i ; j 2 V  i 0 2 V

+ ( K i 0 ; j       K i ; j )       r K h ( xe i       xej )   (xei 0       xei )  ai0 i jui      uj j j
i ; j 2 V  i 0 2 V

=  A( 1 )  +  A( 2 )

By Lemma 4.2 and assumption (4.8), one has that

( K i 0 ; j    e
i ; j )       r K h ( xe i       xej )   (xei 0       xei )

 
 
(jxei      xej j +  h)d+2  

( jx i       x j j  +  h)d+2 :



K

K

X  X C M 2

X  X C M X  X C M

X X 1
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K
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K K
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Therefore one can bound A( 2 )  by

A( 2 )  
 
i ; j 2 V  i 0 2 V  

( jx i       x j j  +  h)d+2 ai0 i jui      uj j j

2 2

 
i ; j 2 V  i 0 2 V  

( jx i       x j j  +  h)d+2 ai0 ;i jui jj +  
i ; j 2 V  i 0 2 V  

( jx i       x j j  +  h)d+2 ai 0 ; i juj jj

 C M 2 (x)  1 

i ; i 0 : ( i ; i 0 ) 2 E  

ai 0 ; i jui jx
j 2V 

( jx i       x j j  +  h)d+2 j  0

11= q

+  C M 2 (x)  1 @  
ai0 ; i

q (x)d q(d 1 ) A
i ; i 0 : ( i ; i 0 ) 2 E

0 0 1 q
11= q

B

i ; i 0 : ( i ; i 0 ) 2 E  

@
j 2 V  

( jx i       x j j  +  h)d+2 ju j j j A ( x ) d A

C
 
M 2 =h2 xk(ai ; j ) ( i ; j ) 2 E kL q ( F ) kukL q  (C) :

For A(1) , one can apply the identity (4.9) to obtain

A( 1 )  =  
X  X  

r K h ( xe i       xej )   (xei 0       xei )ai0 ; i jui      uj j j
i ; j 2 V  i 0 2 V

= r K h ( xe i       xej )   b i i       jui      uj j j
i ; j 2 V

+ r K h ( xe i       xej )   r i i      jui      uj j j
i ; j 2 V

=  A(1;1)  +  A(1;2) :

Repeating the argument on A(2) , we bound the residue term A(1;2) by

A(1;2)  
=  

 X   
r K h ( xe i       xej )   r i i jui       uj j j

i ; j 2 V

 
i ; j 2 V  

(jx      yj +  h)d+1 ri jui       u j j i j

C (1=h)krkL p (C ) kukL p  (C ) :

Finally, symmetrize the expression of A(1;1)  to obtain

A(1;1)  =  
X  

r K h ( xe i       xej )   bi i jui      uj j j
i ; j 2 V

=  
1 X  

r K h ( xe i       xej )   (bi       bj )jui      uj j i j :
i ; j 2 V
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Choose measurable sets (V i ) i 2 V   Rd  and a piecewise constant extension uV =  
P

i 2 V  ui1Vi

by Lemma 2.6. Those satisfy
Z

jVij =  i  = i ;
R d

sup jx      x i j  <  2x; 8i 2  V; Vi \  Vj  =  ? ; 8i; j 2  V:
x 2 V i

and
supp uV

 +
B(0; 1)
 +
B(0; 3)

Vi     :
i 2 V

This leads us to introduce the continuous commutator term

A(1;1;1) =  
1 

Z
r K h ( x       y)  (b(x)      b(y))juV (x)       uV (y)j dxdy:

R 2 d

Notice that supp uV

 +  B(0; 1) and s u p p r K h  2  B(0; 2). Then for x  2=
 +  B(0; 3),
either y 2=
+ B (0; 1), making juV (x)  uV (y)j =  0, or y 2
+ B (0; 1), making r K h ( x
y) =  0. The same argument applies to y. As a consequence, the integral formulating
A(1;1;1) can be taken over any subset of R2d including
 +  B(0; 3) 2. In particular,

Z
A(1;1;1) = r K h ( x       y)  (b(x)      b(y))juV (x)       uV (y)j dxdy:

( i 2 V  V i ) 2

Combine the above discussion with Lemma 4.2 and assumption (4.8), one has

2A(1;1;1)      A(1;1)
 
=  

Z
r K h ( x       y)  (b(x)      b(y))juV (x)       uV (y)j dxdy

( i 2 V  V i ) 2

  
X  

r K h ( xe i       xej )   (bi       bj )jui      u j j i j
i ; j 2 V

r K h ( x       y)      r K h ( xe i       xej )   (b(x)      b(y))jui      uj j dxdy
i ; j 2 V      V i V j

+   
X

r K h ( xe i       xej )   (b(x)      b(y))      (bi       bj )jui      uj j dxdy
i ; j 2 V      V i V j

 
i ; j 2 V      V i V j  

(jx      yj +  h)d+2  b(x)      b(y)
 
jui      uj j dxdy

+  
i ; j 2 V      V i V j  

(jx      yj +  h)d+1 (b(x)      b(y))      (bi       bj )jui      uj j dxdy

 C  M=h2 kbkLq  kukLq  (C ) +  C (x=h)kbkW 1 ; q  kukLq  (C) :

Finally, the continuous commutator term A(1;1;1) can be estimated by Lemma 16 in [4].
The paper [4] also considered some non-linearity within the advection equation, which
makes the formulations more complicated than what we need here. For the sake of



completeness, we thus restate a simplied version of Lemma 16 in [4] with the notations of
our paper.
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Lemma 4.4. (Lemma 16 in  [4], reformulated) Assume that for some 1 <  q;r <  1 ,
we have u 2  Lq ;1  and b belonging to Besov space B 1  

r . Then provided   1      1=r,
Z

r K h ( x       y)(b(x)      b(y)) dxdy
R 2 d

Z !

C j log hj      k div b k L 1  j log hj      

R 2 d  
K h ( x       y)ju(x)      u(y)j dxdy +  k r b k B q ; r  

kukL q ; 1         :

We are going to apply this lemma by taking b =  b, u =  uV and r  =  maxfq;2g.
First we recall the classical bound k r b k B q ; q _ 2       

 C k r b k L q        C kbkW 1 ; q  . We also remark

that b is dened on
, but one can nevertheless extend it to Rd  with kbkW 1 ; q (R d )   C kbkW 1 ; q (

) . We also recall that, since we consider a bounded domain
 and assume
1  p <  q  1 ,  then o kukL q ; 1   C kukL p  .

Therefore, for   1      1=r =  maxf1      1=q; 1=2g, one has
Z

2A(1;1;1) =            r K h ( x       y)  (b(x)      b(y))juV (x)       uV (y)j dxdy
R 2 d

Z
 C j log hj      k div bkL 1 (C ) j log hj K h ( x       y)juV (x)       uV (y)j dxdy +  kbkW 1;q kuV k p          :

R 2 d

The terms involving uV    
 can be further bounded by the discrete density (ui ) i 2 V .  In

particular, applying Lemma 2.5 by choosing u =  v =  uV , fk ; gk  : Rd  !  Rd , k =  1; 2
satisfying f1 (x)  =  f2 (x)  =  xei  for all x  2  Vi , and g1 (x) =  g2 (x) =  x  for all x  2  Rd , one
has

K h ( x       y)juV (x)       uV (y)j dxdy  C  
X  

K h
j ju i       u j j i j   j log hjkukh0 ;1;;xe: i ; j 2 V

This nally leads to the estimate
A(1;1)   C j log hj k div bkL 1 (C ) kukh 0 ;1 ; ; xe  +  kbkW 1;q kukL p  (C )

 
+  C

M=h2kbkLq kukLq  (C )  +  C (x=h)kbkW 1 ; q  kukLq  (C) :

Combine the estimate for A(1;1) , A(1;2)  and A(2) , we conclude (4.10), which nishes the
proof of Lemma 4.3.

We are now ready to conclude the proof of Theorem 3.1.
Proof of Theorem 3.1. Let us rst consider the case m =  1, i.e. the (xei ) i 2 V  are time-

independent instead of just piecewise constant along time.
Then by Denition 2.3 and Proposition 4.1, one has that

Z 0 1

ku(t)kh ;1;;xe  ku(0)kh ;1;;xe + sup j log hj @ K h  jui (s)      u j (s) j i j
A  ds

0 h0 h1=2 i ; j 2 V
Z t

 ku(0)kh ;1;;xe + sup j log hj      A K ( s )  +  D K ( s )  +  R K ( s )  ds: 0
h0 h1=2
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e e
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Substituting A K ( s )  +  D K ( s )  +  R K ( s )  by (4.3), (4.4) and (4.10), and rearranging the
terms, one deduces that

ku(t)kh0 ;1;;xe  ku(0)kh0 ;1;;xe

t

+  C  
0

k div b(s)kL 1 (C ) ku(s)kh 0 ;1; ;xe +  kb(s)kW 1;q ku(s)kLp  (C )

+  kD(s)kL 1 (C ) ku(s)kh 0 ;1 ; ; xe  +  ku(s)kLp  (C ) kD(s)kh0 ;p;p( 1=p);xe ds
Z t

+ C j log h0j M 2=h2x k(ai ; j (s)) i ; j 2 V kL q ( F ) ku(s)kL q  (C )  0

+  j log h0j M=h2 kb(s)kLq  ku(s)kLq  (C )

+(j log h0j x=h2)kb(s)kW 1;q ku(s)kLq  (C )

+(j log h0j1 )k(R i (s)) i 2 V kL 1 ( C ) ds
Z t

+  C  (j log h0j =h0 )k(ri (s))i2V kL p (C ) ku(s)kL p  (C ) ds: 0

We can change the ku(s)kh0 ;1;;xe norms into ku(s)kh0 ;1; norms through Proposition 2.7
with h2 =  M,

ku(t)kh0 ;1;  ( L 0  +  L 1  +  L 2  +  L 3 )

=
 

1 +  C(M=h0)2      ku(0)kh0 ;1;

Z t
+  C k div b(s)kL 1 (C ) ku(s)kh ;1; +  kb(s)kW 1;q ku(s)kLp  (C )

0

+  kD(s)kL 1 (C ) ku(s)kh 0 ;1 ;  +  ku(s)kLp  (C ) kD(s)kh0 ;p;p( 1=p) ds
Z t

+ C j log h0j M 2=h2x k(ai ; j (s)) i ; j 2 V kL q ( F ) ku(s)kL q  (C )  0

+  j log h0j M=h2 kb(s)kLq  ku(s)kLq  (C )

+(j log h0j x=h2)kb(s)kW 1;q ku(s)kLq  (C )

+(j log h0j1 )k(R i (s)) i 2 V kL 1 ( C ) ds

Z t
#

+  C         (j log h0j =h0 )k(ri (s)) i2V kL p (C ) ku(s)kL p  (C ) ds                              :
0

Here we rewrite the last term of L 2  by
Z t Z t  Z t

k(R i (s)) i 2 V kL 1 ( C )  ds =  R i (s ) i ds =  ui (s)i  ds 0
0          i 2 V                                                     0                  i 2 V

=  ku(0)kL1 (C )      ku(t)kL1 (C ) :
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where we use R i   0 and identity (4.2). The coecient 
 

1 +  C (M=h0)
 
is multiplied twice

because Proposition 2.7 is actually applied to the left and right hand side separately. Since
k(t) =  minfk : t <  tk g =  1 (as we assume m =  1) we have k(t) +  1 =  2, so all coecients
matches to (3.3), which nishes the proof for the case m =  1.

When m >  1, within each interval [tk 1; tk] we still have constant (xe( k ) ) i 2 V  constant,
and the semi-norm ku(t)kh ; 1 ; ; xe( k )  propagates exactly as above. However, at every end-
point tk one need to shift from (xe( k ) ) i 2 V  to (xe( k + 1 ) ) i 2 V ,  yielding an extra C (M=h0)
factor.

Dene
Z t

L1 (; t) =  C k div b(s)kL 1 (C ) ku(s)kh 0 ;1;  +  kb(s)kW 1;q ku(s)kLp  (C )

+  kD(s)kL 1 (C ) ku(s)kh 0 ;1 ;  +  ku(s)kLp  (C ) kD(s)kh0 ;p;p( 1=p) ds

L2 (; t) =  C  
Z t  

j log h0j M 2 =h2 xk(ai ; j (s)) i ; j 2V kL q (F ) ku(s)kL q  (C )

+  j log h0j M=h2 kb(s)kLq  ku(s)kLq  (C ) +

(j log h0j x=h2)kb(s)kW 1;q ku(s)kLq  (C )

+  (j log h0j1 )k(R i (s)) i 2 V kL 1 ( C ) ds
Z t

L3 (; t) =  C  (j log h0j =h0 )k(ri (s)) i2V kL p (C ) ku(s)kL p  (C ) ds:

We now argue by induction that

ku(t)kh0 ;1;;xe( k )   
 

1 +  C (M=h0 )
k

(t)  1 (ku(0)kh0 ;1;;xe(1)  +  L1 (0; t) +  L2 (0; t) +  L3 (0; t))

by induction. The base case k =  1 was obtained as before, and for k >  1, one has

ku(t)kh0 ;1;;xe( k )   ku(tk )kh0 ;1;;xe( k )  +  L1 (tk  1; t) +  L2 (tk  1; t) +  L3 (tk  1; t)

 1 +  C (M=h0) ku(tk )kh0 ;1;;xe( k      1 )  +  L1 (tk  1; t) +  L2 (tk  1; t) +  L3 (tk  1; t)  1

+  C (M=h0) 
k

( t )  1 (ku(0)kh0 ;1;;xe( 1 )  +  L1 (0; t) +  L2 (0; t) +  L3 (0; t)):

Finally, multiplying by 1 +  C (M=h0) twice more, we are able to replace the discrete
semi-norm on both sides to ku(t)kh0 ;1; or ku(0)kh0 ;1;. This gives

ku(t)kh0 ;1;  
 

1 +  C (M=h0 )
k

(t)+1 (ku(0)kh0 ;1; +  L 1  +  L 2  +  L 3 )

=  ( L 0  +  L 1  +  L 2  +  L3 );

which nishes the proof of Theorem 3.1.

5. Proof of Theorem 3.3. This section is devoted to the proof of Theorem 3.3. We rst
note that all of our estimates are on domains with bounded measure, which lets us
immediately bound any L p  or W s;p norms by L q  or W s;q with any q  p.
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Within this section, the generic constant C  that we use depends on
, the exponents p; q and the constant in the structural assumptions (1.14), and also on T and
the exponent s in the statement of Theorem 3.3.

 Step 1: Constructing the space and time partitions. Choose m 2  N, and introduce
the straightforward time partition

0 =  t0 <  t1 <   <  tm =  T;

 =  
m

; tl =  (l=m)T 8l =  0; : : : ; m:

A  very small choice of time step  will lead to large terms  in (3.3), while a larger value of
allows the velocity eld to oscillate more in each time interval making controlling L 3  in (3.3)
more dicult. Thus, determine the optimal choice of  turns out to a key step of the proof.

the partition is more complicated in the spatial direction. We divide the mesh into
large partitions roughly corresponds to large hypercubes of size  with   x  that will be
determined later. At this moment, it suces to assume that we have for example 8 x
1.

More precisely, we divide
 into subdomains f
k g k 2 J ,  roughly centered around points fy k g k 2 J  2  Rd  such that

B (yk ; )
k   B (yk ; C ) and j@
k j  C d  1:

Next, choose a partition fV k g k 2 J  of the index set V
, by assigning i  2  V
 to any Vk such that

supp i \
k  =  ? :

By denition supp i \
 =  ?  and one can nd at least one
k  intersecting supp i so that k 2 J  Vk =  V
.

Then, for all k 2  J ,  dene

k  =  
X  

i ; Uk =  supp k ; U0
 =  f x  2  Rd  :     k (x )  =  1g:

i 2 V k

By denition Uk  Uk and it is easy to verify that

Uk

k  +  B x ;
k   Uk +  B x ; and C  1d  k k k L 1 (

)   k k k L 1   C d :

Moreover, for all k 2  J ,  dene the \boundary" of Vk as those indices that do not intersect
with any index in another part of the domain or

@Vk =  Vk n f i  2  Vk j if j  2  V and supp i \  supp j =  ? ;  then     k (supp j )  1g:

Then this boundary has codimension 1 in the sense that by decomposing     k  =      (0) +
(0) =

X
i ; (1)  =  

X  
i ; U00 =  f x  2  Rd  :     (0 ) (x)  =  1g;

i 2 ( V k n@ V k ) i2@ V k

one has

(1)
k



k k k
k   U00 +  B4 x ; (Uk n U00)  @

k  +  B4 x ; k ( 1 ) kL 1   C d  1x:
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Observe that the number jJ j of domains
k  can be estimated by jJ j  j
j=d. Hence the previous estimates yield

 [  
(Uk n U00)

 
 C (x=)j

j;
 

X  (1)  C (x=)j
j: k 2 J                                                                                    k 2 J                  L1

For later discussion, we dene @V = k 2 J  @Vk as the set of all boundary indices, and
@E =  f ( i ; j )  2  E : i  2  @V or j  2  @Vg the set of all boundary edges.

 Step 2: Constructing the virtual coordinates in Theorem 3.1. Introduce

(b i (t)) i 2 V  =  PC b(t); (eai ; j (t)) i ; j 2 V  =  PF b(t):

the discretization of b(t; x) on faces and cells as in (2.1) and (2.2) respectively.
We introduce another piecewise constant velocity eld corresponding to the partition we

just constructed: For all 1  l  m and all k 2  J ,  we take the average of b(t; x) on [tl 1; tl]  Vk

in the following sense

bl;k =
1

b(t; x) k (x)  dtdx;
l            l  1           k  L 1 (
)       [t l      1 ; t l]

and dene the \piecewise" extension b(t; x) by

b(t; x) =  
X  

k (x)bl ;k ; 8(t; x) 2  [tl 1;tl )
: k 2 J

We nally introduce as before the discretization on faces and cells of b(t; x),

(b i (t)) i 2 V  =  PC b(t); (ai ; j (t )) i ; j 2 V  =  PF b(t):

The extension b(t; x) from (b l ; k )1 l m ; k 2 J  is not exactly piecewise. Nevertheless, by our
construction in Step 1, each     k  has compact support on Uk, with     k  =  1 on the set U0 ,
with Uk n Uk small. In such sets Uk, one has that b =  bl;k . Moreover, for interior indices
i  2  Vk n @Vk, ai0 ; i (t) and bi (t) are not only the discretization of b(t; ), but also coincide with
the discretization of the constant velocity eld bl;k .

Theorem 3.3 assumes that Denition (3.5) applies for constant elds. This yields
virtual coordinates (x̂ i (bc ))i2V ; bc 2  Rd ,

X  
x̂ i 0  

 
bl ;k  

     x̂ i
 

bl ;k  
ai0 ; i (t) =  bi (t)i  +  r̂  

 
bl;k

i ; 8t 2  [tl 1; tl ]; i 2  Vk n @Vk:
i 0 2 V

(5.1)
Inspired by (5.1), we choose piecewise constant in time virtual coordinates on the mesh
(xei (t)) i 2 V  by

xei (t) =  x̂ i      bi (t) ; 8t 2  [0; T ]; i 2  V:

Then in the interiors indices i  2  V     n @V, (5.1) implies that

X
( xe i 0  (t)      

x

ei (t))ai0 ; i (t) =  bi (t)i  +  r

^

 (bi (t))i ; 8t 2  [0; T ]; i 2  V

 n @V: (5.2) 
i 0 2 V

By our construction, we can see that on each time interval (tk  1;tk ), the virtual co-
ordinates (xei (t)) i 2 V  are time-independent and we may use the notation (xe( k ) ) i 2 V  as in
Theorem 3.1.
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It is straightforward to deduce the uniform bounds

sup xe( k )       xe( k )  <  2M;
( i ; i 0 ) 2 E ; 1 k m

sup jxe(k )       x i j  <  2M;
i 2 V ; 1 k m

because the (xe( k ) ) i 2 V  are obtained through (x̂ i (bc )) i 2 V . Therefore, those virtual coordi-
nates satisfy the requirement of Theorem 3.1.

We reformulate the residue equation (3.2) as
X

( xe i 0  (t)      xei (t))ai0 ; i (t) =  bi (t)i  +  ri (t) i ; 8t 2  [0; T ]; i  2  V: (5.3)
i 0 2 V

Note that if i  2  V n V
, one has ai0 ; i   0 for all i0 2  V and bi =  (P F b ) i  =  0. Hence the residue r i  vanishes for all
i  2  V n V
.

Subtracting (5.2) from (5.3), we obtain
X

( xe i 0  (t)      xei (t))
 
ai0 ;i (t)      ai0 ;i (t)

 
=  

 
bi (t)      bi (t)i  +  

 
r i (t)      r̂  (bi (t))i ;

i 0 2 V (5.4)
8t 2  [0; T ]; i 2  V
 n @V:

By denition, we have jr̂  (bi (t))j  (r̂ max )i jbi (t)j with in addition,

k(eai;j      ai ; j ) i ; j 2 V kL p ( [ 0 ; T ] F )  =  kPF (b       b)kL p ( [0 ; T ] F )   C kb      bkLp ([0;T ]

) ; k(bi      b i ) i 2 V kL p ( [0 ; T ]C )  =  kPC (b      b)kL p ( [0 ; T ] F )   C kb      bkLp ([0;T ]

) :

Therefore, the main obstacle to bound krkLp ([0;T ]C ) is to derive good estimates on
kb      bkL p  .

 Step 3: Bounding kb      bk p  . We introduce the average in time of b(t; x) by Z
bl (x) =   b(t; x) dt; 8x 2

; [t l      1 ; t l]

b0(t; x) =  bl (x); 8(t; x) 2  [tl 1;tl )
:

It is obvious that the two ways of averaging of velocity eld

b !  b; b !  b0

and the discretizations PC , P F  are all linear mappings.
We can rst quantify the oscillation in time by comparing b and b0. For xed x  2  Rd ,

the function b0(; x) is constant on each time interval [tl 1;tl), 1  l  m. Therefore,
Z Z Z p

b(t; x)      b0(t; x) dxdt = b(t; x)       b(; x)d dxdt
[0;T ]

                                                                          
 Z

[0;T ]

Z I
( t )

 b(t; x)      b(; x) ddxdt; [0;T ]
 I ( t )

where I (t)  denotes the interval  2  [tl 1;tl).
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Since tl      tl 1 =  , we have that

Z ! 1 = p
[0;T ]

 
b(t; x)      b0(t; x) dxdt  C kbkL x ( W 1 ; p ) ( [0 ; T ]

) ;

Through interpolation, this shows that for 0  s  1,

kb      b0kLp ([0;T ]

)   C s kbkL p ( W s ; p ) ( [0 ; T ]

) :

We can also bound spatial oscillations on b thanks to b0. For any t, denote l s.t. t 2
[tl 1; tl), and write

b(t; x) =  
X  

k (x)b l ; k  =  
X  

k (x)
1

b(t; y) k (y ) dtdy
k 2 J k 2 J l l  1 k  L 1 (
)       [t l      1 ; t l]

=  
X  

k (x)
1

b0(t; y) k (y ) dy:
k 2 J                           k  L 1 (
)

Moreover, since k 2 J      
 k (x )  = i 2 V

 i ( x )  =  1 for all x  2
, one has

b0(t; x)      b(t; x) =  
X  

k (x)b0 (t; x)   
X  

k (x)
1

b0(t; y) k (y ) dy
k 2 J k 2 J k  L

1
(

)

=  
X  

k (x)
1

b0(t; x)      b0(t; y)
 

k (y ) dy:
k 2 J                           k  L 1 (
)

Therefore,

b0(t; x)      b(t; x)q dxdt
[0;T ]

=  
Z X  

k (x)
1

Z 
b0(t; x)      b0(t; y)

 
k (y ) dy

q 

dxdt

Z
[0;T ]

 k 2 J                           k  L 1 (

)
Z

k (x) b0(t; x)      b0(t; y)q     
k (y ) dydxdt 

[0;T ]

 k 2 J                          Z 
L 1 (

)

 C b0(t; x)      b0(t; y)q dydx:
[0;T ] k 2 J         

 k                     U k \
     U k \

We recall that the last part of our assumption (1.14) states that fk  2  V : (supp  )  \
B (x ; x )  =  ? g   C  for all x  2  Rd . From their construction, any point x  2



Z

jB j C

Z Z

e q
x

x t
e e e

t x

 also
belongs to at most C
 sets Uk so that

b0(t; x)      b(t; x)q dxdt  C
1

1 B (x       y)b0(t; x)      b0(t; y)q dydx;
[0;T ]
                                                                                    [0;T ] C
2

by which we conclude

kb0      bkLq ([0;T ]

)   C kbkL t  (W 1 ; q ) ( [0;T ]

) :

Finally for any 1  p <  q  1 ,  one obtains that

kb      bkLp ([0;T ]

)   C  s kbkL p (W s ; p ) ( [0 ; T ]

)  +  kbkL q (W 1 ; q ) ( [0;T ]

)      : (5.5)
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As we mentioned in Step 2, one can also bound (eai; j       ai ; j ) i ; j 2 V  and (bi       b i ) i 2 V  by the
right hand side of (5.5).

 Step 4: Optimizing all parameters. We nally combine all previous estimates to try to
derive the best bound on the residue term (r i (t)) i 2 V .

On the interior set V
 n@V, by expanding (5.4) and using that jxei0 (t)      xei (t)j  2M, we have that

kr 1V

n@ V kLp ([0;T ]C)  C (M=x)k(ai ; j       ai ; j ) i ; j 2 V kL p ( [ 0 ; T ] F )  +  k(bi

bi ) i 2 V kL p ( [0 ; T ]C )  +  k((r̂ max )i jbi j)i2V kLp ([0;T ]C )

 C (M=x)k(ai ; j       eai ; j ) i ; j 2 V kL p ( [ 0 ; T ] F )

+  C (M=x)k(eai; j       ai ; j ) i ; j 2 V kL p ( [ 0 ; T ] F )  +  k(bi      b i ) i 2 V kL p ( [0 ; T ]C )  +

C kr̂ max kL ( 1 = p      1 = q )      1  ([0;T ]C ) k(bi )i2V kLq ([0;T ]C ) :

We recall that the admissible family of virtual coordinates has residue bound M in
L1=(1=p 1=q). Applying (5.5) and using 1 <  (M=x) leads to

kr 1V

n@ V kLp ([0;T ]C)  C (M=x)k(ai ; j ) i ; j 2 V       PF b kL p ( [ 0 ; T ] F )

+  C (M=x) s kbkL p ( W s ; p ) ( [0 ; T ]

)  +  kbkL q (W 1 ; q ) ( [0;T ]
)

+  C MkbkLq ([0;T ]

) :

As for the boundary @V, we directly expand (5.3) to nd that

kr 1@ V kLp ([0;T ]C)

 C (M=x)k(ai ; j ) i ; j 2 V  1@ E kLp ([0;T ]F )  +  k(b i ) i 2 V  1@ V kLp ([0;T ]C)
 C (M=x)(x=)T j

j
1=p 1=q 

k(a i ; j ) i ; j 2 V kL q ( [ 0 ; T ] F )  +  kbkLq ([0;T ]

) ;

by Ho•lder inequality.
Since the residue r i  vanishes for all i  2  V n V
, we have

krkLp ([0;T ]C )  kr 1V

n@ V kLp ([0;T ]C) +  kr 1@ V kLp ([0;T ]C)  C (M=x)k(ai ; j ) i ; j 2 V

PF b kL p ( [ 0 ; T ] F )

+  C (M=x) s kbkL p (W s ; p ) ( [0 ;T ]

)  +  kbkL q (W 1 ; q ) ( [0;T ]
)

!

+  (x=)1=p 1=q k(ai ; j (t)) i ; j 2 V kL q ( [0 ; T ] F )  +  kbkLq ([0;T ]
)

(5.6)

(5.7)

(5.8)

+  C MkbkLq ([0;T ]



 

 

) ;

We are now ready to choose the parameters  and . We also need to control the term
=  1 +  C (M=h0) 

k

( t ) + 1  in Theorem 3.1, where k(t) represents the number of times

(xei (t)) i 2 V  jumps within [0; t]. Notice that by increasing the constant C  we have   exp
Ck(t)(M=h0) , and we can bound k(t) by k(T )  CT =. To  control L 3  and
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 simultaneously, we use the following choice

 =  ( x ) 1 + ( 1 = p      1 = q )  ;  =  (x M=M)1=(1+s) :

It rst results the claimed bound on  in (3.6), namely
 =  exp

 
C (1=h0 )(M s M=x)1=(1+s) :

This also yields a bound on the main residue term L 3  in Theorem 3.1 by

L 3  =  C (j log h0j =h0) kr kL 1 L x ( [ 0 ; t ] C ) kuk L
1
L p  

([0;t]C)

C (j log h0j =h0 )krkLp Lp ([0;t]C ) kukLt  L x
 (
[0;t]C) :

Inserting (5.8) on krkLp ([0;T ]C ) nally provides "

L 3   C  (j log h0j =h0) (M=x)(a i ; j ) i ; j 2 V       P F b L p ( [ 0 ; T ] F )

+  (MM=x)1=(1+ s ) kbkL p ( W s ; p )

+  M(x)     1 + ( 1 = p      1 = q ) k(ai ; j (t)) i ; j 2 V kL q ( [0 ; T ] F )  +  kbkL q ( W 1 ; q )

#

+  MkbkL q ( L q  )  kukL
t

 L x
 
([0;t]C);

which nishes the proof of Theorem 3.3.

6. Proof of Theorem 3.4. We rst reduce, in subsection 6.1, the innite linear
system (3.7) to a nite linear system whose variables are f x̂ i g i 2 V 0  , by making use of the
periodic nature of the mesh. Due to the geometric nature of the meshes, both the matrix
and the inhomogeneous term in the linear system have certain properties, which we focus
on in subsections 6.2 and 6.3. Finally, in subsection 6.4 we conclude the uniform
boundedness result.

6.1. The linear system for periodic meshes. We rewrite (3.7) as

j 2 V  aj; i (bc ) x̂ i (bc ) = j 2 V  aj; i (bc )x̂ j (bc )      bc i ; 8i 2  V: (6.1)

Since the mesh is periodic as in Denition 1.6, we are looking for periodic solutions as
well, namely solutions satisfying

x̂ [m]( i ) (bc ) =  x̂ i (bc ) +  [m]L; 8bc 2  Rd; [m] 2  Zd ; i 2  V; (6.2)

where [m]L =  
P

k = 1  m k L k  2  Rd .
The following lemma makes explicit the nite linear systems that the variables x̂ i ,

reduced to i  2  V0, need to solve to be solutions to (6.1) over the full mesh.
Lemma 6.1. Let (C ; F ) =  

 
f i g i 2 V ; f n i ; j g ( i ; j ) 2 E

 
be a periodic mesh as in Denition 1.6 and

b  bc be a constant velocity eld. Consider a function ( x̂ i ) i 2 V  dened on all cells,
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satisfying (6.2). It is a solution of (6.1) if and only if its restriction ( x̂ i ) i 2 V 0     
 satisfying

the following nite linear system: for all i  2  V0,

 
j 2 V 0  

 
[ m ] 2 Z d  a[m](j ) ; i (bc )

 
x̂ i (bc )

= j 2 V 0  [ m ] 2 Z d  a[m](j ) ; i (bc ) x̂ j (bc ) (6.3)
+          j 2 V 0                  [ m ] 2 Z d  a[m](j ) ; i (bc )[m]L            bc i :

In the formulation above we let a[m]( j ) ; i  =  0 if [m](j ) lie outside the mesh V.

Proof. By Denition 1.6, for any i  2  V0 and any l 2  V, such that al; i  =  0, there exists
unique (j; [m]) 2  V0  Zd  such that l =  [m](j ). Therefore (6.1) is identical to

P
j 2 V 0  

P
[ m ] 2 Z d  aj; i (bc ) x̂ i (bc ) =  

P
j 2 V 0  

P
[ m ] 2 Z d  aj; i (bc )x̂ j (bc )      bc i ; 8i 2  V0:

By the periodic condition (6.2), this is also identical to (6.3), which nishes the proof.      We
now introduce matrix notations on (6.3) to simplify the discussion in later subsec-

tions,
A(bc ) =  (A i j (b c ) ) i ; j 2 V 0  ; Ai j (bc )  = [ m ] 2 Z d  a[m]( i ) ; j (bc ):

Let A T  (bc) =  (A j i (b c ) ) i ; j 2 V 0  denote the usual transpose matrix. In addition, let
(bc) =  diagfi i (bc )gi2V 0  ; i i (bc ) = l 2 V [ m ] 2 Z d  a[m](l); i (bc );

’ ( b c )  =  ( ’ i ( b c ) ) i 2 V 0  ; ’ i ( b c )  =  
P

j 2 V 0         

P
[ m ] 2 Z d  a[m](j ) ; i (bc )[m]L      bci :

Then the linear system (6.3) can be rewritten as
ii (bc )x̂ i (bc ) = j 2 V 0  

Aj i (bc )x̂ j (bc ) +  ’ i ( b c ) ; 8i 2  V0;

or more compactly,
(      A T  )(bc)x̂ (bc ) =  ’ (b c ) ; (6.4)

where (  A T  )(bc ) is a square matrix in R V 0 V 0  and x̂ (bc ); ’(bc ) 2  RV 0 d . We emphasize that
(6.4) each d coordinate separately, namely it should be understood as

(      A T  )(bc )x̂ (bc ) =  ’ (b c ) ;  =  1 : : : d;

with the same matrix (       A T  )(bc ) for each coordinate.
We may also omit the variable bc 2  Rd  in the bracket when there is no ambiguity.
6.2. Recasting (6.4) into a discrete diusion operator. We can characterize the matrix

(      A T  )  in the following manner.

Propos i t ion 6.2. Dene the space of discrete diusion operators as

M ( n )  =  M 2  R n n  : Mi i   0; Mij  0 ;
P

l = 1  Mil  =  
P

l = 1  Mli  =  0; 8i; j =  1; : : : ; n; i  =  j  :

Then for all bc 2  Rd , (       A T  )(bc ) 2  M(jV0 j).

Proof. The condition Mi i   0 in the denition of M ( n )  is actually redundant. It can be
easily derived by the conditions Mi j   0 and l = 1  Mil  =  0. Thus, if suce to check
that (       A  ) satises the remaining properties in the denition.

Firstly, since A T  is non-negative and  is diagonal, it is obvious that the non-diagonal
entries of (       A T  )  are non-positive.
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Secondly, the identity 
P

l 2 V  (       A T  ) i l  =  0 can be derived by an expansion
P

l 2 V 0  
(       A T  ) i l  =  i i       

P
l 2 V 0  

A l i

= l 2 V 0 [ m ] 2 Z d  a[m]( l ) ; i   l 2 V 0 [ m ] 2 Z d  a[m]( l ) ; i  =  0:

Now turning to the last property, as the velocity eld is constant, we have that a[m](i ) ; l  =
ai;[ m]( l ) .  By taking the same expansion as before, we have

P
l 2 V 0  

(       A T  ) l i  =  
P

l 2 V 0  P
[ m ] 2 Z d  a[m]( l ) ; i       

P
l 2 V 0  P

[ m ] 2 Z d  a[m]( i ) ; l

l 2 V 0 [ m ] 2 Z d         [m]( l ) ; i l 2 V 0 [ m ] 2 Z d         i ;[  m ] ( l )

Hence to prove 
P

l 2 V 0  
(       A T  ) l i  =  0, it suces to show that l 2 V

ai; l   l 2 V  al ; i  =  0;

Since the constant velocity eld is divergence-free, applying the divergence theorem to
the extended cell C  , we have

P
l 2 V  ai; l       

P
l 2 V  al ; i  =  

X Z   
bc  n l ; i ( x )   dx      

X Z   
bc  n l ; i ( x ) +  dx

l 2 V l 2 V

=       
X  

bc  n l ; i ( x )
 
dx Z

l 2 V                                               Z
= bc  r i ( x )  dx =        (div bc )i (x) dx =  0;

C i

which nish the proof.
Our next result is an inequality bounding the entries of ’ ( b c )  by the entries of (

A T  )(bc), which still relies on the divergence theorem but in a more intricate way.

Propos i t ion 6.3. For all bc 2  Rd  and V1  V0, the inhomogeneous term ’ ( b c )  in the
linear system (6.4) satises

P
l 2 V 1  

’ ( b c )
 
 C ( V 0 )

P
i 2 V 1 ; j 2 V 0 n V 1  

 
jAi j (bc )j +  jAj i (bc )j;

where
C (V0 ) = sup jx      yj:

x ; y 2      i 2 V 0  
supp i

Proof. By choosing an appropriate basis of Rd , we may assume 0 2  
S

i 2 V  supp i and b
=  (0; : : : ; 0; 1) without loss of generality. For r  =  1; : : : ; (d      1), we then have

( ’ i ) r  =  
P

l 2 V 0  

P
[ m ] 2 Z d  a[m]( l ) ; i  

P
p = 1  mp (Lp )r ; i  2  V0;

while for k =  d, the equation reads

( ’ i ) d  =  
P

l 2 V 0  

P
[ m ] 2 Z d  a[m]( l ) ; i  

P
p = 1  mp (Lp )d

 
     i ; i  2  V0:

For r  =  1; : : : ; d      1, notice that div 
 
x r  bc

 
=  

 
@dxr

 
=  0, so that

     
Z 

x r  bc  r
 P

i 2 V 1  i ( x )
 
dx =  

Z 
div 

 
x r  bc

 
 
 P

i 2 V 1  i ( x )
 
dx =  0:



Z Z

n

+  

 

+  

n

+
Z Z

  

 P n  

 P n

n

i

+

’  = X      X+  b  :

+

X      X

= X      X

X      X
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For k =  d, we have instead that div 
 
xd bc

 
=  

 
@dxd

 
=  1, leading

 xd bc  r
 P

i 2 V 1  i ( x )
 
dx = div 

 
xd bc

 
 
 P

i 2 V 1  i ( x )
 
dx =  

P
i 2 V 1  i :

We can summarize all those relation in vector form, as

’ i  =  
P

l 2 V 0  

P
[ m ] 2 Z d  a[m]( l ) ; i  

P
p = 1  mp Lp

 
     bc i ; i  2  V0;

and

For any i; j , denote

     
Z 

x  bc  r
 P

i 2 V 1  i ( x )
 
dx =  

P
i 2 V 1  

bc i :

Z
X j ; i  = x  bc  n j ; i ( x )  +  dx;

Z
X j ; i  = x  bc  n j ; i ( x )    dx;

Z
X j ; i  =  X j ; i       X j ; i  = x  bc  n j ; i ( x )  dx:

Notice that n[ m ] ( j ) ; i (x )  =  n j ; [  m ] ( i ) (x  
P

p = 1  mp Lp ) by our periodic assumption, so that
one obtains that

X [ m ] ( j ) ; i       X [  m ] ( i ) ; j

= x
 

bc  n [ m ] ( j ) ; i ( x ) +  dx  x
 

bc  n[  m ] ( i ) ; j (x )   dx Z
Z

= x  bc  n [ m ] ( j ) ; i (x)  +  dx  x  bc  n j ; [  m ] ( i ) (x)  +  dx
Z                                                    Z

= x  bc  n [ m ] ( j ) ; i (x)  +  dx  ( x   p = 1  mp Lp ) bc  n [ m ] ( j ) ; i (x )  +  dx
Z

= bc  n [ m ] ( j ) ; i (x )  +  dx p = 1  mp Lp

=  a[m]( j ) ; i  
P

p = 1  mpLp:
Hence ’  can be reformulated as

’ i  =  
P

j 2 V 0  

P
[ m ] 2 Z d  X [ m ] ( j ) ; i       X [  m ] ( i ) ; j

 
     bc i ; i  2  V0;

and the summation of ’ i  over any V1  V reads
P P P P P

i 2 V 1          i i 2 V 1 j 2 V 0 [ m ] 2 Z d [ m ] ( j ) ; i [ m ] ( i ) ; j i 2 V 1        c i

Decompose
P P P  

+  
i 2 V 1             j 2 V 0             [ m ] 2 Z d                [m ] ( j ) ; i [ m ] ( i ) ; j

P P P +
i 2 V 1 j 2 V 1 [ m ] 2 Z d [ m ] ( j ) ; i [ m ] ( i ) ; j
P P P +

i 2 V 1 j 2 V 0 n V 1 [ m ] 2 Z d [ m ] ( j ) ; i [ m ] ( i ) ; j

=  Y1 +  Y2:



1
P

Y = X  X

= X :

Z

Z

=
P P

X

= X + X
h P P P +

+

=  X +  X

P

 

X  

e e

e e
e e

k
e

e e
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The term Y1 can be further simplied. By switching i  and j  and take the inverse m to
 m in Zd , we have 

P P + P P P

P i 2 V 1
 P

j 2 V 1
 P

[ m ] 2 Z d [ m ] ( j ) ; i i 2 V 1 j 2 V 1 [ m ] 2 Z d [ m ] ( i ) ; j

i 2 V 1 j 2 V 1 [ m ] 2 Z d [ m] (j) ; i

Moreover,
P

i 2 V 1  
bc i = x  bc  

 
     

P
i 2 V 1  

r i ( x )
 
dx

=  
P

x  bc  
P

i 2 V 1  

P
j 2 V 0  

P
[ m ] 2 Z d  n [ m ] ( j ) ; i (x)

 
dx P i 2 V 1

P j 2 V 0
 P

[ m ] 2 Z d [ m ] ( j ) ; i
P P P

i 2 V 1 j 2 V 1 [ m ] 2 Z d [
m

]
(

j
) ; i

i 2 V 1 j 2 V
0

n V 1 [ m ] 2 Z d [
m

]
(

j
) ; i i  =

Y1 +  Y2 +       i 2 V 1 j 2 V 0 n V 1 [ m ] 2 Z d         X [ m ] ( j ) ; i       X [ m ] ( j ) ; i  +  X [  m ] ( i ) ; j         
 :

Therefore, if we dene

Y3 =  
P

i 2 V 1  

P
j 2 V 0 n V 1  

P
[ m ] 2 Z d         X [ m ] ( j ) ; i       X [ m ] ( j ) ; i  +  X [  m ] ( i ) ; j

P P P  
i 2 V 1 j 2 V 0 n V 1 [ m ] 2 Z d [ m ] ( j ) ; i [ m ] ( i ) ; j

then we obtain that

i 2 V 1  
’ i  =  (Y1 +  Y2)      (Y1 +  Y2 +  Y3) =   Y3:

Since
 X [ m ] ( j ) ; i  +  X [  m ] ( i ) ; j   C (V0 ) ai ; [m]( j )  +  aj;[ m ] ( i )      =  C (V0 ) a[ m ] ( i ) ; j  +  a[m]( j ) ; i      ;

by taking the summation over i  2  V1; j 2  V0 and [m] 2  Zd , it is straightforward that

jY3j  C (V0 ) jAij (bc )j +  jAj i (bc )j ; i 2 V 1 ; j 2 V 0 n V 1

which completes the proof.
6.3. Some properties of discrete diusion operators. To  begin with, let us recall the

denition of irreducibility. A  matrix is irreducible if it is not similar via a permutation of
indices to a block upper triangular matrix with more than one block of strictly positive

size. An equivalent denition is the following: Each matrix M can be associated to a
directed graph G, with n vertices labeled with 1; : : : ; n. There is an edge from i  to j  in
G  if and only if Mi j  =  0. Then M is irreducible if and only if G  is strongly connected,
i.e. one can reach any vertex starting from any vertex.

Let I  =  f1; : : : ; ng, and consider any J ; J   I .  We denote by the submatrix M (J; J ) ,  the
matrix obtained by deleting from M all rows whose indexes are not in J  and all
columns whose indexes are not in J . More precisely, if J  =  fj1 ; : : : jk g and J  =
fj1 ; : : : je g, M (J; J )  it is dened by

M (J; J ) i 1 ; i 2  =  Mj i 1  ; j i 2  
:

The following lemma shows that a discrete diusion operator, if it is not irreducible,
must be block-diagonal up to a permutation.
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Lemma 6.4. For M 2  M(n) ,  there exists a decomposition I1  [ [ I m  =  I  =  f1; : : : ; ng, such
that for all k 2  f1; : : : ; mg, the diagonal square submatrix M (Ik ; I k )  is irreducible and for
all k; l 2  f1; : : : ; mg; k =  l, the submatrix M (Ik ; I l )  =  0. Moreover, the null space and image
of M are

N (M ) =  spanf1Ik  gk =1 ;

Range M =  f x  2  R I  : i 2 I k  
x i  =  0; 81  k  mg:

Proof. We are going to prove there exists a decomposition I 1 [ [ I m  =  I  =  f1; : : : ; ng by
induction on the dimension n. When n =  1 there is nothing to prove. Let’s consider n
2 and assume the decomposition exists for 1; : : : ; (n   1). If M is an irreducible n  n
matrix, again there is nothing to prove. If M is reducible, then it is similar to a block
upper diagonal matrix via a permutation of indices, which means there exists J   I  =
f1; : : : ; ng s.t. Mi j  =  0 for all i  2  I  n J  and j  2  J .  Thus

0 =  
X X

M i j  =  
X X

M i j  +  
X  X

M i j  =  
X X

M i j :
i 2 I  j 2 J i 2 J  j 2 J i 2 I n J  j 2 J i 2 J  j 2 J

On the other hand,
X X

M i j  =  0:
i 2 J  j 2 I

Hence X  X  
M

ij

 =  
X X

M i j       
X X

M i j  =  0:
i 2 J  j 2 In J i 2 J  j 2 I i 2 J  j 2 J

Since the o-diagonal entries are all non-negative, one must have Mi j  =  0 for all i  2  J
and j  2  I  n J .  Therefore M (I ; I  n J )  =  0 and M (I  n J ; I )  =  0.

Furthermore, M (J; J )  2  M ( j J j )  and M (I n J; I n J )  2  M(j I n J j ) .  Note that jJ j; jI nJ j <
n. Applying the induction argument on M (J; J )  and M (I n J; I n J ) ,  we get decompositions
J  =  I ( 1 ) [ [ I ( 1 )  

)  and I n J  =  I ( 2 ) [ [ I ( 2 )  
)  . It is easy to verify that the decomposition

I  =  I ( 1 )  [   [  I ( 1 )  
)  

 
[  I ( 2 )  [   [  I ( 2 )  

)

satises the properties asserted in the lemma.
It remains to determine the null space and range of M. Assume rst that M is

irreducible. Let x  2  N (M ) and

J  =  f i  2  I  : x i  =  maxl xl g:

By construction, J  =  ?  and we can argue by contradiction that J  =  I .  If J  =  I  and
J  =  ? ,  by the irreducibility of M, one can nd i  2  J ,  j  2  I  n J  such that Mi j  >  0.
However, for any i  and so in particular any i  2  J ,

P
j  M i j x j  =  0:

By our assumption of M,
P

j 2 I n f i g  (M i j x j )       
P

j 2 I n f i g  Mij maxl x l  =  0;
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P

n

P
P
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which implies that x j  =  maxl x l  if Mi j  >  0. Therefore, j  2  J  whenever i  2  J  and
Mi j  >  0, a contradiction. In conclusion, we have J  =  I  and x i  =  constant for all i  2  I  or
N (M ) =  spanf1g. As any column summation of M is zero, for any x  2  R I ,  one has

P
i  

P
j  M i j x j

 
=  

P
j  (

P
i  M i j ) x j  =  0:

Since codim Range M =  dim N (M ) =  1, one has Range M =  f x  2  R I  : 
P

i 2 I  x i  =  0g.
This concludes the proof when M is irreducible.

When M is reducible, we know, up to a permutation, that M is block diagonal and each
diagonal block M (Ik ; I k )  is irreducible. Applying the previous result to each M (Ik ; I k )

completes the proof.
The next lemma allows us to estimate the ‘ 1  norm of M  1 when the non-negative

entries of M are bounded from both above and below.

Lemma 6.5. Dene

M(n; 0 ; 1 ) =  fM 2  M ( n )  : Mi j  =  0 or 0 <  jMij j <  1; 81  i ; j   n; i =  j  g:

Then there exists a constant C(n; 0; 1) =  C2 (n)( n  2)  ( n  1) s.t.     for any matrix M 2
M(n; 0 ; 1 ) and ’  2  Range M , there exists one x̂  satisfying M x̂ =  ’  and k x^ k ‘ 1

C (n; 0 ; 1 )k ’k ‘ 1  . Moreover, for xed M 2  M(n; 0 ; 1 ) let us take the decomposition I  =  I1

[   [  I m  as in Lemma 6.4. The solution x̂  above is uniquely determined by imposing the
conditions

i 2 I k  
x̂ i  =  0; 8k =  1; : : : ; m:

Proof. Let us rst assume that M is irreducible. Let x  be a solution of M x =  ’ .  Since
N (M ) =  spanf1g, we have that M (x   1) =  ’  for all  2  R.  By taking  =  1

i  x i

and x̂  =  (x       1) we have M x̂ =  ’  and i  x̂ i  =  0. This solution is uniquely determined
and it remains to show that there is a uniform bound k x̂ k ‘ 1   C (n; 0 ; 1 )k ’k ‘ 1  .

Dene

J 0  =  f1   i   n : x̂ i  =  1max x̂ j g;
J k  =  f1   i   n : 9j  2  J k  1 s.t. jMj i j >  0g [  J k  1; 8k  1;

D k  =  maxf(
1
max x̂ j )       x̂ i g:

For i  2  J k  n J k  1, take j  2  J k  1 s.t. jMj i j >  0, the equality on the j -th entry now reads

 jMj i jx̂ i  + k = j  jMj k j x̂ j   k = i ; j  jMj k jx̂ k      =  ’ j :

By the fact that the summation of each row of M is zero, one can rewritten the above
equation as

jMj i j(maxl x̂ l       x̂ i )  =          k = j  jMj k j (maxl x̂ l       x̂ j )  +  ’ j            k = i ; j  jMj k j(maxl x̂ l       x̂ k )  ;

by which we have

D k   1 +  (n      2

)
1 D k  1 +  

1 
k ’ k ‘ 1  : 

0

0



0

0

k

1 0
P

P P  
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0

S
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By denition, D  =  0. Hence by induction we obtain h
i

1 +  (n      2) 1      1
D k  (n      2)1

k ’ k ‘ 1 :

By the irreducibility of M, unless J k  =  f1   i   ng we have J k  (  J k + 1  (i.e. J k  is a proper
subset of J k ) .  This implies that j J k + 1 j   jJk j  +  1 and since jJ0 j  1, it proves that that J n  1

=  f1   i   ng.
Therefore, by taking C(n; 0; 1) and C2 (n) such that

C(n; 0; 1) =  C2 (n)( n  2)  ( n  1)  D n  1;

we have (maxl x̂ l    minl x̂ l )   C (n; 0 ; 1 )k ’k ‘ 1  . By i  x̂ i  =  0 we have minl x̂ l   0
maxl x̂ l . Hence k x^ k ‘ 1   C (n; 0 ; 1 )k ’k ‘ 1  .

When M is reducible, we know, up to a permutation, that M is block diagonal and each
diagonal block M (Ik ; I k )  is irreducible. Applying the previous result to each M (Ik ; I k )

completes the proof.
6.4. Uniform boundedness. We are nally able to show our uniform boundedness re-

sult.

Theorem 6.6. Consider M 2  M ( n )  and ’  2  R n  satisfying that 9C0 >  0, 8I 0  I  =
f1; : : : ng,

j 2 I 0  ’   C0 j 2 I 0 ; i 2 I n I 0        jMij j +  jMj i j : (6.5)

Then there exists x  2  R n  satisfying

M x =  ’ ; and     k x k ‘ 1   C0 C1 (n);

for some constant C1 (n) depending only on the dimension n.

Assuming for the moment that this theorem is correct. We can then immediately
derive Theorem 3.4.

Proof of Theorem 3.4. Combining Proposition 6.2 and 6.3, we see that the linear
system (6.4) satises the condition in Theorem 6.6 with n =  jV0j, M =  (   A T  ),

C0  =  C (V0). Moreover, since we assume i 2 V  supp i being connected in Denition 1.6, it
is easy to verify that for some constant C

C (V0 ) = sup jx      yj  C  jV0jx;
x ; y 2      i 2 V 0  

supp i

where x  is the discretization size of the mesh.
Hence by applying Theorem 6.6 to (6.4), we conclude that there are solutions x̂ (bc )

for all possible bc, with ‘ 1  norm uniformly bounded by

k x^ k ‘ 1   C (V0)C1 (jV0j)  C (jV0j)x;

where C (jV0j) depends only on jV0j; the number of cell functions in a period. We can
have the solutions satisfy that 8 >  0; x̂ i (bc ) =  x̂ i (bc ) simply by redening x̂ i (bc ) =

x̂i (bc=jbcj) for all bc s.t. jbcj =  0. Finally, by Lemma 6.1 we can extend our solution x̂ (bc )
to a periodic solution on the entire mesh, satisfying all properties claimed in Theorem 3.4.

We now conclude the section with the proof of Theorem 6.6:
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Proof of Theorem 6.6. Let us begin with the solvability of M x =  ’ .  Take the decom-
position I  =  I1  [   [  I m  as in Lemma 6.4. By Lemma 6.4,

Range M =  f x  2  R I  : 
P

i 2 I k  
x i  =  0; 81  k  mg:

For all k =  1; : : : ; m, we have M (Ik ; I  n I k )  =  M (I  n I k ; I k )  =  0. By (6.5) this implies
that ’  =  0, 8k =  1; : : : ; m. Therefore ’  2  Range M and M x =  ’  is solvable.

We now turn to the proof of ‘ 1  bound of x. We can WLOG assume C0  =  1 and
max i = j  jMij j =  1 =  1, because the general case can be reduced to it by a scaling (
1 M )(C  1 x) =  (  1 C0 

1 ’ ) .
The result is immediate when n =  1 and we prove the cases n  2 by induction.

Assume the theorem holds for any p p matrices with p  (n      1), we are going to show that
the theorem holds for n  n matrices.

First, since
M0 (n)  =  M ( n )  \  fM 2  R n n  : max jMij j =  1g

is compact, it suces to show that there is a local bound. More explicitly, we are going
to show that for any M (0) 2  M0 (n),  there is an open neighborhood U 3  M (0) , s.t. for
all M 2  U \  M 0 (n)  and ’  satisfying (6.5) with C0  =  1, there is a constant C  =  C (n; U
\  M0 (n))  s.t. one can take x  2  R n  satisfying M x =  ’  and k x k ‘ 1        C (n; U \ M0 (n)).
Then by compactness, we conclude immediately that there is a uniform bound C1 (n) =
C (n; M0 (n)).

For arbitrary M (0) 2  M0 (n),  introduce the irreducible decomposition I  =  I1  [ [ I m  as
in Lemma 6.4. For 1  k  m, dene E k  =  spanf1f i g g i 2 I k  , F k  =  f x  2  E k  : i  x i  =
0g. In addition, dene E 0  =  spanf1Ik  gk =1 , F0  =  f x  2  E 0  : i  x i  =  0g. Note that we
have

R n  =  (E 1     E m )  =  (F1     F m )   E 0  =  (F1     F m )   F0   spanf1I g:

Since there are non-zero non-diagonal entries in M (0) , there exists k such that jIk j >  1.
Hence m <  n.

Let

0 =  min jM (0)j : i  =  j; jM (0) j =  0 ;

r  =  
2nC(n; 0;1)(1 +  2 max1p<n C1 (p))

;

where the constant C (n; 0; 1) is as in Lemma 6.5.
Dene the open set

Ur (M (0) ) =      M 2  R n n  : 
1 

max
n 

jM      M (0) j <  r      :

Dene also the following linear mappings,

P  : R n  !  E 0  =  spanf1Ik  g
m 

1  R n  m

x
 !  k

= 1
jIk j 

i 2 I k  x
i 1 I k  ;



m

m

P P

P P P P  

P  

P P P P P P

P P P P P P P P
P P P P P P P P

P P  
P  
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i.e. we take the average on each I k ,

Q : R m  !  E 0  =  spanf1Ik  gk = 1   R n  y

!  
X

y k 1 I k  ;
k = 1

i.e. we project on the canonical basis of E0 ,  and nally

W : R m  !  R m

(y1;: : : ; ym) !  (jI1jy1; : : : ; jImjym):

For x  2  R n  solving M x =  ’ ,  introduce the decomposition

x  =  x1 +  x2 +  1I ; x1 2  (F1     F m ) ;  x2 2  F0 :

Without loss of generality, we can assume  =  0.     We are going to discussion two
situations.

Case 1: k x 2 k ‘ 1   
 

2 max1p<n C1 (p)kx1 k ‘ 1  . Since F0   E0 ,  x2 belongs to the image of Q
and as Q is trivially one-to-one from R m  to E0 ,  we can dene y2 =  Q 1 (x2 ) 2  R m .

Since M (x1 +  x2 ) =  ’ ,  we have

(W Q 1P M Q)(y2) =  (W Q 1 P M )(x2 ) =  (W Q 1 P ) ( ’ )       (W Q 1P M )(x1 ): (6.6)

Since
(W Q 1 P M Q)kl =  

P
i 2 I k  

P
j 2 I l  

Mij ;

it is easy to verify that (W Q 1P M Q) 2  M(m).
Our goal is to apply the induction argument to the m  m linear system (6.6). To

apply the induction argument, we need to provide proper estimates on the terms in the
right-hand side. For any J 0  J  =  f1; : : : ; mg, we have

P
k 2 J 0        (W Q 1 P ) ( ’ )       (W Q 1 P M )(x1 ) k

= k 2 J 0        (W Q 1 P ) ( ’ )  k   k 2 J 0        (W Q 1 P M )(x1 ) k

=  L 1  +  L2 :

By our assumption on ’ ,
jL1 j =  k 2 J 0 i 2 I k  

’ i  
k 2 J 0 ; l 2 J n J 0 i 2 I k ; j 2 I l        

jMij j +  jMj i j

= k 2 J 0 ; l 2 J n J 0        (W Q 1 P M Q)kl  +  (W Q 1 P M Q)lk  :

On the other hand,
jL2 j =  k 2 J 0 i 2 I k j 2 I  Mi j (x1 ) j  =  j 2 I k 2 J 0 i 2 I k  

Mi j (x1 ) j

l 2 J 0 j 2 I l  k 2 J 0 i 2 I k  
Mi j (x1 ) j  + l 2 J n J 0 j 2 I l  k 2 J 0 i 2 I k  

Mi j (x1 ) j  =

l 2 J 0 j 2 I l  k 2 J n J 0             i 2 I k  
Mi j (x1 ) j  +       l 2 J n J 0             j 2 I l  

      
k 2 J 0             i 2 I k  

Mi j (x1 ) j

k 2 J 0 ; l 2 J n J 0 i 2 I k ; j 2 I l        
jMij j +  jMj i j kx 1 k ‘ 1

= k 2 J 0 ; l 2 J n J 0        (W Q 1 P M Q)kl  +  (W Q 1 P M Q)lk  k x 1 k ‘ 1  :

In conclusion we have

jL1  +  L2 j   (1 +  kx 1 k ‘ 1  )
P

k 2 J 0 ; l 2 J n J 0  

 
(W Q 1 P M Q)kl  +  (W Q 1P M Q)lk ;



p < n

p < n

p < n

p < n

 

p < n

 

1
;

i ; j

p < n
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which satises necessary assumption for the induction argument with C0  =  ( 1 + k x 1 k ‘ 1  ).
As a consequence, we have

k x 2 k ‘ 1  =  ky2 k ‘ 1   (1 +  kx 1 k ‘ 1  )C1 (m)  C1 (m) +  kx 2 k ‘ 1  =2;

by using the relation between k x 1 k ‘ 1  and k x 2 k ‘ 1  assumed at the beginning of the case.
Hence, as claimed

k x 2 k ‘ 1   2C1 (m)  2
1
max C1 (p);

k x k ‘ 1   k x 1 k ‘ 1  +  kx 2 k ‘ 1   1 +  2 1max C1 (p):

Case 2: k x 2 k ‘ 1  <  
 

2 max1p<n C1 (p)kx1 k ‘ 1  . Since M (x1 +  x2 ) =  ’ ,  we have

M (0) (x1 ) =  M (0) (x1 +  x2 ) =  M (x1 +  x2 ) +  (M (0)      M )(x1 +  x2 )

=  ’  +  (M (0)      M )(x1 +  x2 ):

On each I k I k  block (k =  1; : : : m00) we can apply Lemma 6.5. For M 2  Ur (M ( 0 ) )\M(n),
this gives

k x 1 k ‘ 1   C (n; 0; 1) k ’ k ‘ 1  +  rd(1 +  2
1
max C1 (p))kx1 k ‘ 1  =

C (n; 0 ; 1)k ’k ‘ 1  +  kx 1 k ‘ 1  =2:

By (6.5), for all i  2  I ,

j ’ i j       
X   

jMij j +  jMj i j
 
 2(n      1):

j 2 I n f i g

Hence

k x 1 k ‘ 1   4(n      1)C(n;0; 1);

k x k ‘ 1   k x 1 k ‘ 1  +  kx 2 k ‘ 1   4(n      1)C(n; 0; 1) 1 +  2 1max C1 (p) : This

nishes the study of Case 2.

Summarizing the results from Case 1 and Case 2, for arbitrary M (0) 2  M0 (n)  we have
Ur (M (0) ) such that for all M 2  Ur (M (0) ) and ’  satisfying (6.5) with C0  =  1, one can
take x  2  Rd  satisfying

M x =  ’ ; and     k x k ‘ 1   4(n      1)C(n; 0; 1) 1 +  2 1max C1 (p) :

Recall that Ur (M (0) ) is give by

r  =  
2nC(n; 0; 1)(1 +  2 max1p<n C1 (p))

Ur (M (0) ) = M 2  R n n  : 
1 

max
n 

jM      M (0) j <  r      :

In conclusion, we can take
C

 
n; Ur (M (0) ) \  M 0 (n)

 
=  4(n      1)C (n; 0; 1)

 
1 +  2

1
max C1 (p):

We can conclude the proof by compactness.



2

1

 p < n 

p < n

i j

i j

1 m

1

0 1 p ( k )j ; j

(

( k )

P =
>

0 1 p

>

( k
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We nish this section by explaining how one may be able to nd a (very rough) upper
bound in the previous proof. By Lemma 6.5, we have C (n; ; 1) =  C2 (n) ( n  1) where C
(n) only depends on the dimension n. For any M 2  M ( n )  let us dene

(M ) =  min jMij j : i  =  j; jMij j =  0 ;

r(M ) =  
2nC2(n)[(M )] ( n  1

)(1 +  2 max1p<n C1 (p))
;

We are going to argue that for suciently small min =  min(n) >  0 and arbitrary M (0) 2
M0 (n),  there exists M 2  M ( n )  such that (M)  min and M (0) 2  Ur (M) (M). Once this
argument is proved and min is given explicitly, by the proof of Theorem 6.6, we have

C  n; Ur (M) (M) \  M0 (n)   4(n      1)C2(n)[min(n)] ( n  1) 1 +  2
1
max C1 (p) :

Therefore, we can take
C1 (n) =  4(n      1)C2(n)[min(n)] ( n  1)  1 +  2 1max C1 (p);

which gives an explicit induction relation of C1 (n).
We now describe how to nd such M. Let us construct a sequence fM ( k ) g  M ( n )

(starting with M (0) ) by the following iterations,
(1) If M (k )  =  0, we stop the sequence. Otherwise, take

( i (k ) ; j (k ) )  2 arg min jM (k) j:
( i ; j ) : i = j ; j M (

k
) j = 0

(2) For M (k )  =  0, take the decomposition I  =  I ( k )  [   [  I ( k )  as in Lemma 6.4.
Assume WLOG that i ( k ) ; j ( k )  2  I ( k ) .  By the equivalent denition of irreducible

matrix that the associated directed graph is strongly connected, one can take a
path j ( k )  =  j ( k ) ; j ( k ) ; : : : ; j ( k )  =  i ( k )  such that M (k )      

( k )      =  0 for all l =  1; : : : ; (p

1).
l l + 1

Let P ( k )  be the permutation matrix given by
8

1 if ( i ; j )  =  ( i (k ) ; j (k ) )

( k )
<

i ; j

or ( i ; j )  =  ( j l
k ) ; j l + 1 ) ;  l =  1; : : : ; (p      1)

or i  =  j  2  I  n fj ( k ) ; j ( k ) ; : : : ; j ( k ) g

: 0 else:
!

(3) Take M ( k + 1 )  = M (k )  +  (M ( k ) )(P ( k )       I )  .

For any ( i ; j )  2  I 2  such that i  =  j  and (P ( k )    I ) i j  =  1, we have Mi ; j
)  <  0. By the

denition of (M ( k ) ) it is easy to verify that the non-diagonal entries of M ( k + 1 )  given in this
way are again non-positive. Hence M ( k + 1 )  2  M ( n )  if M k 2  M(n) .  By induction, the
above procedure produces a sequence fM ( k ) g  M(n) .  We are going to argue that



( k +  )
i        ; j

i ; j
( k

k

i = j i j

k 1

p < n

P k

p < n
 

( )

k

P k
l = 0

P k  1

P k  1

P Pk  1 k  1

( l ) ( l )

P k  1

( l )

2P
l = 0

i j i j

i j
m m
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for suciently small min, there must be an adequate candidate for M in fM ( k ) g before the
sequence ends.

First, recall the denition (M ) =  min jMij j : i  =  j; jMij j =  0 , it is straightforward to
see that M ( k )  

1
( k )  =  0. Since there are only n2      n non-zero non-diagonal entries and

our process eliminates at least one entry at a time, the process must terminate somewhere
before step n2      n.

Secondly, observe that kM ( k +1)       M ( k ) k ‘ 1   (M ( k ) ) and jM (k +1) j  jMi;j
) j, 8i =  j .  By

induction,

kM ( k +1)       M ( 0 ) k ‘ 1   
P

l = 0  (M (l) ); max jM (k+1) j  1:

Thus, if
P

l = 0  (M (l ) )  r (M ( k + 1 ) )  =  
2nC2 (n)(M (k +1

))  ( n  1
)(1 +  2 max1p<n C1 (p))

;

or equivalently
1=(n 1)

2nC2(n) 1 +  2
1
max C1 (p) l = 0  (M (l ) )  (M (k+ 1) );

then it is guaranteed that M (0) 2  U r ( M ( k + 1 ) ) (M ( k + 1 ) ) .
To  ensure that M ( k + 1 )  is an adequate candidate of M, we also need that (M ( k + 1 ) )   min.

Let us dene the function
1=(n 1)

(r )  =  max     min; 2nC2(n) 1 +  2
1
max C1 (p) r ; (6.7)

and reformulate what we just discussed as the following: If (M ( k + 1 ) )   (
P

l = 0  (M (l) )), we
have that (M (l ) )  r (M ( k + 1 ) )  and (M ( k + 1 ) )   min, so we can take M =  M ( k +1) .

Let us assume that no candidate of M appears until step m. Then we should have
(M ( k ) ) <  ( l = 0  (M (l ) ))  for k =  1; : : : m. Dene (0) =  min and dene ( k )  induc-tively by

( k )  =  ( l = 0  
( l ) ):

Obviously we have (M (0) )  (0) . Note that  is increasing for any xed min >  0. Therefore
we have (M ( k ) )   ( l = 0  (M (l ) ))   ( l = 0  

( l ) )   ( k )  provided that (M
)  for all l =  0; 1; : : : ; (k  1). Applying the induction argument, we conclude

that (M ( k ) )  ( k )  for all k =  0; 1; : : : ; m.
Let us discuss the growth of (k ) .  Note that for r  !  0 +  and min !  0 +  we have (r )  !

0+ . Therefore l i m m i n ! 0  
( k )     

 =  l i m m i n ! 0  ( l = 0  
( l ) )  =  0 provided that

l i m m i n ! 0  =  0 for all l =  1; : : : ; (k   1).     Applying the induction argument, we
conclude that l i m m i n ! 0  

( k )  =  0 for all k  0. In particular, by taking suciently small min, one
would have n   n  ( l )  <  1.

Since max i = j  jM (0)j =  1, let us take i ; j  s.t. jM (0)j =  1. Observing that

jM (m+1) j  1      
P

l = 0  (M (l ) )  1      
P

l = 0  
( l ) :



i j

h 
f f

h h

R
g f

!

g f

Z

g f

g f

K h (x; y)
Z

f
h p

sup
g f

h

= sup
1             1

d d

1
d

1=hd
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For m <  n2  n, this implies that jM ( m +1) j  >  0, hence the iteration does not terminate at
step (m + 1) either. By induction, unless there is an adequate candidate of M found, the
iteration does not terminate before step n2      n. Recall that the iteration must terminate
somewhere before step n2      n as the non-zero entries are reducing, we conclude that an
adequate candidate of M must appear somewhere before step n2      n.

7. Proof of remaining lemmas and propositions. In this section we collect the
remaining missing proofs of various technical lemmas. Let us begin with Lemma 2.5.

Proof of Lemma 2.5. The equation (2.8) is equivalent to
Z Z

R 2 d        
K g  (x; y)      K h (x ; y )  ju(x)      v(y)jp dxdy  C (h1=h0) K h (x; y )ju(x)       v(y)jp dxdy:

Notice that (x), yet K h ( x ) ,  has compact support in the ball B(0; 2). Also, notice that

jf1 (x)      f2 (y)j  jx      yj      jx      f1 (x)j       jy      f2 (y)j  jx      yj      2h1;

where h1  1=4 by our assumption. Hence, K f  (x; y) and K g  (x; y) are non-zero only if jx
yj  5=2.

We further take the decomposition

f(x; y ) 2  R2d : jx      yj  5=2g =  f j x       yj  1=2g [  f1=2 <  jx      yj  5=2g;

by which we can rewrite the double integral as
Z       

K h (x ; y )       K h (x; y )ju(x)       v(y)jp dxdy
2 d

Z Z
= + K h (x ; y )       K h (x ; y )  ju(x)      v(y)jp dxdy:

j x  yj1=2           1=2< j x  yj5=2

On the set f j x       yj  1=2g, we have jf1 (x)      f2 (y)j  jx      yj +  2h1  1. Hence

(jf1 (x)      f2 (y)j) =  (jg1 (x)      g2(y)j) =  1; 8jx      yj  1=2:

Thus we have
 

K h (x ; y )       K h (x; y )ju(x)      v(y)jp dxdy:
j x  yj1=2

K h (x ; y )       K h (x ; y )
sup K  (x; y)ju(x)      v(y)j dxdy;

j x  yj1=2                         f                                        R 2 d

where the coecient before the integral can be bounded by

K h (x ; y )       K h (x ; y )                          ( j g 1
( x )  g 2

( y) j + h )

( j f
1
( x )  f

2
( y) j + h )

j x  yj1=2 K f
 (x; y) j x  yj1=2 ( j f

1
( x )  f

2
( y) j + h )

 
4h1 d=hd+1 

 Ch1=h0:



g f
 

Z

g f

g f

Z
g f

d + p  1 sup
g f

h

Z
f

sup
g f

f

g f1

g

Z
h h h

Z

f
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Moreover, on the set f1=2 <  jx      yj  5=2g, Z
K h (x ; y )       K h (x ; y )  ju(x)      v(y)jp dxdy

1=2 < j x  yj5=2 
K h (x ; y )       K h (x; y )5p 1    

 ju(x)      v(4x=5 +  y=5)jp 1=2 < j x  yj5=2

+  jv(4x=5 +  y=5)      u(3x=5 +  2y=5)jp +  ju(3x=5 +  2y=5)      v(2x=5 +  3y=5)jp

+  jv(2x=5 +  3y=5)      u(x=5 +  4y=5)jp +  ju(x=5 +  4y=5)      v(y)jp      dxdy:

As an example, let us look at the second term. With a change of variable

w =  3=5 +  2=5; z =  x=5      y=5;

one has that

5p 1 
Z 

K h (x ; y )       K h (x; y)jv(4x=5 +  y=5)      u(3x=5 +  2y=5)jp dxdy 1=2 < j x  yj5=2

=  5d+p 1  
K h ( w  +  2z; w      3z)      K h ( w  +  2z; w      3z)ju(w)      v(w +  z)j dwdz

1=10<jz j1=2                 

K h ( w  +  2z; w      3z)      K h ( w  +  2z; w      3z)
 5

w;z 2Rd ;1=10<jz j1=2 K f
 (w; w +  z)

K h (w; w +  z)ju(w)      v(w +  z)j dwdz;
R 2 d

where the coecient before the integral can be bounded by

K h ( w  +  2z; w      3z)      K h ( w  +  2z; w      3z)

w;z 2Rd ;1=10<jz j1=2 K h(w; w +  z)
K h ( w  +  2z; w      3z)      K h ( w  +  2z; w      3z)

= sup
w;z 2Rd ;1=10<jz j1=2 ( j f 1 ( w )  f 2 ( w + z ) j + h ) d

 C h1  Ch1=h0:

The other four terms can be bounded by the same approach.
In conclusion, we have

Z
K h (x; y )ju(x)       v(y)j dxdy

R 2 d Z
=  

R 2 d        
K g  (x; y)      K f  (x; y) ju(x)      v(y)j dxdy +  

R 2 d  
K f  (x; y)ju(x)      v(y)j dxdy

(1 +  Ch1=h0) K h (x; y )ju(x)       v(y)j dxdy:

(7.1)
Next we prove Lemma 2.6.
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Proof of Lemma 2.6. We rst choose measurable sets (V i ) i 2 V   Rd  by the following.
Divide Rd  into small hypercubes

Q[m] =  
Y  h 

nk =
p

dx;
 

(nk +  1)=
p

dx; 8[m] =  (n1; : : : ; nd) 2  Zd :
k = 1

where each hypercube has diameter x.
Then, in each hypercube Q[m] choose measurable sets Vi;[m] , i  2  V satisfying

Vi;[m]  Q[m]; jVi;[m] j = i ; 8i 2  V; and Vi;[m] \  Vj;[m] 8i; j 2  V;
Q [ m ]

which is always possible since i 2 V  i   1 by our denition.
Choose Vi =  

Z
[m] Vi;[m] so that

jVij =  i  = i ; sup jx      x i j  <  2x; 8i 2  V; and Vi \  Vj 8i; j 2  V:
R d                         x 2 V i

Moreover, recall our assumption (2.6) thati 2 V  i ( x )  =  1;8x 2
 +  B(0; 4). For any hypercube Q[m]
 +  B(0; 4), one has i 2 V  jVi;[m] j =  jQ[m]j. Since we have assumed
x   1=16, it is easy to verify that Q[m] \
 +  B(0; 3) =  ?  implies Q[m]
 +  B(0; 4).

Then up to modication on a negligible set, one has that 
    

 

                       i 2 V
Vi      \

 +  B(0; 3) =          i 2 V        [ m ] 2 Z d  Vi;[m]
 
\

 +  B(0; 3)
= [ m ] 2 Z d i 2 V  Vi;[m]      \
 +  B(0; 3)

=
 +  B(0; 3):

Recall our choice of piecewise constant extension uV =  
P

i 2 V  ui1Vi and

xei ; for x  2  Vi ; i  2  V;

x; for x  2= i 2 V  Vi :

Notice that ui =  0 only if supp i

 and we have assumed x   1=16. Hence the extended function uV    
 satises supp uV

 +  B(0; 1). Also, by our assumption it is straightforward that
sup jx      f (x) j   sup sup jx      x i j  +  sup jxi      xei j  2x +  h2 <  1=4: x 2 R d

i 2 V  x 2 V i i 2 V

Finally, let us consider the integral
K h  

f ( x )       f (y)juV (x)       uV (y)jp dxdy:
R 2 d

We have proved supp uV

 +  B(0; 1) and by denition supp K h 2  B(0; 2). Therefore, for x  2=
+ B (0; 3), either y 2=
+ B (0; 1), making juV (x)  uV (y)j =  0, or y 2
+ B (0; 1), making K h ( x       y) =  0.

The same argument also applies to y and as a consequence, the above integral can be
taken instead over any subset of R2d including

 +  B(0; 3) 2. In particular, it can be
reformulated as

S 2  
K h  

f ( x )       f (y)juV (x)       uV (y)j dxdy =  
X  

e
i; j jui      uj jp

i j ; i 2 V

i                                                                                                                                                                           i ; j 2 V



P
1 2 1 2

1 2

(
xe(

i S
i 2 V ifor x  2= V :

p

h

X
e

i j

Z
1 2

l

p p

P

Z

1 2

1 2
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which completes the proof.
We are now ready to prove Lemma 2.4, Proposition 2.7 and Proposition 2.8. Let us

start with Proposition 2.7, which is immediate:
Proof of Proposition 2.7. By Lemma 2.6, choose measurable sets (V i ) i 2 V   Rd , take

piecewise constant extension uV = i 2 V  ui1Vi     and take f (1) ; f (1) ; f (2) ; f (2)  : Rd  !  Rd

by

for k =  1; 2; f ( k ) ( x )  =  f ( k ) ( x )  =
x;

k ) ; for x  2  Vi ; i  2  V;

Then it is straightforward that
kukh0 ;p; ;

x e (k ) =  
h 0  

sup
1=2 

j log hj  

i ; j 2 V  

K h  
xe( k )       xe(k ) jui       uj jp

i j

= sup j log hj K h  
f ( k ) ( x )       f (k ) (y)juV (x)       uV (y)jp dxdy;

h0 h1=2                              R 2 d

and
for k; l =  1; 2; sup jx      f ( k ) (x ) j   2x +  h2  3h2: x 2 R d

We now apply Lemma 2.5 with h1 =  3h2 <  1=4, which gives that

kukh0 ;p;;
x e (2)  (1 +  Ch2 =h0 ) kukh

0

;
p

;;
x
e

(1)  :

Noticing (1 +  x)1=p  1 +  x  for all x   0, we conclude that

kukh0 ;p;;xe( 2 )   (1 +  Ch2 =h0 ) kukh0 ;p;;xe(1)  ;

which nishes the proof.

Next, let us prove Proposition 2.8.
Proof of Proposition 2.8. Choose any labeling of the index set V, and dene

J  : Rd   [0; 1] !  V

(y ; ! )  !  minfi 2  V : j i  j (y )   ! g :

Notice that there are only a bounded number of nonzero i (y ) at any point y by our
assumption.

Dene also
F  : V !

e

Then for all y 2  Rd , !  2  [0; 1],

( F   J ) (y ; ! )       y  2x;

i  !  x i

u(y) =  
X
u i i ( y )  =  

Z 1 

u J ( y ; ! )  d! :  i 2 V

0

By Lemma 2.5, for all ! 1 ; ! 2  2  [0; 1]

K h (x ; y ) ju J ( x ; !  )       u J ( y ; !  ) jp dxdy
R 2 d Z

 (1 +  C x=h) K h     
 ( F   J ) (x ; ! 1 ) ; (F   J ) (y ; !2 )  ju J ( x ; !  )       u J ( y ; !  ) jp dxdy:

R 2 d



h

Z Z

1 2
Z Z

1 2

X h

X
h

p

X
h 1 1

i jR Rd d

Z

R 2 d

h

Z

R 2 d
i ;
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Therefore, notice that K h
 

F ( i ) ; F ( j )
 
=  K h

 
x i ; x j

 
=  K i ; j ,  which implies that Z

K h (x; y )ju(x)       u(y)jpdxdy
R 2 d  

Z Z 1 Z 1 p

=  
R 2 d  

K h (x ; y )  
0     

u J ( x ; ! 1 )  d!1    
0    

 
u J ( y ; ! 2 )  d!2  dxdy

K h ( x ; y ) u J ( x ; !  )       u J ( y ; !  )
p dxdyd!1 d!2

[0;1]2        R 2 d

 (1 +  C x=h) K h     
 ( F   J ) (x ; ! 1 ) ; (F   J ) (y ; !2 )  u J ( x ; !  )       u J ( y ; !  )

p dxdyd!1 d!2
[0;1]2        R 2 d

=  (1 +  C x=h) K i ; jju i       uj jp
i j :

i ; j 2 V

Again by Lemma 2.5,

K i ; j(P C u) i       (PC u)j  i j

i ; j 2 V
Z Z p

= K i ; j  u(x) i (x)  dx  u(y)j (y) dy i j
i ; j 2 V

 
X

K i ; j u ( x )       u(y)p
i (x)j (y)dxdy

i ; j 2 V

= K h     
 ( F   J ) (x ; ! 1 ) ; (F   J ) (y ; !2 )  u(x)      u(y)p dxdyd!1 d!2 

R 2 d

Z
 (1 +  C x=h) K h (x; y )ju(x)       u(y)j dxdy;

R 2 d

concluding the proof.
Lemma 2.4 can then be derived from Proposition 2.8.
Proof of Lemma 2.4. Since we have assumed h >  h0 >  x  and k(ui )i2V kh 0 ;p;   L ,  by

Proposition 2.8,
Z

K h (x; y )ju(x)       u(y)jpdxdy  (1 +  C x=h) 
X  

K h
j ju i       uj jp

i j  i ; j 2 V

 C j log hj;

where the constant C  may depend on L .
Introduce the renormalization factor

C h  =  j log j=kK h kL 1  :

Then C h  is bounded form above and below uniformly with respect to h, and the renor-
malized kernel K h  reads

K h ( x )  =  K h ( x ) = k K h k L 1  =  Ch j log j 1 K h (x ) :



L

 

L 1

p

F t x

F

+

+

+  

R d

+   

(
+

)
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Hence
Z Z p 

ku

K h  ? ukp 
p  =  (Ch j log hj 1)p                            K h ( x       y) u(x)      u(y) dy       dx

R d         
Z R

d

 C j log hj p kK h kp 1 K h ( x       y)ju(x)      u(y)jp dydx Z
R 2 d

 C j log hj 1 K h ( x       y)ju(x)      u(y)jp dydx:
R 2 d

This implies
ku      K h  ? ukL p   C j log hj 1                                                                (7.2)

We have nished the proofs of all lemmas and propositions in Section 2.2 but it remains
to prove Proposition 2.10 as claimed in the proof of Theorem 1.3.

Proof of Proposition 2.10. Let (C ; F )  be a mesh as in Denition 1.5 over
  Rd

such that (1.14) hold. Assume that each face function n i ; j  2  F  is of form n i ; j ( x )  =
N i ; j w i ; j (x ) ; 8x  2  Rd , where N i ; j  is a unit vector and wi ; j  is a scalar function.

Then for 1  p  1 ,
P 0 b      P F b L p ( [ 0 ; T ] F )   C xkbkL p ( W 1 ; p ) ;

where the constant only depends on p and the constant in the structural assumption
(1.14).

We are going to rst prove the inequality for any xed time t and To  simplify the
notation we omit t in all the calculations.

By denition, we have
Z Z +

P F b       P 0 b i ; j  =  
R d         

b(x)  N i ; j wi ; j (x)  dx  
R d  

b(x)  N i ; j w i ; j ( x )  dx :

We introduce the more general function
Z Z +

I (b; N ; w) =             b(x)  N        w(x) dx              b(x)  N w ( x )  dx
R d R d

where N  2  Rd  is a unit vector and w is a non-negative, bounded function with compact
support. It is straightforward that I (b; N ; w)  0 and for any two functions v; w  0,

I (b; N ; w) +  I (b; N ; v )
Z Z + Z +  =

b(x)  N          w(x) +  v (x) dx              b(x)  N w ( x )  dx                     b(x)  N v ( x )  dx

Z
R d  

Z
R d

+              b(x)  N          w(x) +  v (x)
dx              b(x)  N  w(x) +  v(x) dx

R d R d

=  I (b; N ; w +  v):

Hence if 0  w  u, then I (b; N ; w)  I (b; N ; u).
Moreover, I (b; N ; w) is directly bounded by the following inequality

Z Z +
I (b; N ; w)  sup               b(x)  N             w(x) dx                 b(x)  N        w(x) dx           :

R d R d



@
(

+
)

Z Z Z

Z

+

1

F

C ( x )
Z

1L      ( F )F F i ; j

F

X
F

X
0

X C

X C
kB (x  ; x)k

Z

C

0

0
t x
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And it is easy to verify that (in distributional sense)
Z Z +  

@

R d         
b(x)  N             w(x) dx         

R d         
b(x)  N        w(x) dx

n o
=   1 b(x)  N         0 w(x) dx +  1 b(x)  N        w(x) dx  0 w(x) dx:

R d                                                                                                                                                R d                                                                                                                          R d

Thus the maximum is attained at
 Z  

 =

b(x)  N w ( x )  dx =            w(x) dx ;
R d R d

thus Z
I (b; N ; w) b(x)  N       w(x) dx

R d                 Z
 
kwkL1          R 2 d  

jb(x)      b(y)jw(x)w(y) dxdy:

Notice that wi ; j   C x  1 1B ( x i ; x )  by our structural assumptions (1.14). Therefore,

P F b       P 0 b i ; j  =  I (b ; Ni ; j ; wi ; j )   I ( b ; N i ; j ; C (x )  1 1B ( x i ; x ) )
 1

 
kB (x i ; x )kL 1          R 2 d  

jb(x)      b(y ) j1B ( x i ; x ) (x)1B ( x i ; x ) (y )  dxdy:

When p =  1 ,  we have
P F b       P 0 b =  sup 

 
P F b       P 0 b (x)  (d 1)

i ; j 2 V

 C (x)d  1 xk b k W 1 ; 1  (x )  (d 1) =

C xk b k W 1 ; 1  :

When p =  1, we have
P F b       P 0 b L 1 ( F )  =

 
P F b       P 0 b i ; j x  =

 
P F b       P F b i;

j x
i ; j 2 V                                               

Z       
( i ; j ) 2 E

=  
( i ; j ) 2 E  

kB (x i ; x )kL 1  

Z
R 2 d  

jb(x)      b(y )j1B ( x i ; x ) (x)1B ( x i ; x ) (y )  dxdy

jb(x)      b(x +  z)j dxdy
( i ; j ) 2 E                  

i        

Z 
L 1  

Z
x 2 B ( x i ; x )      j z j2x

 
kB (x i ; x )kL 1          x 2 R d         j

z

j2x 
jb(x)      b(x +  z)j dxdy

C xkbkW 1 ; 1  :

An interpolation completes the case 1  p  1 ,  i.e.
P F b       P F b L p ( F )   C xkbkW 1 ; p  :

Integrating now over time, we conclude that

P F b       P F b L p ( [ 0 ; T ] F )   C xkbkL p ( W 1 ; p ) :
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