QUARTERLY OF APPLIED MATHEMATICS VOLUME , NUMBER 0 XXXX XXXX, PAGES 000{000

DISCRETIZING ADVECTION EQUATIONS WITH ROUGH VELOCITY FIELDS ON NON-CARTESIAN GRIDS

Βv

PIERRE-EMMANUEL JABIN (P.{E. Jabin. Department of Mathematics and Huck Institutes, Pennsylvania State University, State College, PA 16801, USA)

and

DATONG ZHOU (D. Zhou. Department of Mathematics, Pennsylvania State University, State College, PA 16801, USA)

Abstract. We investigate the properties of discretizations of advection equations on non-cartesian grids and graphs in general. Advection equations discretized on non-cartesian grids have remained a long-standing challenge as the structure of the grid can lead to strong oscillations in the solution, even for otherwise constant velocity elds. We introduce a new method to track oscillations of the solution for rough velocity elds on any graph. The method in particular highlights some inherent structural conditions on the mesh for propagating regularity on solutions.

1. Introduction.

1.1. Discretized advection equations. We introduce a new framework to study the regularity of discretized advection equations. Our method is able to provide quantitative regularity estimates by extending the kernel based approach initially introduced at the continuum level in [5, 4] and further studied in [35, 31]. This is particularly helpful when investigating the convergence of numerical schemes for coupled non-linear systems.

To be more specic, we study discretizations of the classical linear continuity equation, $@_t u(t; x) + div_x b(t; x)u(t; x) = 0; t 2 R_+; x 2 R^d; (1.1)$

Those discretized equations usually involve calculating the dynamics of a discrete density u_i that is dened on each cell of a grid or mesh. We specically focus on upwind schemes that read

$$\frac{du_i}{dt} = \frac{1}{i} \frac{X}{i} \qquad a_{i;i^0} u_{i^0} \quad a_{i^0;i} u_i : \qquad (1.2)$$

2020 Mathematics Subject Classication. Primary .

P. E. Jabin and D. Zhou were partially supported by NSF DMS Grant 2049020, 2219397, and 2205694. E-mail address: pejabin@psu.edu

E-mail address: dbz5086@psu.edu

The factor $_i$ represents some notion of volume of the cell i on the mesh and the coe-cients $a_{i;i^0}$; $a_{i^0;i}$ are related to the ux between two cells i and i^0 . We refer to Section 1.4 for the precise formulas for the schemes that we consider.

The continuity equation constitutes a key relation in a large variety of models, in which the velocity eld b(t;x) is typically related to the density u(t;x) in dierent ways. As mentioned above, it is this coupling between b and u that makes strong compactness of the density, instead of weak convergence, an essential ingredient and one of the com-mon diculties when trying to prove convergence for the whole system, whether from numerical approximations or some other approximate system. We present a few typical examples below that motivate our investigations and have natural applications in biology and uid mechanics.

The velocity eld b in (1.1) can rst be related to the density u by some convolution b = K ? g(u) for some non-linear function g or by the Poisson equation

$$b(t;x) = r_x(t;x);$$
 $x(t;x) = g(u(t;x));$ (1.3)

which corresponds to choosing the fundamental solution of the Laplacian as the kernel K . There exist already many examples of such systems in applications: We briey mention [43] for swarming or [16, 38] for models of chemotaxis. The function g represents a nonlinear dependence on the density u in the equation for b, which can capture more complex phenomena in the model such as logistic eects.

In a somewhat similar spirit, non-linear continuity equations may be considered such as

$$@_t u(t; x) + div_x b(t; x) f(u(t; x)) = 0; t 2 R_+; x 2 R^d$$
: (1.4)

This type of non-linear ux combines non-linear scalar conservation laws with linear advection. Models such as (1.4) are found for example in some biological settings, where the speed of micro-organisms is impacted by their local density; see, for instance, the discussion of Keller-Segel model in [38]. We expect that the results in this paper can be extended to such non-linear models, but for the sake of simplicity in this article, we consider only the linear continuity equation and exclude such nonlinearity in the ux from the rest of our discussion.

The continuity equation (1.1) is also naturally a critical component of compressible uid dynamics such as the barotropic compressible Navier-Stokes system

$$8 \frac{@u}{@t} + div(bu) = 0$$

$$6 \frac{d}{dt}(bu) + div(b)$$

$$5 b)u + rp div((b)) = f p = P(u);$$

with appropriate boundary conditions if considered in a bounded domain. In this system, the velocity eld b is coupled with the density u by another evolution PDE, leading to an even more complex non-linearity than in the previous examples.

A related model is the Stokes system,

$$8 \ge \frac{@u}{@t} + div(bu) = 0$$

$$b + rp = f$$

$$p = P(u);$$

which considerably simplies the momentum equation and the relation between b and u. There exists a large literature on the numerical analysis of compressible Navier-Stokes system to which we cannot do justice in a few sentences. We only briey mention [28, 27] for the compressible Navier-Stokes and [24, 25, 29] for the Stokes system. To the best of our knowledge however, the numerical analysis of these systems is only well-understood on Cartesian meshes or staggered grids, for example in [30], that still rely on Cartesian mesh for the density. Generally speaking, the regularity of discretized continuity equations such as (1.2) remains poorly understood on non-cartesian meshes, which leads to the main motivation and focus in the present work.

1.2. Renormalized solutions. Even without discretization, the well-posedness for advection equations such as (1.1) is in itself a delicate question when the velocity eld b is not Lipschitz. By introducing the concept of renormalized solution, the uniqueness and compactness of (1.1) was rst obtained in [23] for velocity elds b 2 $W^{1;p}$. This was later improved in [2, 7] to only b 2 BV with div b 2 L^1 .

Renormalized solutions are based on a simple but essential observation: Assume that b and u are smooth and satisfy the continuity equation (1.1). Then for all $2 C^{1}(R)$, (u) is a solution of

$$(0)_{t}(u) + div(b(u)) + divb(^{0}(u)u (u)) = 0:$$
 (1.5)

A weak solution of (1.1) with a non-smooth eld b is said to be renormalized i (1.5) holds in distributional sense for all $2 C^1(R)$ with j()j Cjj. Moreover, equation (1.1) with a xed eld b is said to be renormalized i all its weak solutions are renormalized. Basically, the renormalization property consists in stating that if u is a weak solution then non-linear functions of u are also solutions, with appropriate corrections if div b=0. This directly implies the uniqueness of a weak solution u: Consider two weak solutions u; v with u(0;x) = v(0;x), if u v is a renormalized solution, then ju vj is also a weak solution. Hence $ku(t;:) v(t;:)k_{L^1(R^d)} ku(0;:) v(0;:)k_{L^1(R^d)} = 0$ and u=v. Combining the uniqueness and the renormalization property directly provides compactness in the appropriate L_{loc}^p sense as one can prove that

weak-*
$$\lim (u_n) = (\text{weak-* } \lim u_n)$$
:

A common critical part in the proof of the renormalization property is a so-called commutator estimate. Consider a classical convolution kernel K together with K $?_x$ u where u solves (1.1). Commutator estimates arise when trying to write a similar equation on K $?_x$ u: One then has that

$$@_t(K ?_x u) + div b K ?_x u = R;$$

where the remainder term R can be written as a commutator

Commutator estimates then consists in proving that R $\,!\,$ 0. If it is possible to prove this, then it is straightforward to deduce the renormalization property (1.5) by writing an equation on (K $\,?_x$ u) and passing to the limit $\,!\,$ 0.

Renormalized solutions are also connected to some form of propagation of quantitative regularity. It had already been noticed in [3] that renormalized solutions lead to some approximate dierentiability on the solution. But the rst explicit propagation of regularity was obtained in [20] at the level of the characteristics ow. The characteristics method used in [20] proved very fruitful with many later extensions. One can mention the study of SDEs in [18, 26, 44], the question of mixing under incompressible ows in [11, 32, 40], well-posedness for velocity elds with less than 1 derivative in [17, 33], and velocity elds obtained through a singular integral in [6, 8, 19].

The corresponding regularity at the PDE level can be derived by directly quantifying oscillations on the solution. A rst method to do so was introduced in [5, 4] for non-linear continuity equations of the form (1.4). In the linear case, sharper estimates were obtained in [35] and [15] through a somewhat similar approach. We also mention [13, 14] which combines those methods with a new notion of weights; this was applied to the com-pressible Navier-Stokes equation with a large variety of laws of state and stress tensors. A very dierent quantitative approach at the PDE level was studied in [41, 42], using certain optimal transport distances. All those results only propagate a weaker notion of regularity, weaker than full dierentiability, usually some sort of log of derivative. It is indeed not possible in general to bound any kind of Sobolev regularity on density when the velocity eld is merely Sobolev; see some counterexamples for example in [1, 34].

The approach that we follow in the present paper is inspired by the quantitative semi-norms introduced in [5, 4], which we briev describe for this reason. The local compactness of a sequence of bounded functions $u_k \ 2 \ L^p(R^d)$ with $1 \ p < 1$ follows from the following property:

$$\lim_{n} \sup_{R^{2d}} \mathbb{K}_{h}^{c}(x \quad y) j u_{n}(x) \quad u_{n}(y) j^{p} \, dx dy \, ! \quad 0 \quad as \, h \, ! \quad 0; \tag{1.6}$$

where $f \not R_h g_{h>0}$ is any family of classical convolution kernels. Scaling (1.6) with a given rate of convergence in h leads to various notions of semi-norms that measure intermediate regularity between L^p and $W^{s,p}$ for any s>0, and all of such regularities are strong enough to imply local compactness in L^p .

The particular family of kernels $f \not \! E_h g$ proposed in [5, 4] results in semi-norms corresponding to a sort of log-scale derivatives that we denote here by $W_{log;}$. The $W_{log;}$ -regularity dened by kernels $f \not \! K_R^2 g$ was then proved to be propagated by (1.1) when the velocity eld b 2 $W^{1;p}$, div b is bounded and div b is compact or enjoys some similar $W_{log;}^p$ -regularity.

Hence with such assumptions on b, the solutions of (1.1) are compact if the initial data are W_{log}^p -regular. The bounds in [35] and [15] yield some more precise log-scale

derivatives based on somewhat similar semi-norms. The corresponding spaces have also received increasing attention in other settings, see for instance [9].

When trying to extend the idea of quantifying oscillations in [5, 4] to our discrete setting, it appears natural to introduce an approximation of the continuous kernel K_h on the mesh. In other words, we would like to estimate the regularity of the discrete density by something like

$$\lim_{n} \sup_{i:i} X_{i;j;(n)}^{eh} j u_{i;(n)} = u_{j;(n)} j^{p}_{i;(n)j;(n)} ! \quad 0; \quad as \ h! \quad 0;$$
 (1.7)

where $(R_{i;j}^h)_{i;j}$ is an approximation of kernel K_h and the double integral is replaced by a double summation over the mesh.

The main issue however is to identify the right family of kernels $(\Re_{i,j}^h)_{i;j}$ so that the corresponding semi-norms are propagated by the discrete advection equation. This turns out to be extremely challenging on non-cartesian grids as a straightforward discretization of the kernels fK_hg used for the continuous equation does not appear to work. The main technical contribution of this paper is a general method to nd admissible approximation $(R_{i,j}^h)_{i;j}$, extending the results in [5, 4] to upwind schemes. This leads to the study of a non-symmetric diusion equation on the mesh which we can solve and bound when the mesh show periodic patterns (the exact denition is given in Section 1.4).

1.3. Some of the issues with non-cartesian grids. At rst glance, it may not be appar-ent why non-cartesian meshes lead to such additional diculty. Eq. (1.2) may in fact be seen as an advection equation on a graph where the actual velocity eld is correspond to some projection of the original velocity eld that incorporates the structure of the graph. This means that the graph's topology can lead to additional oscillations in the solution in itself. This is made apparent in the following straightforward example, that we are grateful to T. Gallouet and R. Herbin for pointing out. This shows that even for very smooth or actually constant velocity elds at the continuous level, one may have strong oscillations in the solution at the discrete level.

Example 1.1. Consider the constant velocity eld b(x) (1;0) in dimension 2 and the following non-cartesian discretization: Let h_0 be the discretization parameter, and use Z^2 to index the cells. The cell indexed by (i;j) 2 Z^2 is given by

$$C_{(j;k)} = \begin{cases} (jh; (j+1)h) & \text{if k is even;} \\ [jh=2; (j+1)h=2) & \text{[kh; (k+1)h)} \end{cases}$$
 if k is odd:

That simply means that we keep the vertical discretization h, but alternate a row with horizontal discretization h, with another row with discretization h=2.

Consider a discrete density $(u_{j;k})_{j;k}$ solving the upwind scheme (1.2) over such a mesh for a discretization of the constant velocity eld b = (1;0). Assume that the initial data $(u_{j;k}(0))_{j;k}$ is bounded in discrete $W^{1;1}$ -norm, uniformly in h_0 . Then for any t > 0, $(u_{i;k}(t))_{i;k}$ is bounded in the discrete $W^{s;1}$ -norm, uniformly in h_0 , if and only if s < 1=2.

This type of spurious oscillations created by the mesh itself are one of the reasons why the aforementioned quantitative methods (either in ODE or PDE level) have not been extended to non-Cartesian meshes. In fact, there exist only very few qualitative results of strong convergence for non Lipschitz velocity elds and non-Cartesian meshes.

One can nevertheless mention [10] which relies on the renormalization property at the limit. However because this kind of approach is not quantitative, it requires some a priori knowledge of the compactness of the divergence of the velocity eld. This appears to make handling coupled non-linear models such as (1.1)-(1.3) out of reach.

When one is not trying to handle at the same time non-Cartesian meshes and non-Lipschitz coecients, stronger results can be obtained. On non-Cartesian meshes, we refer for instance to [36, 37] for divergence-free velocity eld that are Lipschitz in both space and time, and to [21] for autonomous (time-independent) Lipschitz velocity elds with non-zero divergence. For non-Lipschitz velocity elds on Cartesian meshes, one can obtain quantitative convergence results in some suitable weak distances. When the velocity eld is in the appropriate Sobolev space with one-sided bounded divergence, the upwind scheme was proved to converge at rate of 1=2 in [39] in some weak topology. When the velocity eld is one-sided Lipschitz continuous, the convergence with rate 1=2 of the upwind scheme in Wasserstein distance was proved in [22].

To the best of our knowledge however, this article is the rst to provide a general approach to the compactness of solutions to discrete advection equations with non-Lipschitz coecients and non-Cartesian meshes, even if we still require some restrictions on the mesh such as periodic patterns.

Furthermore, the compactness result in this paper is directly applicable to some of the coupled systems discussed at the beginning of this introduction. We are in particular able to derive the compactness of discretizations of the non-linear coupled system (1.1)-(1.3). The exact result is stated later in this rst section. We remark here that the velocity eld b obtained from u through (1.3) is naturally bounded in W $^{1;p}$ for all $1 < p\ 1$, if we assume g(u) 2 L 1 \ L 1 . Of course we cannot know a priori the compactness of div b but we have the simple relation div b = g(u). This is where quantitative, explicit estimates prove critical as we are able to conclude through some sort of Gronwall argument.

However more complex coupled systems would present unique challenges for our approach: This is notably the case of compressible uid dynamics. Energy estimates would provide Sobolev, H_x^1 bounds on the velocity. However the divergence of velocity is generically unbounded, which would prevent us from applying our method in any straightforward manner. Instead this would likely require the introduction of weights such as was done in [13, 14] at the continuous level.

1.4. A basic example of setting for the linear continuity equation. Considering the linear continuity equation (1.1), we introduce here its basic discretization on a polygon mesh $(C; F) = fV_i g_{i2V}; fS_{i;j} g_{(i;j)2E}$ over a bounded domain R^d , which we dened as the following:

The pair of indices (V;E) form a nite graph.

Each cell V_i is a d-dim polygon in R^d . The intersection of two cells V_i and V_j is nonempty if and only if (i; j) 2 E. In that case $S_{i;j} = V_i \setminus V_j$ is a (d 1)-dim polygon in R^d .

The domain is covered by the mesh:

_{i2V} V_i.

We dene the discretization size of the mesh as $x = \sup_{i \ge V} diam(V_i)$, where diam() represents the diameter.

As a rst example, we consider the following semi-discrete upwind scheme

$$\frac{d}{dt}u_{i}(t) = \frac{1}{jV_{;}j^{i}} \frac{X}{_{i^{0}:(i;i^{0})2E}} a_{i;i^{0}}(t) u_{i^{0}}(t) \ a_{i^{0};i}(t) u_{i}(t) \ ; \qquad \text{if i 2 V and V}_{i} + B_{x} \\ \geqslant u_{i}(t) \ 0; \qquad \qquad \text{if i 2 V but V}_{i} + B_{x} \\ ; \qquad \qquad ! \\ ; \qquad \qquad \qquad \qquad \qquad ! \\ ; \qquad \qquad \qquad \qquad \qquad \qquad ; \qquad \qquad \qquad \qquad \qquad ; \\ a_{i;j}(t) = \ \frac{1}{jB_{x}j} \sum_{B_{x} = S_{i;j}} B_{x} S_{i;j} \\ \Rightarrow u_{i}(0) = \frac{1}{jV_{i}j} \sum_{V_{i}} u_{0}(x) \ dx; \qquad \qquad \qquad \qquad \qquad \text{if i 2 V and V}_{i} + B_{x} \\ \vdots \qquad \qquad \qquad \qquad \qquad \qquad ; \\ (1.8)$$

where $(u_i(t))_{i2V}$ are the discrete density on the mesh, $N_{i;j}$ is the unit normal vector on $S_{i;j}$, satisfying $N_{i;j} = N_{j;i}$. The functions b(t;x) and $u_0(x)$ are respectively the velocity eld and initial condition in the linear continuity equation (1.1). Also, throughout the paper, for s 2 R we use the notation $s^+ = s_0 = maxfs;0g$ and $s_0 = minfs;0g$

The total mass on the mesh is given by P i 2V u jV j. It is easy to verify that the scheme conserves mass except near the boundary of , where some leaking may occur.

Such leaking eect can be controlled by no ux (no outward ux) condition of the velocity eld or by a priori estimating the distribution of density.

Before we can rigorously state any compactness result, we still need to clarify our assumptions on the mesh. Throughout the paper, for A; B R^d, we use the notation

$$A + B = fx 2 R^{d}; x = a + b; a 2 A; b 2 Bg:$$

Also, for x 2 R^d we denote A + x = A + fxg, which is a translation of set A on R^d .

We say that a mesh has a periodic pattern if the following holds:

Definition 1.2. Let $(C;F) = fV_ig_{i2V};fS_{i;j}g_{(i;j)2E}$ be a polygon mesh over R^d and let V_0 V. The mesh is periodic with pattern V_0 if it satises the following properties: The set S_{i2V} V_i is connected and one has S_{i2V} V_i V_i V

$$[m](V_i) = V_i + X_{k=1}^{d} m_k L_k; 8m 2 Z^d; i 2 V;$$

where L $_1; \dots; L_d$ 2 R^d are linearly independent vectors, such that

$$X X 1_{[m]V_i}(x) = 1$$
 for a.e. $x 2 R^d$:

Moreover, there exists an injective map

If (i) = ([n]; i_0) and ([m] + [n]; i_0) 2 (V), dene [m](i) = 1 ([m] + [n]; i_0) 2 V. Then one has

$$[m](V_i) = V_{[m](i)};$$
 if i 2 V and $[m](i)$ 2 V:

If the mesh is periodic with pattern V_0 we call jV_0j the pattern size; of course for a given mesh, the choice of V_0 and jV_0j may not be unique. If one can choose V^0 $V;E^0$ E such that $(C^0;F^0)=fV_ig_{i2V^0}$; $fS_{i;j}g_{(i;j)2E^0}$ forms a mesh over 0, and is a periodic mesh by the denition above, then we say that (C;F) is periodic over 0

We also require some additional assumptions on the meshes, though those are rather standard. Throughout the discussion, any mesh (C; F) of our interest should satisfy that for all i 2 V and x 2 R^d :

C
$$^{1}x \text{ diam}(V_{i}) Cx;$$
 C $^{1}(x)^{d} jV_{i}j C(x)^{d}; fk 2$
V: B(x; x) \ V_k = ?g C; (1.9)

for some uniform constant C. These conditions exclude some pathological situations where some parts of the mesh would be too singular in some regard.

Finally, we observe that since we are considering the limit to the continuous equation, then we naturally expect the discretization size to vanish. Namely, let

$$C^{(n)}$$
; $F^{(n)} = fV_{i;(n)}g_{i2V^{(n)}}$; $fS_{i;j;(n)}g_{(i;j)2E^{(n)}}$; n 2 N

be a family of meshes and let $x_{(n)}$, n 2 $\,N_{\scriptscriptstyle +}$ denote the discretization sizes, then we ask that

$$x_{(n)} ! 0 as n ! 1:$$
 (1.10)

We are now ready to state a rst example of our compactness result:

Theorem 1.3. Consider T > 0 and a bounded domain R^d with piecewise smooth boundary. Let b(t;x) be a velocity eld with $b \ 2 \ L_t \ L_x \ L^q(W^{1;q}) L^1(W^{s;1})([0;T])$ and divergence div_x b 2 $L^1(L^1) L^1(W^{s;1})([0;T])$, for some 1 < q 1, 0 < s 1. Let $u_0 \ 2 \ L^1 \ W^{s;1}([0;T])$ be the initial data.

Consider a sequence of polygonal meshes $_{n}=f(C^{(n)};F^{(n)})g^1$ over , having discretiza-tion size $x_{(n)}$! 0, satisfying the structural assumptions (1.9) with some uniform con-stant, and being periodic on with their pattern size also uniformly bounded. Let $(u_{i;(n)}(t))_{i2V^{(n)}}$ be solutions to the semi-discrete scheme (1.8) and denote by $u_{(n)}(t;x)$

the piecewise constant function extending $(u_{i;(n)}(t))_{i2V^{(n)}}$. Assume nally that the total mass $\sum_{i \geq V^{(n)}}^{P} u_{i;(n)}(T)jV_{i;(n)}j! \quad ku_0k_{L^1}$ as n! = 1. Then

$$u_{(n)}(t;x)$$
 is compact in $L^1([0;T])$:

The proof of the theorem is postponed to Section 2.3, where it follows from the propagation of some discrete regularity of the form (1.7).

1.5. The more complete setting. We demonstrate the potential of our method by also deriving the compactness for a simple non-linear coupled system, namely

However, the setting of polygon meshes described above may no longer be the most appropriate. The diculty comes from the coupling of numerical schemes between the elliptic Poisson equation, for which one may want to use nite elements for example, and the hyperbolic advection equation for which we use upwind schemes. This is one of the motivations for our more general formulation.

We dene cell functions, face functions and meshes that replace the polygonal cells. We discuss later in subsection 1.6 how the previous polygon meshes can be related to this formulation.

Definition 1.4. Consider a piecewise dierentiable function with value 0 1 and vector values functions $fn_j g_{j=1}^m$ on R^d . Then is said to be a cell function with $fn_j g_{j=1}^m$ as its face functions if

$$P_{\substack{m \ j=1}} n_j(x) = r(x)$$
 for a.e. $x \ge R^d$ and $supp n_j supp$; 8 j 2 V:

With the cell functions and face functions dened, we give the following denition of meshes.

Definition 1.5. We dene as a generalized mesh over

 R^d a pair (C; F) = $f_i g_{i2V}$; $f_{n_{i;j}} g_{(i;j)2E}$ satisfying the following conditions:

The pair of indices (V;E) forms a nite graph.

If i 2 V and suppi

volume of cell i 2 V is dened as $i = k_i k_{L^1}$.

, then $_i$ must be a cell function with $fn_{j;i}g_{(j;i)2E}$ as its face functions. Finally,

$$P_{i \ 2 \ V \ i}(x) = 1;$$
 8x 2
and $n_{i;j} = n_{j;i};$ 8i; j 2 V:

We also extend $fn_{i;j}g_{(i;j)2E}$ to $fn_{i;j}g_{i;j2V}$ by dening $n_{i;j}=n_{j;i}=0$ for $(i;j) \not\supseteq E$. The discretization size of a mesh (C;F) is dened as $x=\max_{i2V} diam(supp_i)$. The

The semi-discrete scheme we consider in this paper is of form

Given b(t; x) and $u_0(x)$ as the eld and initial condition in linear continuity equation (1.1)

Notice that if supp $_i$, then for all j 2 V, either one has (i;j) 2 E, supp $n_{i;j}$ or one has (i;j) $\not\supseteq$ E, $n_{i;j}$ = 0 and supp $n_{i;j}$ trivially holds. Hence $a_{i;j}$ and $a_{i;j}$ in (1.12) are always well-dened. In addition, we let

$$a_{i;j}(t)$$
 0 if $(i;j) \not\supseteq E$ or supp $n_{i;j} *$:

Then the summation in (1.12) can be taken over all j 2 V, instead of only j such that (i;j) 2 E, and the scheme is essentially unchanged. In some of the later calculations, this adaption can be convenient.

The structural assumptions to meshes we have made should also be adapted. In

particular, the new denition of being periodic is the following:

Definition 1.6. Let $(C; F) = f_i g_{i2V}; fn_{i;j} g_{(i;j)2E}$ be a mesh over R^d and let V_0 V. We say that (C; F) is a periodic mesh with pattern V_0 if it satises the following properties:

The set S_{i2V_a} supp_i is connected and one has S_{i2V_a} supp_i

There exists a translation group action

where $L_1; ::: ; L_n \ 2 \ R^d$ are linearly independent vectors, such that $\begin{array}{c} X & X \\ & [m]_i(x) = 1 \ 8x \ 2 \ R^d : \end{array}$

Moreover, there exists an injective map

$$: V ! Z^d V_0;$$

 $i ! ([n]; i_0):$

If (i) = ([n]; i_0) and ([m] + [n]; i_0) 2 (V), dene [m](i) = 1 ([m] + [n]; i_0) 2 V. Then one has

$$[m]_i = [m](i);$$
 $[m]n_{i;j} = n_{[m](i);[m](j)};$ if i; $[m](i) 2 V$:

If the mesh is periodic with pattern V_0 we call jV_0j the pattern size. As before, for a given mesh, the choice of V_0 and jV_0j may not be unique. If one can choose V^0 $V; E^0$ E such that $(C^0; F^0) = f_i g_{i2V^0}$; $fn_{i;j} g_{(i;j)2E^0}$ forms a mesh over 0, and is a periodic mesh by the denition above, then we say that (C; F) is periodic over 0

The other structural assumptions on the mesh can be adapted in a straightforward manner. We limit our discussion to meshes (C; F) that satisfy that for all i 2 V, (j; j 0) 2 E and x 2 R d :

C
$$^{1}x$$
 diam(supp_i) Cx; C $^{1}(x)^{d}$ $k_{i}k_{L^{1}}$ C(x) d ; x kn_{j;j0} $k_{L^{1}}$ C; fk 2 V : (supp_k) \ B(x; x) = ?g C; (1.14)

for some uniform constant C. Also, we assume that the discretization size vanishes when considering a family of meshes,

$$C^{(n)}$$
; $F^{(n)} = f_{i;(n)}g_{i2V^{(n)}}$; $f_{n_{i;i;(n)}}g_{(i;i)2E^{(n)}}$; $f_{n_{i}}$;

that (1.10) holds where $x_{(n)}$, n 2 $\,N_{+}$ denote the discretization sizes as given in Denition 1.5.

With this more general formulation, one can couple the upwind scheme for advection and the nite elements for Poisson equation in the following way: Consider convex piecewise bounded domains with smooth boundary R^d . Let (P; N) be а nite element discretization e, where P is the set of shape functions and N is the set of nodal variables. Choose the (C; F) = f_ig_{i2V} ; $f_{n_{i;j}}g_{(i;i)2E}$ over v as in Denition 1.5 such that C P.

The coupled system (1.11) is numerically discretized through by (1.12). The coecients $(a_{i;j})_{i;j \geq V}$ derive (1.13) where the eld b(t;x) is now a solution of the variational problem

8 Z Z
(t;) 2 P;
$$rv(x) r(t; x) dx = V(x)g(t; x) dx;$$
 8v 2 P;
8 $g(t; x) = X g u_i(t)_i(x);$ (1.15)
8 $f(t; x) = f(t; x):$

We only consider here Dirichlet boundary conditions for (1.15), as Neumann boundary conditions would require an extra condition $R_{\rm gd} g(t;x) dx = 0$ for all t, which does not naturally hold when g contains some nonlinear function of the density u.

When investigating this more complex coupling, we require further structural assumptions on the pair of nite element (P; N) and the mesh (C; F) of our interest. Namely, the exact solution of = g and its approximated solution of the nite element variational method

Z Z
$$P;$$
 $rv(x) r(x) dx = R^{d} v(x)u(x) dx; 8v 2 P;$

are assumed to satisfy the priori estimates

Such a priori estimates can be proved under rather mild conditions on the nite element discretization; we refer to Section 5.4 and 8.1 of [12].

We are now ready to state our main theorem on this coupled system, whose proof is again postponed to Section 2.3.

Theorem 1.7. Consider bounded domains

 $_{e}$ $\,$ Rd with piecewise smooth bound-ary, a sequence of nite element discretizations $f(P^{\,(n)};\,N^{\,(n)})g^{\,1}$ on

e and a sequence of meshes

$$f(C^{(n)};F^{(n)})g_{n=1}^{1}=f\ f_{i;(n)}g_{i2V^{(n)}};fn_{i;j;(n)}g_{i;j2V^{(n)}}\ g_{n=1}^{\ 1}$$

over

 $_{v}$ as in Denition 1.5, satisfying $C^{(n)}$ $P^{(n)}$. Assume that the discretization size $x_{(n)}$! 0, the meshes $f(C^{(n)}; F^{(n)})g^{1}$ satisfy the structural assumptions (1.14) by some uniform constant, and each mesh $(C^{(n)}; F^{(n)})$ is periodic on $_{v}$ with pattern size uniformly bounded. Moreover, assume that the nite element discretization $(P^{(n)}; N^{(n)})$

satisfy the a priori estimates (1.16) with some uniform constants.

Consider bounded, Lipschitz and concave nonlinearity g:[0;+1)! R with g(0)=0. Assume that the initial data u_0 satises $u_0 2 L^1 \setminus W^{s;1}(v)$ for some s>1, and dist(supp $u_0;@v)>0$. For all $n 2 N_+$, let $(u_{i;(n)}(t))_{i2V^{(n)}}$ and $(a_{i;j;(n)})_{i;j2V^{(n)}}$ be the solution of the coupled scheme (1.12), (1.13) and (1.15) solved on $(C^{(n)};F^{(n)})$ and $(P^{(n)};N^{(n)})$. Dene

$$u_{(n)}(t;x) = \sum_{i;(n)}^{x} (x) u_{i;(n)}(t) : i2V^{(n)}$$

Then there exists T > 0 such that

$$u_{(n)}$$
 is compact in $L^1([0;T] R^d)$:

Moreover, T could be arbitrarily large by choosing large v such that dist(supp u₀; @ v)! 1.

1.6. Connection between the two settings. We now discuss why the polygon meshes in Section 1.4 can be understood as a special case of the more general setting in Section 1.5.

Starting with any polygon mesh $(C; F) = fV_ig_{i2V}; fS_{i;j}g_{(i;j)2E}$ over R^d with discretization size x, one can construct a mesh as in Denition 1.5 through the

process. First, add more cells to (C; F) if necessary, to ensure + B x _{i2V} V_i. Second, construct the extended mesh $f_i g Z_{2V}$; $f n_{i;j} g_{(i;j)2E}$ with the cell and face functions

where $N_{i;j}$ is the unit normal vector of $S_{i;j}$. It is then straightforward to check that if , then $_i$ is indeed a cell P function with $fn_{j;i}g_{(j;i)2E}$ as its face functions. Also, one has and $n_{i;j} = n_{j;i}$, 8i; j 2 V. Therefore, this construction does yield a mesh over as in Denition 1.5.

With this construction, the upwind scheme (1.12) for $(f_ig; fn_{i;j}g)$ with coecients (1.13) and the upwind scheme (1.8) for (fVig; fSi;ig) are very similar. The conditions supp i

and supp n_{i;j} are nothing but B_x now and B_x . It is also immediate to see that

$$i = i(x) dx = jV_i j$$
:

Finally, the coecients
$$a_{i;j}$$
 in (1.13) (when supp $n_{i;j}$) now $\frac{Z}{jB_x(0)j} = \frac{Z}{jB_x(0)j} b(x + y) N_{i;j}$ dydx;

which is only slightly dierent from the coecients $a_{i,j}$ in (1.8), though we do emphasize the order of () $^+$ and integration in this formula. Notice that if b(x) is constant, then the integrand b N_{ij} is also constant, hence a_{ij} given by (1.13) and (1.8) coincide. So, when b(x) has $W^{1,p}$ regularity, we can naturally expect the two ways of determining $a_{i;j}$ to dier only by a term that is vanishing in L^p as discretization size goes to zero.

As mentioned earlier, both compactness results in Theorem 1.3 and Theorem 1.7 are derived by propagating some discrete regularity like (1.7), where the discrete density $(u_{i;(n)}(t))_{i \ge V^{(n)}}$ are both governed by the upwind scheme, with the coecients originally dened in dierent ways but now formulated all in the setting of Section 1.5. In Section 2, we give the precise denition of such regularity as Denition 2.3 and state the propagation of such regularity by the upwind scheme as Theorem 2.9. Theorem 2.9 can then be applied to prove both Theorem 1.3 and Theorem 1.7.

While the main elements of the proofs rely on the same result, namely Theorem 2.9, we do need to mention that some settings in Theorem 1.3 and Theorem 1.7 are not identical. Apart from the aforementioned choice of $a_{i;j}$, the way we extend discrete density to continuous functions are also slightly dierent: In Theorem 1.3, u_n is dened as piecewise constant on each cell, while in Theorem 1.7, u_n is reconstructed from cell functions and is thus not piecewise constant. Nevertheless, these dierences are only minor issues once all necessary denitions and notations are properly introduced, which we do in Section 2.

Let us also remark that u_n and u_n could be made identical by formally choosing $i = I_{V_i}$. However such choice would come with some additional issues. The indicator functions are not cell functions according to Denition 1.4 because they are not even continuous. One may still try to understand the gradients r_i and $n_{i;j}$ in distributional sense to have that $r_i = P_{ij} n_{i;j}$ and $D_{ij} n_{i;j} n_{i;j}$ and

Z
$$Z = \int_{R^d} f(x) n_{i;j}(x) dx = \int_{S_{i;j}} f(x) N_{i;j} dx \quad 8(i;j) \ 2 \ E;f \ 2 \ C_c^1(R^d; R^d):$$

In such cases we formally have

$$a_{i;j} = {}^{Z}b(x) N_{i;j} + dx: s_{i;j}$$

where the extra mollication in the current choice is removed. But this extra mollication appears to be necessary for our formulation. For example integrating on $S_{i;j}$ without any mollication would require trace embedding and in turn more stringent conditions on the mesh, which we try to avoid.

- 2. Main technical results of the paper. The goal of this section is to introduce the technical setting that we need for our approach and to state the main precise, quantitative results that underlies our compactness results. First, we introduce some necessary notations. Then in subsection 2.2, we introduce the discrete kernel and semi-norm we use to prove compactness, which is modied from the continuous kernel and semi-norm introduced in [5, 4]. We next state Theorem 2.9 about the the propagation of regularity on periodic meshes. This is the main quantitative result in the paper and, in particular, Theorem 1.3 and Theorem 1.7 are deduced from it. The proof of Theorem 2.9 depends on multiple lemmas and theorems, which we state in subsections 3.1, 3.2 and 3.3. But the actual proofs of these lemmas and theorems are postponed to later sections.
 - 2.1. Denitions and notations. Consider a mesh (C; F) over R^d as in Deni-tion 1.5. We introduce the following notations:

For a function f 2 $L_{loc}(R^d)$ (or $L_{loc}(R^d; R^d)$), dene the \projection-to-cell operator" Pcf as

$$(P_C f)_i = \begin{cases} 8 & Z \\ < \frac{1}{i} & f(x)_i(x) dx; \\ R^d & (2.1) \end{cases}$$

With these notations, the coecients and initial data in (1.13) can be rewritten as $(a_{i,j})_{i;j\geq V} = P_F b$ and $(u_i(0))_{i\geq V} = P_C u_0$. Next, we dene the discrete divergence of $(a_{i;j})_{i;j \ge V}$ as

$$D_{k} = D (a_{i;j})_{i;j \geq V} \Big|_{k} = \begin{cases} \frac{1}{k} X & a_{i;k} & a_{k;i} ; & 8k \geq V \\ & \vdots & & \\$$

The denition of discrete divergence is justied by the following observation: When choosing $(a_{i;j})_{i;j \ge V} = P_F b$, one has

Hence, at least on V

$$D(P_F b) = P_C div_x b: (2.4)$$

For any $(v_i)_{i \ge V}$, we dene its discrete L^p norm by

$$k(v_i)_{i2V} k_{L^p(C)} = X_{v_i^p_i}^{i_{1=p}}$$
:

In addition, we dene the L^p norm for the discretized velocity eld $(a_{i;j})_{i;j \geq V}$ by 0

$$k(a_{i;j})_{i;j \geq V} k_{L^{p}(F)} = @a_{i;j}^{X} {}^{p}A$$

$$(x)^{d=p} (d 1);$$

where the factor $(x)^{d=p-(d-1)}$ attempts to account for the expected size of the faces.

One motivation to dene the discrete norms as above, and especially the scaling factor in L^p(F), is that we can easily bound them by their continuous counterparts. It is easy to verify the following proposition when p = 1 and p = 1, and the general case follows by an interpolation.

Proposition 2.1. Let (C; F) be a mesh satisfying (1.14), then one has the following inequalities:

where the constant C in the above inequalities only depends on the constants in the structural assumptions (1.14).

In this paper, we consider a sequence of discrete densities $u_{(n)} = (u_{i;(n)}(t))_{i2V^{(n)}}$ dened on a sequence of meshes $(C^{(n)}; F^{(n)})$. Since the n-th density is always dened on the n-th mesh, as an abuse of notation, we write $ku_{(n)}k_{L^p(C^{(n)})}$ as $ku_{(n)}k_{L^p(C)}$ for simplicity. Similarly, for the discrete coecients $a_{(n)} = (a_{i;j;(n)})_{i;j2V^{(n)}}$ on the meshes we write $ka_{(n)}k_{L^p(F^{(n)})}$ as $ka_{(n)}k_{L^p(F)}$.

The following notations are also useful in later discussions: For each i 2 V, dene the \barycenter" of cell function i by

$$x_i = \frac{1}{x_i} x_i(x) dx$$

For any $(v_i)_{i2V}$, dene its extension to R^d by

2.2. Compactness via quantitative regularity estimates. In this subsection we introduce the explicit semi-norms that we are going to use in the paper, together with lemmas and propositions about some basic properties of those objects. The proof of all lemmas and propositions are postponed to Section 7.

The following continuous kernels and semi-norms are introduced in [5, 4] to prove the compactness of density:

Definition 2.2. Dene the kernel K^h for all h > 0 by

$$K^{h}(x) = \frac{(x)}{(ixi + h)^{d}}; 8x 2 R^{d};$$

where is some smooth function with compact support in B(0; 2) and s.t. = 1 inside B(0; 1). Then for 1 p < 1, 0 < < 1, the semi-norm k k_{p} ; for density u 2 $L^p(R)$ is dened as

$$Z$$

$$kuk_{p;}^{p} = \sup_{h_{1}=2} j \log hj \qquad K^{h}(x \quad y)ju(x) \quad u(y)j^{p} dxdy: \qquad (2.5)$$

We dene the corresponding discretization of such kernels and semi-norms.

Definition 2.3. Consider a mesh (C; F) over

R^d, on which there exists a discrete

density $(u_i)_{i2V}$ such that $supp \, u_i \, V$

. Assume that

$$_{i}(x) = 1;$$
 8x 2
+ B(0; 4): (2.6) i2 V

Given any so-called virtual coordinates $\mathbf{k} = (\mathbf{k}_i)_{i2V} 2 (R^d)^V$, we dene an approximate kernel $\mathbb{K}^h_{i;i}$ on the mesh by

$$\mathbb{R}^{h}_{i \cdot i} = \mathbb{K}^{h}(\mathbf{x}_{i} \cdot \mathbf{x}_{i}); \quad 8i; j 2 V:$$

Then for 1 p < 1, 0 < < 1 and 0 < h_0 < 1=2, the discrete semi-norm k $k_{h_0;p;;e}$ on the mesh is dened as

$$kuk_{h_0;p;;\alpha}^{p} = \sup_{h_0 = h_1 = 2} j \log hj = X_{i;j} u_i = u_j j^{p}_{ij};$$
(2.7)

The following lemma is the cornerstone of deriving compactness from the discrete regularity in Denition 2.3, in the particular case where $\mathbf{z} = (\mathbf{R}^d)^V$ in Denition 2.3 is simply chosen by the barycenters, i.e. $\mathbf{z}_i = \mathbf{x}_i$. In that case, we use the specic notation

$$K_{i;j}^{h} = K^{h}(x_{i} - x_{j})$$
 and $k_{h_{0};p;} = k_{h_{0};p;;(x_{i})_{i2v}}$ to

specify the discrete semi-norm derived from the barycenters $(x_i)_{i \ge V}$.

Lemma 2.4. Let (C; F) be a mesh as in Denition 1.5 over

 R^d such that (1.14) and (2.6) hold. Consider a discrete function $(u_i)_{i2V}$ on the mesh, satisfying the bound

$$k(u_i)_{i2V} k_{h_0;p}$$
; L

for some $0 < h_0 < 1=2$. Dene the renormalized kernel $K^h(x) = K^h(x) = K^h k_{L^1}$ and let u be the extension of $(u_i(t))_{i \ge V}$ to R^d . Then

$$8h > h_0$$
; ku $K^h ? uk_{1p}^p Cj log hj^1$

where the constant C only depends on L and the constant in structural assumptions (1.14). If the mesh is given by a polygon mesh $(fV_ig; fS_{i;j}g)$ via (1.17), then the above inequality also holds when u is replaced by the piecewise constant extension.

Consider a sequence of meshes $(C^{(n)}; F^{(n)})$ and a sequence of discrete density $u_{(n)} = (u_{i;(n)})_{i \geq V^{(n)}}$ dened on them. It is just natural to study the compactness of such discrete densities on dierent meshes by some sort of extension on R^d .

To see how Lemma 2.4 helps to derive compactness of such sequence, assume that one has uniform boundedness

$$\sup_{0 < h < 1 = 2} \limsup_{n \mid 1} ku_{(n)} k_{h_0;1}; < 1;$$

and uniform boundedness of discrete $L^p(C)$ norm. Then for any xed h > 0, the dier-ence between extended functions $u_{(n)}$ and their mollications are uniformly bounded by Cj log hj ¹ up to discarding nitely many terms of the sequence. On the other hand for any xed h greater than 0, the sequence of mollied functions is locally compact. Therefore, the sequence of extended functions is also locally compact.

However there are several big issues that one should be aware of when moving from the continuous to the discrete setting:

The kernel parameter h has to be bounded from below in Denition 2.3, because a kernel too sharp is not suitable for a coarser grid. Generically h_0 should be chosen much greater than the discretization size x. But for a sequence of meshes with x converging to zero, h_0 could be chosen converging to zero as well (with a possibly much slower speed). As we just discussed below Lemma 2.4, this sort of regularity in asymptotic sense would be sucient to continue our discussion of compactness.

Moreover, in Denition 2.2 the integral is taking on R^{2d} , while in Denition 2.3 we are restricted to a nite double summation. Nevertheless, any kernel K h has bounded support in ball B(0; 2), hence for any density u with bounded support, the double integral in (2.5) can be taken on $\sup u + B(0; 2)^{-2}$ instead of R^{2d} . Therefore, to reasonably approximate the integral in (2.5), it is natural to made the additional assumption (2.6) for the summation in (2.7). The larger ball

B(0;4) is used for the convenience of later analysis. Starting from a mesh (C;F) over

R^d on which the upwind scheme (1.12) is dened, one can always put additional cell functions to make (2.6) hold. The scheme is not really aected

as the density is set as zero at any i ≥ V

. For this reason, when discussing quantitative regularity, we always add (2.6) as part of our assumption to meshes.

The more delicate issue and the one that leads to most technical diculties in this paper is how to choose the virtual coordinates $(\mathbf{x}_i)_{i2V}$. While it would seem natural to take $(\mathbf{x}_i)_{i2V} = (x_i)_{i2V}$, the corresponding semi-norm does not seem to be propagated well on the scheme (1.12). This will force the use of $(\mathbf{x}_i)_{i2V} = (x_i)_{i2V}$ to obtain semi-norms that we can propagate well. On the other hand, by Lemma 2.4 we can clearly see compactness from the semi-norms induced by $(x_i)_{i2V}$, but not from semi-norms induced by arbitrary $(\mathbf{x}_i)_{i2V}$. Therefore, we will also have to show that the approximate kernels $K^h(\mathbf{x}_i = \mathbf{x}_j)$ are equivalent to $K^h(x_i = x_j)$, for a choice of virtual coordinates $(\mathbf{x}_i)_{i2V}$ that are only slightly dierent from the barycenters $(x_i)_{i2V}$.

We can make the last issue somewhat more precise by a more general estimate that consider the discrete kernels as some sort of perturbation of the continuous kernels.

Lemma 2.5. Consider measurable functions f_i ; g_i : R^d ! R^d , i = 1; 2 and $0 < h_1 < 1=4$, such that $jx = f_i(x)j = h_1$, $jx = g_i(x)j = h_1$, 8x = 2 R^d ; i = 1; 2. Consider the kernels

$$\begin{split} &K_{f}^{h}(x;y) = K^{h}(f_{1}(x);f_{2}(y)) = \frac{(jf_{1}(x) - f_{2}(y)j)}{(jf_{1}(x) - f_{2}(y)j + h)^{d}}; \\ &K_{g}^{h}(x;y) = K^{h}(g_{1}(x);g_{2}(y)) = \frac{(jg_{1}(x) - g_{2}(y)j + h)^{d}}{(jg_{1}(x) - g_{2}(y)j + h)^{d}}; \end{split}$$

Then for 1 p < 1 and 0 < h < 1=2,

$$Z = \sum_{R^{2d}} K_g^h(x;y) ju(x) \quad v(y) j^p dxdy (1 + Ch_1 = h) = \sum_{R^{2d}} K_f^h(x;y) ju(x) \quad v(y) j^p dxdy;$$
(2.8)

where the constant C only depends on the xed choice of in the denition of kernels K h.

Notice that the double summation in (2.7) can be rewritten as a double integral form by carefully choosing some function $f = f_1 = f_2$ and a piecewise constant, which we state as the next lemma:

Lemma 2.6. Consider a mesh (C; F) as in Denition 1.5 over R^d with discretization size x < 1=16, such that (2.6) hold. Introduce some measurable sets $(V_i)_{i2V}$ R^d such that

$$jV_ij = i =$$
 $_{R^d}$
 $_{X_2V_i}$
 $_{X_2V_i}$
 $_{X_2V_i}$
 $_{X_1j} < 2x;$
 $_{X_1j} < 2x;$

Dene the piecewise constant extension $u^V = \prod_{i \geq V}^P u_i \mathbf{1}_{V_i}$ for the discrete density function. Then

Assume that the virtual coordinates $(\mathbf{x}e_i)_{i \geq V}$ are such that $j\mathbf{x}e_i = x_i \mathbf{j} < h_2$, 8i 2 V and for some $0 < h_2 < 1=16$. Dene f: R^d ! R^d as

$$f(x) = \begin{cases} xe_i; & \text{for } x \ge V_i; i \ge V; \\ x; & \text{for } x \ge \sum_{i \ge V} V_i: \end{cases}$$

Then jx f(x)j 2x + h₂ < 1=4, 8x 2 R^d. Moreover the double summation in (2.7) can be rewritten as a double integral:

for all 1 p < 1 and 0 < h < 1=2.

From these two lemmas, one may deduce the following proposition supporting our use of $(x_i)_{i2V} = (x_i)_{i2V}$.

Proposition 2.7. Consider a mesh (C; F) with discretization size $x < h_2 < 1=16$, such that (1.14) and (2.6) hold. Let $(\mathbf{x}^{(1)})_{i2V}$, $(\mathbf{x}^{(2)})_{i2V}$ 2 $(\mathbf{R}^d)^V$ be two sets of virtual coordinates on the mesh such that

8i 2 V; k = 1;2;
$$\mathbf{r}_{i}^{(k)}$$
 $\mathbf{x}_{i} < h_{2}$:

Then for 1 p < 1, 0 < < 1 and 0 < h_0 < 1=2, the two resulting semi-norms and equivalent and satisfy

$$kuk_{h_0;p;;e^{(2)}}$$
 (1 + $Ch_2=h_0$) $kuk_{h_0;p;;e^{(1)}}$;

where the constant C is xed.

The proposition implies that the equivalence of semi-norms can be derived from the closeness of virtual coordinates. Therefore, a large part of our technical analysis is actually devoted to nding appropriate (x:)i2V ensuring the propagation of regularity while remaining reasonably close to barycenters $(x_i)_{i \ge V}$.

The next proposition is also a consequence of Lemma 2.5:

Proposition 2.8. Consider a mesh (C; F) such that (1.14) and (2.6) hold. Then for

for some constant C depending only on p and the constants in the structural assumptions in (1.14).

This proposition ensures that the regularity of the extended function is comparable to the regularity of the discrete density and vice versa, which is needed in our proof of Lemma 2.4 and Theorem 1.7.

2.3. Our main quantitative regularity result. We are now ready to state our main quantitative theorem about the propagation of regularity on periodic mesh.

Theorem 2.9. Consider T > 0, and a bounded domain R^d with piecewise smooth boundary. Let $f(C^{(n)}; F^{(n)})g^1$ be a sequence of meshes over R^d as in Denition 1.5, having discretization size $x_{(n)} ! 0$, satisfying the structural assumptions (1.14) and (2.6) by some uniform constant, and being periodic on with pattern size uniformly bounded.

For all n N₊, t 2 [0;T], let $(a_{i;j;(n)}(t))_{i;j2V^{(n)}}$ be the coecients of the upwind scheme (1.12) on $(C^{(n)}; F^{(n)})$ and let $D_{(n)}(t) = (D_{i;(n)}(t))_{i2V^{(n)}}$ be the discrete divergence dened as in (2.3). Let $u_{(n)} = (u_{i;(n)}(t))_{i2V^{(n)}}$ be a sequence of discrete density solved by the upwind scheme. With some 1 p < q 1 and 0 < s 1, assume that there exists a sequence of velocity eld $b_{(n)}(E,x)$, bounded uniformly in ${}^qL_{t_x}(W^{1;q}_x)\setminus L_t^p(W^{s;p})([0;T])$, and approximating the coecients $(a_{i;j;(n)}(t))_{i;j2V^{(n)}}$ with vanishing error

$$(ai;_{j};(n_{j})_{i;j2V^{(n)}} eP_{F^{(n)}b}(n)_{L^{p}([0:T]F^{(n)})}! 0 as n! 1:$$

Assume moreover that the solutions have uniformly bounded norms $\sup_n k u_{(n)} k_{t_i^1 L_x^p([0;T]C^{h_i})} < 1$, and that mass leaking vanishes

$$ku_{(n)}(0)k_{L^{1}(C)}$$
 $ku_{(n)}(T)k_{L^{1}(C)}$! 0 as n! 1:

Then for all $\max f1$ 1=q; 1=2g, 0 < h₀ < 1=2, there exists suciently large N 2 N⁺ such that for all n N,

with additional terms due to discretization

$$\begin{array}{c} & Z_{t} \\ L_{2} = C \; j \, log \, hoj \; = h^{2} \; \left(\!\!\! \left(x_{(n)} \right) \right) & ka_{(n)}(s) \, k_{L^{q}(F)} + k \, e_{(n)}(s) \, k_{W^{1;q}} \; ku_{(n)}(s) \, k_{L^{q}(C)} \; ds \, o \\ & + C(j \, log \, hoj^{1} \;) \; k_{U(n)}(0) \, k_{L^{1}(C)} \; ku_{(n)}(t) \, k_{L^{1}(C)} \; ; \\ L = C(j \, log \, hoj \; = h_{0}) \; a_{(n)} \; P_{F^{(n)}} \, b_{(n)}_{e_{L^{p}([0;T]F)}} + \left(x_{(n)} \right)^{s = (1+s)} \, kb_{(n)} \, k_{L^{p}} \, e^{W^{s;p}} \\ & & \\ & + \left(x_{(n)} \right)^{\frac{1+(1+p-1+q)}{1+p-1+q}} \; ka_{(n)} \, k_{L^{q}([0;T]F)} + kb_{(n)} \, k_{L^{q}(W^{1;q})} \; ku_{(n)} \, k_{L^{1}_{t}} \, L^{p}_{x}([0;t]C); \\ & = \exp \; C(1=h_{0})(x_{(n)})^{s = (1+s)} : \end{array}$$

The constant C in (2.9) only depends on

, the exponents p;q and the constant in the structural assumption (1.14), while the constant C in (2.10) also depends on T, the exponent s and the constant bounding pattern size. Nevertheless, none of the constants depends on h_0 or $x_{(n)}$. The index N 2 N⁺ is chosen to make $x_{(n)}$ suciently small, which only depends on h_0 and the constant bounding pattern size.

In particular, for any xed $h_0 > 0$, the additional terms L; L_2 converge to zero and converges to one as n ! 1.

Proving Theorem 2.9 is the main technical challenge of the paper. We split our proof into three theorems, namely Theorem 3.1, 3.3 and 3.4. These three theorems are stated in subsection 3.1, 3.2 and 3.3 and we conclude Section 3 by how they are used to prove Theorem 2.9. Each of the three theorems requires its own proof on which we spend an entire section after Section 3.

Before we move to the proof, we conclude this section by showing how to deduce Theorem 1.3 and Theorem 1.7 from Theorem 2.9.

Proof of Theorem 1.3. Let us begin with the discussion of mesh properties as Theorem 1.3 is stated in the setting of polygon meshes. We rst recall the construction (1.17) in Section 1.6, restated here

$$_{i}(x) = \frac{1}{j \frac{1}{B_{r}(0)j}} \sum_{B_{r}(0)}^{Z} \mathbf{1}_{V_{i}}(x - y) dy; \quad 8i \ 2 \ V;$$

$$n_{i;j}(x) = \frac{1}{s_{i;j}} \frac{1}{j B_{r}(0)j} \mathbf{1}_{B_{r}(0)}(x - y) N_{i;j} dy; \quad 8(i;j) \ 2 \ E:$$

for the entire sequence $f(C^{(n)};F^{(n)})g_{n=1}^1$. As an abuse of notation, we still use $f(C^{(n)};F^{(n)})g_{n=1}^1$ to denote the generated sequence $f(g_{n})g_{n} = 1$. As an abuse of notation, we still use $f(C^{(n)};F^{(n)})g_{n=1}^1$. It is easy to verify that if the polygon meshes satisfy the structural assumptions (1.9), then the con-structed new meshes as in Denition 1.5 satisfy the structural assumptions (1.14), with a possibly larger constant. Moreover, as explained in Section 2.2, one can always put additional cell functions to make (2.6) hold. This yields a sequence of meshes that fullIs the requirements of Theorem 2.9.

Now we dene a linear operator P^0 as_Fan alternate of the \projection-to-face operator" P_F , such that in Theorem 1.3, the coecients of upwind scheme on each $(C^{(n)}; F^{(n)})$ is

chosen exactly by $(a_{i;j;(n)})_{i;j \geq V^{(n)}} = P_{F^{(n)}}^{0} b$. Such operator P_{F}^{0} is given by

It is easy to verify the divergence identity $D(P_{\xi}b) = P_C \operatorname{div}_x b$ by the same approach with which we obtain (2.4). Also, it is straightforward that $_{\zeta}kP_{\xi}bk_{L^p(\xi)} kP_{\xi}bk_{L^p(\xi)}$ $Ckbk_{L^p(\xi)}$).

We can then do some a priori estimates for the norms required by Theorem 2.9. To avoid writing too many index (n) in the calculation, let (C; F) = $f_i g_{i2V}$; $fn_{i;j} g_{(i;j)2E}$ be any mesh in the sequence of meshes we consider. Firstly, notice that for i 2 V, one has

$$\frac{du_{i}}{dt} = \frac{1}{i} \sum_{j \geq V}^{X} a_{i;j} u_{j} \quad a_{j;i} u_{i} \quad \frac{1}{i} \underbrace{\underset{k \geq V}{@sup} u_{k}}_{u_{k}}^{X} \quad \underset{j \geq V}{a_{i;j}} \quad u_{i} \quad \underset{j \geq V}{a_{j;i}}^{A} \\
= D_{i} \sup_{k \geq V} u_{k} + \underbrace{1}_{i} \sum_{j \geq V}^{X} a_{j;i} \quad \sup_{k \geq V} u_{k} \quad u_{i} ;$$
(2.11)

and for all i 2 V n V

, one has u_i 0. By the assumption $div_x b \ 2 \ L_t \ L_x$, one can conclude $kD(t)k_{L^1(C)}$

The constants C just above do not depend on (n), so that $(u_{i;(n)})_{i2V^{(n)}}$ and $(D_{i;(n)})_{i2V^{(n)}}$ have uniform a priori bound in $L^1_x([0;T]C^{(n)})$. By Helder estimate one can obtain uniform bound in any $L^1_+L^p([0;T]C^{(n)})$ where 1 p 1.

Secondly, for any s > 0 and 1 1=p, the semi-norm of the divergence is bounded by

 $k(D_i(t))_{i2V} k_{h_0;p;p(-1=p)} Ck div_x b(t) k_{p;p(-1=p)} Ck div_x b(t) k_{W s;p}$: The rst inequality is an application of the divergence identity $D(P_F b_0) = P_C div_x b$ and Proposition 2.7, while the second inequality is due to Sobolev estimates. Similarly,

$$k(u_i(0))_{i2V} k_{h_0;1}$$
; $Cku_0 k_{Ws;1}$:

The constants C again do not depend on (n). This gives uniform bounds to the seminorm of $(D_{i;(n)}(t))_{i2V^{(n)}}$ and $(u_{i;(n)}(0))_{i2V^{(n)}}$.

We want to apply Theorem 2.9 with $\mathfrak{B}_{(n)}(t;x) = b(t;x)$, p = 1 and q = q (recall that $b \ 2 \ L_t^q(W_x^{1;q}) \setminus L_x^1(W_t^{s;1})$). But the issue remains is that our newly dened P^0_F is not identical to P_F . Hence, the L^1 dierence

$$(a_{i;j;(n)})_{i;j2V^{(n)}} \quad P_{F^{(n)}}b_{eh}_{L^{1}([0;T]F^{(n)})} = P_{F^{(n)}}b_{c} P_{F^{(n)}}b_{L^{1}([0;T]F^{(n)})}$$

is not zero, and one has to argue it converges to zero as $n \mid 1$ and as $x_{(n)} \mid 0$. This is guaranteed by the following proposition whose proof is postponed to Section 7.

Proposition 2.10. Let (C;F) be a mesh as in Denition 1.5 over R^d such that (1.14) hold. Assume that each face function $n_{i;j}$ 2 F is of form $n_{i;j}(x) = N_{i;j}w_{i;j}(x)$; 8x 2 R^d , where $N_{i;j}$ 2 S^{d-1} is a unit vector and $w_{i;j}$ is a scalar function. Then for 1 p 1,

$$P_F b = P_F b_{L^p([0;T]F)} Cxkbk_{L^p(W^{1;p})};$$

where the constant C only depends on p and the constant in the structural assumption (1.14).

We only have to observe that the construction (1.17) indeed ensures that any $n_{i;j}$ 2 F is of form $n_{i;j}(x) = N_{i;j}w_{i;j}(x)$. Hence this proposition applies to the setting of Theorem 1.3. And we can nally apply Theorem 2.9 to obtain (2.9) with $b_{(n)}(t;x) = b(t;x)$, p = 1 and q = q.

By Gronwall estimate one can conclude

$$C_{\log;}^1 = \sup_{0 \le h_0 \le 1 = 2} \limsup_{n \ge 1} ku_{(n)}(t)k_{h_0;1;} < 1$$

for some 0 < < 1. This directly implies compactness in space of the density $u_{(n)}$. Compactness in time now follows by reproducing the Aubin-Lions argument in the semi-discrete setting.

For any 0 < h < 1=2, let $h_0 = h$. By the previous estimates, one can choose N (h) 2 N₊ such that

$$\sup_{n \in N(h)} ku_{(n)}(t)k_{h;1;} < 2C_{log;}^{1}:$$

By Lemma 2.4, one has

$$kK^{h}$$
 $?_{x}$ $u_{(n)}(t)$ $u_{(n)}(t)k_{L^{1}}$ Cj log hj ¹ for n N(h); t 2 [0; T]; (2.13)

where C depends on C_{log}^1 and the total mass of $u_{(n)}$.

On the other hand for any xed h > 0, $U_{h;C}$;

=
$$fK^h$$
?u: kuk_{L^1} < C; $suppu$

g is a compact set by Arzel $\{A$ Scoli theorem, on which we consider t! K_h $?_x$ $u_{(n)}(t)$, the trajectory of mollied density. Notice that

By (1.2) we can bound $V_h(t)$ by

$$V_{h}(t) = \begin{array}{c} Z & \chi & Z \\ K^{h}(y & x)dy & \frac{1}{i} & X \\ Z & \chi \\ = & K^{h}(y & x)dy & \frac{1}{i} & Z \\ K^{h}(y & x)dy & \frac{1}{i} & X \\ K^{h}(z & x)dz & \frac{1}{i} & X \\ K^{h}(z & x)dz & \frac{1}{i} & X \\ K^{h}(z & x)dz & \frac{1}{i} & X \\ X & Z & Z & X \\ X & Z & Z & X \\ X & Z & Z & Z & X \\ (i;i^{0})^{2}E^{(n)} & R^{d} & \frac{1}{i} & X^{h}(y & x)dy & \frac{1}{i^{0}} & X^{h}(z & x)dzdx & a_{i;i^{0};(n)}u_{i^{0};$$

where L_h denotes the Lipschitz constant of K h and C depends on the constant in Proposition 2.1. Since we assume b 2 $L_t^1 L_x^1$ and have obtained uniform a priori bound of $(u_{i;(n)})_{i2V^{(n)}}$ in $L_t^1 L_x^1 ([0;T] C^{(n)})$, we have $V_h(t)$ uniformly bounded in t.

Therefore, for any xed h 0, K^h ? $u_{(n)}$ is equicontinuous as a trajectory in $U_{h;C}$; $L^1(R^d)$. By Arzela{Ascoli theorem, fK^h ? $u_{(n)}g$ is compact for all h > 0, which implies $fu_{(n)}g$ is also compact thanks to (2.13).

We now turn to the proof of Theorem 1.7 which requires more work but follows somewhat similar steps.

Proof of Theorem 1.7. As in the proof of Theorem 1.3, our goal is to apply Theo-rem 2.9. As a comparison, this time we begin with a sequence of meshes as in Deni-tion 1.5 so the mesh properties are obvious, but since we are discussing a coupled system, we also need to actually derive regularity estimates on the velocity eld.

As before, when there is no ambiguity, we omit the index (n) by letting (C; F); (P; N) be any pair of mesh and nite element in the sequence, and let $(u_i)_{i2V}$, $(a_{i;j})_{i;j2V}$ be the discrete solution.

Step 1: Discrete a priori bounds. The discrete divergence at i 2 V is given by

Is given by
$$D_{i} = \frac{1}{L} \frac{X}{a_{i0;i}} \quad a_{i;i0} = \frac{1}{L} \frac{X}{a_{i0;i}} \quad b(y) \quad n_{i0;i}(y)^{+} \quad b(y) \quad n_{i0;i}(y) \quad dy^{i}$$

$$= \frac{1}{L} \frac{X}{(y)} \quad n_{i0;i}(y) \quad dy = \frac{1}{L} \frac{X}{(y)} \quad r(y) \quad (r_{i}(y)) \quad dy^{i}$$

$$= \frac{1}{L} \frac{X}{(y)} \quad g(y)_{i}(y) \quad dy:i$$

The last identity is due to the assumption that $_i$ 2 C P and (1.15).

By Proposition 2.8, for all h x, one has

where L $_{\rm g}$ be the Lipschitz constant of g. Hence,

$$D_{i}(t)_{i2V h_{0};1;} CL_{g} u^{i}(t)_{i2V h_{0};1;}$$
 (2.14)

Also, from the above discussion it is straightforward to see that

$$D_{i}(t) = \sum_{\substack{1 \\ -R^{d}}}^{Z} g(y)_{i}(y) dy = \sum_{\substack{i \\ -R^{d}}}^{Z} \sum_{\substack{j \geq V}}^{X} g(u_{j}(t)_{j}(y)_{i}(y) dy^{i}$$

$$= \sum_{\substack{j \geq V}}^{X} A_{i;j} g(u_{j}(t)_{j}(y)_{i}(y) dy^{i}$$

where the coecients satises

$$A_{i;j}$$
 0; $X A_{i;j} = 1$:

Since we assumed that g 2 $L^1(R)$, this means that the divergence is bounded uniformly in n. By (2.11) and (2.12), we also obtain a uniform in n bound of $(u_i)_{i2V}$ in $L^1([0;T]C)$ for any T>0.

Recalling moreover that \mathfrak{e} s the solution of $= \mathfrak{g}$ (with Dirichlet BC on $_{\mathrm{e}}$), one also has a uniform bound oner in \mathbf{L}_{t} \mathbf{L}_{x} \ \mathbf{L}_{t} \mathbf{H}_{x} .

Step 2: Control of mass leaking by Markovian interpretation. The discrete scheme can also be represented by a Poisson random process model. Without loss of generality, we may assume that the total mass $u_{i2V} u_i(0)_i = 1$ and dene the initial condition of the random process $u_i(0) = u_i(0)_i$. We choose the rate of the Poisson process as

$$a_{i^0;i}(t) = a_{i^0;i}(t)$$

Dene now the stopping time and number of jumps through

= infft :
$$X(t) \not\supseteq V$$

 $_{_{\vee}}g$;
 $N(t) = \sup fN : 0 = s_0 < s_1 < < s_N t; 81 i N; $X(s_i) = X(s_{i-1})g$:$

Then we have a straightforward identity of the density for t > 0 by

$$u_i(t) = \frac{1}{-} Pf > t; X(t) = ig:i$$

By the fact that $r \in S$ bounded in L¹ and (1.16), one can conclude that b = r is also uniformly bounded in L^1 . Denote M_b the a priori bound of kbk_{L^1} , then

$$a_{i\circ;i}(t) = \frac{a_{i}(t)_{i}}{x}; \frac{M}{M}$$

where $M = CM_b$.

Dene L@

 $_{v}$ = dist (supp u_0 ; @

v). By its denition, dist(X₀; @

v) L@

L@

,, so that it requires at least L@

v =x jumps to reach the boundary, i.e.

t only if
$$N(t)$$
 :

In particular, one can bound the probability of T t by a homogeneous Poisson process, i.e.

Pf tg P
$$\frac{M}{x}$$
, $\frac{L_{@^v}}{x}$ 1;

where P(;:) denotes the probability distribution of a homogeneous Poisson process with rate and starting from 0.

Consider T > 0 such that L_{0}

- MT > 0, and let $T = (L_{@}$
- MT)=2. Then one can deduce

Pf Tg C exp(
$$_{T}$$
 =x);

by standard estimates for homogeneous Poisson processes.

Hence choosing T s.t. \Rightarrow 0, we obtain the mass leaking estimate, for any t T

0 1
$$u_i(t)$$
 C exp($_T = x$) ! 0; as n ! 1:

Step 3: Regularity of the continuous velocity eld. We choose the continuous velocity eld in Theorem 2.9 &s be = er, = g (with Dirichlet BC on _e). By our discussion in Step 1, we have uniform in ϵ bounds on $b = r in L^1 L^1 L^1 L^1 L^1$

Moreover, by our assumption (1.16) on the nite elements, one can bound the L² dierence between $(a_{i;j})_{i;j \ge V} = P_F b$ and $P_F b$ Φy

$$(a_{i;j})_{i;j2V} \quad P_F b_{e_1_{L_x}([0_2T]F)} = P_F b \quad P_F b_{L_1_L} e_{[0;T]F)}^{(0;T]F)}$$

$$Ckr \quad rk_{L_x} e_{v_1}^{(0;T]F)} c_{v_2}^{(0;T]F)}$$

which converges to zero as $n \mid 1$ and $x \mid 0$.

We can also show that our choice of & has Sobolev regularity in time, namely & = r \mathfrak{Q} W $_{t}^{s;1}L^{1}([0;T])$ e) for any s < 1. Notice that

$$= eg = X_{ig(u_i);i2V}$$

so that the issue is to show that $P_{i \ 2 \ V \ i} g(u_i) \ 2 \ W_{i}^{1;1} W_{i}^{-1;1}($ e).

Any solution u of the rst-order scheme (1.12) satises the following identity for all i, $^{\rm d}$

$$\frac{\partial u_i}{\partial u_i} = \frac{1 \cdot X}{i} \quad a_{i;j} u_j \quad a_{j;i} u_i \quad \mathbf{1}_{VnV} \qquad \frac{-}{i}$$

$$(i) \quad \begin{array}{c} 1 \quad X \\ a_{i;j} u_j : \\ j \quad 2V \end{array} \qquad \qquad j_2$$

When i 2 V

, the above equality is exactly the upwind scheme. When i 2 (V n V), one

has u_i 0 and the above equality reduce to 0 = 0. Therefore,

$$\frac{d}{dt}g(u_{i}) = g^{0}(u_{i})\frac{du_{i}}{dt} = @g^{0}(u_{i})\frac{1}{i}\frac{X}{j_{2}v} \quad a_{i;j}u_{j} \quad a_{j;i}u_{i}A \quad @1_{v_{n}v_{v}}(i)g^{0}(u_{i}) \quad \frac{1}{i}\frac{X}{j_{2}v} \quad a_{i;j}u_{j}A$$

$$= G_{i}^{int} \quad G_{i}^{bd}:$$

The term G_i^{bd} measures the possible leaking at boundary. It is non-negative and from the previous step, it satises

$$Z \times G^{bd}(t)_{i}(x) dxdt = X G^{bd}(t)_{i} dt CL_{g} exp(_{T}=x);$$

which implies that $^{P}_{~i~2~V}~G^{bd}_{i}$ 2 L 1 L 1 . $_{x}$

In addition, the term Gint can be reformulated as

$$\begin{split} G_{i}^{int} &= g^{0}(u_{i}) \frac{1}{i} \sum_{j \geq V}^{X} a_{i;j} u_{j} \quad a_{j;i} u_{i} \\ &= \frac{1}{i} \sum_{j \geq V}^{X} a_{i;j} g(u_{j}) \quad a_{j;i} g(u_{i}) \quad + \quad \frac{1}{i} \sum_{j \geq V}^{X} a_{i;j} \quad a_{j;i} \quad g^{0}(u_{i}) u_{i} \quad g(u_{i}) \\ &+ \quad \frac{1}{i} \sum_{j \geq V}^{X} a_{i;j} \quad g^{0}(u_{i}) (u_{j} \quad u_{i}) \quad [g(u_{j}) \quad g(u_{i})]^{i} \\ &= G_{i}^{A} + G_{i}^{B} + G_{i}^{M} : \end{split}$$

Since $jG_i^B j = 2 \sup_i jD_i jL_g M = 2(L_g M)^2$, it is straightforward that $P_{i \geq V} G_{i = i} \geq L_t L_{\frac{1}{2}}$. Also, by the concavity of nonlinearity g, one has $G_i = \emptyset$. Furthermore,

$$Z_{T}Z_{X}$$

$$G_{i}^{M}(t)_{i}(x) dxdto$$

$$= Z_{T}X_{i}$$

$$= G_{i}^{M}(t)_{i} dt^{0}$$

$$= Z_{T}X_{i}$$

$$= G_{i}^{M}(t)_{i} dt^{0}$$

$$= Z_{T}X_{i}$$

$$G_{i}^{M}(t)_{i} dt^{0}$$

$$= Z_{T}X_{i}$$

$$G_{i}^{M}(t)_{i} dt^{0}$$

$$= Z_{T}X_{i}$$

$$G_{i}^{M}(t)_{i} dt^{0}$$

$$Z_{T}X_{i}$$

$$Z_{T}X_{i}$$

$$G_{i}^{M}(t)_{i} dt^{0}$$

$$Z_{T}X_{i}$$

$$G_{i}^{M}(t)_{i} dt^{0}$$

$$Z_{T}X_{i}$$

$$G_{i}^{M}(t)_{i} dt^{0}$$

where in the rst inequality we use the observation that $^P_{i\,2\,V}\,G_i$ (t) $_i$ 0. As a consequence, one has $^P_{i\,2\,V}\,G_i^{\,M}{}_i$ 2 L $_t\,L_x$.1

Finally, for any test function ' 2 W $^{1;1}$, Z

By our structural assumptions, the number of terms in the last sum is at most $C(x)^{-d}$ and each term is bounded by $C(x)^d L_g M^2 k' k_{W^{1;1}}$. Hence

$$Z = (x) G^{A}(t)_{i}(x) dx CL_{g} M^{2}k'k_{W^{1;1}};$$

which means $P_{i2V} G_{i}^{A} 2 L^{1} W_{x}^{1;1}$.

By combining all estimates above, we conclude that

$$\frac{d}{dt}g = \frac{d}{dt} \sum_{i \ge V}^{X} ig(u_i) \ 2 \ L^1 W_t = \sum_{i \ge V}^{1;1}$$

It is also straightforward that g 2 L ${}^{1}_{t}$ L ${}^{1}_{x}$ Thus one indeed has that g 2 W ${}^{1;1}_{t}$ W ${}^{1;1}_{x}$, which implies that g = r ${}^{9}_{t}$ W ${}^{5;1}_{t}$ L ${}^{1}_{x}$ for any s < 1.

Step 4. (Compactness) Combine the previous results and apply them to $(C^{(n)}; F^{(n)})$ and $(P^{(n)}; N^{(n)})$ for all n 2 N₊. Since all functions are dened on a bounded domain, Sobolev embeddings also directly apply. We may then use Theorem 2.9 with p = 1, q = 2 and and s < 1, yielding the following asymptotic estimate for > 1=2,

where we used step 1 to bound the discrete divergence terms in Theorem 2.9 by the corresponding bound on $u_{(n)}$.

By Gronwall estimate we conclude that

$$C_{log;}^{1} = \sup_{0 < h_{0} < 1 = 2} \limsup_{n \mid 1} ku_{(n)}(t)k_{h_{0};1;} < 1:$$

The last part is to argue that $t \,!\, K_h \,?_x \, u_{(n)}(t)$, the trajectory of mollied extended density, is equicontinuous on a compact subset of space $L^1(\mathbb{R}^d)$, which is performed in the same manner as in the proof of Theorem 1.3.

3. Proving Theorem 2.9. In this section we start the proof of Theorem 2.9, which is spread into Section 3, 4, 5 and 5. We introduce in this section three theorems that each corresponds to a specic step and explain why they together prove Theorem 2.9.

The rst step in the proof is naturally an estimate of the time evolution of $ku(t)k_{ho;1:}$, which we state as Theorem 3.1. Most terms in the estimate behave as one can expect from the continuous model. However, there is one additional term involving what we call a residue r_i(t) which given by linear equation (3.2) and restated here,

We need to control this residue to conclude the bound on $ku(t)k_{h_0;1}$; through Gronwall lemma. The study of the residue is where our proof fully deviates from the continuous setting.

In essence the size of the residue follows from the choice of virtual coordinates x_i . We correspondingly introduce two theorems: The rst one identies some good assumptions for the virtual coordinates to make the residue small, which we state as Theorem 3.3. The second theorem 3.4 shows that virtual coordinates satisfying such assumptions actually exist, at least where the mesh has periodic patterns.

3.1. Step 1: Propagation of regularity in the discrete setting. Our rst result reproduces the propagation of regularity in [4] for scheme (1.12) but with additional terms caused by the discretization. The proof of the theorem is postponed to Section 4.

Theorem 3.1. Consider the semi-discrete scheme (1.12) on a mesh (C; F) over a bounded domain

R^d with piecewise smooth boundary as in Denition 1.5, having discretiza-tion size x and satisfying the structural assumptions (1.14) and (2.6). Let $(a_{ij}(t))_{ij|2V}$ be the coecients of scheme (1.12) and $D(t) = (D_i(t))_{i2V}$ be the discrete divergence given by (2.3). Let b(t;x) be æcontinuous veBocity eld on R^d and denote its discretization by $(b_i(t))_{i2V} = P_f b(t;)$.

Choose M; M > 0, such that $x \in M \in M < 1=32$. Divide the time interval [0;T] as 0 = 1 $t_0 < t_1 < t_m = T$. For each interval $[t_{k-1}; t_k]$, let $(\mathbf{x}^{(k)})_{i \ge V}$ be virtual coordinates on the mesh satisfying

$$j_{\mathbf{R}_{i}^{(k)}} \mathbf{R}_{i^{0}}^{(k)} j_{2M};$$
 8(i; i⁰) 2 E; (3.1a)
 $j_{\mathbf{R}_{i}^{(k)}} x_{i} j_{2M};$ 8i 2 V: (3.1b)

$$j \mathbf{z}_{i}^{(k)} \quad x_{i} j \quad 2M; \qquad 8i \quad 2V:$$
 (3.1b)

Let $(r_i(t))_{i \ge V}$; t 2 [0; T] be the residue function given by

Let $k(t) = minfk : t < t_kg; 8t 2 [0;T]$. Then any solution $u(t) = (u_i(t))_{i \ge V}$, $t \ge [0;T]$ of the semi-discrete scheme (1.12), satisfs for $0 < h_0 < 1=2$

$$ku(t)k_{h_0:1}$$
: $(L_0 + L_1 + L_2 + L_3)$; (3.3)

where

$$\begin{array}{lll} L_0 = & ku(0)k_{h_0;1;}; & = & 1 + & C(M=h_0) \sum_{k}^{(t)+1}; \\ & Z_t \\ L_1 = & C & k & div & (s)k_{L^1(C)}ku(s)k_{h_0;1;} + & kb & (s)k_{W^{1;q}}ku(s)k_{L^p(C)} \\ & & + & kD(s)k_{L^1(C)}ku(s)k_{h_0;1;} + & ku(s)k_{L^p(C)}kD(s)k_{h_0;p;p(-1=p)} & ds \\ & Z_t & & o \\ & & Z_t & & o \\ \\ L_2 = & C & & j & log & hoj & M^2 = h^2x_0^k(a_{i;j}(s))_{i;j2V}k_{L^q(F)}ku(s)k_{L^q(C)} & + \\ & & & j & log & hoj & M = h^2kb(s)k_{L^q}ku(s)k_{L^q(C)} & + \\ & & & & + & (j & log & hoj & x = h^2)k_0^p(s_0^pk_{W^{1;q}}ku(s)k_{L^q(C)} & ds \\ & & + & C(j & log & h_0j^1 &) & ku(0)k_{L^1(C)} & ku(t)k_{L^1(C)} & ; \\ & & Z_t & & & \\ L_3 = & C & & (j & log & h_0j & = h_0)k(r_i(s))_{i2V}k_{L^p(C)}ku(s)k_{L^p(C)} & ds; o \end{array}$$

provided that 1 p < q 1, $\,$ maxf1 $\,$ 1=q; 1=2g, M $\,$ h_0 < 1=2. The constant C depends on

, the exponents p;q and the constant in structural assumptions (1.14).

What we have exhibited in this subsection is a rather incomplete result. The terms ; L_2 and L_3 in Theorem 3.1 are due to the discretization error. The term L_2 would tend to zero as the discretization size $x \,! \, 0$, provided that the virtual coordinates are chosen such that maxfM=(x)¹⁼²;M¹⁼²g! 0 and h_0 are chosen decaying to zero with an even slower speed.

Unfortunately, L_3 will not vanish so easily. To eliminate it asymptotically, one should nd a sophisticated way to determine suitable division $0 = t_0 < t_m = T$ and virtual coordinates $\binom{n}{k} t_{12V}^{(k)}$ on each $[t_{k-1}; t_k]$, making the norm of residue $krk_{L^1\ell_{\infty}([0;T]C)}$ decay. To control the term , one should also control the number m in the division of [0;T].

Finally we emphasize that we do not need to assume that the coecients $a_{i;j}(t)$ be given from the discretization of the velocity eld \tilde{b} . The connection between $a_{i;j}$ and \tilde{b} stems only from the denition of the residue in (3.2). And in fact, as we will see in the conclusion of the proof, the $a_{i;j}$ are typically derived from a slightly dierent eld $b = \tilde{b}$.

3.2. Step 2: Controlling the residue through virtual coordinates. It remains to investigate in what circumstance Theorem 3.1 give useful results, in the sense that all the additional terms due to the discretization error vanish asymptotically. The main question is how to control the so-called residue through a proper selection of virtual coordinates.

We rst introduce the key notion of admissible family of virtual coordinates that works for any constant eld.

Definition 3.2. Consider a mesh (C; F) over R^d . Let

$$(\Re_i(b_c))_{i2V} \ 2 \ (R^d)^V; \ 8b_c \ 2 \ R^d$$

be a family of virtual coordinates. We say that it is an admissible family of virtual coordinates

for constant elds with relative drift M, absolute drift M and residue bound M in L^p if the following properties are true:

(1) For each n 2 N₊ and any vector b_c 2 R^d, one has

$$\Re_{i}(b_{c}) = \Re_{i}(b_{c}); 8 > 0; i 2 V:$$

(2) The following bounds hold:

(3) For any vector $b_c \ 2 \ R^d$, let $(a_{i;j}(b_c))_{i;j \ge V} = P_F b$ and $(b_i(b_c))_{i \ge V} = P_C b$ be the discretization of the constant velocity eld $b(x) \ b_c$. Dene $(f(b_c)_i)_{i \ge V}$ as

Dene the maximal residue function $((\hat{r}_{max})_i)_{i2V}$ by

$$(\uparrow_{max})_i = \sup_{jb_c j=1} jr_i(b_c)j;$$
 8i 2 V;

then its Lp norm is bounded by

$$k(\uparrow_{max})_i k_{L^p(C)} j$$

 $j^{1=p}M$:

By assuming that an admissible family of virtual coordinates exist, we have the following theorem that controls the residue for any Sobolev velocity eld and whose proof is performed in Section 5.

Theorem 3.3. Consider the semi-discrete scheme (1.12) on a mesh (C; F) over a bounded domain

 R^d with piecewise smooth boundary as in Denition 1.5, having discretiza-tion size x and satisfying the structural assumptions (1.14) and (2.6). Let $(a_{i;j}(t))_{i;j\geq V}$ be the coecients of scheme (1.12) and $D(t) = fD_i(t)g_{i\geq V}$ be the discrete divergence given by (2.3). Assume that $u(t) = (u_i(t))_{i\geq V}$, $t\geq [0;T]$ is a solution of the semi-discrete scheme (1.12).

Moreover, with some 1 p < q 1 and 0 < s 1, assume that there exists a continuous velocity eld b(t; x) bounded in $L^q(W_t^{1;q})_x \setminus L^p(W_x^{s;p})([0;T])$, and an

admissible family of virtual coordinates on for constant elds, dened in Denition 3.2, with relative drift M, absolute drift M and residue bound M in $L^{1=(1=p-1=q)}$. In addition, let maxf1 1=q; 1=2g, and assume that M $h_0 < 1=2$.

Then one can choose a division of time interval [0; T] as $0 = t_0 < t_1 < < t_m = T$, and on each interval $[t_{k-1}; t_k]$, virtual coordinates $(e^{(k)})_{i \ge V}$, such that the terms and

 L_3 in estimate (3.3) are bounded by

$$\begin{split} L_{3} &= C(j \log h_{0}j = h_{0}) \ (M=x)(a_{i;j})_{i;j \geq V} \quad P_{F}b_{L^{p}([\vec{\theta};T]F)} \\ &+ (M^{s}M=x)^{1=(1+s)}kbk^{e}_{(W^{\frac{sp}{x}p})}, \\ &+ M(x)^{-1+(\frac{1-p-1}{2}-1)} \quad k(a_{i;j}(t))_{i;j \geq V}k_{L^{q}([0;T]F)} + kb^{e}_{e^{L^{q}}(W^{1;q})} \\ &+ Mk! fk_{L^{q}_{t}(L^{q})} \quad kuk_{L^{\frac{1}{t}L^{p}}([0;t]C)}; = \\ &= \exp C(1=h_{0})(M^{s}M=x)^{1=(1+s)}; \end{split}$$

where the constant C depends on T;

, the exponents p; q; s, and the constant in struc-tural assumption (1.14).

3.3. Step 3: Constructing admissible virtual coordinates for periodic meshes. It remains to study how to nd admissible virtual coordinates for constant elds as in Deni-tion 3.2. At this moment, it is still unclear to us whether this is possible for any arbitrary mesh. Nevertheless, for a mesh with periodic pattern, we are able to ensure that one can nd an admissible family of virtual coordinates such that the residue $(\uparrow_{max})_i$ actually vanish on any inner cell of the mesh.

Theorem 3.4. Let (C; F) be a periodic mesh over R^d as in Denition 1.6. Let $(a_{i;j}(b_c))_{i;j} = P_F b$ be the discretization of the constant velocity eld b(x) b_c . Then for any constant velocity eld $b_c = 2 R^d$, there exist virtual coordinates $(\Re_i(b_c))_{i \ge V} = 2 (R^d)^V$ solving the linear system

$$\begin{array}{ccc}
X & & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

and satisfying the following properties:

(1) The virtual coordinates are homogeneous in the sense that

$$\Re_{i}(b_{c}) = \Re_{i}(b_{c});$$
 8b_c 2 R^d; > 0; i 2 V:

(2) The virtual coordinates are uniformly bounded by

$$\sup_{j\mathfrak{b}_cj=1;i2V}j\mathfrak{R}_i(\mathfrak{b}_c)\quad x_ij< C(jV_0j)x;$$

where x is the discretization size and $C(jV_0j)$ depends only on the number of cell functions in a period.

(3) The virtual coordinates are periodic in the sense that

$$\Re_{[m](i)}(b_c) = \Re_i(b_c) + \mathop{m_k L_k}_{k=1}; \quad 8b_c \ 2 \ R^d; \ i; [m](i) \ 2 \ V;$$

where L_1 ;:::; L_n 2 R^d are given as in Denition 1.6.

Notice that for constant velocity eld, one has $a_{[m](i^0);[m](i)} = a_{i^0;i}$ when $[m](i^0);[m](i)$ are well-dened. Hence (3.7) can be naturally extend to all i 2 V. That is, the maximal residue function $((\uparrow_{max})_i)_{i \ge V}$ in Denition 3.2 vanishes at all i 2 V.

3.4. Proof of Theorem 2.9. We are now ready to complete the proof of Theorem 2.9. Proof of Theorem 2.9. We apply Theorem 3.4, Theorem 3.1 and Theorem 3.3 successively:

Apply Theorem 3.4: Let (C;F) be one mesh in the sequence of meshes we consider in Theorem 2.9 and let x be the discretization size. Since the meshes have periodic patterns over , one can choose $\Re_i(b_c)$ as the periodic solution in Theorem 3.4 when i 2 V , and choose $\Re_i(b_c) = x_i$ as barycenter when i 2 V nV . Then the maximal residue function $((r_{max})_i)_{i2V}$ in Denition 3.2 vanishes at all i 2

. Notice that

$$\sup_{j \, b_c \, j \, = \, 1; \, i \, 2 \, V} j \Re_i(b_c) \quad x_i j < \, C(j \, V_0 \, j) x$$

where $C(jV_0j)$ is the constant in Theorem 3.4.

By our denition of discretization size and barycenter one has

$$\sup_{(i;i^0)2E} x_i x_{i^0} 2x$$
:

Moreover, if i 2 V n V, by denition, one has $(P_Cb)_i = 0$ and $(P_Fb)_{i^0;i} = 0$ for all i^0 2 V. Hence, one has b_i 0, $a_{i^0;i}$ 0 in (3.5) and the residue $((\uparrow_{max})_i)_{i2V}$ in Denition 3.2 actually vanishes on all

In summary, the residue can be non-zero only at i 2 $\overline{\text{V}}$ n V

. Thus one has that

Let r = 1=(1=p 1=q) as required in Theorem 3.3. One can see that such choice of $\Re_i(b_c)$ forms an admissible family of virtual coordinates in Denition 3.2, with relative drift M, absolute drift M and residue bound M in $L^{1=(1=p 1=q)}$ given by

$$M = M = 2 C(jV_0j) + 1x;$$
 $M = C j$
 $j^{1}j@$
 $ix^{1=p}$ $i^{1=q}$:

The constant C here depends on , the exponents p;q, the constant in structural assumption (1.14), and, in

particular, the number of cell functions in a period. This is why the constant bounding pattern size is part of the requirement of Theorem 2.9.

Moreover, to full the requirement in Theorem 3.1, the discretization size x needs to be chosen small so that M minfh₀; 1=32g, which is why the inequality only holds asymptotically.

Apply Theorem 3.1 and Theorem 3.3: We have proved the existence of an admissible family of virtual coordinates for constant velocity elds. Recall that Theorem 3.3 shows how to reduce the residue term for non-constant velocity elds provided such family exists. Hence, we choose the coecients $a(t) = (a_{i;j})_{i;j2V}$, b(t) and the solution $u(t) = (u_i(t))_{i2V}$ as in Theorem 2.9. Then the rest conditions required in Theorem 3.3, namely the boundedness of their Lebesgue and Sobolev norms and the boundedness of

$$(a_{i;j})_{i;j2V}$$
 $P_F b e_{([0;T]F)}$;

are directly guaranteed by the assumptions in Theorem 2.9. According to Theorem 3.3, one can choose virtual coordinates for specic coecients, such that the propagation of regularity (3.3) in Theorem 3.1, is bounded by (3.6).

For clarity, we recall the full result,

$$ku(t)k_{h_0;1}$$
; $(L_0 + L_1 + L_2 + L_3)$;

where the precise formulations of these terms are given by

$$\begin{array}{l} L_0 = ku(0)k_{h_0;1;;} \\ Z_t \\ L_1 = C \\ 0 \\ + kD(s)k_{L^1(C)}ku(s)k_{h_0;1;} + kb (s)k_{W^1;q}ku(s)k_{L^p(C)} \\ \\ + kD(s)k_{L^1(C)}ku(s)k_{h_0;1;} + ku(s)k_{L^p(C)}kD(s)k_{h_0;p;p(-1=p)} \end{array} \label{eq:L0}$$

where the constant C depends on

, the exponents p;q and the constant in structural assumptions (1.14). Also, = exp $C(1=h_0)(M^sM=x)^{1=(1+s)}$;

$$\begin{split} L_2 &= C^{Z^{t}} & \text{$j\log h_0 j$ $M^2 = h_0^2 x k(a_{i;j}(s))_{i;j \geq V} k_{L^q(F)} k u(s) k_{L^q(C)} 0$} \\ &+ \text{$j\log h_0 j$ $M = h^2$ $kb(\textbf{\textit{g}}) k_{L^q} k u(s) k_{L^q(C)}$} \\ &+ \text{$(j\log h_0 j$ $x = h^2) k_0^0(\underline{s}) k_{W^{1;q}} k u(s) k_{L^q(C)}$} & \text{ds} \end{split}$$

+ $Mkb k_{L^{q}_{t}(L^{q})} kuk_{L^{1}_{x}([0;t]C)}^{t}$

where the constant C depends on T;

, the exponents p;q;s, the constant in structural assumption (1.14) and the constant bounding pattern size.

Conclude Theorem 2.9 We can now make all the constants explicit in the propagation of regularity with,

$$(MM=x)^{1=(1+s)} \cdot (x)^{1=(1+s)}; \qquad \qquad M \stackrel{?}{=} x; M \cdot x; \\ M(x) \stackrel{1+(1=p-1=q)}{\longrightarrow} (x)^{1+(1=\frac{p-1=q}{p-1=q})}; \qquad \qquad M \cdot (x)^{1=p-1=q} \cdot (x)^{1+(1=\frac{p-1=q}{p-1=q})}; \\ Thus; L_2; L_3 \text{ can be expressed as}$$

$$= \exp_{Q} C\{1=h_0\}(x)^{s=(1+s)};$$

$$L_2 = C^2 \int_0^1 j \log h_0 j = h^2_0(x) ka(s) k_{L^q(F)} + kb(\mathfrak{S}) k_{W^{1;q}} ku(s) k_{L^q(C)} ds$$

$$+ (j \log h_0 j^1) ku(t) k_{L^1(C)} ku(0) k_{L^1(C)};$$

$$L_3 = C(j \log h_0 j = h_0) a P_F b_{L^q_{\mathbb{R}[0;T]F}} + (x)^{s=(1+s)} kb k_{L_x(W_{\mathbb{R}^{s;p}})_p}$$

$$+ (x)^{\frac{1}{2} + (\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{q}{2})} ka(t) k_{L^q([0;T]F)} + kb k_{\mathbb{R}^q(W^{1;q})} ku(s) k_{L^q(G)}$$

One can check that this exactly corresponds to (2.9) of Theorem 2.9.Applying the argument to the entire sequence of meshes $(C^{(n)}; F^{(n)})$ concludes the proof of Theorem 2.9.

- 4. Proof of Theorem 3.1. In this section we complete the proof of Theorem 3.1. For simplicity we omit the variable t in the derivation when there is no ambiguity. Throughout the calculation, C denotes a generic constant that only depends on , the exponents p; q and the constant in the structural assumptions (1.14).
- 4.1. The Kruzkov's doubling of variables for the semi-discrete scheme. Notice that any solution u of the rst-order scheme (1.12) satises the following identity:

$$\frac{d}{dt}u_{i} = \frac{1}{i} \sum_{j \geq V}^{X} a_{i;j}u_{j} \quad a_{j;i}u_{i} \quad \mathbf{1}_{VnV}(i) \quad \frac{1}{i} \sum_{j \geq V}^{X} a_{i;j}u_{j}:$$
(4.1)

When i 2 V

the above equality is the upwind scheme. When i 2 (V n V), one has u_i 0 and the above equality reduce to 0 = 0. In this section let us use the notation

$$R_i = \mathbf{1}_{VnV}(i) \frac{1}{-} X a_{i;j} u_j$$
:

The term R_i measures the possible leaking of mass at boundary. It is easy to verify that $R_i \;\; 0$ and

$$\frac{d}{dt} X_{i2V} u_{ii} = X_{i2V} R_{ii}:$$
 (4.2)

The next proposition explains how to bound the time derivative of our semi-norms.

Proposition 4.1. For any solution u of the rst-order scheme (1.12) and any non-negative discrete kernel $fK_{i;j}g_{i;j2V}$, the following inequality holds in the sense of distribution:

$$\frac{d}{dt} \frac{X}{i;j2v} K_{i;j} j u_{i} \quad u_{j} j_{ij} \quad 2 \quad \begin{array}{c} X \quad X \\ (K_{i \circ ;j} \quad K_{i;j}) a_{i \circ ;i} j u_{i} \quad u_{j} j_{j} \\ \vdots \\ X \\ + (2) K_{i;j} \, sgn(u_{i} \quad u_{j}) (D_{i} u_{j})_{ij} i; j2v \\ \\ + \, 2 \, K_{i;j} \, sgn(u_{i} \quad u_{j}) R_{iij} i; j2v \\ \\ = \, A_{K} \, + \, D_{K} \, + \, R_{K} \, : \end{array}$$

Proof of Proposition 4.1. The following equality holds in distributional sense:

$$\frac{d}{dt} \frac{X}{i;j2V} K_{i;j} j u_{i} u_{j} j_{ij}$$

$$= \frac{X}{K_{i;j}} sgn(u_{i} u_{j}) @ \frac{1}{i} \frac{X}{i^{0}2V} a_{i;i^{0}} u_{i0} a_{i^{0};i} u_{i} + R_{i} \frac{1}{j} \frac{X}{j^{0}2V} a_{j;j^{0}} u_{j0} a_{j^{0};j} u_{j} R_{j} A_{ij}$$

$$= 2 \frac{X}{i;j^{2}V} K_{i;j} sgn(u_{i} u_{j}) \frac{1}{i} \frac{X}{i^{0}2V} a_{i;i^{0}} u_{i0} a_{i^{0};i} u_{i} + R_{i} i_{j}$$

$$= 2 \frac{X}{i;j^{2}V} K_{i;j} sgn(u_{i} u_{j}) \frac{1}{i} \frac{X}{i^{0}2V} a_{i;i^{0}} u_{i0} a_{i^{0};i} u_{i} + R_{i} i_{j}$$

Proving the rst equality is nothing but the chain rule applied to the semi-discrete scheme. The second equality follows from symmetry, by switching the indexes i and j, i^0 and j^0 .

The next step is to check that this can be further decomposed into our sum A $_{K}$ + D $_{K}$ + R $_{K}$ plus a non-positive term. Indeed,

By our assumption, $K_{i\,;\,j}$ 0, $a_{i\,;\,j}$ 0 for all $i\,;\,j$ 2 V. It is easy to verify that the third term

$$N_{K} = \begin{cases} X & X \\ X$$

is always non-positive, and it does not vanish only at edges that $sgn(u_{i^0} \quad u_j) = sgn(u_i \quad u_j)$. In addition, one can reformulate A_κ^0 and D_κ^0 as

$$A_{K}^{0} = X X X K_{i\circ;j} \, sgn(u_{i} \, u_{j}) a_{i\circ;i} u_{i} \, K_{i\circ;j} \, sgn(u_{i} \, u_{j}) a_{i\circ;i} u_{j} K_{i\circ;j} \, sgn(u_{i} \, u_{j}) a_{i\circ;i} u_{j} K_{i;j} \, sgn(u_{i} \, u_{j}) a_{i\circ;i} u_{i} + K_{i;j} \, sgn(u_{i} \, u_{j}) a_{i\circ;i} u_{j} \, j$$

$$= X X K K_{i;j} \, sgn(u_{i} \, u_{j}) a_{i\circ;i} j u_{i} \, u_{j} j;$$

$$= X X K K_{i;j} \, sgn(u_{i} \, u_{j}) a_{i\circ;i} u_{j} + K_{i;j} \, sgn(u_{i} \, u_{j}) a_{i;i\circ} u_{j} \, j$$

$$= X X K K_{i;j} \, sgn(u_{i} \, u_{j}) a_{i\circ;i} u_{j} + K_{i;j} \, sgn(u_{i} \, u_{j}) a_{i;i\circ} u_{j} \, j$$

$$= X K K_{i;j} \, sgn(u_{i} \, u_{j}) A_{i\circ;i} \, u_{j} + K_{i;j} \, sgn(u_{i} \, u_{j}) a_{i;i\circ} \, u_{j} \, j$$

$$= X K_{i;j} \, sgn(u_{i} \, u_{j}) A_{i\circ;i} \, u_{j} \, u_{j} \, u_{j} \, j$$

$$= X K_{i;j} \, sgn(u_{i} \, u_{j}) A_{i\circ;i} \, u_{i} \, u_{j} \,$$

Multiplying both sides by 2, one obtains the inequality in the proposition.

From now on we x the kernel $K_{i;j}$ in the above proposition as $K_i e_j^h$ in Denition 2.3 for 0 < h < 1=2 and $e_i = (e_i)_{i2V} 2 (R^d)^V$. Moreover, assume that h maxfx; $\sup_{i2V} je_i x_i jg$. Then the term R_K can be bounded by

Moreover, the term D_{κ} can then be estimated through

The last inequality is a consequence of the following two estimations: Using the bound on the divergence, one has

$$\begin{array}{l} X \\ Ke_{ij2V} \\ kD \, k_{L^{1}(V)} \end{array} \xrightarrow{ \begin{array}{l} D_{i} \, + \, D_{j} \\ 2 \end{array} j u_{i} \quad u_{j} j_{ij} \\ Ke_{i} h j u_{i} \quad u_{j} j_{ij} \quad j \, log \, h j \, k D \, k_{L^{1}(C)} \, k \, u \, k_{;1;;e} \colon i; j_{2V} \end{array}$$

Also, by Holder estimate

The above Holder estimate is for 1 but can be extended to <math>p = 1 in the obvious way.

4.2. Bounding the discrete commutator term. We now investigate the discrete commutator term A_K when $K_{i;j}$ is chosen as $e^{ik_{i;j}}$ in Denition 2.3 for $e^{ik_{i;j}} = (e^i)_{i \ge V} = (R^d)^V$ and $e^i = (e^i)_{i \ge V} = (R^d)^V$ and $e^i = (e^i)_{i \ge V} = (R^d)^V$

$$A_{K} = 2 = X X (K_{i_{0},j}^{eh} \mathbb{R}_{i_{j}}^{h}) a_{i_{0};i} j u_{i} u_{j} j_{j}$$

$$(4.5)$$

We begin by a short lemma about the scaling of the continuous kernel K h.

Lemma 4.2. Take x; y; s 2 R^d such that 0 < h < 1=2 and jsj < h. Then

) Also,

$$r_{K_h}(x y + s) r_{K_h}(x y) (jx yj + h)^{d+2}$$
: (4.7)

We are going to use this lemma to reduce a few terms to simpler forms, with a tolerable error. In particular, the following lemma mimics the continuous commutator estimate in [4], provided that one can nd suitable auxiliary functions $(\mathfrak{E}_i)_{i2V}$ and $(\mathfrak{b}_i)_{i2V}$.

Lemma 4.3. Consider the semi-discrete scheme (1.12) on a mesh (C; F) over R^d as in Denition 1.5, having discretization size x and satisfying the structural assumptions (1.14). Let $(a_{i;j})_{(i;j)2E}$ be the coecients of the scheme and let $D=(D_i)_{i2V}$ be the discrete divergence dened as in (2.3)? Let b(x) be a continuous velocity eld on R^d and denote $(b_i)_{i2V}=eP_Vb$. Choose virtual coordinates $(\mathbf{e}_i)_{i2V}$ on the mesh satisfying

$$j_{\mathbf{R}_{i}} \quad \mathbf{R}_{i^{0}} j < M; \quad 8(i; i^{0}) \ 2 \ E;$$
 $j_{\mathbf{R}_{i}} \quad x_{i} j < M; \quad 8i \ 2 \ V:$ (4.8)

Let $\Re_{i,j}^h$ be as in Denition 2.3 corresponding to $(\Re_i)_{i2V}$ and let $(r_i(t))_{i2V}$ be the residue function given by

$$X$$
 e $i^{0}2@fig}(\mathbf{e}_{i^{0}} \quad e_{i})a_{i^{0};i} = b_{ii} + r_{ii}; \quad 8i \ 2 \ V:$ (4.9)

Then the discrete commutator term A K given through (4.5) can be bounded by

provided that 1 p < q 1, maxf1 1=q; 1=2g, and M < M < h_0 < h.

Note that conditions (4.8) and (4.9) exactly correspond to (3.1) and (3.2) in Theorem 3.1 once the time-dependency is removed.

Proof. We have that

By Lemma 4.2 and assumption (4.8), one has that

$$(K_{\underline{e}^0 h j} \quad \overset{e}{K^i h}) \quad r \, K^h \, (\textbf{xe}_i \quad \textbf{xe}_j) \, \left(\textbf{xe}_{i^0} \quad \textbf{xe}_i\right) \quad \underbrace{C \, M^{\, 2}}_{\left(\textbf{j} \, \textbf{xe}_i \, \frac{\textbf{xe}_j \, j \, + \, h\right)^{d+2} \, \left(\textbf{j} \, \textbf{x}_i \, \frac{\textbf{x}_j \, j \, + \, h\right)^{d+2} \, \cdot}_{\textbf{x}_j \, j \, + \, h\right)^{d+2}} :$$

Therefore one can bound $A_{\kappa}^{(2)}$ by

For $A_K^{(1)}$, one can apply the identity (4.9) to obtain

$$A_{K}^{(1)} = X X X r K^{h} (xe_{i} xe_{j}) (xe_{i0} xe_{i}) a_{i0;i} j u_{i} u_{j} j_{j}$$

$$X = r K^{h} (xe_{i} xe_{j}) b_{fi}^{n} j u_{i} u_{j} j_{j}$$

$$X + r K^{h} (xe_{i} xe_{j}) r_{ii} j u_{i} u_{j} j_{j}$$

$$= A_{K}^{(1;1)} + A_{K}^{(1;2)}$$

Repeating the argument on $A_K^{(2)}$, we bound the residue term $A_K^{(1;2)}$ by

$$A_{K}^{(1;2)} = X_{rK^{h}(xe_{i} xe_{j}) r_{ii}ju_{i}} u_{j}j_{j}$$

$$X_{rK^{h}(xe_{i} xe_{j}) r_{ii}ju_{i}} u_{j}j_{j}$$

$$X_{rij2V} C_{rij2V} (j_{x} y_{j} + h)^{d+1}r_{i}ju_{i} u_{j}j_{ij}$$

$$C(1=h)krk_{L^{p}(C)}kuk_{L^{p}(C)}$$
:

Finally, symmetrize the expression of $A_{\,K}^{(1;1)}$ to obtain

$$\begin{split} A_{K}^{(1;1)} &= \sum_{\substack{i;j \geq V \\ i \neq j \geq V}}^{X} r K^{h} \left(x e_{i} - x e_{j} \right) b_{i} e_{j}^{k} u_{i} - u_{j} j_{j} \\ &= \frac{1}{2} \sum_{\substack{i;j \geq V }}^{X} r K^{h} \left(x e_{i} - x e_{j} \right) \left(b e_{j} - b e_{j} \right) j u_{i} - u_{j} j_{ij} ; \end{split}$$

Choose measurable sets $(V_i)_{i2V}$ R^d and a piecewise constant extension $u^V = P_{i2V} u_i \mathbf{1}_{V_i}$ by Lemma 2.6. Those satisfy

$$Z$$
 $jV_{i}j = {}_{i} = {}_{i}; \quad \sup_{x \ge V_{i}} jx \quad x_{i}j < 2x; \quad 8i \ge V; \quad V_{i} \setminus V_{j} = ?; \quad 8i; j \ge V:$

and

[supp u^V B(0;1) B(0;3) V_i :

This leads us to introduce the continuous commutator term

$$A_{K}^{(1;1;1)} = \frac{1}{2} \sum_{R^{2d}} r K^{h} (x y) (f(x) f(y)) j u^{V} (x) u^{V} (y) j dxdy$$
:

Notice that supp u^V

+ B(0; 1) and supprK^h 2 B(0; 2). Then for x **2**

+ B(0;3),

either y **≥**

+ B(0; 1), making $ju^{V}(x)$ $u^{V}(y)j = 0$, or y 2

+ B(0; 1), making r K h (x

y) = 0. The same argument applies to y. As a consequence, the integral formulating $A_{K}^{(1;1;1)}$ can be taken over any subset of R^{2d} including + $B(0;3)^{-2}$. In particular,

$$A_{K}^{(1;1;1)} = \frac{1}{2} \sum_{\left(\sum_{i \geq v} V_{i} \right)^{2}}^{K} r K^{h} (x y) (b (x) b (y)) j u^{V} (x) u^{V} (y) j dxdy:$$

Combine the above discussion with Lemma 4.2 and assumption (4.8), one has

$$2A^{(1;1;1)} \quad A^{(1;1)} = \begin{cases} & r \, K^{\,h} \, (x - y) \, (b_{1}(x) - b_{2}(y)) j u^{\,V} \, (x) - u^{\,V} \, (y) j \, dx dy \\ & (S_{i \mid 2 \mid V} \, V_{i})^{2} \\ & X \\ & r \, K^{\,h} \, (xe_{i} - xe_{j}) \, (b_{1}^{\,h} - b_{1}^{\,h}) j u_{i} - u_{j} j_{ij} \\ & X \\ & & r \, K^{\,h} \, (xe_{i} - xe_{j}) \, (b_{1}^{\,h} - xe_{j}) \, (b_{1}^{\,h} - xe_{j}) \, (b_{1}^{\,h} - xe_{j}) \, (b_{2}^{\,h} - xe_{j}) \, (b_{3}^{\,h} - xe_{j}) \, (b_{3}^$$

Finally, the continuous commutator term $A_K^{(1;1;1)}$ can be estimated by Lemma 16 in [4]. The paper [4] also considered some non-linearity within the advection equation, which makes the formulations more complicated than what we need here. For the sake of completeness, we thus restate a simplied version of Lemma 16 in [4] with the notations of our paper.

Lemma 4.4. (Lemma 16 in [4], reformulated) Assume that for some 1 < q/r < 1, we have u 2 L^{q;1} and b belonging to Besov space B¹_{q;} Then provided 1 1=r,

ļ

We are going to apply this lemma by taking b = 6, u = u^V and r = maxfq;2g. First we recall the classical bound krbk_{Bq,q,2} Ckrbk_{Lq} Ckbk_{W1;q}. We also remark that e b is dened e on , but one can nevertheless extend it to R^d with kbk_{W1;q(R^d)} Ckbk_{W1;q(R)}. We also recall that, since we consider a bounded domain and assume

1 p < q 1, then o kuk_{Lq;1} Ckuk_{Lp}.

Therefore, for 1 = 1 = r = maxf1 = 1 = 2g, one has

$$2A_{K}^{(1;1;1)} = \prod_{R^{2d}} r K_{h} (x y) (b(x) b(y)) ju^{V} (x) u^{V} (y) j dxdy$$

The terms involving u^V can be further bounded by the discrete density $(u_i)_{i2V}$. In particular, applying Lemma 2.5 by choosing $u=v=u^V$, $f_k;g_k:R^d!$ R^d , k=1;2 satisfying $f_1(x)=f_2(x)=\mathbf{g}_i$ for all x 2 V_i , and $g_1(x)=g_2(x)=x$ for all x 2 R^d , one has

$$Z = \sum_{R^{2d}} K^h(x-y) j u^V(x) - u^V(y) j \, dx dy \, C = K^h \underbrace{ej}_{i,u_i} u_i j_{ij} \, j \, log \, hjkuk_{h_0;1;\underline{w}} :_{i;j \, 2V}$$

This nally leads to the estimate

$$\begin{array}{lll} A^{(1;1)} & \text{C} j \log h j \, k \, \text{div} \, b k_{L^1(C)} \, k u \, k_{h_0;1;;\alpha} \, + \, k b k_{W^{1;q}} \, k u \, k_{L^p(C)} \, + \, C \\ \kappa & M \! = \! h^2 k b k_{L^q} k u \, k_{L^q(C)} + \, C (x \! = \! h) k b k_{W^{1;q}} \, k u \, k_{L^q(C)} ; \end{array}$$

Combine the estimate for $A_k^{(1;1)}$, $A_k^{(1;2)}$ and $A_k^{(2)}$, we conclude (4.10), which nishes the proof of Lemma 4.3.

We are now ready to conclude the proof of Theorem 3.1.

Proof of Theorem 3.1. Let us rst consider the case m=1, i.e. the $(\mathbf{z}_i)_{i2V}$ are time-independent instead of just piecewise constant along time.

Then by Denition 2.3 and Proposition 4.1, one has that

Substituting $A_K(s) + D_K(s) + R_K(s)$ by (4.3), (4.4) and (4.10), and rearranging the terms, one deduces that

$$\begin{array}{c} ku(t)k_{h_0;1;;\alpha} & ku(0)k_{h_0;1;;\alpha} \\ & Z_t \\ & + C & k\,div\, \mathfrak{F}(s)k_{L^1(C)}ku(s)k_{h_0;1;;\alpha} + kb\mathfrak{F}(s)k_{W^1;q}\,ku(s)k_{L^p(C)} \\ & + kD(s)k_{L^1(C)}ku(s)k_{h_0;1;;\alpha} + ku(s)k_{L^p(C)}kD(s)k_{h_0;p;p(-1=p);\alpha} & ds \\ & Z_t \\ & + C & j\log h_{0}j \ M^2 = h^2\chi \ k(a_{i;j}(s))_{i;j2}\nu\,k_{L^q(F)}ku(s)k_{L^q(C)}o \\ & + j\log h_{0}j \ M = h^2 \ kb(\boldsymbol{\mathcal{F}})k_{L^q}ku(s)k_{L^q(C)} \\ & + (j\log h_{0}j \ x = h^2)k_0^{0}(\boldsymbol{\mathcal{F}})k_{W^1;q}ku(s)k_{L^q(C)} \\ & + (j\log h_{0}j^1 \)k(R_i(s))_{i2}\nu\,k_{L^1(C)} & ds \\ & Z_t \\ & + C \ (j\log h_{0}j \ = h_{0})k(r_i(s))_{i2}\nu\,k_{L^p(C)}ku(s)k_{L^p(C)}\,ds; o \end{array}$$

We can change the $ku(s)k_{h_0;1;;\alpha}$ norms into $ku(s)k_{h_0;1;}$ norms through Proposition 2.7 with h_2 = M,

Here we rewrite the last term of L₂ by

where we use R_i 0 and identity (4.2). The coecient $1 + C(M=h_0)$ is multiplied twice because Proposition 2.7 is actually applied to the left and right hand side separately. Since $k(t) = minfk : t < t_kg = 1$ (as we assume m = 1) we have k(t) + 1 = 2, so all coecients matches to (3.3), which nishes the proof for the case m = 1.

When m > 1, within each interval $[t_{k-1};t_k]$ we still have constant $(\mathbf{x}_i^{(k)})_{i2V}$ constant, and the semi-norm $ku(t)k_{h_0;1;j_{\mathbf{g}}(k)}$ propagates exactly as above. However, at every endpoint t_k one need to shift from $(\mathbf{x}_i^{(k)})_{i2V}$ to $(\mathbf{x}_i^{(k+1)})_{i2V}$, yielding an extra $C(M=h_0)$ factor.

Dene

$$\begin{split} L_1(;t) &= C & k \, \text{div} \, \Re(s) k_{L^1(C)} k u(s) k_{h_0;1;} + k b \Re(s) k_{W^{1;q}} k u(s) k_{L^p(C)} \\ & + k D(s) k_{L^1(C)} k u(s) k_{h_0;1;} + k u(s) k_{L^p(C)} k D(s) k_{h_0;p;p(-1=p)} & \text{ds} \\ Z_t & \\ J \log h_{0} j \quad M^2 &= h^2 x k_0 (a_{i;j}(s))_{i;j2V} k_{L^q(F)} k u(s) k_{L^q(C)} \\ & + j \log h_{0} j \quad M = h^2 k b(\mathfrak{S}) k_{L^q} k u(s) k_{L^q(C)} + \\ & (j \log h_{0} j \quad x = h^2) k b(\mathfrak{S}) \Re_{W^{1;q}} k u(s) k_{L^q(C)} \\ & + (j \log h_{0} j^1) k(R_i(s))_{i2V} k_{L^p(C)} & \text{ds} \\ Z_t & \\ L_3(;t) &= C & (j \log h_{0} j \quad = h_{0}) k(r_i(s))_{i2V} k_{L^p(C)} k u(s) k_{L^p(C)} & \text{ds} . \end{split}$$

We now argue by induction that

$$ku(t)k_{h_0;1;;\mathfrak{e}^{(k)}} \quad 1 + C(M=h_0) \int_{k}^{(t)-1} (ku(0)k_{h_0;1;;\mathfrak{e}^{(1)}} + L_1(0;t) + L_2(0;t) + L_3(0;t))$$

by induction. The base case k = 1 was obtained as before, and for k > 1, one has

$$\begin{split} ku(t)k_{h_0;1;;\textbf{e}^{(k)}} & \quad ku(t_k)k_{h_0;1;;\textbf{e}^{(k)}} + L_1(t_{k-1};t) + L_2(t_{k-1};t) + L_3(t_{k-1};t) \\ & \quad \quad 1 + C(M=h_0) \ ku(t_k)k_{h_0;1;;\textbf{e}^{(k-1)}} + L_1(t_{k-1};t) + L_2(t_{k-1};t) + L_3(t_{k-1};t) - 1 \\ & \quad \quad + C(M=h_0) \ \frac{(t)^{-1}}{k} (ku(0)k_{h_0;1;;\textbf{e}^{(1)}} + L_1(0;t) + L_2(0;t) + L_3(0;t)) ; \end{split}$$

Finally, multiplying by $1 + C(M=h_0)$ twice more, we are able to replace the discrete semi-norm on both sides to $ku(t)k_{h_0;1}$; or $ku(0)k_{h_0;1}$. This gives

$$ku(t)k_{h_0;1}; \quad 1 + C(M=h_0) {}_{k}^{(t)+1}(ku(0)k_{h_0;1}; + L_1 + L_2 + L_3)$$

$$= (L_0 + L_1 + L_2 + L_3);$$

which nishes the proof of Theorem 3.1.

5. Proof of Theorem 3.3. This section is devoted to the proof of Theorem 3.3. We rst note that all of our estimates are on domains with bounded measure, which lets us immediately bound any L^p or $W^{s;p}$ norms by L^q or $W^{s;q}$ with any q p.

Within this section, the generic constant C that we use depends on , the exponents p; q and the constant in the structural assumptions (1.14), and also on T and the exponent s in the statement of Theorem 3.3.

Step 1: Constructing the space and time partitions. Choose m 2 N, and introduce the straightforward time partition

$$0 = t_0 < t_1 < < t_m = T;$$

= $\frac{T}{m}$, $t_l = (l=m)T$ $8l = 0; :::; m:$

A very small choice of time step will lead to large terms in (3.3), while a larger value of allows the velocity eld to oscillate more in each time interval making controlling L₃ in (3.3) more dicult. Thus, determine the optimal choice of turns out to a key step of the proof.

the partition is more complicated in the spatial direction. We divide the mesh into large partitions roughly corresponds to large hypercubes of size with x that will be determined later. At this moment, it suces to assume that we have for example 8 x 1.

More precisely, we divide into subdomains f

kgk2J, roughly centered around points fykgk2J 2 Rd such that

$$B(y_k;)$$
 $k = B(y_k; C)$ and $j@$
 $k = i C^{d-1}$:

Next, choose a partition $fV_k g_{k2J}$ of the index set \overline{V} , by assigning i 2 V to any V_k such that

By denition supp i \

= ? and one can nd at least one

 $_{k}$ intersecting supp $_{i}$ so that $_{k \, 2 \, i} \, V_{k} = V$

By denition U_k U_k and it is easy to verify that

$$U_k$$
 c $_k$ + B_x ; k U_k + B_x ; and c 1d k $_kk_{L^1}($

Moreover, for all k 2 J, dene the \boundary" of V_k as those indices that do not intersect with any index in another part of the domain or

@
$$V_k = V_k \, n \, fi \, 2 \, V_k \, j \, if \, j \, 2 \, V \, and \, supp_i \setminus supp_j = ?; \, then_k(supp_j) \, 1g$$
:

Then this boundary has codimension 1 in the sense that by decomposing $k = {0 \choose k} + {1 \choose k}$

$$V_{k}^{(0)} = V_{i}^{(0)};$$
 $V_{k}^{(1)} = V_{i}^{(1)};$ $V_{k}^{(0)} = fx \ 2 \ R^{d} : V_{k}^{(0)}(x) = 1g;$

one has

$$_{k}$$
 $U^{00} + _{B_{4x}}^{k}$; $(U_{k} n U^{00})$ @ $_{k} + B_{4x}$; $k^{(1)} k_{L^{1}} C^{d} x$:

Observe that the number <code>jJj</code> of domains k can be estimated by jJj j

j=d. Hence the previous estimates yield

For later discussion, we dene @V = $_{k2J}$ @V_k as the set of all boundary indices, and @E = f(i; j) 2 E: i 2 @V or j 2 @Vg the set of all boundary edges.

Step 2: Constructing the virtual coordinates in Theorem 3.1. Introduce

$$(\mathfrak{G}_{i}(t))_{i2V} = P_{C}\mathfrak{G}(t); \quad (\mathbf{e}_{i;j}(t))_{i;j2V} = P_{F}\mathfrak{G}(t):$$

the discretization of $\Re(t; x)$ on faces and cells as in (2.1) and (2.2) respectively.

We introduce another piecewise constant velocity eld corresponding to the partition we just constructed: For all 1 | m and all k 2 J, we take the average of b(t;x) on $[f_1;t_1]$ V_k in the following sense

$$b^{1;k} = \frac{1}{\int_{0}^{1} \frac{t_{1}}{\int_{0}^{1} \frac{t_{1}}}{\int_{0}^{1} \frac{t_{1}}{\int_{0}^{1} \frac{t_{1}}{\int_{0}^{1} \frac{t_{1}}{\int_{0}^{1} \frac{t_{1}}{\int_{0}^{1} \frac{t_{1}}}{\int_{0}^{1} \frac{t_{1}}}{\int_{0}^{1} \frac{t_{1}}}{\int_{0}^{1} \frac{t_{1}}}{\int_{0}^{1} \frac{t_{1}}{\int_{0}^{1}$$

and dene the \piecewise" extension b(t; x) by

$$b(t;x) = X_{k(x)}b^{l;k}; 8(t;x) 2 [t_{l-1};t_{l})$$

We nally introduce as before the discretization on faces and cells of b(t; x),

$$(b_i(t))_{i2V} = P_C b(t); (a_{ij}(t))_{i;j2V} = P_F b(t):$$

The extension b(t;x) from $(b^{1;k})_{1|m;k2|}$ is not exactly piecewise. Nevertheless, by our construction in Step 1, each k has compact support on U_k , with k = 1 on the set U_k^0 , with U_k n U_k small. In such sets U_k , one has that $b = b^{l/k}$. Moreover, for interior indices i 2 V_k n @ V_k , $a_{:i}(t)$ and $b_i(t)$ are not only the discretization of b(t;), but also coincide with the discretization of the constant velocity eld b^{l;k}.

Theorem 3.3 assumes that Denition (3.5) applies for constant elds. This yields virtual coordinates (\(\pa_i(b_c)\)_{i2V}; bc 2 Rd,

Inspired by (5.1), we choose piecewise constant in time virtual coordinates on the mesh $(xe_i(t))_{i2V}$ by

$$\mathbf{e}_{i}(t) = \mathbf{\hat{x}}_{i} \ b_{i}(t) \ ; \ 8t \ 2 \ [0; T]; i \ 2 \ V:$$

By our construction, we can see that on each time interval $(t_{k-1};t_k)$, the virtual coordinates $(\mathbf{r}_{i}(t))_{i2V}$ are time-independent and we may use the notation $(\mathbf{r}_{i}^{(k)})_{i2V}$ as in Theorem 3.1.

It is straightforward to deduce the uniform bounds

$$\begin{split} \sup_{(i;i^0)2E;1km} & _{i}^{\mathbf{g}^{(k)}} & _{i}^{\mathbf{g}^{(k)}} & _{i^0}^{\mathbf{g}^{(k)}} < 2M; \\ \sup_{i2V;1km} & j_{\mathbf{g}^{(k)}_i} & x_i j < 2M; \end{split}$$

because the $(\mathbf{z}_i^{(k)})_{i2V}$ are obtained through $(\mathbf{\hat{x}}_i(\mathbf{b}_c))_{i2V}$. Therefore, those virtual coordinates satisfy the requirement of Theorem 3.1.

We reformulate the residue equation (3.2) as

$$\begin{array}{lll}
X \\
(xe_{i0}(t) & & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Note that if i 2 V n \overline{V} e e

, one has $a_{i^0;i}$ 0 for all i^0 2 V and b_i = $(P_F b)_i$ = 0. Hence the residue r_i vanishes for all i 2 V n V

Subtracting (5.2) from (5.3), we obtain

By denition, we have $j^{*}(b_{i}(t))j(f_{max})_{i}jb_{i}(t)j$ with in addition,

$$\begin{array}{llll} & k(e_{i;j} & a_{j})_{i;j \geq V} k_{L^{p}([0;T]F)} & e & kP_{F}(b & b) k_{L^{p}([0;T]F)} e^{C}kb & bk_{L^{p}([0;T]} e^{C$$

Therefore, the main obstacle to bound $krk_{L^p([0;T]C)}$ is to derive good estimates on kg bk_{L^p} .

Step 3: Bounding kbe bk $_{P}$. We introduce the average in time of b(t; x) by Z

$$b^{l}(x) = g(t; x) dt; 8x 2$$

 $b^{0}(t; x) = b^{l}(x); 8(t; x) 2 [t_{l-1}; t_{l})$
:

It is obvious that the two ways of averaging of velocity eld

and the discretizations P_C , P_F are all linear mappings.

We can rst quantify the oscillation in time by comparing $b \otimes nd b^0$. For xed x 2 R^d, the function $b^0(;x)$ is constant on each time interval $[t_{l-1};t_{l})$, 1 I m. Therefore,

where I(t) denotes the interval 2 $[t_{l-1};t_{l})$.

Since t_{l} $t_{l-1} =$, we have that

$$Z_{[0;T]} = e_{p} = e_{p}$$
 $b(t;x) = b^{0}(t;x) = dxdt$
 $Ckbk_{L_{x}(W^{1;p})([0;T]}$

Through interpolation, this shows that for 0 s 1,

$$\begin{array}{lll} & k \mbox{\it ff} & b^0 k_{L^p([0;T]} & e & & \\ & & C^s k b k_{L^p(W^{s;p})([0;T]} & & & \\ & & & & & \\ \end{array}$$

We can also bound spatial oscillations on b thanks to b⁰. For any t, denote I s.t. t 2 $[t_{l-1};t_{l})$, and write

$$b(t;x) = \frac{X}{k(x)b^{1;k}} = \frac{X}{k(x)} \frac{1}{jt_1 - t_1 - jk_k k_{L^1}} Z$$

$$= \frac{X}{k(x)} \frac{1}{jt_1 - t_1 - jk_k k_{L^1}} = \frac{Z}{k(x)} \frac{E(t;y) - k(y) dtdy}$$

$$= \frac{X}{k(x)} \frac{1}{k(x)k_{L^1}} - b^0(t;y) - k(y) dy;$$

$$= \frac{X}{k(x)} \frac{1}{k(x)k_{L^1}} - b^0(t;y) - k(y) dy;$$

Therefore,

C
$$b^0(t;x) \quad b^0(t;y)^q \ dy dx :$$

$$\begin{matrix} [0;T]_{k2J} & k & U_k \\ U_k \end{matrix}$$

We recall that the last part of our assumption (1.14) states that fk 2 V: (supp.) \ B(x;x) = g C for all x 2 R^d. From their construction, any point x 2

by which we conclude

$$kb^{0}$$
 $bk_{L_{q}([0;T]}$ e_{q}) $Ckbk_{L_{t}(W^{1;q})([0;T]}$):

Finally for any 1 p < q 1, one obtains that

As we mentioned in Step 2, one can also bound $(\mathbf{e}_{i;j} \quad \mathbf{e}_{j})_{i;j,2V}$ and $(\mathbf{b}_{i}^{e} \quad \mathbf{b}_{i})_{i2V}$ by the right hand side of (5.5).

Step 4: Optimizing all parameters. We nally combine all previous estimates to try to derive the best bound on the residue term $(r_i(t))_{i2V}$.

On the interior set \overline{V}

n@V, by expanding (5.4) and using that $je_{i0}(t) e_{i}(t) j$ 2M, we have that

$$\operatorname{kr} \mathbf{1}_{\overline{V}}$$
 e

We recall that the admissible family of virtual coordinates has residue bound M in $L^{1=(1=p-1=q)}$. Applying (5.5) and using 1 < (M=x) leads to

As for the boundary @V, we directly expand (5.3) to nd that

$$\begin{array}{l} \text{kr } \mathbf{1}_{@V} k_{L^{p}([0;T]C)} \\ C(M=x) k(a_{i;j})_{i;j2V} \, \mathbf{1}_{@E} k_{L^{p}([0;T]F)} + k(b_{i})_{i2V} e \mathbf{1}_{@V} k_{L^{p}([0;T]C)} \\ C(M=x)(x=) T j \\ i^{1=p-1=q} k(a_{i;j})_{i;j2V} k_{L^{q}([0;T]F)} + kbk_{L^{q}([0;T]} \end{array}$$
 e j $k(a_{i;j})_{i;j2V} k_{L^{q}([0;T]F)} + kbk_{L^{q}([0;T]}$ e

by Holder inequality.

+ CMkb\Lq([0;T]

Since the residue r_i vanishes for all i 2 V n \overline{V} , we have

We are now ready to choose the parameters $\,$ and $\,$. We also need to control the term = $\,$ 1 + $\,$ C(M=h_0) $\,$ $\,^{(t)+1}$ in Theorem 3.1, where k(t) represents the number of times ($\mathbf{z}_i(t))_{i2V}$ jumps within [0;t]. Notice that by increasing the constant C we have $\,$ exp Ck(t)(M=h_0) $\,$, and we can bound k(t) by k(T) CT=. To control L_3 and

simultaneously, we use the following choice

=
$$(x)^{1+(\frac{1-p-1-q}{1-p-1-q})};$$
 = $(xM=M)^{1-(1+s)}$:

It rst results the claimed bound on in (3.6), namely

=
$$\exp C(1=h_0)(M^sM=x)^{1=(1+s)}$$
:

This also yields a bound on the main residue term L₃ in Theorem 3.1 by

$$L_3 = C(j \log h_0 j = h_0) \underset{t}{k_r} \underset{k_L^1 L_x([0;t]C)}{k_r} \underset{t}{k_u} \underset{k_L^1 L_p([0;t]C)}{k_u} \\ C(j \log h_0 j = h_0) \underset{t}{k_r} \underset{k_L^p L_p([0;t]C)}{k_r} \underset{t}{k_u} \underset{k_L_p L_x}{k_u} \underset{[0;t]C)}{(0;t]C)} ;$$

Inserting (5.8) on $krk_{L^p([0;T]C)}$ nally provides "

which nishes the proof of Theorem 3.3.

- 6. Proof of Theorem 3.4. We rst reduce, in subsection 6.1, the innite linear system (3.7) to a nite linear system whose variables are $f *_i g_{i2V_0}$, by making use of the periodic nature of the mesh. Due to the geometric nature of the meshes, both the matrix and the inhomogeneous term in the linear system have certain properties, which we focus on in subsections 6.2 and 6.3. Finally, in subsection 6.4 we conclude the uniform boundedness result.
 - 6.1. The linear system for periodic meshes. We rewrite (3.7) as

$$P_{j_2V} a_{j;i}(b_c) *_{i}(b_c) = P_{j_2V} a_{j;i}(b_c) *_{j}(b_c) b_{ci}; 8i 2 V: (6.1)$$

Since the mesh is periodic as in Denition 1.6, we are looking for periodic solutions as well, namely solutions satisfying

$$\Re_{[m](i)}(b_c) = \Re_i(b_c) + [m]L; \quad 8b_c \ 2 \ R^d; [m] \ 2 \ Z^d; i \ 2 \ V;$$
 (6.2)

where [m]L = ${}^{P}_{k=1}^{d} m_k L_k 2 R^d$.

The following lemma makes explicit the nite linear systems that the variables \Re_i , reduced to i 2 V₀, need to solve to be solutions to (6.1) over the full mesh. Lemma 6.1. Let (C; F) = $f_i g_{i2V}$; $f_{n_{i;j}} g_{(i;j)2E}$ be a periodic mesh as in Denition 1.6 and

b b_c be a constant velocity eld. Consider a function $(\Re_i)_{i2V}$ dened on all cells,

satisfying (6.2). It is a solution of (6.1) if and only if its restriction $(x_i)_{i \ge v_0}$ satisfying the following nite linear system: for all i 2 V₀,

In the formulation above we let $a_{[m](j);i} = 0$ if [m](j) lie outside the mesh V.

Proof. By Denition 1.6, for any i 2 V_0 and any I 2 V_0 , such that $a_{i,i} = 0$, there exists unique (j; [m]) 2 V_0 Z^d such that I = [m](j). Therefore (6.1) is identical to

By the periodic condition (6.2), this is also identical to (6.3), which nishes the proof. We now introduce matrix notations on (6.3) to simplify the discussion in later subsections,

$$A(b_c) = (A_{ij}(b_c))_{i;j \geq V_0}; \quad A_{ij}(b_c) = P_{[m] \geq Z^d} a_{[m](i);j}(b_c):$$

Then the linear system (6.3) can be rewritten as

$$_{ii}(b_c)\Re_i(b_c) = P_{j2V_0} A_{ji}(b_c)\Re_j(b_c) + '_i(b_c);$$
 8i 2 V₀;

or more compactly,

$$(A^{T})(b_{c})\Re(b_{c}) = '(b_{c});$$
 (6.4)

where $(A^T)(b_c)$ is a square matrix in $R^{V_0V_0}$ and $\Re(b_c)$; ' $(b_c) \ge R^{V_0d}$. We emphasize that (6.4) each d coordinate separately, namely it should be understood as

$$(A^{T})(b_{c}) * (b_{c}) = '(b_{c}); = 1:::d;$$

with the same matrix (A^{T})(b_{c}) for each coordinate.

We may also omit the variable b_c 2 R^d in the bracket when there is no ambiguity.

6.2. Recasting (6.4) into a discrete diusion operator. We can characterize the matrix (A^T) in the following manner.

Proposition 6.2. Dene the space of discrete diusion operators as

$$M(n) = M 2 R^{nn} : M_{ii} 0; M_{ij} 0; \prod_{l=1}^{P} M_{il}^{n} = \prod_{l=1}^{P} M_{li}^{n} = 0; 8i; j = 1; ...; n; i = j : Then for all $b_c 2 R^d$, $(A^T)(b_c) 2 M(jV_0j)$.$$

Proof. The condition M_{ii} 0 in the denition of M(n) is actually redundant. It can be easily derived by the conditions Mij 0 and $\int_{1}^{1} M_{il} = 0$. Thus, if suce to check that (A) satises the remaining properties in the denition.

Firstly, since A^T is non-negative and is diagonal, it is obvious that the non-diagonal entries of (A^T) are non-positive.

Secondly, the identity $P_{12V_0}(A^T)_{i1} = 0$ can be derived by an expansion $P_{12V_0}(A^T)_{i1} = 0$ can be derived by an expansion $P_{12V_0}(A^T)_{i1} = 0$ $P_{12V_0}(A^T)_{i1} = 0$

Now turning to the last property, as the velocity eld is constant, we have that $a_{[m](i):1} =$ $a_{i;[\ m](I)}$. By taking the same expansion as before, we have

$$P \\ |_{12V_0} (A^T)_{Ii} = P \\ |_{12V_0} P \\ |_{12V_0} P \\ |_{12V_0} |_{[m]2Z^d} a_{[m](I);i}$$

$$P \\ |_{12V_0} P \\ |_{12V_0} P \\ |_{12V_0} P \\ |_{12V_0} |_{[m]2Z^d} a_{[i](I);i}$$

Hence to prove P_{12V_0} (A^T)_{Ii} = 0, it suces to show that P_{12V} a_{I;I} = 0;

Since the constant velocity eld is divergence-free, applying the divergence theorem to the extended cell C₁, we have

which nish the proof.

Our next result is an inequality bounding the entries of '(bc) by the entries of (A^{T})(b_{c}), which still relies on the divergence theorem but in a more intricate way.

Proposition 6.3. For all $b_c \ 2 \ R^d$ and $V_1 \ V_0$, the inhomogeneous term '(b_c) in the linear system (6.4) satises

$$P_{i_2V_1}'(b_c) C(V_0) P_{i_2V_1;j_2V_0nV_1} jA_{ij}(b_c)j + jA_{ji}(b_c)j;$$

where

$$C(V_0) = \sup_{x;y \ge S} \sup_{i \ge V_0 \text{ supp } i} jx \quad yj:$$

Proof. By choosing an appropriate basis of R^d, we may assume 0 2 $_{i\,2\,V_0}^{S}$ supp $_i$ and b = $_c$ (0;:::;0;1) without loss of generality. For r = 1;:::;(d 1), we then have $_{i\,2\,V_0}^{P}$ $_{i\,2\,V_0}$

while for k = d, the equation reads

while for k = d, the equation reads
$$('_i)_d = \Pr_{1 \ge V_0 \text{ [m]} 2Z^d} P P_{\text{max}} P$$

$$x_r b_c r$$
 $P_{i 2 V_1 i}(x) dx = Z$ $P_{i 2 V_1 i}(x) dx = 0$:

For k = d, we have instead that div x_d $b_c = @_dx_d = 1$, leading

$$Z_{x_d b_c r} \stackrel{P}{\underset{i_2 V_1}{}_{i}(x)} dx = Z_{div} x_d b_c \stackrel{P}{\underset{i_2 V_1}{}_{i}(x)} dx = P_{i_2 V_1 i}$$

We can summarize all those relation in vector form, as

$$'_{i} = P P P P P_{[m]2Z^{d}} a_{[m](i);i} P_{p=n_{1}} m_{p} L_{p} b_{ci};$$
 i 2 V_{0} ;

and

Z
$$P_{i2V_1i}(x) dx = P_{i2V_1}b_{ci}$$

For any i; j, denote

Notice that $n_{[m](j);i}(x) = n_{j;[-m](i)}(x - p_{p=1}^n m_p L_p)$ by our periodic assumption, so that one obtains that

$$'_{i} = \frac{P}{j_{2} V_{0}} \frac{P}{[m]_{2} Z^{d}} X_{[m^{*}](j);i} X_{[m](i);j} b_{ci};$$
 i 2 V_{0} ;

and the summation of $'_{i}$ over any V_{1} V reads

Decompose

The term Y_1 can be further simplied. By switching i and j and take the inverse m to

Moreover, $P = Z = P = X \cdot b_{c} = X \cdot b_$

Therefore, if we dene

then we obtain that

$$_{i2V_1}'_i = (Y_1 + Y_2) (Y_1 + Y_2 + Y_3) = Y_3$$
:

$$X_{[m](j);i} + X_{[-m](i);j} C(V_0) a_{i;[m](j)} + a_{j;[-m](i)} = C(V_0) a_{[-m](i);j} + a_{[m](j);i}$$
;

by taking the summation over i 2 V_1 ; j 2 V_0 and [m] 2 Z^d , it is straightforward that $jY_3j\ C(V_0)\ jA_{ij}(b_c)j\ +\ jA_{ji}(b_c)j\ ;_{i2V_1;j2V_0\,nV_1}$

$$jY_{3j} C(V_0) jA_{ij}(\hat{b}_c)j + jA_{ji}(b_c)j ; i2V_1; j2V_0nV_1$$

which completes the proof.

6.3. Some properties of discrete diusion operators. To begin with, let us recall the denition of irreducibility. A matrix is irreducible if it is not similar via a permutation of indices to a block upper triangular matrix with more than one block of strictly positive size. An equivalent denition is the following: Each matrix M can be associated to a directed graph G, with n vertices labeled with 1;:::;n. There is an edge from i to j in G if and only if $M_{ij} = 0$. Then M is irreducible if and only if G is strongly connected, i.e. one can reach any vertex starting from any vertex.

Let I = f1;:::; ng, and consider any J; JeI. We denote by the submatrix M (J; J), the matrix obtained by deleting from M all rows whose indexes are not in J and all columns whose indexes are not in Je. More precisely, if $J = fj_1; \dots j_k g$ and $f = fj_k g$ f_{R}^{G} ;::: f_{R}^{G} g, M (J; J^{G}) it is dened by

$$M(J; P)_{i_1;i_2} = M_{j_{i_1};P_{i_2}}$$
:

The following lemma shows that a discrete diusion operator, if it is not irreducible, must be block-diagonal up to a permutation.

Lemma 6.4. For M 2 M(n), there exists a decomposition I_1 [$I_m = I = f1; :::; ng, such$ that for all k 2 f1;:::; mg, the diagonal square submatrix $M(I_k; I_k)$ is irreducible and for all k; $l 2 f1; \dots; mg; k = l$, the submatrix M $(l_k; l_l) = 0$. Moreover, the null space and image of M are

$$N(M) = spanf1_{I_k}g_{k=1}^m;$$

Range M = fx 2 R | : P | P | 12 I | x | x | = 0;81 k mg:

Proof. We are going to prove there exists a decomposition $I_1[I_m = I = f1; :::; ng by$ induction on the dimension n. When n = 1 there is nothing to prove. Let's consider n 2 and assume the decomposition exists for 1;:::;(n 1). If M is an irreducible n n matrix, again there is nothing to prove. If M is reducible, then it is similar to a block upper diagonal matrix via a permutation of indices, which means there exists J I = $f1; :::; ng s.t. M_{ij} = 0 for all i 2 I nJ and j 2 J. Thus$

On the other hand,

$$X X M_{ij} = 0$$
:

Hence

$$X \quad X \quad \stackrel{j}{M} = X \quad X \quad X \quad X \quad X \quad X \quad M_{i j} = 0:$$

Since the o-diagonal entries are all non-negative, one must have $M_{ij} = 0$ for all i 2 J and j 2 I nJ. Therefore M(I;InJ) = 0 and M(InJ;I) = 0.

Furthermore, $M(J;J) \ge M(jJj)$ and $M(InJ;InJ) \ge M(jInJj)$. Note that jJj;jInJj <n. Applying the induction argument on M(J; J) and M(InJ; InJ), we get decompositions $J = I_1^{(1)} [[I^{(1)}]_{m} \text{ and } I \text{ nJ} = I^{(2)}_{1} [[I^{(2)}]_{n}]_{m}. \text{ it is easy to verify that the decomposition}$ $I = I^{(1)} [[I^{(1)}]_{n}]_{n} [I^{(2)}]_{n}$

satises the properties asserted in the lemma.

It remains to determine the null space and range of M. Assume rst that M is irreducible. Let x 2 N(M) and

$$J = fi 2 I : x_i = max_i x_i g:$$

By construction, J = ? and we can argue by contradiction that J = I. If J = I and J = ?, by the irreducibility of M, one can nd i 2 J, j 2 I n J such that $M_{ij} > 0$. However, for any i and so in particular any i 2 J,

$$P_{j} M_{ij} x_{j} = 0$$
:

By our assumption of M,

$$\begin{array}{ccc}
P & P & P \\
& j_{21nfig}(M_{ij}x_j) & & j_{21nfig}M_{ij}max_lx_l = 0;
\end{array}$$

which implies that $x_j = \max_l x_l$ if $M_{ij} > 0$. Therefore, j 2 J whenever i 2 J and $M_{ij} > 0$, a contradiction. In conclusion, we have J = I and $x_i = \text{constant}$ for all i 2 I or N(M) = spanf1g. As any column summation of M is zero, for any x 2 R^I , one has

$$P P M_{ij} X_{j} = P P M_{ij} X_{j} = 0$$
:

Since codim Range M = dim N (M) = 1, one has Range M = fx 2 R¹ : ${}^{P}_{i21} x_i = 0g$. This concludes the proof when M is irreducible.

When M is reducible, we know, up to a permutation, that M is block diagonal and each diagonal block $M(I_k; I_k)$ is irreducible. Applying the previous result to each $M(I_k; I_k)$ completes the proof.

The next lemma allows us to estimate the '1 norm of M 1 when the non-negative entries of M are bounded from both above and below.

Lemma 6.5. Dene

$$M(n; 0; 1) = fM 2 M(n) : M_{ij} = 0 \text{ or } 0 < jM_{ij}j < 1; 81 i; j n; i = j g:$$

Then there exists a constant $C(n;_0;_1) = C_2(n)^{\binom{n-2}{1}} \binom{\binom{n-1}{0}}{0}$ s.t. for any matrix M 2 $M(n;_0;_1)$ and '2 Range M, there exists one \Re satisfying $M\Re$ = 'and $k^{x_0}k_{1}$ $C(n;_0;_1)k'k_{1}$. Moreover, for xed M 2 $M(n;_0;_1)$ let us take the decomposition $I = I_1$ [I_m as in Lemma 6.4. The solution \Re above is uniquely determined by imposing the conditions

$$P_{i21}$$
, $\Re_i = 0$; $8k = 1$;:::;m:

Proof. Let us rst assume that M is irreducible. Let x be a solution of M x = '. Since N (M) = spanf1g, we have that M (x 1) = ' for all 2 R. By taking = 1 0 1 1 x i and 2 = (x 1) we have M 2 = ' and 1 and 2 if it is solution is uniquely determined and it remains to show that there is a uniform bound k 2 k 1 C (n; 0; 1) k 2 k 1 .

Dene

$$\begin{split} J_0 &= f1 \ i \ n : \Re_i = \begin{subarray}{l} $^1 ma_{j_n} \Re_j g; \\ J_k &= f1 \ i \ n : 9j \ 2 \ J_k \ _1 \ s.t. \ jM_{ji} j > 0g \ [\ J_k \ _1; \] \\ D_k &= \max_{i \ge J_k} (\max_{1 j \ n} \Re_j) \ \Re_i g: \end{subarray} \end{split}$$

For i 2 J_k n J_k 1, take j 2 J_k 1 s.t. $jM_{ji}j > 0$, the equality on the j-th entry now reads

$$j\,M_{j\,i}\,j\,\hat{x}_{i}\,+\quad {}^{P}_{\quad k\,=\,j}\,\,j\,M_{j\,k}\,j\,\,\,\hat{x}_{j}\qquad {}^{P}_{\quad k\,=\,i\,;\,j}\,\,j\,M_{j\,k}\,j\,\hat{x}_{k}\quad =\; {}^{\prime}{}_{j}\,:$$

By the fact that the summation of each row of $\boldsymbol{\mathsf{M}}$ is zero, one can rewritten the above equation as

By denition, D $\,\sigma\,$ 0. Hence by induction we obtain h

$$D_{k} = \frac{1 + (n - 2) \frac{1}{0}}{(n - 2)_{1}} k' k'^{1}$$

By the irreducibility of M, unless $J_k = f1$ i ng we have J_k (i.e. J_k is a proper subset of J_k). This implies that $jJ_{k+1}j_{j}J_{k}j+1$ and since $jJ_0j_{j}1$, it proves that that J_{n-1}

Therefore, by taking C(n; 0; 1) and $C_2(n)$ such that

$$C(n;_0;_1) = C_2(n)^{\binom{n}{2}} \begin{pmatrix} \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \end{pmatrix} D_n$$

 $C(n;{}_0;{}_1) = C_2(n)^{\binom{n-2}{1}} \, {}_0^{\binom{n-1}{1}} \, D_{n-1};$ we have $(\max_i \hat{x}_i - \min_i \hat{x}_i) \, C(n;{}_0;{}_1)k'k_{'^1}.$ By $P_{-i}^{}\hat{x}_i = 0$ we have $\min_i \hat{x}_i = 0$ $\max_{k \in \mathbb{N}} \Re_{k}$. Hence $k^{x_{\Lambda}} k_{i_1} C(n; 0; 1) k' k_{i_1}$.

When M is reducible, we know, up to a permutation, that M is block diagonal and each diagonal block $M(I_k; I_k)$ is irreducible. Applying the previous result to each $M(I_k; I_k)$

6.4. Uniform boundedness. We are nally able to show our uniform boundedness result.

Theorem 6.6. Consider M 2 M(n) and ' 2 Rⁿ satisfying that $9C_0 > 0$, $8I^0 I =$ f1;:::ng,

$$P_{j210}' C_0 P_{j210;i21n10} jM_{ij}j + jM_{ji}j :$$
 (6.5)

Then there exists x 2 Rⁿ satisfying

$$Mx = ';$$
 and $kxk_{'1} C_0C_1(n);$

for some constant $C_1(n)$ depending only on the dimension n.

Assuming for the moment that this theorem is correct. We can then immediately derive Theorem 3.4.

Proof of Theorem 3.4. Combining Proposition 6.2 and 6.3, we see that the linear system (6.4) satises the condition in Theorem 6.6 with $n = jV_0j$, $M = (A^T)$, $C_0 = C(V_0)$. Moreover, since we assume S_{i2V_0} supp i being connected in Denition 1.6, it is easy to verify that for some constant C

$$C(V_0) = \sup_{x;y \ge S} \sup_{i \ge v_0 \text{ supp } i} jx \quad yj \ C \ jV_0 jx;$$

where x is the discretization size of the mesh.

Hence by applying Theorem 6.6 to (6.4), we conclude that there are solutions $\Re(b_c)$ for all possible bc, with '1 norm uniformly bounded by

$$k^{x_{\Lambda}}k_{'_{1}}$$
 $C(V_{0})C_{1}(jV_{0}j)$ $C(jV_{0}j)x;$

where $C(jV_{0}j)$ depends only on $jV_{0}j$; the number of cell functions in a period. We can have the solutions satisfy that 8 > 0; $\Re_i(b_c) = \Re_i(b_c)$ simply by redening $\Re_i(b_c) = \Re_i(b_c)$ $\Re_i(b_c = ib_c)$ for all b_c s.t. $ib_c = 0$. Finally, by Lemma 6.1 we can extend our solution $\Re(b_c)$ to a periodic solution on the entire mesh, satisfying all properties claimed in Theorem 3.4. We now conclude the section with the proof of Theorem 6.6:

Proof of Theorem 6.6. Let us begin with the solvability of Mx = '. Take the decomposition $I = I_1$ [I_m as in Lemma 6.4. By Lemma 6.4,

Range M =
$$fx 2 R^{1}$$
: $P_{i21} x_{i} = 0;81 k mg$:

For all k=1;:::;m, we have $M(I_k;I_nI_k)=M(I_nI_k;I_k)=0$. By (6.5) this implies that $I_k'=0$, $I_k=1$;:::;m. Therefore '2 Range M and $I_k=1$ ' is solvable.

We now turn to the proof of '1 bound of x. We can WLOG assume $C_0 = 1$ and $\max_{i=j} j M_{ij} j = 1 = 1$, because the general case can be reduced to it by a scaling (${}^{1}M_{1})(C_{0_1}^{1}X_0) = ({}^{1}C_{0_1}^{1}X_0^{1})$.

The result is immediate when n = 1 and we prove the cases n = 2 by induction. Assume the theorem holds for any pp matrices with p (n = 1), we are going to show that the theorem holds for n n matrices.

First, since

$$M_0(n) = M(n) \setminus fM \ 2 \ R^{nn} : \max_{j=1}^{n} JM_{ij} J = 1g$$

is compact, it suces to show that there is a local bound. More explicitly, we are going to show that for any M $^{(0)}$ 2 M $_0$ (n), there is an open neighborhood U 3 M $^{(0)}$, s.t. for all M 2 U \ M $_0$ (n) and ' satisfying (6.5) with C $_0$ = 1, there is a constant C = C(n; U \ M $_0$ (n)) s.t. one can take x 2 R n satisfying M x = ' and kxk $^{\prime_1}$ C(n; U\M $_0$ (n)). Then by compactness, we conclude immediately that there is a uniform bound C $_1$ (n) = C(n; M $_0$ (n)).

For arbitrary M $^{(0)}$ 2 M $_0$ (n), introduce the irreducible decomposition I = I $_1$ [$_i$ I $_m$ as in Lemma 6.4. For 1 k m, dene E $_k$ = spanf1 $_{fig}$ g $_{i2I_k}$, F $_k$ = fx 2 E $_k$: $_i$ $_i$ x $_i$ = 0g. In addition, dene E $_0$ = spanf1 $_{I_k}$ g $_k$ $_{m_1}$, F $_0$ = fx 2 E $_0$: $_i$ $_i$ x $_i$ = 0g. Note that we have

$$R^{n} = (E_{1} E_{m}) = (F_{1} F_{m}) E_{0} = (F_{1} F_{m}) F_{0} \operatorname{span} f1_{i}g$$
:

Since there are non-zero non-diagonal entries in $M^{(0)}$, there exists k such that $jI_kj>1$. Hence m< n.

Let

$$r = \frac{1}{2nC(n; o; 1)(1 + 2 \max_{1 \neq i} C_1(p))};$$

where the constant C(n; 0; 1) is as in Lemma 6.5.

Dene the open set

$$U_r(M^{(0)}) = M 2 R^{nn} : \max_{\substack{1 \text{ i.i. } n}} jM M^{(0)}j < r :$$

Dene also the following linear mappings,

$$P : R^{n} ! E_{0} = spanf \mathbf{1}_{I_{k}} \mathbf{g}_{I_{k}^{n} \mathbf{1}}^{m} R^{n} m$$

 $\vdots kX \qquad \underbrace{j I_{k}^{1} X}_{i 2 I_{k} X} \mathbf{1}_{I_{k}};$

i.e. we take the average on each I_k ,

Q:
$$R^{m}$$
! E_{0} = spanf $\mathbf{1}_{I_{k}}g_{k=1}^{m}$ R^{n} y

X m

! $\mathbf{y}_{k}\mathbf{1}_{I_{k}}$;

i.e. we project on the canonical basis of E₀, and nally

For $x \ 2 \ R^n$ solving Mx = ', introduce the decomposition

$$x = x_1 + x_2 + 1_1;$$
 $x_1 2 (F_1 F_m);$ $x_2 2 F_0:$

Without loss of generality, we can assume = 0. We are going to discussion two situations.

Case 1: $kx_2k'_1$ 2 $max_{1p<n}$ $C_1(p)kx_1k'_1$. Since F_0 E_0 , x_2 belongs to the image of Qand as Q is trivially one-to-one from R^m to E_0 , we can dene $y_2 = Q^{-1}(x_2) 2 R^m$. Since $M(x_1 + x_2) = '$, we have

$$(WQ^{1}PMQ)(y_{2}) = (WQ^{1}PM)(x_{2}) = (WQ^{1}P)(') (WQ^{1}PM)(x_{1}):$$
 (6.6)

Since

$$(WQ^{-1}PMQ)_{kl} = P P P M_{ij};$$

it is easy to verify that $(WQ^{1}PMQ)$ 2 M(m).

Our goal is to apply the induction argument to the m m linear system (6.6). To apply the induction argument, we need to provide proper estimates on the terms in the right-hand side. For any J^0 J = f1;:::; mg, we have

$$P = P_{k2J^{0}}^{k2J^{0}} (WQ^{1}P)(') (WQ^{1}PM)(x_{1})_{k}$$

$$= P_{k2J^{0}}^{k2J^{0}} (WQ^{1}P)(')_{k}^{p} (WQ^{1}PM)(x_{1})_{k}$$

$$= L_{1} + L_{2}:$$

By our assumption on ',

y our assumption on ',
$$jL_1j = {P \atop k2J^0} {P \atop i2I_k}, i {P \atop k2J^0; |2J_nJ^0} {P \atop i2I_k; j2I_l} jM_{ij}j + jM_{ji}j \\ = {P \atop k2J^0; |2J_nJ^0} (WQ \ ^1PMQ)_{kl} + (WQ \ ^1PMQ)_{lk} :$$

On the other hand,

In conclusion we have

$$_{jL_{1}}^{+} + L_{2}^{-}j \left(1 + kx_{1}k_{1}^{\prime}\right) \Big|_{k_{2}^{0}:|2|}^{+} P^{-}M^{0}Q^{0} \left(WQ^{-1}PMQ\right)_{k_{1}}^{+} + (WQ^{-1}PMQ)_{l_{k}}^{+}$$

which satises necessary assumption for the induction argument with $C_0 = (1 + kx_1 k_1)$. As a consequence, we have

$$kx_2k_{1} = ky_2k_{1}$$
 (1 + kx_1k_{1})C₁(m) C₁(m) + kx_2k_{1} =2;

by using the relation between $kx_1k_{'1}$ and $kx_2k_{'1}$ assumed at the beginning of the case. Hence, as claimed

$$kx_2k_{'1}$$
 $2C_1(m)$ $2\max_{p < n} C_1(p);$
 $kxk_{'1}$ $kx_1k_{'1} + kx_2k_{'1}$ $1 + 2^1\max_{p < n} C_1(p):$

Case 2: $kx_2k_{1} < 2 \max_{1p < n} C_1(p)kx_1k_{1}$. Since $M(x_1 + x_2) = 1$, we have

$$M^{(0)}(x_1) = M^{(0)}(x_1 + x_2) = M(x_1 + x_2) + (M^{(0)} M)(x_1 + x_2)$$

= ' + (M⁽⁰⁾ M)(x₁ + x₂):

On each $I_k I_k$ block (k = 1;:::m⁰⁰) we can apply Lemma 6.5. For M 2 $U_r(M^{(0)})\backslash M(n)$, this gives

$$kx_1k_{'1}$$
 $C(n;_0;1)$ $k'k_{'1}$ + $rd(1 + 2 \max_{p < n} C_1(p))kx_1k_{'1} = C(n;_0;1)k'k_{'1}$ + $kx_1k_{'1}$ = 2:

By (6.5), for all i 2 I,

$$j'_{ij}$$
 $jM_{ij}j + jM_{ji}j$ 2(n 1):

Hence

$$kx_1k_1 4(n 1)C(n;0;1);$$

$$kxk_{'1}$$
 $kx_1k_{'1} + kx_2k_{'1}$ 4(n 1)C(n; 0; 1) 1 + 2 max ${}_{p}C_{h}(p)$: This nishes the study of Case 2.

ilishes the study of case 2.

Summarizing the results from Case 1 and Case 2, for arbitrary $M^{(0)}$ 2 $M_0(n)$ we have $U_r(M^{(0)})$ such that for all M 2 $U_r(M^{(0)})$ and ' satisfying (6.5) with $C_0=1$, one can take x 2 R^d satisfying

$$Mx = ';$$
 and $kxk_{'1} 4(n 1)C(n; 0; 1) 1 + 2 max_{0 \le 0}^{1}C_{1}(p) :$

Recall that $U_r(M^{(0)})$ is give by

$$r = \frac{1}{2nC(n; 0; 1)(1 + 2 \max_{1p < n} C_1(p))};$$

$$U_r(M^{(0)}) = M 2 R^{nn} : \max_{i;j} M M^{(0)}j < r :$$
e can take

In conclusion, we can take

C n;
$$U_r(M^{(0)}) \setminus M_0(n) = 4(n 1)C(n; 0; 1) 1 + 2 \max_{1} C_1(p)$$
:

We can conclude the proof by compactness.

We nish this section by explaining how one may be able to nd a (very rough) upper bound in the previous proof. By Lemma 6.5, we have $C(n; 1) = C_2(n)^{(n-1)}$ where C(n) only depends on the dimension n. For any M 2 M(n) let us dene

$$(M) = \min_{j} M_{ij} j : i = j; jM_{ij} j = 0 ;$$

$$r(M) = \frac{1}{2nC_2(n)[(M)]^{-(n-1)}(1 + 2 \max_{1p < n} C_1(p))^{2}} ;$$

We are going to argue that for suciently small $_{min} = _{min}(n) > 0$ and arbitrary $M^{(0)} \ge M_0(n)$, there exists $M \ge M(n)$ such that (M) $_{min}$ and $M^{(0)} \ge U_{r(M)}(M)$. Once this argument is proved and $_{min}$ is given explicitly, by the proof of Theorem 6.6, we have

$$C \ n; U_{r(M)}(M) \setminus \ M_0(n) \quad 4(n-1)C_2(n)[_{min}(n)] \ ^{(n-1)} \ 1 + 2 \max_{p < n} C_1(p) \ :$$

Therefore, we can take

$$C_1(n) = 4(n - 1)C_2(n)[_{min}(n)]^{-(n-1)} 1 + 2^{-1}max C_1(p);$$

which gives an explicit induction relation of $C_1(n)$.

We now describe how to nd such M. Let us construct a sequence $fM^{(k)}g$ M(n) (starting with $M^{(0)}$) by the following iterations,

(1) If M (k) = 0, we stop the sequence. Otherwise, take

$$(i(^k); j(^k))$$
 2 arg min $_{(i;j):i=j;jM_{i_k}^{(j)}j=0}^{(j)} jM_{i_j}^{(k)}j$:

(2) For $M^{(k)}=0$, take the decomposition $I=_1I^{(k)}$ [$I_m^{(k)}$ as in Lemma 6.4. Assume WLOG that $i^{(k)};j^{(k)}$ 2 $J_n^{(k)}$. By the equivalent denition of irreducible matrix that the associated directed graph is strongly connected, one can take a path $j^{(k)}=j_0^{(k)};j_1^{(k)};\dots;j_p^{(k)}=i_n^{(k)}$ such that $M_{j_n^{(k)};j_{n+1}^{(k)}}=0$ for all $I=1;\dots;(p-1)$.

Let P (k) be the permutation matrix given by

(3) Take $M^{(k+1)} = M^{(k)} + (M^{(k)})(P^{(k)} I)$.

For any (i; j) 2 I^2 such that i = j and $(P^{(k)} - I)_{ij} = 1$, we have $M_{i;j}^{(k)} < 0$. By the denition of $(M^{(k)})$ it is easy to verify that the non-diagonal entries of $M^{(k+1)}$ given in this way are again non-positive. Hence $M^{(k+1)}$ 2 M(n) if M^k 2 M(n). By induction, the above procedure produces a sequence $fM^{(k)}g$ M(n). We are going to argue that

for suciently small $_{min}$, there must be an adequate candidate for M in fM $^{(k)}$ g before the sequence ends.

First, recall the denition (M) = min $jM_{ij}j:i=j;jM_{ij}j=0$, it is straightforward to see that $M_{\{k\}_i=\{k\}_j=0}$. Since there are only n^2-n non-zero non-diagonal entries and our process eliminates at least one entry at a time, the process must terminate somewhere before step n^2-n .

Secondly, observe that $kM^{(k+1)} = M^{(k)}k_{i1} + (M^{(k)})$ and $jM^{(k+1)}_{i;j}j + jM_{i;j}^{(k+1)}j$, $g_i^{k} = j$. By induction.

$$kM^{(k+1)} = M^{(0)}k_{1} = P_{i=0}^{k}(M^{(i)}); = \max_{i=j} jM_{ij}^{(k+1)}j$$
 1:

Thus, if

$$P_{l=0}^{k} (M^{(l)}) r(M^{(k+1)}) = \frac{1}{2nC_{2}(n)(M^{(k+1)})^{(n-1)}(1 + 2 \max_{1p < n} C_{1}(p))'}$$

or equivalently

$$2nC_{2}(n) 1 + 2 \max_{1p < n} C_{1}(p) P_{i=0}^{k}(M^{(i)}) (M^{(k+1)});$$

then it is guaranteed that $M^{(0)} \ge U_{r(M^{(k+1)})}(M^{(k+1)})$.

To ensure that $M^{(k+1)}$ is an adequate candidate of M, we also need that $(M^{(k+1)})_{min}$. Let us dene the function

(r) = max
$$_{min}$$
; $2nC_2(n)$ 1+ $2\max_{p < n} C_1(p)$ r ; (6.7)

and reformulate what we just discussed as the following: If $(M^{(k+1)})$ $\binom{P}{I=0}$ $(M^{(I)})$, we have that $\binom{P}{I=0}$ $(M^{(I)})$ $r(M^{(k+1)})$ and $(M^{(k+1)})$ min, so we can take $M=M^{(k+1)}$. Let us assume that no candidate of M appears until step m. Then we should have $(M^{(k)}) < \binom{P}{k=0}$ $\binom{P}{k=0}$ $(M^{(I)})$ for k=1;:::m. Dene $\binom{O}{k} = min$ and dene $\binom{O}{k}$ induc-tively by

$$(k) = (P_{k-1}^{(l)}):$$

Obviously we have $(M^{(0)})^{(0)}$. Note that is increasing for any xed $_{min} > 0$. Therefore we have $(M^{(k)})^{(1)}$ ($P_{l=0}^{k-1}(M^{(l)})$) ($P_{l=0}^{k-1}(M^{(l)})$) ($P_{l=0}^{k-1}(M^{(l)})$) provided that $(M^{(l)})^{(l)}$ for all $l=0;1;\ldots;m$.

Let us discuss the growth of $^{(k)}$. Note that for $r \,!\, 0^+$ and $_{min} \,!\, 0^+$ we have $(r) \,!\, 0^+$. Therefore $\lim_{min\,!\,0} ^{(k)} = \lim_{min\,!\,0} ($ $P_{k_0}^{(k)} ^{(l)}) = 0$ provided that $\lim_{min\,!\,0} ^{(l)} = 0$ for all $l = 1; \ldots; (k-1)$. Applying the induction argument, we conclude that $\lim_{min\,!\,0} ^{(k)} = 0$ for all k 0. In particular, by taking suciently small $_{min}$, one would have $P_{k_0}^{(k)} = P_{k_0}^{(k)} = P_{k_0$

Since $\max_{i=j} j M_{ij}^{(0)} j = 1$, let us take i; j s.t. $j M_{ij}^{(0)} j = 1$. Observing that $j M_{ij}^{(m+1)} j = 1 \qquad P_{i=0}^{m} (M^{(i)}) = 1 \qquad P_{i=0}^{m} (M^{(i)}) = 1$

For $m < n^2$ n, this implies that $j M_{ij}^{(m+1)} j > 0$, hence the iteration does not terminate at step (m+1) either. By induction, unless there is an adequate candidate of M found, the iteration does not terminate before step n^2 n. Recall that the iteration must terminate somewhere before step n^2 n as the non-zero entries are reducing, we conclude that an adequate candidate of M must appear somewhere before step n^2 n.

7. Proof of remaining lemmas and propositions. In this section we collect the remaining missing proofs of various technical lemmas. Let us begin with Lemma 2.5.

Proof of Lemma 2.5. The equation (2.8) is equivalent to

$$Z \\ \underset{R^{2^d}}{ } K_g^h(x;y) \quad K_f^h(x;y) \; ju(x) \quad v(y)j^p \; dxdy \; C(h_1=h_0) \qquad K_f^h(x;y)ju(x) \quad v(y)j^p \; dxdy :$$

Notice that (x), yet $K^h(x)$, has compact support in the ball B(0;2). Also, notice that

$$jf_1(x)$$
 $f_2(y)j$ jx yj jx $f_1(x)j$ jy $f_2(y)j$ jx yj $2h_1;$

where h_1 1=4 by our assumption. Hence, K_f (x; y) and K_g (x; y) are non-zero only if y; y; y=2.

We further take the decomposition

$$f(x; y) 2 R^{2d} : jx yj 5=2g = fjx yj 1=2g[f1=2 < jx yj 5=2g;$$

by which we can rewrite the double integral as

On the set fjx yj 1=2g, we have $jf_1(x)$ $f_2(y)j$ jx yj + 2h₁ 1. Hence

$$(jf_1(x) f_2(y)j) = (jg_1(x) g_2(y)j) = 1;$$
 8jx yj 1=2:

Thus we have

where the coecient before the integral can be bounded by

$$\sup_{jx \ yj1=2} \frac{ K_{j}^{h}(x;y) = K_{j}^{h}(x;y)}{K_{j}^{h}(x;y)} = \sup_{jx \ yj1=2} \frac{\frac{1 \ (j \ g_{1}^{d}(x \) \ g_{2}^{u}(y) \ j + h_{0}^{d})}{(j \ f_{1}(x \) \ f_{2}(y) \ j + h_{0}^{d})} {\frac{(j \ f_{1}(x \) \ f_{2}(y) \ j + h_{0}^{d})}{(j \ f_{1}(x \) \ f_{2}(y) \ j + h_{0}^{d})}}$$

Moreover, on the set f1=2 < jx yj 5=2g, Z

$$Z_{K^{h}(x;y)}^{1=2

$$Z_{K^{h}(x;y)}^{1=2

$$X_{K^{h}(x;y)}^{h} = X_{X_{j}}^{h} = X_{X_{j}}^{j5=2}$$

$$X_{K^{h}(x;y)}^{h} = X_{X_{j}}^{h} = X_{X_{j}}^{j5=2}$$

$$Y_{K^{h}(x;y)}^{j5=2} = Y_{K^{h}(x;y)}^{j5=2}$$

$$Y_{K^{h}(x;y)}^{j5=2} = Y_{K^{h}(x;y)}^{j5=2} = Y_{K^{h}(x;y)}^{j5=2}$$

$$Y_{K^{h}(x;y)}^{j5=2} = Y_{K^{h}(x;y)}^{j5=2} = Y_{K^{h}(x;y)}^{j5$$$$$$

As an example, let us look at the second term. With a change of variable

$$w = 3=5 + 2=5; z = x=5 y=5;$$

one has that

where the coecient before the integral can be bounded by

The other four terms can be bounded by the same approach.

In conclusion, we have

Next we prove Lemma 2.6.

Proof of Lemma 2.6. We rst choose measurable sets (V_i)_{i2V} R^d by the following. Divide R^d into small hypercubes

$$Q_{[m]} = \bigvee_{k=1}^{\gamma d} \bigcap_{n_k = p} \overline{dx}; (n_k + 1) = \bigcap_{n_k = 1}^{p} dx;$$
 8[m] = (n₁;:::; n_d) 2 Z^d:

where each hypercube has diameter x.

Then, in each hypercube $Q_{[m]}$ choose measurable sets $V_{i;[m]}$, i 2 V satisfying

$$V_{i;[m]} Q_{[m]}; \quad jV_{i;[m]}j = \bigcup_{Q_{[m]}} i; \quad 8i \ 2 \ V; \quad and \quad V_{i;[m]} \setminus V_{j;[m]} \quad 8i; j \ 2 \ V;$$

 $\begin{array}{ll} \text{which is always possible since} & P^{Q_{[m]}} \\ \text{Choose } V_i = & S \\ & Z^{[m]} \, V_{i;[m]} \, \text{ so that} \end{array}$

Choose
$$V_i = \frac{S}{Z^{[m]}} V_{i;[m]}$$
 so that

$$jV_ij = i = \sup_{R^d} i; \quad \sup_{x \ge V_i} jx \quad x_ij < 2x; \quad 8i \ 2 \ V; \quad and \quad V_i \setminus V_j \quad 8i; j \ 2 \ V:$$

Moreover, recall our assumption (2.6) that i_{2V} i(x)2 B(0; 4). $Q_{[m]}$ For hypercube any $_{i2V}$ $jV_{i;[m]}j = jQ_{[m]}j$. Since we have assumed + B(0; 4), one has to verify 1=16, is easy that B(0;3)implies $Q_{[m]}$ + B(0;4).

Then up to modication on a negligible set, one has that $V_i \setminus V_i \setminus V_i$ = $[m]_{2Z^d}$ $i_{2V}V_{i;[m]}$ \ + B(0;3)+ B(0; 3):

Recall our choice of piecewise constant extension $u^V = {P \atop i \ 2 \ V} u_i \mathbf{1}_{V_i}$ and

$$f(x) = \begin{cases} \begin{cases} e_i; & \text{for } x \ge V_i; i \ge V; \\ x; & \text{for } x \ge \sum_{i \ge V} V_i: \end{cases} \end{cases}$$

Notice that only u_i and we have assumed x 1=16. Hence the extended function u^V satises suppu^V + B(0; 1). Also, by our assumption it is straightforward that

$$\sup_{i \ge V} x = f(x) j \ \sup_{i \ge V} \sup_{x \ge V_i} x_i j + \sup_{i \ge V} j x_i \quad \text{$\it \&$}_{ij} \ 2x + \ h_2 < 1 \text{=} 4 \text{:}_{x \ge R^d}$$

Finally, let us consider the integral Z

Z
$$K^h$$
 $f(x)$
 $f(y)ju^V(x)$
 $u^V(y)j^p$ dxdy:

We proved have and by denition supp K^h 2 B(0; 2). Therefore, for x + B(0; 1)+B(0;3),either ₽ u^V +B(0;1),making ju[∨] (x) (y)j 2 +B(0;1), making $K^{h}(x y) = 0$.

The same argument also applies to y and as a consequence, the above integral can be taken instead over any subset of R^{2d} including

+ B(0; 3) 2. In particular, it can be reformulated as Z

which completes the proof.

We are now ready to prove Lemma 2.4, Proposition 2.7 and Proposition 2.8. Let us start with Proposition 2.7, which is immediate:

Proof of Proposition 2.7. By Lemma 2.6, choose measurable sets $(V_i)_{i2V}$ R^d , take piecewise constant extension $u^V = P_{i2V} u_i 1_{V_i}$ and take $f_1^{(1)}; f_2^{(1)}; f_1^{(2)}; f_2^{(2)} : R^d ! R^d$ by

for k = 1; 2;
$$f_1^{(k)}(x) = f_2^{(k)}(x) = \begin{pmatrix} & & & \\ & & \\ & & & \\$$

Then it is straightforward that

hen it is straightforward that
$$kuk_{h_0;p;;}^{x e_{\{i\}}} = \sup_{\substack{h_0 \\ h}} j \log hj \quad \underset{i;j \geq V}{X} \quad K_e^h \quad \mathbf{g}^{(k)} \quad \mathbf{g}^{(k)} ju_i \quad u_j j^p_{ij} \\ = \sup_{\substack{h_0 \\ h_0 h 1 = 2}} j \log hj \quad \underset{R^{2d}}{Z} \quad K^h \quad f^{(k)}(x) \quad f^{(k)}(y) ju^V(x) \quad u^V(y) j^p \, dxdy;$$

and

for k; I = 1; 2; sup jx
$$f_{I}^{(k)}(x)j$$
 2x + h₂ 3h₂: x2R^d

We now apply Lemma 2.5 with $h_1 = 3h_2 < 1=4$, which gives that

$${}^{p}kuk_{h_{0};p;;}^{x e_{(2)}} (1 + Ch_{2} = h_{0}) k_{0}^{p}k_{0}^{h}; p_{x^{(1)}}^{p}$$
:

Noticing $(1 + x)^{1=p}$ 1 + x for all x 0, we conclude that

$$kuk_{h_0;p;;e^{(2)}}$$
 (1 + $Ch_2=h_0$) $kuk_{h_0;p;;e^{(1)}}$;

which nishes the proof.

Next, let us prove Proposition 2.8.

Proof of Proposition 2.8. Choose any labeling of the index set V, and dene

Notice that there are only a bounded number of nonzero $_{i}(y)$ at any point y by our assumption.

Dene also

F: V!

e

i! xi

Then for all y 2 R^d, ! 2 [0; 1],

(F J)(y;!) y 2x;
$$u(y) = u_{11}(y) = u_{J(y;!)} d!: i2v$$

By Lemma 2.5, for all $!_1$; $!_2$ 2 [0;1]

$$\sum_{R^{2d}} K^{h}(x;y) j u_{J(x;!_{1})} \quad u_{J(y;!_{2})} j^{p} \ dxdy \\ Z \\ (1 + Cx = h) \quad K^{h} \quad (F \ J)(x;!_{1}); (F \ J)(y;!_{2}) \ j u_{J(x;!_{1})} \quad u_{J(y;!_{1})} \underline{i}^{p} \ dxdy :$$

Therefore, notice that $K^h F(i)$; $F(j) = K^h x_i$; $x_j = K_{i;j,h}$ which implies that Z

Again by Lemma 2.5,

concluding the proof.

Lemma 2.4 can then be derived from Proposition 2.8.

Proof of Lemma 2.4. Since we have assumed $h > h_0 > x$ and $k(u_i)_{i2V} k_{h_0;p}$; L, by Proposition 2.8,

$$Z \\ \begin{matrix} X \\ K^h(x;y)ju(x) & u(y)j^pdxdy & (1+Cx=h) \end{matrix} \qquad \begin{matrix} X \\ K^h_{\ j}ju_{i\ i;} & u_{j}j^p_{iji;j2v} \\ Cj\log hj; \end{matrix}$$

where the constant C may depend on L.

Introduce the renormalization factor

$$C_h = j \log j = k K^h k_{L^1}$$
:

Then C_h is bounded form above and below uniformly with respect to h, and the renormalized kernel K h reads

$$K^{h}(x) = K^{h}(x) = kK^{h}k_{L^{1}} = C_{h}j \log j^{-1}K^{h}(x)$$
:

This implies

ku
$$K^h$$
? uk_{lp} Cjlog hj ¹ (7.2)

We have nished the proofs of all lemmas and propositions in Section 2.2 but it remains to prove Proposition 2.10 as claimed in the proof of Theorem 1.3.

Proof of Proposition 2.10. Let (C; F) be a mesh as in Denition 1.5 over

such that (1.14) hold. Assume that each face function $n_{i,j}$ 2 F is of form $n_{i,j}(x)$ = $N_{i;j} w_{i;j}(x)$; 8x 2 R^d , where $N_{i;j}$ is a unit vector and $w_{i;j}$ is a scalar function.

Then for 1 p 1,

$$P^0 b P_F b_{L^p([0;T]F)} Cxkbk_{L^p(W^{1;p})};$$

where the constant only depends on p and the constant in the structural assumption (1.14).

We are going to rst prove the inequality for any xed time t and To simplify the notation we omit t in all the calculations.

By denition, we have

where N 2 R^d is a unit vector and w is a non-negative, bounded function with compact support. It is straightforward that I(b; N; w) 0 and for any two functions v; w 0,

Hence if $0 \le u$, then I(b; N; w) I(b; N; u).

Moreover, I(b; N; w) is directly bounded by the following inequality I(b; N; w) sup b(x) N w(x) dx b(x) N w(x) dx : And it is easy to verify that (in distributional sense)

Thus the maximum is attained at

thus

Notice that $w_{i;j} \in C \times {}^{-1}\mathbf{1}_{B(x_i;x)}$ by our structural assumptions (1.14). Therefore,

$$\begin{split} P_F b & P_F^0 b_{i;j} = I(b; N_{i;j}; w_{i;j}) \ I(b; N_{i;j}; C(x)^{-1} \mathbf{1}_{B(x_i;x)}) \\ & \frac{C(x)^{-1}}{k B(x_i; x) k_{L^1 - R^2 d}} \frac{Z}{j b(x)} b(y) j \mathbf{1}_{B(x_i; x)}(x) \mathbf{1}_{B(x_i; x)}(y) \ dx dy : \end{split}$$

When p = 1, we have

When p = 1, we have

An interpolation completes the case 1 p 1, i.e.

$$P_Fb$$
 $P_Fb_{L^p(F)}$ $Cxkbk_{W^{1;p}}$:

Integrating now over time, we conclude that

$$P_{F} b P_{F} b_{L^{p}([0;T]F)} Cxkbk_{L^{p}(W^{1;p})}$$
:

References

- [1] Giovanni Alberti, Gianluca Crippa, and Anna L Mazzucato, Exponential self-similar mixing and i i t ti loss of regularity for cont nu ty equations, Comptes rendus ma hema que 352 (2014), no. 11, 901{906.
- [2] Luigi Ambrosio, Transport equation and Cauchy problem for BV vecto elds, Inventiones ma heti ma cae 158 (2004), no. 2, 227{260.
- [3] Luigi Ambrosio, Myriam Lecumberry, and Stefania Maniglia, Lipschitz regularity and approximate t v dierentiability of the DiPerna-Lions ow, Rendiconti del Seminario Ma ematico della Uni ersitadi Padova 114 (2005), 29{50.
- r i i i [4] F Ben Belgacem and P-E Jabin, Convergence of nume cal approximat ons to non-linear i i cont nu ty equations with rough force elds, Archive for Rational Mechanics and Analysis 234 (2019), no. 2, 509{547.
- C i r i i [5] Fethi Ben Belgacem and Pierre-Emmanuel Jabin, ompactness for nonl nea cont nu ty equations, Journal of Functional Analysis 264 (2013), no. 1, 139{168.
- [6] Anna Bohun, Francois Bouchut, and Gianluca Crippa, Lagrangian ows for vecto elds with anisotropic regularity, Annales de l'Institut Henri Poincare C, Analyse non neaire 33 (2016), no. 6, 1409 1429.
- [7] Franois Bouchut, Renormalized solutions to the Vlasov equation with coecients of bounded variation, Archive for Rational Mechanics and Analysis 157 (2001), no. 1, 75{90.
- [8] Franois Bouchut and Gianluca Crippa, Lagrangian ows for vecto elds with gradient g ven by a i y oli singular ntegral, Journal of h perb c dierential equations 10 (2013), no. 02, 235{282.
- [9] Jean Bourgain, Haim Brezis, and Petru Mironescu, Another look at obolev spaces, Optimal Control

 Poo ot
 and Partial Dierential Equations. In honour of r fess r Alain Bens ussan's 60 h birthday,
 2000, pp. 439{455.
- [10] Franck Boyer, A nalysis of the upw nd nite volume method for general initial- and boundary-value transport problems, IMA Journal of Numerical Analysis 32 (2012), no. 4, 1404 1439.
- r i [11] Yann Brenier, Felix Otto, and Christian Seis, Upper bounds on coa sen ng rates in demixing jo l binary viscous liquids, SIAM urna on mathematical analysis 43 (2011), no. 1, 114{134.
- [12] usanne C Brenner, L Ridgway Scott, and L Ridgway Scott, The mathematical theory of nite S i element methods, vol. 3, pr nger, 2008.
- [13] Didier Bresch and Pierre-Emmanuel Jabin, Global weak solutions of PDEs for compress ble media:

 r
 i
 i
 A compactness criterion to cove new physical s tuat ons, Shocks, singularities and oscillations
 O
 i
 S
 i
 in nonlinear ptics and u d mechanics, pr nger, 2017, pp. 33{54.
- i i [15] Elia Brue and Quoc-Hung Nguyen, Sharp regularity estimates for solutions of the cont nu ty i S r i equa t on drifted by obolev vecto elds, arXiv prepr nt arXiv:1806.03466 (2018).
- [16] Martin Burger, Yasmin Dolak-Struss, and Christian chme ser, Asymptotic analysis of an

- advection dominated chemotaxis model in multiple spatial d mens ons, Communications in til S
 Mathema ca ci-ences 6 (2008), no. 1, 1{28.
- i [17] Nicolas Champagnat and Pierre-Emmanuel Jabin, Well posedness in any d mension for Hamiltonian ows with non BV force te ms, Communications in Partial Dierential Equations 35 (2010), no. 5, 786{816.
- [18] ______, Strong solutions to stochastic dierential equations with rough coecients, The Annals of Probability 46 (2018), no. 3, 1498 1541.
- [19] Maria Colombo, Gianluca Crippa, and Stefano Spirito, Renormalized solutions to the cont nu ty equation with an integrable damping te m, Calculus of Variations and Partial Dierential Equations 54 (2015), no. 2, 1831 1845.
- [20] G Crippa and C De Lellis, Estimates and regularity results for the DiPerna-Lions ow, Journal fu r i d e Reine und Angewandte Mathematik 616 (2008), 15{46.
- [21] Franois Delarue and Frederic Lagoutiere, Probabilistic analysis of the upwind scheme for transport equations, Archive for rational mechanics and analysis 199 (2011), no. 1, 229{268.
- [22] Franois Delarue, Frederic Lagoutiere, and Nicolas Vauchelet, Convergence order of upw nd type

 r
 i
 schemes for transpo t equations with discont nuous coecients, Journal de Mathema ques Pures
 et Appliquees 108 (2017), no. 6, 918(951.

- [23] Ronald J DiPerna and Pierre-Louis Lions, Ordinary dierential equat ons transpo t theo y

 S t t i
 and obolev spaces, Inventiones ma hema cae 98 (1989), no. 3, 511{547.
- [24] Robert Eymard, Thierry Gallouet, Raphaele Herbin, and J Latche, A convergent nite element-nite i S t ti volume scheme for the compress ble tokes problem. Part II: the isentropic case, Ma hema cs of Computation 79 (2010), no. 270, 649{675.
- [25] Robert Eymard, Thierry Gallouet, Raphaele Herbin, and J-C Latche, Convergence of the MAC i S scheme for the compress ble tokes equations, SIAM Journal on Numerical Analysis 48 (2010), no. 6, 2218 2246.
- [26] Shizan Fang, Dejun Luo, and Anton Thalmaier, S tochastic dierential equations with coecients in S obolev spaces, Journal of Functional Analysis 259 (2010), no. 5, 1129 1168.
- [27] T Gallouet, R Herbin, and J-C Latche, Kinetic energy control in explicit nite volume discretiza-tions i of the ncompressible and compress ble Navier-Stokes equations, International Journal on Finite Volumes 7 (2010), no. 2, 1{6.
- [28] Thierry Gallouet, Laura Gastaldo, Raphaele Herbin, and Jean-Claude Latche, An unconditionally stable pressure correction scheme for the compress ble barotropic Navier-Stokes equations, ESAIM:

 tilli
 Mathema ca Mode ng and Numerical Analysis 42 (2008), no. 2, 303{331.
- [29] Thierry Gallouet, Raphaele Herbin, and J-C Latche, A convergent nite element-nite volume

 i S i r t ti
 scheme for the compress ble tokes problem. Part I: The sothe mal case, Ma hema cs of

 Compu-tation 78 (2009), no. 267, 1333 1352.
- [30] Thierry Goudon, Julie Llobell, and Sebastian M n eaud, An asymptotic preserving scheme on stag gered grids for the barotropic Euler system in low Mach regimes, Numerical Methods for Partial Dierential Equations 36 (2020), no. 5, 1098 1128.
- [31] Mahir Hadzic, Andreas Seeger, Charles K Smart, and Brian Street, Singular ntegrals and a problem on mixing ows, Annales de l'Institut Henri Poincare C 35 (2018), no. 4, 921(943.
- [32] Gautam Iyer, Alexander Kiselev, and Xiaoqian Xu, Lower bounds on the mix norm of passive
 i i i t
 scalars advected by ncompress ble enstrophy constra ned ows, Nonlineari y 27 (2014), no. 5, 973.
- [33] P-E Jabin and Nader Masmoudi, DiPerna{Lions ow for relativistic patticles in an electromagnetic eld, Archive for Rational Mechanics and Analysis 217 (2015), no. 3, 1029 1067.
- [34] Pierre-Emmanuel Jabin, Critical non obolev regularity for cont nu ty equations with rough velocity elds, Journal of Dierential Equations 260 (2016), no. 5, 4739 4757.
- [35] Flavien Leger, A new approach to bounds on mixing, Mathematical Models and Methods in Applied S ciences 28 (2018), no. 05, 829(849.
- t [37] Benot Merle and Julien Vovelle, Error estimate for nite volume scheme, umer sche Mathematik 106 (2007), no. 1, 129{155.
- [38] Benot Perthame and Anne-Laure Dalibard, Existence of solutions of the hype bol c Keller-
- Segel model, Transactions of he American Mathematical Society 361 (2009), no. 5, 2319 2335.
 [39] Andre Schlichting and Christian Seis, Convergence rates for upwind schemes with rough coecients, SIAM Journal on Numerical Analysis 55 (2017), no. 2, 812{840.
- i i i [40] Christian Seis, Max mal mixing by ncompress ble uid ows, Nonlinearity 26 (2013), no. 12, 3279.

 i i r i i [41] ______, A quant tat ve theo y for the cont nu ty equation, Annales de l'Institut Henri

Analyse non nea re, ol. 34, Elsevier, 2017, pp. 1837 1850.

- i i i i t t [42] , Optimal stab I ty estimates for cont nu ty equations, Proceedings of the Royal Society of t ti Edinburgh Section A: Ma hema cs 148 (2018), no. 6, 1279 1296.
- i i i i [43] Chad M Topaz and Andrea L Bertozzi, Swarming patterns in a two d mens onal k nemat c i i model for b olog cal groups, SIAM Journal on Applied Ma hema cs 65 (2004), no. 1, 152{174.
- [44] Xicheng Zhang, t tochastic ows of SDEs with irregular coecients and stochastic transpo t equations, Bulletin des sciences ma hematiques 134 (2010), no. 4, 340{378}.