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Abstract. We investigate the properties of discretizations of advection equations
on non-cartesian grids and graphs in general. Advection equations discretized on non-
cartesian grids have remained a long-standing challenge as the structure of the grid can
lead to strong oscillations in the solution, even for otherwise constant velocity elds. We
introduce a new method to track oscillations of the solution for rough velocity elds on any
graph. The method in particular highlights some inherent structural conditions on the
mesh for propagating regularity on solutions.

1. Introduction.

1.1. Discretized advection equations. We introduce a new framework to study the
regularity of discretized advection equations. Our method is able to provide quantitative
regularity estimates by extending the kernel based approach initially introduced at the
continuum level in [5, 4] and further studied in [35, 31]. This is particularly helpful when
investigating the convergence of numerical schemes for coupled non-linear systems.

To be more specic, we study discretizations of the classical linear continuity equation,
@:u(t; x) + divx b(t;x)u(t;x) = 0; t2 Rs; x 2 RY; (1.1)

Those discretized equations usually involve calculating the dynamics of a discrete density
u; that is dened on each cell of a grid or mesh. We specically focus on upwind schemes that
read
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The factor ; represents some notion of volume of the cell i on the mesh and the coe-cients
ai.io; ajp;; are related to the ux between two cells i and i°. We refer to Section 1.4 for the
precise formulas for the schemes that we consider.

The continuity equation constitutes a key relation in a large variety of models, in
which the velocity eld b(t; x) is typically related to the density u(t; x) in dierent ways. As
mentioned above, it is this coupling between b and u that makes strong compactness of the
density, instead of weak convergence, an essential ingredient and one of the com-mon
diculties when trying to prove convergence for the whole system, whether from numerical
approximations or some other approximate system. We present a few typical examples
below that motivate our investigations and have natural applications in biology and uid
mechanics.

The velocity eld b in (1.1) can rst be related to the density u by some convolution b
= K ?g(u) for some non-linear function g or by the Poisson equation

b(t; x) = rx(t; x); «(t;x) = glu(t; x)); (1.3)

which corresponds to choosing the fundamental solution of the Laplacian as the kernel K.
There exist already many examples of such systems in applications: We briey mention [43]
for swarming or [16, 38] for models of chemotaxis. The function g represents a non-
linear dependence on the density u in the equation for b, which can capture more
complex phenomena in the model such as logistic eects.

In a somewhat similar spirit, non-linear continuity equations may be considered such
as

@:u(t; x) + divx b(t; x)f(u(t; x)) = 0; t2 Rs;x 2 RY: (1.4)

This type of non-linear ux combines non-linear scalar conservation laws with linear
advection. Models such as (1.4) are found for example in some biological settings, where
the speed of micro-organisms is impacted by their local density; see, for instance, the
discussion of Keller-Segel model in [38]. We expect that the results in this paper can
be extended to such non-linear models, but for the sake of simplicity in this article, we
consider only the linear continuity equation and exclude such nonlinearity in the ux
from the rest of our discussion.

The continuity equation (1.1) is also naturally a critical component of compressible
uid dynamics such as the barotropic compressible Navier-Stokes system

8 aL
“_+ div(bu)= 0
* gtt(buh div (b

> b)u+ rp div((b)) = fp= P(u);
with appropriate boundary conditions if considered in a bounded domain. In this system,

the velocity eld b is coupled with the density u by another evolution PDE, leading to an
even more complex non-linearity than in the previous examples.
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A related model is the Stokes system,

8
@0 .
— + div(bu) = 0
2 & (bu)
b+ rp=f
>
“p = P(u);

which considerably simplies the momentum equation and the relation between b and u.
There exists a large literature on the numerical analysis of compressible Navier-Stokes
system to which we cannot do justice in a few sentences. We only briey mention
[28, 27] for the compressible Navier-Stokes and [24, 25, 29] for the Stokes system. To
the best of our knowledge however, the numerical analysis of these systems is only well-
understood on Cartesian meshes or staggered grids, for example in [30], that still rely
on Cartesian mesh for the density. Generally speaking, the regularity of discretized
continuity equations such as (1.2) remains poorly understood on non-cartesian meshes,
which leads to the main motivation and focus in the present work.

1.2. Renormalized solutions. Even without discretization, the well-posedness for ad-
vection equations such as (1.1) is in itself a delicate question when the velocity eld b is not
Lipschitz. By introducing the concept of renormalized solution, the uniqueness and
compactness of (1.1) was rst obtained in [23] for velocity elds b 2 WP, This was later
improved in [2, 7] to only b2 BV with divb2 L.

Renormalized solutions are based on a simple but essential observation: Assume that
b and u are smooth and satisfy the continuity equation (1.1). Then for all 2 C*(R),
(u) is a solution of

@:(u) + div(b(u)) + divb(°(u)u (u)) = 0: (1.5)

A weak solution of (1.1) with a non-smooth eld b is said to be renormalized i (1.5) holds in
distributional sense for all 2 C*(R) with j()j Cjj. Moreover, equation (1.1) with a
xed eld b is said to be renormalized i all its weak solutions are renormalized. Basically,
the renormalization property consists in stating that if u is a weak solution then non-
linear functions of u are also solutions, with appropriate corrections if divb = 0. This
directly implies the uniqueness of a weak solution u: Consider two weak solutions u; v
with u(0; x) = v(0;x), if u v is a renormalized solution, then ju vj is also a weak
solution. Hence ku(t;:) v(t;:)ki1rey ku(0;:) v(0;:)ki1gey = 0 and u = v. Com-
bining the uniqueness and the renormalization property directly provides compactness

in the appropriate L,” sense as one can prove that

weak-* lim (un) = (weak-* lim up):

A common critical part in the proof of the renormalization property is a so-called
commutator estimate. Consider a classical convolution kernel K together with K ?x u
where u solves (1.1). Commutator estimates arise when trying to write a similar equation
on K ?x u: One then has that

@«(K ?x u)+ div bK ?xu= R;
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where the remainder term R can be written as a commutator
4 4

R(x) = b(x) b(y)rK(x y)u(y)dy+ divib(x)K(x y)u(y) dy:

Commutator estimates then consists in proving that R | 0. If it is possible to prove
this, then it is straightforward to deduce the renormalization property (1.5) by writing
an equation on (K ?4 u) and passing to the limit ! 0.

Renormalized solutions are also connected to some form of propagation of quantita-
tive regularity. It had already been noticed in [3] that renormalized solutions lead to
some approximate dierentiability on the solution. But the rst explicit propagation of
regularity was obtained in [20] at the level of the characteristics ow. The characteristics
method used in [20] proved very fruitful with many later extensions. One can mention
the study of SDEs in [18, 26, 44], the question of mixing under incompressible ows in [11,
32, 40], well-posedness for velocity elds with less than 1 derivative in [17, 33], and velocity
elds obtained through a singular integral in [6, 8, 19].

The corresponding regularity at the PDE level can be derived by directly quantifying
oscillations on the solution. A rst method to do so was introduced in [5, 4] for non-linear
continuity equations of the form (1.4). In the linear case, sharper estimates were obtained
in [35] and [15] through a somewhat similar approach. We also mention [13, 14] which
combines those methods with a new notion of weights; this was applied to the com-pressible
Navier-Stokes equation with a large variety of laws of state and stress tensors. A very
dierent quantitative approach at the PDE level was studied in [41, 42], using certain
optimal transport distances. All those results only propagate a weaker notion of
regularity, weaker than full dierentiability, usually some sort of log of derivative. It is
indeed not possible in general to bound any kind of Sobolev regularity on density when
the velocity eld is merely Sobolev; see some counterexamples for example in [1, 34].

The approach that we follow in the present paper is inspired by the quantitative
semi-norms introduced in [5, 4], which we briey describe for this reason. The local
compactness of a sequence of bounded functions ux 2 LP(RY) with 1 p< 1 followsfrom
the following property:

VA
limsup € (x  y)jun(x) un(y)jPdxdy! 0 ash! 0 (1.6)
n R2d
where fI& gh>o0 is any family of classical convolution kernels. Scaling (1.6) with a given
rate of convergence in h leads to various notions of semi-norms that measure intermediate
regularity between LP and W*®P for any s > 0, and all of such regularities are strong
enough to imply local compactness in LP.

The particular family of kernels fi&, g proposed in [5, 4] results in semi-norms corre-
sponding to a sort of log-scale derivatives that we denote here by W, .. The W, -
regularity dened by kernels fKgg was then proved to be propagated by (1.1) when the
velocity eld b 2 WP, divb is bounded and divb is compact or enjoys some similar
W,gg;-regularity.

Hence with such assumptions on b, the solutions of (1.1) are compact if the initial

data are ngg;-regular. The bounds in [35] and [15] yield some more precise log-scale
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derivatives based on somewhat similar semi-norms. The corresponding spaces have also
received increasing attention in other settings, see for instance [9].

When trying to extend the idea of quantifying oscillations in [5, 4] to our discrete
setting, it appears natural to introduce an approximation of the continuous kernel K on

the mesh. In other words, we would like to estimate the regularity of the discrete
density by something like

X
“mnsup K& (milisim)  UimiPimizm ! 0; ash! 0 (1.7)
i;]
where (K’-,t‘j )i;; is an approximation of kernel Ky and the double integral is replaced by
a double summation over the mesh.

The main issue however is to identify the right family of kernels (I@i'}j )i;; so that the
corresponding semi-norms are propagated by the discrete advection equation. This turns
out to be extremely challenging on non-cartesian grids as a straightforward discretization of
the kernels fK, 8 used for the continuous equation does not appear to work. The main
technical contribution of this paper is a general method to nd admissible approximation
(|e|,hj )i:j, extending the results in [5, 4] to upwind schemes. This leads to the study of a
non-symmetric diusion equation on the mesh which we can solve and bound when the
mesh show periodic patterns (the exact denition is given in Section 1.4).

1.3. Some of the issues with non-cartesian grids. At rst glance, it may not be appar-ent
why non-cartesian meshes lead to such additional diculty. Eq. (1.2) may in fact be seen as
an advection equation on a graph where the actual velocity eld is correspond to some
projection of the original velocity eld that incorporates the structure of the graph. This
means that the graph’s topology can lead to additional oscillations in the solution in
itself. This is made apparent in the following straightforward example, that we are
grateful to T. Gallouet and R. Herbin for pointing out. This shows that even for very
smooth or actually constant velocity elds at the continuous level, one may have strong
oscillations in the solution at the discrete level.

Example 1.1. Consider the constant velocity eld b(x) (1:0) in dimension 2 and the
following non-cartesian discretization: Let hg be the discretization parameter, and
use Z2 to index the cells. The cell indexed by (i;j) 2 22 is given by

h; (j + 1)h) [kh; (k+ 1)h)  if k is even;
CuMI = [jh=2; (j+ 1)h=2) [kh; (k+ 1)h)  if k is odd:

That simply means that we keep the vertical discretization h, but alternate a row with
horizontal discretization h, with another row with discretization h=2.
Consider a discrete density (uj;k)j;x solving the upwind scheme (1.2) over such a mesh
for a discretization of the constant velocity eld b = (1;0). Assume that the initial data
(uj;k(0))j;x is bounded in discrete WY1-norm, uniformly in ho. Then for any t > 0,
(uj;k(t))j;k is bounded in the discrete W S-norm, uniformly in hg, if and only if s < 1=2.
This type of spurious oscillations created by the mesh itself are one of the reasons
why the aforementioned quantitative methods (either in ODE or PDE level) have not
been extended to non-Cartesian meshes. In fact, there exist only very few qualitative
results of strong convergence for non Lipschitz velocity elds and non-Cartesian meshes.
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One can nevertheless mention [10] which relies on the renormalization property at the
limit. However because this kind of approach is not quantitative, it requires some a priori
knowledge of the compactness of the divergence of the velocity eld. This appears to
make handling coupled non-linear models such as (1.1)-(1.3) out of reach.

When one is not trying to handle at the same time non-Cartesian meshes and non-
Lipschitz coecients, stronger results can be obtained. On non-Cartesian meshes, we refer
for instance to [36, 37] for divergence-free velocity eld that are Lipschitz in both space
and time, and to [21] for autonomous (time-independent) Lipschitz velocity elds with
non-zero divergence. For non-Lipschitz velocity elds on Cartesian meshes, one can
obtain quantitative convergence results in some suitable weak distances. When the
velocity eld is in the appropriate Sobolev space with one-sided bounded divergence, the
upwind scheme was proved to converge at rate of 1=2 in [39] in some weak topology.
When the velocity eld is one-sided Lipschitz continuous, the convergence with rate 1=2 of
the upwind scheme in Wasserstein distance was proved in [22].

To the best of our knowledge however, this article is the rst to provide a general ap-
proach to the compactness of solutions to discrete advection equations with non-Lipschitz
coecients and non-Cartesian meshes, even if we still require some restrictions on the
mesh such as periodic patterns.

Furthermore, the compactness result in this paper is directly applicable to some of the
coupled systems discussed at the beginning of this introduction. We are in particular able
to derive the compactness of discretizations of the non-linear coupled system (1.1)-(1.3).
The exact result is stated later in this rst section. We remark here that the velocity eld b
obtained from u through (1.3) is naturally bounded in WP forall 1< p 1, if weassume
g(u) 2 LY\ L. Of course we cannot know a priori the compactness of div b but we have
the simple relation divb = g(u). This is where quantitative, explicit estimates prove
critical as we are able to conclude through some sort of Gronwall argument.

However more complex coupled systems would present unique challenges for our ap-
proach: This is notably the case of compressible uid dynamics. Energy estimates would
provide Sobolev, H ! bounds on the velocity. However the divergence of velocity is gener-
ically unbounded, which would prevent us from applying our method in any straightfor-
ward manner. Instead this would likely require the introduction of weights such as was
done in [13, 14] at the continuous level.

1.4. A basic example of setting for the linear continuity equation. Considering the
linear continuity equation (1.1), we introduce here its basic discretization on a polygon
mesh (C;F) = fVigiav; fSi;j8i;j)2¢ over a bounded domain

RY, which we dened as the following:
The pair of indices (V’E) form a nite graph.
Each cell V; is a d-dim polygon in RY. The intersection of two cells V; and V; is
nonempty if and only if (i;j) 2 E. In that case Si;j = Vi\ Vjisa(d 1)-dim
polygon in RY,

The domain is covered by the mesh: S

v Vi

i2v Vi
We dene the discretization size of the mesh as x = sup;,y diam(Vi), where diam()
represents the diameter.
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As a rst example, we consider the following semi-discrete upwind scheme
8

gui(t) = i X aiio(t) up(t)  aioi(t) ui(t) ; ifi 2 VandV;+By
dt VGi o (isiog2e
zui(t) 0; ifi2 VbutVi+By *
!
1 VA VA +
ai;j(t) = —— b(x + y;t) Ni;j dydx ; if (i;j) 2 E and Si;j+ By
jBxj By Siy
. VA
1 e
Pui(0) = — uo(x) dx; ifi 2 VandVi+By
iy
(1.8)
where (ui(t))i2v are the discrete density on the mesh, N;.; is the unit normal vector on
Si;j, satisfying Ni;; = Nj;i. The functions b(t; x) and uog(x) are respectively the velocity
eld and initial condition in the linear continuity equation (1.1). Also, throughout the
paper, for s 2 R we use the notation s* = s_ 0 = maxfs;0gands = (s”0)=
minfs; 0g.

L P - . .
The total mass on the mesh is given by =, uijVij. It is easy to verify that the

scheme conserves mass except near the boundary of
, Where some leaking may occur.

Such leaking eect can be controlled by no ux (no outward ux) condition of the velocity eld
or by a priori estimating the distribution of density.

Before we can rigorously state any compactness result, we still need to clarify our
assumptions on the mesh. Throughout the paper, for A; B R9Y, we use the notation

A+B=fx2R%x=a+ba2A;b2 Bg:

Also, for x 2 RY we denote A + x = A + fxg, which is a translation of set A on RY.
We say that a mesh has a periodic pattern if the following holds:
Definition 1.2. Let (C;F) = fVigiav; fSi;jg(i;j)2¢ be a polygon mesh over
R4 and let Vo V. _The mesh is periodic with pattern Vo if it satises the following
properties: The set ,,, Vi is connected and one has v Vi + By
. There exists a translation group action °
Xd
m](Vi)= Vi+ mxly; 8m22z%i2v;
k=1

X X
1imv,(x) = 1 for a.e. x 2 R%:

m22zd i2Vo
Moreover, there exists an injective map
Vv LZ9 Vg,
i1 ([n];io):
If (i) = ([n];io) and ([m] + [n];io) 2 (V), dene [m](i) = ! ([m]+ [n[io) 2 V.Then
one has
[MI(Vi) = Vimygy; ifi 2V and [m](i) 2 V:
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If the mesh is periodic with pattern Vo we call jVoj the pattern size; of course for a
given mesh, the choice of Vo and jVoj may not be unique. If one can choose V° V;E° E such

that (C%F0) = fVigiavo ;fSi;j8(i;j)2e0 forms a mesh over
0

, and is a periodic mesh by the denition above, then we say that (C; F) is periodic over
0
We also require some additional assumptions on the meshes, though those are rather
standard. Throughout the discussion, any mesh (C; F) of our interest should satisfy that
forall i 2 V and x 2 R:
C x diam(Vi) Cx; c Y(x)? jvij c(x)9; fk 2

V:iB(x;x)\ Vi = ?g C; (1.9)

for some uniform constant C. These conditions exclude some pathological situations
where some parts of the mesh would be too singular in some regard.

Finally, we observe that since we are considering the limit to the continuous equation,
then we naturally expect the discretization size to vanish. Namely, let

CL R = £V ) Biavin; FSisii(n) B(is) 26 n2N.

be a family of meshes and let x(,) , n 2 N. denote the discretization sizes, then we ask
that
X(n)! Oasn! 1: (1.10)

We are now ready to state a rst example of our compactness result:

Theorem 1.3. Consider T > 0 and a bounded domain
R4 with piecewise smooth boundary. Let b(t;x) he atvelocity eld witth b2 L, L,
\LWESNL (W0 T o
) and divergence divy b 2 LYL(LH)\NLr(wst)([o; 1]
), for some 1 < q 1, 0 < s 1. let u 2 L' \ wsY
) be the initial data.
Consider a sequence of polygonal meshes _f(C(");F(n)gl —;  over
, having discretiza-tion size x(,) ! 0, satisfying the structural assumptions (1.9) with
some uniform con-stant, and being periodic on
with their pattern size also uniformly bounded. Let

(Ui;(n)(t));2vim be solutions to the semi-discrete scheme (1.8) and denote by un)(t; x)
the piecewise constant function extending (ui;(n)(t))izv . Assume nally that the total
mass 5y (m Ui;n)(T)iViymi! kuokiasn! 1. Then

U(n)(t; x) is compact in L([0; T]
):

The proof of the theorem is postponed to Section 2.3, where it follows from the prop-
agation of some discrete regularity of the form (1.7).

1.5. The more complete setting. We demonstrate the potential of our method by also
deriving the compactness for a simple non-linear coupled system, namely

@:u(t; x) + divx b(t;x)u(t;x) =0

b(t/ X) = rx(t; X), x(t, X) = g(U(t,x)) (111)

However, the setting of polygon meshes described above may no longer be the most
appropriate. The diculty comes from the coupling of numerical schemes between the
elliptic Poisson equation, for which one may want to use nite elements for example, and the
hyperbolic advection equation for which we use upwind schemes. This is one of the
motivations for our more general formulation.
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We dene cell functions, face functions and meshes that replace the polygonal cells. We
discuss later in subsection 1.6 how the previous polygon meshes can be related to this
formulation.

Definition 1.4. Consider a piecewise dierentiable function with value 0 1
and vector values functions fnjgj";1 on R4, Then is said to be a cell function with
fnjgn, as its face functions if
Pj”jl nj(x) = r(x) forae. x2R¢ and  suppnj supp; 8j 2 V:

With the cell functions and face functions dened, we give the following denition of
meshes.

Definition 1.5. We dene as a generalized mesh over

R a pair (C;F) = figiav; fni;jg(i;j)2e satisfying the following conditions:

The pair of indices (V/E) forms a nite graph.
If i 2 V and suppi
, then ; must be a cell function with fnj;ig(j;ij2e asits face functions.

Finally,
P
v ilx)=1,  8x2
and ni;j = Nj;i; 8i;j2V:
We also extend fni;jg(i;j)2e to fni;jgi;j2v by dening ni;; = nj;; = 0 for (i;j) 2 E.
The discretization size of a mesh (C; F) is dened as x = maxizv diam(suppi). The
volume of cell i 2 V is dened as ;i = kik,:.
The semi-discrete scheme we consider in this paper is of form
8 4 1 X .
z —ui(t)= = ai;j(t)uj(t) agi(t)ui(t) ;  ifi 2V and suppi
g dt ANHIBIPE:
©ui(t) O; if i 2 V but supp; *
(1.12)
Given b(t; x) and ug(x) as the eld and initial condition in linear continuity equation
(1.2)
respectively, we
1
— choose the
i coecients and
initial data in the
scheme as 8 Z
2ui(0) = i(x) uo(x) dx; if i 2 V and suppi
; R
z . (1.13)
Pai;j(t) = b(t; x) ni;j(x) dx; if (i;j) 2 E and supp nj;
I Rd
Notice that if suppi
, then for all j 2 'V, either one has (i;j) 2 E, suppnj; i
or one has (i;5) 2 E, ni;j = 0 and supp ni;;j

trivially holds. Hence aj;; and aj;; in (1.12) are always well-dened. In addition, we let

ai;j(t) 0 if (i;j) 2 E or suppni; *

Then the summation in (1.12) can be taken over all j 2 V, instead of only j such that
(i;j) 2 E, and the scheme is essentially unchanged. In some of the later calculations,
this adaption can be convenient.

The structural assumptions to meshes we have made should also be adapted. In



particular, the new denition of being periodic is the following:



10 P.{E. JABIN anp D. ZHOU
Definition 1.6. Let (C;F) = figiav; fni;jg(i.jj2e be a mesh over
RY and let Vo V. We say that (C; F) is a periodic mesh with pattern Vo if it satises the

following properties:
The set g;,y suppi is connected and one has g ;,, suppi
0 0

There exists a translation group action

8 p <

fmli) x =i x miLy

S p 8[m]2 z9;i;j2V;
“([mlni;j) x = ni;; x ¢ mele

[m]i(x) = 1 8x2R%:
[m]2zdi2Vo

Moreover, there exists an injective map
Vv z9 v;
it ([n];io):

If (i) = ([n];io) and ([m] + [n];io) 2 (V), dene [m](i) = * ([m]+ [n];io) 2 V.Then
one has

[M]i = (m10); [mIni;j = nimiaymmigys  if 05 [m](i) 2 Ve

If the mesh is periodic with pattern Vo we call jVoj the pattern size. As before, for a
given mesh, the choice of Vo and jVoj may not be unique. If one can choose V° V;E® E such

that (C%F0) = figiave ;fNni;jg(i;j)2e0 forms a mesh over
0

, and is a periodic mesh by the denition above, then we say that (C; F) is periodic over
0

The other structural assumptions on the mesh can be adapted in a straightforward
manner. We limit our discussion to meshes (C; F) that satisfy that foralli 2 V, (j;j%) 2 E
and x 2 RY:

C 'x diam(suppi) Cx; C 1(x)? kikp C(x)%; x knj;jo

ki: C; fk 2 V :(suppk)\ B(x;x) = ?g C; (1.14)

for some uniform constant C. Also, we assume that the discretization size vanishes when
considering a family of meshes,

c EM = £ ) iy FNG s (n) B(isj)2e n2 N
that (1.10) holds where x(n) , N 2 N. denote the discretization sizes as given in Deni-
tion 1.5.

With this more general formulation, one can couple the upwind scheme for advec-
tion and the nite elements for Poisson equation in the following way: Consider convex

bounded domains with piecewise smooth boundary
v

e RY. Let (P;N) be a nite element discretization of
e, Where P is the set of shape functions and N is the set of nodal variables. Choose the
mesh (C; F) = figiav; fni;jgi;j)2e over

v as in Denition 1.5 such that C P.
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The coupled system (1.11) is numerically discretized through by (1.12). The coe-
cients (ai;j)i;j2v derive (1.13) where the eld b(t; x) is now a solution of the variational

problem
8 VA Z
(t;) 2 P; rv(x) r(t;x) dx = v(x)g(t; x) dx; 8v2P;
2 X Rd Rd
gltix)= g uilt) i(x); (1.15)

> i2v
©b(t; x) = r(t; x):

We only consider here Dirichlet boundary c?{nditions for (1.15), as Neumann boundary
conditions would require an extra condition Ré g(t;x) dx = 0 for all t, which does not
naturally hold when g contains some nonlinear function of the density u.

When investigating this more complex coupling, we require further structural assump-
tions on the pair of nite element (P; N) and the mesh (C; F) of our interest. Namely, the
exact solution of = g #&hd its approximated solution of the nite element variational

method
Z Z

2 P; rv(x) r(x) dx = Rre v(x)u(x) dx; 8v2 P;
Rd

are assumed to satisfy the priori estimates

k€ kg €
. Cxkkye (1.16)
E);
kkW 11 €
e) C k kW L1
E):
Such a priori estimates can be proved under rather mild conditions on the nite element
discretization; we refer to Section 5.4 and 8.1 of [12].
We are now ready to state our main theorem on this coupled system, whose proof is
again postponed to Section 2.3.

Theorem 1.7. Consider bounded domains
v

e RY with piecewise smooth bound-ary, a sequence of nite element discretizations
f(p(n); N(n))g? 1 on
e and a sequence of meshes

f(C(n)} F(n))&1=1= f fi;(n)gisz}fni;j;(n)gi;jzvl") gn=11

over

v as in Denition 1.5, satisfying C(") P(n”_’. Assume that the discretization size x(n) ! 0,
the meshes f(C("); F("))g! | satisfy the structural assumptions (1.14) by some uniform
constant, and each mesh (cm; pin)y is periodic on

v with pattern size uniformly bounded. Moreover, assume that the nite element
discretization (P ("); N (n))
satisfy the a priori estimates (1.16) with some uniform constants.

Consider bounded, Lipschitz and concave nonlinearity g : [0; +1) ! R with g(0) = 0.
Assume that the initial data ug satises ug 2 LY\ wsi
v) for some s > 1, and dist(supp uo; @
v) > 0. For all n 2 N., let (uj;(n)(t))izvm and (ai;j;(n))i;j2vm bethe solution of the
coupled scheme (1.12), (1.13) and (1.15) solved on (C("); F(M)) and (P("); N ("), Dene

U(n)(t; X) = iy (X)ui;ny(t):izvim
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Then there exists T > 0 such that
U, is compact in LY([0; T] RY):

Moreover, T could be arbitrarily large by choosing large
v such that dist(supp uo; @
v) 1.

1.6. Connection between the two settings. We now discuss why the polygon meshes in
Section 1.4 can be understood as a special case of the more general setting in Section 1.5.
Starting with any polygon mesh (C;F) = fVigiav; fSi;jg(i;j)2e over

RY with discretization size x, one can construct a mesh as in Denitiog 1.5 through the

following
process. First, add more cells to (C; F) if necessary, to ensure
+By i2v Vi. Second,
construct the extended mesh figaov; fni;jg(i;j)2e  with the cell and face functions
1
i(x) = 1y (x y)dy; 8i2V;
jBr(0)j '
jBr(0)j s (0) (1.17)
ni;j(x) = = 1s,0)(x  y)Ni;; dy;  8(i;j) 2 E:
v 5. iB(0)] 7B v
where Nj;; is the unit normal vector of S;i;;. It is then straightforward to check that if
i 2 Y, and suppi
, then ; is indeed a cellPrunction with fnj;ig(j.iy2e as its face functions. Also, one has
i2v i(x) = 1, 8x 2
and nj;; = nj;i, 8i;j 2 V. Therefore, this construction does yield a mesh over

as in Denition 1.5.

With this construction, the upwind scheme (1.12) for (fig; fni;jg) with coecients
(1.13) and the upwind scheme (1.8) for (fVig; fSi;jg) are very similar. The conditions
Suppi

and supp ni;j
are now nothing but Vi + B x
and Siij + B x

. It is also immediate to see that 7

i = i(x) dx = jVij:

Finally, the coecients aj;j in (1.13

-

(when supp nj;

z b(x+y) Nisj
. . X+y i)
iBx(0)j &, Siy v

N

) now readlaj;j

dydx;

which is only slightly dierent from the coecients aj;; in (1.8), though we do emphasize the
order of ()* and integration in this formula. Notice that if b(x) is constant, then the
integrand b Nj;;j is also constant, hence aj;; given by (1.13) and (1.8) coincide. So, when
b(x) has W LP regularity, we can naturally expect the two ways of determining a;;;j to dier
only by a term that is vanishing in LP as discretization size goes to zero.

As mentioned earlier, both compactness results in Theorem 1.3 and Theorem 1.7 are
derived by propagating some discrete regularity like (1.7), where the discrete density
(Ui;(n)(t))i2vm are both governed by the upwind scheme, with the coecients originally
dened in dierent ways but now formulated all in the setting of Section 1.5. In Section 2, we
give the precise denition of such regularity as Denition 2.3 and state the propagation of such
regularity by the upwind scheme as Theorem 2.9. Theorem 2.9 can then be applied to prove
both Theorem 1.3 and Theorem 1.7.

While the main elements of the proofs rely on the same result, namely Theorem 2.9,
we do need to mention that some settings in Theorem 1.3 and Theorem 1.7 are not
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identical. Apart from the aforementioned choice of ai;j, the way we extend discrete
density to continuous functions are also slightly dierent: In Theorem 1.3, u, is dened as
piecewise constant on each cell, while in Theorem 1.7, u,_ is reconstructed from cell
functions and is thus not piecewise constant. Nevertheless, these dierences are only
minor issues once all necessary denitions and notations are properly introduced, which we
do in Section 2.

Let us also remark that u and un could be made identical by formally choosing;
= ly,. However such choice would come with some additional issues. The indicator
functions are not cell functions according to Denition 1.4 because they are not even
continuous. One may still try to understand the gradients r i and nj;; in distributional
sense to have thatr; = ~nj;; and

z 'z

f(x) ni;j(x) dx = f(x) Ni;j dx 8(i;j) 2 E;f 2 C(RY; RY):
Rd Si;j
In such cases we formally have
aij;j = Zb(X) Ni;j+ dX:Si;j

where the extra mollication in the current choice is removed. But this extra mollication
appears to be necessary for our formulation. For example integrating on S;i;; without
any mollication would require trace embedding and in turn more stringent conditions on
the mesh, which we try to avoid.

2. Main technical results of the paper. The goal of this section is to introduce
the technical setting that we need for our approach and to state the main precise, quanti-
tative results that underlies our compactness results. First, we introduce some necessary
notations. Then in subsection 2.2, we introduce the discrete kernel and semi-norm we
use to prove compactness, which is modied from the continuous kernel and semi-norm
introduced in [5, 4]. We next state Theorem 2.9 about the the propagation of regularity
on periodic meshes. This is the main quantitative result in the paper and, in particular,
Theorem 1.3 and Theorem 1.7 are deduced from it. The proof of Theorem 2.9 depends
on multiple lemmas and theorems, which we state in subsections 3.1, 3.2 and 3.3. But
the actual proofs of these lemmas and theorems are postponed to later sections.

2.1. Denitions and notations. Consider a mesh (C; F) over

RY as in Deni-tion 1.5. We introduce the following notations:

\Y

= fi 2 V:suppi\

= ?g; \Y

= fi 2 V:supp;i

gV

=fi2V:9)j=1ior(i;j)2E; s.t. supp;\

= ?g;

E

= f(i;j) 2 E :suppi\

=7? fork=1i;jg; E

= f(i;j) 2 E : suppnj;j

g:
For a function f 2 L1 (RY) (or L2 (RY; RY)), dene the \projection-to-cell operator"
Pcf as 7

8
<1 f(x)i(x) dx; 8i2V;

(Pcf)i=‘ i Re (2.1)



8i2(VnV):
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Moreover, for f 2 L,})C(Rd; RY), dene the \projection-to-face operator" P¢ f as
8 7 .
2 f(x) ni;j(x) dx;  8(i;j) 2 E
(Pef)i;j = . R

L

(2.2) 0;
8(i;j) 2 (V2 nE):

With these notations, the coecients and initial data in (1.13) can be rewritten as
(ai;j)i;jav = Peb and (ui(0))iav = Pcuo. Next, we dene the discrete divergence of
(ai;j)i;jav as
8 1 X
2 - A A 8k2V
kiav (2.3)

Dk = D (aij)ijav | =
7 0; 8k2 (VnV):

The denition of discrete divergence is justied by the following observation: When
choosing (ai;j)i;j2v = Prb, one has

1 X z + z +
8k2V -
; Dk = k RYb(x) ni;k(x) dx R b(x) nk;i(x) dx
i2v
X VA . VA
=1 b(x) ni;k(x) dx b(x) ni;k(x) dx
Kiay _ RC Re
VA
1 X k
= TB(x) nik(x) dxdx 2V
Z 7
= hx)re(x) dx = 1 diveb(x)k(x) dx:
Rd k Rd
Hence, at least on V
D(Prb) = Pc divyh: (2.4)
For any (vi)i2v, we dene its discrete L norm by
I
‘1=p
X p
k(vi)iavKkie(c) = Vi
i2v

In addition, we dene the LP norm for the discretized velocity eld (ai;j)i;j2v by 0

1.,
X pa d=p (d 1)
k(ai;j)iziavkie(r) = @ayj (x)e=P ;

i;j2v

where the factor (x)9=P (¢ 1) attempts to account for the expected size of the faces.
One motivation to dene the discrete norms as above, and especially the scaling factor

in LP(F), is that we can easily bound them by their continuous counterparts. It is easy

to verify the following proposition when p= 1 and p= 1, and the general case follows by

an interpolation.

Proposition 2.1. Let (C; F) be a mesh satisfying (1.14), then one has the following
inequalities:

kPrbkio(r) Ckbkye(

)» kPCukLp(C) CkukLp(

)7



ADVECTION ON NON-CARTESIAN GRIDS 15

where the constant C in the above inequalities only depends on the constants in the
structural assumptions (1.14).

In this paper, we consider a sequence of discrete densities un) = (Ui;(n)(t))i2vm
dened on a sequence of meshes (C("); F{M). Since the n-th density is always dened on
the n-th mesh, as an abuse of notation, we write kun)kie(cim) as kugkee(cy for
simplicity. Similarly, for the discrete coecients a(n) = (ai;j;(n))i;j2vim on the meshes we
write ka(n)kLp(F(n)) as kagn)kee(r).

The following notations are also useful in later discussions: For each i 2 V, dene the

\barycenter" of cell function i by .
Xi = i Xi(x) dx:
i

For any (vi)i2v, dene its extension to RY by
X

VvV = Viij.i2Vv

2.2. Compactness via quantitative regularity estimates. In this subsection we intro-
duce the explicit semi-norms that we are going to use in the paper, together with lemmas
and propositions about some basic properties of those objects. The proof of all lemmas
and propositions are postponed to Section 7.

The following continuous kernels and semi-norms are introduced in [5, 4] to prove the
compactness of density:

Definition 2.2. Dene the kernel K" for all h> 0 by

(x)

KM (x) = ; 8x2RY
C)= e me ®
where is some smooth function with compact support in B(0;2) and s.t. = 1 inside
B(0;1). Thenforl p< 1, 0< < 1, the semi-norm k kp; for density u2 LP(R) is dened as
VA
kuk?. = sup jloghj K"(x  y)ju(x) u(y)j® dxdy: (2.5)
h1=2 R2d

We dene the corresponding discretization of such kernels and semi-norms.
Definition 2.3. Consider a mesh (C; F) over
RY, on which there exists a discrete
density (ui)i2v such that suppu; V
. Assume that X
i(x) = 1; 8x 2
+ B(0;4): (2.6) 12V

Given any so-called virtual coordinates 8 = (®i)izv 2 (R9)Y, we dene an approximate
kernel I§"; on the mesh by

" = K"(ei ®j); 8i;j2V:

Then forl p< 1, 0< < 1and 0< hg < 1=2, the discrete semi-norm k Kkp,.p;.a ON the
mesh is dened as

X
kuld . ..= sup jloghj Kigli  ujjPi: (2.7)
ho b 1=2 i;j2v
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The following lemma is the cornerstone of deriving compactness from the discrete
regularity in Denition 2.3, in the particular case where 8 2 (RY)Y in Denition 2.3 is
simply chosen by the barycenters, i.e. B = xi. In that case, we use the specic notation

Kir;]j = K"(xi x;)  and K kngp; = k Khosps:(xi)iay O
specify the discrete semi-norm derived from the barycenters (xi)izv .

Lemma 2.4. Let (C; F) be a mesh as in Denition 1.5 over
RY such that (1.14) and (2.6) hold. Consider a discrete function (u;)izv on the mesh,
satisfying the bound

k(ui)izvkne;p; L

for some 0 < ho < 1=2. Dene the renormalized kernel K" (x) = K"(x)=kK"k,: and letu
be the extension of (ui(t))i2v to RY. Then

8h> hg; ku KM ?2uk,,PCjloghj !

where the constant C only depends on L and the constant in structural assumptions
(1.14). If the mesh is given by a polygon mesh (fVig; fSi;jg) via (1.17), then the above
inequality also holds when u is replaced by the piecewise constant extension.

Consider a sequence of meshes (C("); F(")) and a sequence of discrete density u(,) =
(Ui;(n))i2vm dened on them. It is just natural to study the compactness of such discrete
densities on dierent meshes by some sort of extension on R€.

To see how Lemma 2.4 helps to derive compactness of such sequence, assume that one
has uniform boundedness

sup limsup kugmkn ;1; < 1;
O<h<1=2 n!1
and uniform boundedness of discrete LP(C) norm. Then for any xed h > 0, the dier-ence
between extended functions Un) and their mollications are uniformly bounded by Cj log hj

1 up to discarding nitely many terms of the sequence. On the other hand for any xed h

greater than 0, the sequence of mollied functions is locally compact. Therefore, the
sequence of extended functions is also locally compact.

However there are several big issues that one should be aware of when moving from
the continuous to the discrete setting:

The kernel parameter h has to be bounded from below in Denition 2.3, because a
kernel too sharp is not suitable for a coarser grid. Generically hg should be
chosen much greater than the discretization size x. But for a sequence of meshes
with x converging to zero, hp could be chosen converging to zero as well (with a
possibly much slower speed). As we just discussed below Lemma 2.4, this sort of
regularity in asymptotic sense would be sucient to continue our discussion of
compactness.

Moreover, in Denition 2.2 the integral is taking on R29, while in Denition 2.3 we

are restricted to a nite double summation. Nevertheless, any kernel K" has
bounded support in ball B(0; 2), hence for any density u with bounded support,
the double integral in (2.5) can be taken on suppu+ B(0;2) % instead of R29.
Therefore, to reasonably approximate the integral in (2.5), it is natural to made
the additional assumption (2.6) for the summation in (2.7). The larger ball
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B(0; 4) is used for the convenience of later analysis. Starting from a mesh (C; F)
over
RY on which the upwind scheme (1.12) is dened, one can always put additional
cell functions to make (2.6) hold. The scheme is not really aected
as the density is set as zero at any i 2 V
For this reason, when discussing quantitative regularity, we always add (2.6)
as part of our assumption to meshes.
The more delicate issue and the one that leads to most technical diculties in this
paper is how to choose the virtual coordinates (ei)izv. While it would seem
natural to take (®i)i2v = (Xi)i2v, the corresponding semi-norm does not seem
to be propagated well on the scheme (1.12). This will force the use of (®i)i2v =
(xi)i2v to obtain semi-norms that we can propagate well. On the other hand, by
Lemma 2.4 we can clearly see compactness from the semi-norms induced by
(xi)i2v, but not from semi-norms induced by arbitrary (&i)i2v. Therefore, we will
also have to show that the approximate kernels K"(ei ®j) are equivalent to
Kh(x; xj), for a choice of virtual coordinates (®i)iov that are only slightly
dierent from the barycenters (xi)iav -
We can make the last issue somewhat more precise by a more general estimate that
consider the discrete kernels as some sort of perturbation of the continuous kernels.

Lemma 2.5. Consider measurable functions fi; gi : R4 ! RY,i= 1;2and 0< hy < 1=4,
such that jx  fi(x)j h1, jx gi(x)j hi, 8x 2 RY;i= 1;2. Consider the kernels

(f x) f &)i) |
(ifi(x)  fa(y)ji+ h)e’

th(x;y) = Kle (s Ealy)) = (Jg(jlg(x()lX) gz?\/()z}li-j)h)d:

K{(xy) = KM(Fa(x); f2(y)) =

Then forl p< 1 and0< h< 1=2,
z Z

d K" (x; y)ju(x) v(y)j® dxdy (1+ Chi=h) K3(x; y)ju(x)  v(y)j® dxdy;

RZd
(2.8)
where the constant C only depends on the xed choice of in the denition of kernels K".

RZ

Notice that the double summation in (2.7) can be rewritten as a double integral form
by carefully choosing some function f = f1 = f, and a piecewise constant, which we
state as the next lemma:

Lemma 2.6. Consider a mesh (C;F) as in  Denition 1.5 over
RY with discretization size x < 1=16, such that (2.6) hold. Introduce some measurable
sets (Vi)iav RY such that .

jVij= i = i sup jx  Xij < 2x; 8i2V; and Vi\Vj=7?; 8i;j2V:
Rd X2Vi
Dene the piecewise constant extension uV = P i2v Uily, for the discrete density func-
tion. Then
v [
supp u
+
B(0; 1)
+
B(0; 3)
Vi

i2v
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Assume that the virtual coordinates (®i)i2v are such that je; xij < hz, 8i 2 V and for
some 0< h, < 1=16. Dene f :R% ! R% as

(19;; forx 2 Vi; i 2 V;
f(x) =

S
X; forx 2 ~,,y Vi:

Then jx f(x)j 2x+ hz < 1=4, 8x 2 R9. Moreover the double summation in (2.7)
can be rewritten as a double integral:

Z
X
e jui ujPy = KM f(x)  fly)ju¥(x) uY(y)i® dxdy;
i;j2v R2d
foralll p< 1 and 0< h< 1=2.

From these two lemmas, one may deduce the following proposition supporting our use
of (Bi)iav = (Xi)i2v.

Proposition 2.7. Consider a mesh (C; F) with discretization size x < hz < 1=16, such

that (1.14) and (2.6) hold. Let (:e(l)}izv, (E(Z)i)izv 2 (RY)V be two sets of virtual
coordinates on the mesh such that

8i2V; k= 1;2; E(:() Xi < hy:
Then for1 p< 1, 0< < 1and 0< hg < 1=2, the two resulting semi-norms and
equivalent and satisfy
kukp,.p:e2 (1 + Cha=ho) kuky ;. .em;
where the constant C is xed.

The proposition implies that the equivalence of semi-norms can be derived from the
closeness of virtual coordinates. Therefore, a large part of our technical analysis is
actually devoted to nding appropriate (®i)i2v ensuring the propagation of regularity
while remaining reasonably close to barycenters (xi)iz2v .

The next proposition is also a consequence of Lemma 2.5:

Proposition 2.8. Consider a mesh (C; F) such that (1.14) and (2.6) hold. Then for

1p<1,
Z X
K"(x; y)ju(x) u(y)j® dxdy (1+ Cx=h) KP(xi xp)jui ugjP i R
i;j2Vv
and
X ; X z z
Kib(Pcu)i  (Pcu)j i = Ki,j b Ju(x)i(x) dx diy)i(y) dy i;
i;j2Vv i;j2V i Rd j Rd
Z
(1+ Cx=h) K"(x; y)ju(x) u(y)j® dxdy:

R2d

for some constant C depending only on p and the constants in the structural assumptions
in (1.14).
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This proposition ensures that the regularity of the extended function is comparable
to the regularity of the discrete density and vice versa, which is needed in our proof of
Lemma 2.4 and Theorem 1.7.

2.3. Our main quantitative regularity result. We are now ready to state our main
guantitative theorem about the propagation of regularity on periodic mesh.

Theorem 2.9. Consider T > 0, and a bounded domain
R? with piecewise smooth boundary. Let f(C{"); F("))g! | be a sequence of meshes over
RY as in Denition 1.5, having discretization size X(n) ! 0, satisfying the structural

assumptions (1.14) and (2.6) by some uniform constant, and being periodic on
with pattern size uniformly bounded.

For alln Ni, t2 [0;T], let (aj;j;(n)(t))i;j2vm be the coecients of the upwind scheme
(1.12) on (C™); F(M) and let D(n)(t) = (Di.(n)(t))i2vm be the discrete divergence dened as
in (2.3). Let u(n) = (ui;(n)(t))i2vim be a sequence of discrete density solved by
the upwind scheme. Withsomel p< g 1 and0< s 1, assume that there exists a sequence
of wvelocity eld b(,)(Ex), bounded uniformly in 9L, (W5 3)\LP(W*P)([0;T]
), and approximating the coecients (aj;j;(n)(t))i;j2vm with vanishing error

P . | ! .
(a' ’ i ( n ))i;jZV(") eP F(n;b( n ) Le([0;T]F (M) : 0 as n' 1 .

Assume moreover that the solutions have uniformly bounded norms sup, ku,)k
and that mass leaking vanishes

LLrosmich) <

kU(n)(O)kL1(C) kU(n)(T)kL1(C)! 0 asn! 1:

Then for all  maxfl 1=g;1=2g, 0 < hp < 1=2, there exists suciently large N 2
N* such that foralln N,

ku(n) (t)Kno;1;
kU(n)(O)khU;l;
Z
+ C kdivg(n)(s)ku(c)kU(n)(S)th;l; + kiﬁn)(s)kwl;q ku(n)(s)kLp(C)
+ kD(ny(s)kuickun)(8)kn;1; + Ku(n) (S)kpo () KD (n) (S)Knoipip( 12p) ds

+ L, + Lg ;
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with additional terms due to discretization
z t

L.= C jloghoj =h? §X(n)) ka(n)(s)keia(r) + k8(n)(S)kwa Ku(n)(s)kia(c) dso
+ C(jlog hoj' ) ku)(0)kire)  kugny(t)kire) ;

L = C(jloghoj =ho) a(n) PF'"Jb(”)eP([O;T]F) + (x(n))S=(1+s)kb(n)kLpéWs;p)

3 " o

+ (X(n)) 05 129 Ka(n)Kea(ro;Tie) + kb(nékmwl‘w kKumky e ogers

= exp C(1=ho)(x(n))*=(**s):
(2.10)
The constant C in (2.9) only depends on
, the exponents p;q and the constant in the structural assumption (1.14), while the
constant C in (2.10) also depends on T, the exponent s and the constant bounding
pattern size. Nevertheless, none of the constants depends on ho or x(,). The index N
2 N* is chosen to make x(n) suciently small, which only depends on ho and the
constant bounding pattern size.
In particular, for any xed ho > 0, the additional terms L; L, cgnverge to zero and
converges tooneasn! 1.

Proving Theorem 2.9 is the main technical challenge of the paper. We split our proof
into three theorems, namely Theorem 3.1, 3.3 and 3.4. These three theorems are stated
in subsection 3.1, 3.2 and 3.3 and we conclude Section 3 by how they are used to prove
Theorem 2.9. Each of the three theorems requires its own proof on which we spend an
entire section after Section 3.

Before we move to the proof, we conclude this section by showing how to deduce
Theorem 1.3 and Theorem 1.7 from Theorem 2.9.

Proof of Theorem 1.3. Let us begin with the discussion of mesh properties as Theo-
rem 1.3 is stated in the setting of polygon meshes. We rst recall the construction (1.17) in
Section 1.6, restated here

1 z

(x)= ——
' iBr(0)j 8, (0)
Z

ly(x y)dy, 8i2V;

ni;j(x) = 1g,(0)(x y)Ni;; dy; 8(i;j) 2 E:

.., iB:(0)]
for the entire sequence f(C("); F("))gl ;. As an abuse of notation, we still use f(C("); F(n))gl ;
to denote the generated sequence f fi;(n)8i2vim; fNi;j;(n)8(i:j)2e(m Bni1. It is easy to verify
that if the polygon meshes satisfy the structural assumptions (1.9), then the con-structed
new meshes as in Denition 1.5 satisfy the structural assumptions (1.14), with
a possibly larger constant. Moreover, as explained in Section 2.2, one can always put
additional cell functions to make (2.6) hold. This yields a sequence of meshes that fullls the
requirements of Theorem 2.9.
Now we dene a linear operator P° as.an alternate of the \projection-to-face operator" P¢,

such that in Theorem 1.3, the coecients of upwind scheme on each (C{"); F(")) js
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chosen exactly by (aj;j;(n))i;javim = PCF’ (m b. Such operator P% is given by
827 +
0 T f(x) nig(x) dx 8(i;j) 2
(Pef)iyy = S Rd

0; 8(i;j) 2 (V2> nE):
It is easy to verify the divergence identity D(P:b) = Pc divx b by the same approach
with which we obtain (2.4). Also, it is straightforward thatckppbkLp(F) kPrbkye(r)
Ckbkys
).

We can then do some a priori estimates for the norms required by Theorem 2.9. To
avoid writing too many index (n) in the calculation, let (C; F) = figiav; fni;jg(i;j)2e be
any mesh in the sequence of meshes we consider. Firstly, notice that fori 2 V
, one has

0 1
du; 1 X 1 X X
e — ai;j uUj  aj;iuj @SUpUk ai;j Ui aJ}iA
dt iiav i k2V j2v i2v (2.11)
= Djsupux+ 1 X aj;i supux uj ;
k2vV 7‘j2v k2v
and for alli 2 V 11

nV
, one has u; 0. By the assumption divxkb 2 L; L, , one can conclude kD (t)k :(c)
Ckdivxbk.: and

C
é:tsupuk sup( Dj) supux kdivibkyi: supuy: (2.12)
k2v i2v k2v k2v
The constants C just above do not depend on (n), so that (uj;(n))izv and (Di;(n))iav
have uniform a priori bound in L 1L1([0; T]C(")). By Helder estimate one can obtain
uniform bound in any L1LP([0; T] C!™) where 1 p 1.
Secondly, forany s> 0and 1 1=p, the semi-norm of the divergence is bounded by
k(Di(t))izv kho;p;p( 1=p) Ckdivy b(t)kp;p( 1=p) Ckdivy b(t)kWs;p:
The rst inequality is an application of the divergence identity D(PFbc) = Pc divxb
and Proposition 2.7, while the second inequality is due to Sobolev estimates. Similarly,

k(ui(o))iZV khg;l; CkUOkWs;1:

The constants C again do not depend on (n). This gives uniform bounds to the semi-
norm of (Dj;(n)(t))i2vm and (ui;(n)(0))izvm.
We want to apply Theorem 2.9 with B(,)(t; x) = b(t;x), p= 1 and q = q (recall that

b2 LYW L9)\ LL(W?™)). But the issue remains is that our newly dened P° ¢is not
identical to Pr. Hence, the L1 dierence

(ai;j;(n))i;jzv("' PF(")bQ)Ll([O;T]F(n)) = P}:(n)bc PFl”)bLl([O;T]F(n))

is not zero, and one has to argue it converges to zeroasn! 1 and as x(n) ! 0. This
is guaranteed by the following proposition whose proof is postponed to Section 7.
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Proposition 2.10. Let (C;F) be a mesh as in Denition 1.5 over

RY such that (1.14) hold. Assume that each face function ni;; 2 F is of form ni;j(x) =
Ni;jwi;j(x); 8x 2 RY, where Ni;; 2 S 1 is a unit vector and wj;j is a scalar function. Then
forli p 1,

PFb PFb

ro;Tie) CXKOKLqyre);

where the constant C only depends on p and the constant in the structural assump-
tion (1.14).

We only have to observe that the construction (1.17) indeed ensures that any nj;j 2
F is of form nj;j(x) = Nj;jwi;j(x). Hence this proposition applies to the setting of
Theorem 1.3. And we can nally apply Theorem 2.9 to obtain (2.9) with b&)(t; x) =
b(t;x), p= 1andqg= gq.

By Gronwall estimate one can conclude

Cllog- = sup lim Supku(n)(t)kho;l; <1
’ O<ho<1=2 n!1

for some 0 < < 1. This directly implies compactness in space of the density u(y,.
Compactness in time now follows by reproducing the Aubin-Lions argument in the semi-
discrete setting.

Forany0< h < 1=2, let hp = h. By the previous estimates, one can choose N(h) 2 N.
such that

sup  ku(n(t)kniz; < 2CH
nN(h) ,

By Lemma 2.4, one has
kK™ 2% uin)(t)  um(t)ki: Cjloghj * forn N(h);t2 [0;T]; (2.13)

where C depends on C,1,. and the total mass of u(y).
On the other hand for any xed h > 0, Up.c;
= fKP 2u:kuky: < C;suppu
gis a compact set by ArzelgAscoli theorem, on which we consider t ! Kn ?x u(n(t), the
trajectory of mollied density. Notice that

z z

d d
KM 25 ugm(t;x)  dx = K"(y x)dy aui;(n)(t) dx:

Vh(t) = —
Rd dt Rd ciiln)

i2Vv(n)
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By (1.2) we can bound Vi(t) by

|
z y z h L X
Vh(t) = K'(y x)dy — aj;io;(n) Yio;(n)  @i0i;(n) Uiz(n) dX
R4 2V (n) cistn) i i0: (i;i0)2E(n)
Z VA Z |
hoo X 1 h 1 Rd
= K"y x)dy — K"(z x)dz — aji;io;(n) Ujo;(n) dx (i;i0)2E(n)
Cis(n) i Cio;n) i
Z Z Z !
X 1 h 1 h
il K'(y x)dy _— K"(z x)dzdx ai;i0;(n) Ujo;(n)
(i;10)2E (n) Rd i Ciim i© Ciojn

LhX(n) @isio;(n) Uio;(n)
(i;i9)2E (n)
CLukb(t)kysku(n) (t)kyscin);

where L, denotes the Lipschitz constant of K" and C depends on the constant in Propo-
sition 2.1. Since we assume b 2 Ltl le and have obtained uniform a priori bound of
(Uis(n))izvim in LTLY([0; T] €M), we have Vi (t) uniformly bounded in t.
Therefore, for any xed h 0, K" ? u(n) is equicontinuous as a trajectory in Un;c;
L1(RY). By Arzela{Ascoli theorem, fK " ? u(n)g is compact for all h > 0, which implies
fu(n)g is also compact thanks to (2.13).

We now turn to the proof of Theorem 1.7 which requires more work but follows
somewhat similar steps.

Proof of Theorem 1.7. As in the proof of Theorem 1.3, our goal is to apply Theo-rem
2.9. As a comparison, this time we begin with a sequence of meshes as in Deni-tion 1.5 so
the mesh properties are obvious, but since we are discussing a coupled system, we also need
to actually derive regularity estimates on the velocity eld.

As before, when there is no ambiguity, we omit the index (n) by letting (C; F); (P; N)
be any pair of mesh and nite element in the sequence, and let (ui)i2v, (ai;j)i;j2v be the
discrete solution.

Step 1: Discrete a priori bounds. The discrete divergence ati 2 V

is given by

z _
1 X 1 X + i
Di = — aio;i  aiio = — b(y) nio;i(y) b(y) nio;ily) dy
0 iio Rd
|2XVZ 2V Z
1 1 ‘
= ZF(y) nioily) dy = - r(y) ( ri(y)) dy'
jopy RY i R
1 .
= _ gly)ily) dy:i
Rd

The last identity is due to the assumption that; 2 C P and (1.15).
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By Proposition 2.8, for all h x, one has

« X y4 Z
KibjiDi  Djjij = Kitnjl g(x)i(x) dx 1 gly)ly) dy i
i;j2v 1513y i R i R
C K"(x; y)ig(x) gly)j dxdy
2d
c Kifig(ui)  gluj)iij
i;j2v
Clg Kifjui o ujji:
i;j2v

where Lg be the Lipschitz constant of g. Hence,

D.(t) 2V hoi1; cl, u'(t)iZVho;l; (2.14)
Also, from the above discussion it is straightforward to see that
Di(t) = 4 2 gly)ily)dy= ;4 X g uj(t) j(y) i(y)dy'
—R¢ iR j2v

= X Ai;jg uj(t);

j2v
where the coecients satises X
Ai;j 0; Ai;j = L
j2v
Thus n o inf
sup Di(t),,, sup  gla)jaz2 [inf ui(t),,; sup ui(t),, ] ;
i2v i2v i2v
n o
Di(t),,, inf g(a)ja2 [inf wui(t),,,; sup ui(t),,,]
i2v i2Vv i2v

Since we assumed that g 2 L1 (R), this means that the divergence is bounded uniformly
inn. By (2.11) and (2.12), we also obtain a uniform in n bound of (u;)i2v in L*([0; T]C) for
any T > 0.

Recalling moreover that ds the solution of = g (with Dirichlet BC on
¢), one also has a uniform bound one inL, L, \ L, H,.

Step 2: Control of mass leaking by Markovian interpretation. The discrete scheme
can also be represented by a Poissor’brandom process model. Without loss of generality,
we may assume that the total mass = ;,, ui(0)i = 1 and dene the initial condition of the
random process X (t) by PfX(0) = ig = ui(0)i. We choose the rate of the Poisson process
as

ot (t)
walt) = T
Dene now the stopping time and number of jumps through
= infft: X(t) 2V
.8
N(t) = supfN :0=sg< s3< < sy t; 81 i N;X(si)= X(si 1)g:
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Then we have a straightforward identity of the density for t > 0 by
1
ui(t) = —Pf > t; X(t) = ig:i

By the fact that r % bounded in L and (1.16), one can conclude that b= r is also
uniformly bounded in LY. Denote M, the a priori bound of kbk.:, then
a; (t), M

io;i(t) = —

where M = CMy.
Dene Le
, = dist(suppuo; @
v). By its denition, dist (Xo; @
V) L@
., So that it requires at least L@
, =X jumps to reach the boundary, i.e.

t only if N (t)

In particular, one can bound the probability of T t by a homogeneous Poisson process,
i.e.

Pf tg P M, le 1
X X
where P (; :) denotes the probability distribution of a homogeneous Poisson process with
rate and starting from 0.
Consider T > 0 such that Lg
MT > 0, and let 1 = (Le
MT)=2. Then one can deduce

Pf Tg Cexp( 1=x);

v

v

by standard estimates for homogeneous Poisson processes.
Hence choosing T s.t. > 0, we obtain the mass leaking estimate, forany t T

X
01 i ui(t) Cexp( v=x) ! 0; asnl! 1:
i2v

Step 3: Regularity of the continuous velocity eld. We choose the continuous velocity eld
in Theorem 29 & be = er, = g (with Dirichlet BC on
e). By our discussion in Step 1, we have unifa@m in @ bounds onb=r inL TLY\L'HY.

Moreover, by our assumption (1.16) on the nite elements, one can bound the L2
dierence between (ai;j)i;jav = Prb and Prb By

(@i;j)isizv PFb?let([OjT]F)zpr PFbLlLﬁ([O;tT]FX)
Ckrrky §, :Cxkkiay ;® ’

t

which converges to zeroasn! 1 andx ! 0.
We can also show that our choice of B has Sobolev regularity in time, namely & =
;1 .
r @ WL ([0; T] .
) for any s < 1. Notice that
X
=6g = ig(ui);

i2v

P :
so that the issue is to show that ,, ig(ui) 2 Wl'tlw
e

1;1
ol
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d
Any solution u of the rst-order scheme (1.12) satises the following identity for all i,

—_ 1X _
& = . aijuj o apiui o lyny i
1 X
(i) ai;juj:
j2v j2v
Wheni 2 V
, the above equality is exactly the upwind scheme. Wheni 2 (V nV
), one
has u; 0 and the above equality reduce to 0 = 0. Therefore,
0 1 0
d du; 1 X , 1 X
—g(ui) = g°(u)— = @(w) = aijup ajiuiA @lygy (g°(ui) T — aijuiA
dt dt ijav ijav
i bd.
= G'" GP%

The term G"i’d measures the possible leaking at boundary. It is non-negative and from

the previous step, it satises
VA

X
G 9(t)i(x) dxdt= GPY(t); dt Clgexp( T=x);
RE i2v
P
which implies that * ;,, GP%; 2 L1L* .
In addition, the term Gint can be reformulated as

6t s O 2 au aul
=g (ui) ai;juj - agiui
Fiav
= ix ai;jgluj) ajig(u)  + ix aij  a; gl(uui glu)
PV, Fiav
1 X ‘
o, 2 g0(ui)(u;  ui)  [glu) glu)l’
]

= GM+ GP + GM:

P
Since jGBj 2sup;jDijLgM 2(LgM)?, it is straightforward that ,,, G, i 2 L,
L} . Also, by the concavity of nonlinearity g, one has G; ® Furthermore,
zZ:2Z
GM(t)i(x) dxdto
e i
Z X
= GM (t) dto
i2v
Z7TX ¢
= —g(ui(t)) G*(t) GP(t)+ GPd(t)i dt
i2v dt I
X Z1 X Z1 x
g(ui(T)) glui(0)) + 0+ GP(t)i dt+ GPY(t): dt
i2v 0 v 0 jav

2LgM + 2T (LgM)? + CT Lg exp( T=x);

P
where in the rst inecBJaIity we use the observation that ;,, G, ft);i 0. As a
consequence, one has = ;,, GM; 2 L, 11,.1
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Finally, for any test function’ 2 W i1,

X
“(x) GA(t)i(x) dx

Z i2v
X 1
= (x) 2igui(t)  apiglui(t)i(x) dx
e i;j2v !
Z
= aiig(ui(t)  apiglui(t) L (x)i(x) dx
i;j2v 5 :
X 1 1
Zi —_
= ayg(u(t) "(x)i(x) dx “(y)ily) dy
. i 11
] 11
= aijg(ui(t) “(x) "(y) i(x)j(y) dxdy
(i5§)2E b

e
e

By our structural assumptions, the number of terms in the last sum is at most C(x) ¢

and each term is bounded by C(x)9LgM 2k’kw1;1. Hence
VA

X
"(x) GA{t)i(x) dx CLgM 2k’ ky11;
. i2v
which means P ,, G 2 L1w 11
By combining all estimates above, we conclude that
d d X :
ag = dt— ig(ui) 2 L]'V\/t 1;(12
i2v
It is also straightforward that g 2 LY L*, Thus one indeed has that g 2 W*w %1,
which implies that B=r @ Ws’tlL1 foranys< 1.

Step 4. (Compactness) Combine the previous results and apply them to (C(™; F())
and (P("; N () for all n 2 N.. Since all functions are dened on a bounded domain,
Sobolev embeddings also directly apply. We may then use Theorem 2.9 withp= 1,q= 2
and and s < 1, yielding the following asymptotic estimate for > 1=2,

lim sup kugn)(t)kng;1; limsup ku(n)(0)kn;1;
nl!i1 n!i1

t
C kU(n)(S)kLl(c)kU(n)(S)kho;l; + kb(nﬂs)kv\uukU(n)(S)kL1(c) ds ;
0

where we used step 1 to bound the discrete divergence terms in Theorem 2.9 by the
corresponding bound on u(n).
By Gronwall estimate we conclude that
Cllog; = sup limsupkun(t)kn;1; < 1:
O<ho<1=2 n!1
The last part is to argue that t | Ky ?x u(n)(t), the trajectory of mollied extended

density, is equicontinuous on a compact subset of space L1(RY), which is performed in
the same manner as in the proof of Theorem 1.3.
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3. Proving Theorem 2.9. In this section we start the proof of Theorem 2.9, which
is spread into Section 3, 4, 5 and 5. We introduce in this section three theorems that
each corresponds to a specic step and explain why they together prove Theorem 2.9.

The rst step in the proof is naturally an estimate of the time evolution of ku(t)kn,;1;,
which we state as Theorem 3.1. Most terms in the estimate behave as one can expect
from the continuous model. However, there is one additional term involving what we call a
residue ri(t) which given by linear equation (3.2) and restated here,

(e e )ap,(t) = bi(t)i+ ri(t);;812 V; t2 [ty ;td; 1k me

2@ fig

We need to control this residue to conclude the bound on ku(t)kn,:1; through Gronwall
lemma. The study of the residue is where our proof fully deviates from the continuous
setting.

In essence the size of the residue follows from the choice of virtual coordinates x;. We
correspondingly introduce two theorems: The rst one identies some good assumptions for
the virtual coordinates to make the residue small, which we state as Theorem 3.3. The
second theorem 3.4 shows that virtual coordinates satisfying such assumptions actually
exist, at least where the mesh has periodic patterns.

3.1. Step 1: Propagation of regularity in the discrete setting. Our rst result repro-
duces the propagation of regularity in [4] for scheme (1.12) but with additional terms
caused by the discretization. The proof of the theorem is postponed to Section 4.

Theorem 3.1. Consider the semi-discrete scheme (1.12) on a mesh (C; F) over a bounded
domain

RY with piecewise smooth boundary as in Denition 1.5, having discretiza-tion size x and
satisfying the structural assumptions (1.14) and (2.6). Let (ai;j(t))i;j2v be the coecients of
scheme (1.12)@and D(t) = (Di(t))i2v bethediscrete divergence given by (2.3). Let b(t; x) be
acontinuous velcity eld on RY and denote its discretization by (bi(t))i2v = Prb(t;).

Choose M; M > 0, such that x M M < 1=32. Divide the time interval [0; T]as 0 =

to< t1< < tm = T. For each interval [tk 1;ty], let (E(k))iZV be virtual coordinates on the
mesh satisfying

e elj2m; 8(51) 2 E; (3.1a)
e xij v, si2 v (3.1b)
Let (ri(t))iav; t 2 [0; T] be the residue function given by

X {U k) iX ( k) e
020 fig(® e )ajpgi(t) = bi(t)i+ ri(t); 8i2V;t2 [tk ;t]; 1 k m: (3.2)

Let k(t) = minfk : t < tg; 8t 2 [0; T]. Then any solution u(t) = (ui(t))i2v, t2 [0;T] of
the semi-discrete scheme (1.12), satises for 0 < hg < 1=2

ku(t)kne;1; (Lo + L1+ Lo + L3); (3.3)
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where
(t)+1
Lo = ku(0)Kkng;1;; = 1+ C(M=ho) ;
k
z t
L1 =C kdive(s)kii(c)ku(s)kn ;1; + kbks)kwzaku(s)kps(c)
0
+ kD(s)kii(cyku(s)kne;1; + ku(s)kie(c)kD(s)khy;p;p( 1=p) ds
Z . 0
Lo =C jloghoj M?=h?xk(ai;i(s))iiavkisryku(s)kiage) +
jloghoj M=h?kb(s)kiku(s)kia(c) (3.4)
+ (jlog hoj x=h2)59(§ﬁ<wl;qku(s)qu(C) ds
+ C(j|0g hojl ) ku(O)kLl(c) ku(t)kLl(c) ;
z t
Ls = C (J |0g hoj =ho)k(ri(s))i2vkLp(c)ku(s)kLp(c) dS,‘O

provided that 1 p< g 1, maxfl 1=g;1=2g, M ho < 1=2. The constant C depends
on
, the exponents p; q and the constant in structural assumptions (1.14).

What we have exhibited in this subsection is a rather incomplete result. The terms
; L2 and L3 in Theorem 3.1 are due to the discretization error. The term L2 would
tend to zero as the discretization size x ! 0, provided that the virtual coordinates are
chosen such that maxfM=(x)1=2;M*=2g | 0 and ho are chosen decaying to zero with an
even slower speed.

Unfortunately, L3z will not vanish so easily. To eliminate it asymptotically, one should
nd a sophisticated way to determine suitable division 0= to < < tm = T and virtual

coordinates (ile(k))izv on each [tk 1;tk], making the norm of residue krktLl,[x([O;T]c)

decay. To control the term , one should also control the number m in the division of
[0;T].

Finally we emphasize that we do not need to assume that the coecients aj;j(t) be
given from the discretization of the velocity eld 5. The connection between a;;; and b
stems only from the denition of the residue in (3.2). And in fact, as we will see in the

conclusion of the proof, the aj;; are typically derived from a slightly dierent eld b = B.
3.2. Step 2: Controlling the residue through virtual coordinates. It remains to investi-
gate in what circumstance Theorem 3.1 give useful results, in the sense that all the ad-
ditional terms due to the discretization error vanish asymptotically. The main question
is how to control the so-called residue through a proper selection of virtual coordinates.
We rst introduce the key notion of admissible family of virtual coordinates that works
for any constant eld.

Definition 3.2. Consider a mesh (C; F) over
RY. Let

(Ri(be))izv 2 (RY)Y;  8be 2 R
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be a family of virtual coordinates. We say that it is an admissible family of virtual
coordinates on
for constant elds with relative drift M, absolute drift M and residue bound M in LP if the
following properties are true:

(1) For each n 2 N. and any vector bc 2 RY, one has

Ri(be) = Ri(be); 8> 0;i2 V:

(2) The following bounds hold:
sup Ri(be)  Rio(be) M
jbcj=1;(i;i0)2E

sup  jRi(be)  xij M:
jbej=1;i2V

(3) For any vector be 2 RY, let (ai;j(bc))i;jav = Peb and (bi(bc))iav = Pcb be the
discretization of the constant velocity eld b(x) bc. Dene (f (bc))iav as
() A
R0 b Ri(bc)apji(be) = bilbe)i + 1 (be)i; 8i2V: (3.5)

io2v

X

Dene the maximal residue function ((Pmax)i)i2v by

(‘Amax)i = sup jri(bc)j; 8i2V;
jbcj=1

then its LP norm is bounded by

k(r\maX)ikLp(C) J
iFPm:

By assuming that an admissible family of virtual coordinates exist, we have the fol-
lowing theorem that controls the residue for any Sobolev velocity eld and whose proof is
performed in Section 5.

Theorem 3.3. Consider the semi-discrete scheme (1.12) on a mesh (C; F) over a bounded
domain
RY with piecewise smooth boundary as in Denition 1.5, having discretiza-tion size x and
satisfying the structural assumptions (1.14) and (2.6). Let (ai;j(t))i;j2v be the coecients
of scheme (1.12) and D(t) = fDi(t)gi2v be the discrete divergence given by (2.3).
Assume that u(t) = (ui(t))i2v, t 2 [0;T] is a solution of the semi-discrete scheme (1.12).
Moreover, with some 1 p < g 1 and 0 < s 1, assume that there existsa

continuous velocity eld b(t;&) bounded in LY(W,%%) \ LP(W *")([0; T]
), and an
admissible family of virtual coordinates on
for constant elds, dened in Denition 3.2, with relative drift M, absolute drift M and
residue bound M in L1=(1=P 1=d) | addition, let maxfl 1=q;1=2g, and assume that M
ho < 1=2.

Then one can choose a division of time interval [0;T]as0= to< t1< < tm = T,and

on each interval [tk 1;tk], virtual coordinates (Ile(k))izv, such that the terms and
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L3 in estimate (3.3) are bounded by

L3 = C(jloghoj =ho) (M=x)(ai;)i;iav Peb ,((8.71f)
+ (M5M=X)1=(1+s)kbkﬁwfp) t
+ M(x) st k(@i (t))ii2vKiao;T1r) + KbKia(y i) (3.6)
-1 e x
#

+ Mkﬁ(th(LQ} kUkthLp(([O;t]C); =

exp C(1=ho)(M*M=x)*=(1*s);

where the constant C depends on T;
, the exponents p; q;s, and the constant in struc-tural assumption (1.14).

3.3. Step 3: Constructing admissible virtual coordinates for periodic meshes. It re-
mains to study how to nd admissible virtual coordinates for constant elds as in Deni-tion
3.2. At this moment, it is still unclear to us whether this is possible for any arbitrary mesh.
Nevertheless, for a mesh with periodic pattern, we are able to ensure that one can nd an
admissible family of virtual coordinates such that the residue (fmax)i actually vanish on
any inner cell of the mesh.

Theorem 3.4. Let (C; F) be a periodic mesh over
RY as in Denition 1.6. Let (ai;j(bc))i;jav = Prb be the discretization of the constant
velocity eld b(x) be. Then for any constant velocity eld bc 2 RY, there exist virtual

coordinates (Ri(bc))iav 2 (RY)Y solving the linear system
X

Rio(be)  Ri(bc)aioi(be) = bei; 8i 2 Vo; (3.7)
j02v
and satisfying the following properties:
(1) The virtual coordinates are homogeneous in the sense that

Ri(bc) = Ri(be);  8bc2 RY; > 0;i2 V:
(2) The virtual coordinates are uniformly bounded by

sup  jRi(be)  xij < C(jVoj)x;
jbej=1;i2v
where x is the discretization size and C(jVoj) depends only on the number of
cell functions in a period.
(3) The virtual coordinates are periodic in the sense that
Xd
Rim)(be) = Ri(be) +  miLi;  8bc 2 R i;[m](i) 2 V;
k=1
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Notice that for constant velocity eld, one has ajmj(io);(mj(i) = @io;i when [m](i®); [m](i) are
well-dened. Hence (3.7) can be naturally extend to all i 2 V. That is, the maximal residue
function ((Pmax)i)izv in Denition 3.2 vanishes at all i 2 V.

3.4. Proof of Theorem 2.9. We are now ready to complete the proof of Theorem 2.9.

Proof of Theorem 2.9. We apply Theorem 3.4, Theorem 3.1 and Theorem 3.3 succes-
sively:

Apply Theorem 3.4: Let (C; F) be one mesh in the sequence of meshes we
consider in Theorem 2.9 and let x be the discretization size. Since the meshes

have periodic patterns over
, one can choose Ri(bc) as the periodic solution in Theorem 3.4 wheni 2 V
, and choose R®i(bc) = x; as barycenter when i 2 V nV
. Then the maximal residue function ((Pmax)i)i2v in Denition 3.2 vanishes at all i
2 \Y
. Notice that

sup  jRi(bc)  xij < C(jVoj)x
jbej=1;i2v
where C(jVoj) is the constant in Theorem 3.4.
By our denition of discretization size and barycenter one has
sup Xi  Xjo 2X:
(i;i9)2E
Moreover, if i 2 \Y n \Y;
, by denition, one has (Pch)i = 0 and (Prb)io;i = 0 forall i®2 V. Hence, one has b;

0, ajo;i 0in (3.5) and the residue ((Pmax)i)izvin Denition 3.2 actually vanishes on
all i 2 \Y n \Y

In summary, the residue can be non-zero only ati 2 V

nV
. Thus one has that
0 1,-,.
X X
i 1=rk(r’\maX)ikLr(V) @j
it sup Rio(be)  Ri(be) awi(be) bei A
i2V-
ny JPei=1 i02v
0 X 11=r
@;
it C(x)*A
2V
nV
Cj
i e
. 1=r
X

Let r = 1=(1=p 1=q) as required in Theorem 3.3. One can see that such choice
of ®i(bc) forms an admissible family of virtual coordinates in Denition 3.2, with
relative drift M, absolute drift M and residue bound M in L1=(1=P 1=0) gjyen by

M= M = 2 C(jVoj) + 1x; M= C j
i @
jx1=p 1=q:
The constant C here depends on

, the exponents p;q, the constant in structural assumption (1.14), and, in



particular, the number of cell functions in a period. This is why the constant
bounding pattern size is part of the requirement of Theorem 2.9.
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Moreover, to fulll the requirement in Theorem 3.1, the discretization size x
needs to be chosen small so that M minfhg; 1=32g, which is why theinequality
only holds asymptotically.

Apply Theorem 3.1 and Theorem 3.3: We have proved the existence of an
admissible family of virtual coordinates for constant velocity elds. Recall that
Theorem 3.3 shows how to reduce the residue term for non-constant velocity elds
provided such family exists. Hence, we choose the coecients a(t) = (ai;j)i;j2v, b(t)
and the solution u(t) = (ui(t))i2v as in Theorem 2.9. Then the rest condi-tions
required in Theorem 3.3, namely the boundedness of their Lebesgue and Sobolev
norms and the boundedness of

(aij)iziav Prb @ (0.716)5

are directly guaranteed by the assumptions in Theorem 2.9. According to The-
orem 3.3, one can choose virtual coordinates for specic coecients, such that the
propagation of regularity (3.3) in Theorem 3.1, is bounded by (3.6).

For clarity, we recall the full result,

ku(t)kne;1; (Lo + L1+ L2 + L3);

where the precise formulations of these terms are given by

Lo kU(O)th;l;;
Z
Ly =C kdivB(s)kiic)ku(s)kng;1; + kbEs)kw o ku(s)kis(c)
0

+ kD(s)kpi(cyku(s)kne;1; + ku(s)kie(c)kD(S)Khg;p;p( 1=p) ds;
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where the constant C depends on

, the exponents p;q and the constant in structural assumptions (1.14). Also,
= exp C(1=ho)(M*M=x)*=(1*s);
t

Lb=c? jloghoj M?=h%xk(ai;j(s))i;j2vkie(r)ku(s)ke(c)o
+ jloghoj M=h? kb(8)kiaku(s)ka(c
+ (jlog hoj x:hz)gg(g)kwmku(s)qu(c) ds
+ C(jloghoj' ) ku(t)kiic)y ku(0)kiic) ;
Lz = C(jloghoj =ho) (M=x)(ai;j)i;jav Peb o

(IGTIF)
+ (MM=x) = kb 8y 5r)
+ M(x) 1+(1=p 11:q)

k(ai;j(t))i;i2vkia(o;T1r) + kb'émwl;q)
#

t X

t
+ Mktko ey kuk, 1, (fo;tic)’

where the constant C depends on T;

, the exponents p;q;s, the constant in structural assumption (1.14) and the
constant bounding pattern size.

Conclude Theorem 2.9 We can now make all the constants explicit in the
propagation of regularity with,

(MM=x)1=(2#s) - (x)1=(1+s), M2x; M . x;
M(X) 1+|‘1T11=—q)7. (X)1+(1n11—:1p?q—71—:;q7 M . (X)1=p 1=q' (X)“(l%

S
Thus ; Lz; Lz can be expressed as

= exp Cﬁl:ho)(x)sz(“s);

Ly = CZ jlog hoj =h20(x) ka(s)kpa(r) + kb(§)kwua ku(s)kia(c) ds
0

+ (jlog hoj* I)I ku(t)kiicy ku(O)kiiqe) ;
Ls

C(iloghoj =ho) a Peb g0.ry6) * (x)sz(“S)kbka(V\és;p)p

# t
()t 15 ka(tlkiagoimye) + kbkyoqyva, kuk ;s s (o0):
One can check that this exactly corresponds to (2.9) of Theorem 2.9.Applying

the argument to the entire sequence of meshes (C™; F(")) concludes the proof
of Theorem 2.9.
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4. Proof of Theorem 3.1. In this section we complete the proof of Theorem 3.1. For
simplicity we omit the variable t in the derivation when there is no ambiguity. Through-
out the calculation, C denotes a generic constant that only depends on
, the exponents p; g and the constant in the structural assumptions (1.14).

4.1. The Kruzkov’s doubling of variables for the semi-discrete scheme. Notice that
any solution u of the rst-order scheme (1.12) satises the following identity:

d 1 X L1 X
aUi = — ai;juj  ajiui lyay (i) — iy (4.1)
ijav ijav
When i 2 V
the above equality is the upwind scheme. Wheni 2 (VnV
), one hasu; 0 and the above equality reduce to 0 = 0. In this section let us use the
notation
1 X
Ri = 1yav(i) — aiju;:
ijav
The term R; measures the possible leaking of mass at boundary. It is easy to verify that
Ri 0and
d X X
— Ui = Rii: (4.2)
i2v i2v
The next proposition explains how to bound the time derivative of our semi-norms.

Proposition 4.1. For any solution u of the rst-order scheme (1.12) and any non-
negative discrete kernel fKi;jgi:j2v, the following inequality holds in the sense of distri-
bution:

d X X X

gt Ki;jjui  ujjij 2 (Kio;j  Kijaiesijui  ujjj

i;j2v i;jZViO)Z(V

+ ( 2)Ki;jsgn(ui uj) (Diuj)ijisiav

+

2K6;j sgn(ui  uj)Riijisiav
Ax + Dg + Rg:

Proof of Proposition 4.1. The following equality holds in distributional sense:

- Kisjjui - ujjis

dti'jZV
0
1 X 1 X
= Ki;j sgn(ui u;j) @ — ai;oUjp  ajo;iu; + Ry = aj;joUjo  ajo;juj RjA ij
i;j2v "oy }joav
|
1 X
=2 Ki;j sgn(ui uj) — aij;jo Ujo ajo;iui + Ry ij:
i;j2v "oy

Proving the rst equality is nothing but the chain rule applied to the semi-discrete
scheme. The second equality follows from symmetry, by switching the indexes i and j,
i° and j°.
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The next step is to check that this can be further decomposed into our sum Ag +
Dk + Rk plus a non-positive term. Indeed,

X X
Ki;j sgn(u; Uj) l aij;jo Ujo Ajo;iUj ij
i;j2v "joav
x x| )
= Ki;j sgn(ui  uj)ai;iouic  Ki;j sgn(ui  uj)aio;iui j
i;j2vio2v
X X
= Kio;j sgn(ui  uj)ai;iui  Kio;j sgn(ui  uj)aio;iu;j
i;j2V i%2v )
Ki;j sgn(ui uj)aio;iui +Ki;j sgn(ui  uj)aio;iuj j
( )
X X
+ Ki;j sgn(ui  uj)aio;iuj +Ki;j sgn(ui  uj)aiiouj j
i;j2vio2v )
X X
+ Ki;j sgn(uic  uj)ai;iouio +Ki;j sgn(ui  uj)aiioUio j
i;j2vio2v )

+Ki;j sgn(uio  uj)aiiou;  Ki;j sgn(ui  uj)aiiouj |

A + D + Ng:

By our assumption, Ki;j 0, aj;; 0 for alli;j 2 V. It is easy to verify that the third
term

( )
X X
Nk = Ki;j sgn(uic  uj)aiiouio +Ki;j sgn(ui uj)aiioUio j
i;j2vio2v
)
+Ki;j sgn(ui uj)aiiou;  Ki:jsgn(ui  ujlaiiouj j
X X

Ki;jsgn(uio  uj) sgn(ui  uj)aiio(u;  Ui)j
i;j2vio2v
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is always non-positive, and it does not vanish only at edges that sgn(uic  uj) = sgn(u;
uj). In addition, one can reformulate AS and DY as

(
o X X
Ay = Kio;j sgn(ui uj)aio;iui  Kio;j sgn(ui  uj)aio;iu;j
i;j2vio2v )
Ki;j sgn(ui  uj)aio;iui +Ki;j sgn(ui  uj)aio;iuj |
X X ) )
= (Kio;j  Kij)aisijui  ujjj;
i;j2vio2v )
0 X X
DY = Ki;j sgn(ui  uj)aic;iuj +Ki;j sgn(ui  ujlaiiouj j
i;j2vio2v |
X X '
= Ki;j sgn(ui uj) Qio;i  Aiio  Ujij:
i;j2v jo2v
0 C
It is straightforward to see that A, + D = Ax=2+ Dg=2. Hence

1X !

Ki;j sgn(ui uj) — ajioUjo  ajpo;iuj + Ri jj
i;j2v "joav

= A} + D + N¢ + Rg=2

Ax=2 + Dx=2 + Rg=2:

Multiplying both sides by 2, one obtains the inequality in the proposition.

From now on we x the kernel Ki;; in the above proposition as K,&"in Denition 2.3 for
0< h< 1=2 and & = (®;)iav 2 (RY)Y. Moreover, assume that h maxfx; sup;,y j&i
Xijg. Then the term Rk can be bounded by

X X X
jRkj = 2 KE;h‘ sgn(ui  uj)Riij 2 Ki;jijijié;mZV i2v
. _ j2v (4.3)
Cjlog th(Ri)iZVkLl(C):
Moreover, the term D can then be estimated through
iDkj= 2 y Ki;jsgn(ui uj)(Diuj)ij
i;j2v eh
= X Kinj sgn(ui  uj) (Diuj  Djui)ij
i;j2Vv
X Di+ ;. : 4.4
= KE) —— i uidij (4-4)
i;j2v

X uj + U
+ Ielf;‘j(Di Dj) ! !
i;j2v

sgn(ui  uj) ij

CJlOghj kaLl(C)kUkhg;l;;e+ kUkLP(C)kaho;p;p( 1=p);a :
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The last inequality is a consequence of the following two estimations: Using the bound
on the divergence, one has

X h D; + Dj_ .
K&} ———ui  ujjij
i;j2v 2
KDki:i(v) X Khjui  uji; jloghjkDkysc)kuk;oe: isi2v

Also, by Helder estimate
X Ui + U
Ken(Dr D)"Y

i;j2v 2

sgn(ui  uj)ij

X R Ut U P 1=p
"D DjjP i €, %
i;j2V i;j2Vv
Cjlog hjkukie(c)kDKp;p( 1=p)a:

The above Helder estimate is for 1 < p< 1 but can be extended to p = 1 in the obvious
way.
4.2. Bounding the discrete commutator term. We now investigate the discrete com-
mutator term A when Kj;; is chosen asel{'i,.j in Denition 2.3 for ® = (ei)i2v 2 (R9)V
and maxfx; sup;,y j®  xijg h < 1=2. Recall that

_q X eh Eh . .
Ax=2 = (Kio;j i;j)aio;uui ujjj: (4.5)
i;j2vio2v
We begin by a short lemma about the scaling of the continuous kernel K" .
Lemma 4.2. Take x;y;s 2 RY such that 0< h< 1=2 and jsj < h. Then
Cjsj?
Kn( X y) Kn( X y+ s)+ rgn(x§Ps
(x vyj+
h)d+2:
Cjsj
(4.6
) Also,
renl x y+ s) renlx (4.7

(ix yj+ h)er2’
We are going to use this lemma to reduce a few terms to simpler forms, with a tolerable

error. In particular, the following lemma mimics the continuous commutator estimate in
[4], provided that one can nd suitable auxiliary functions (®i)i2v and (bi)izv.

Lemma 4.3. Consider the semi-discrete scheme (1.12) on a mesh (C;F) over
R4 as in Denition 1.5, having discretization size x and satisfying the structural
assumptions (1.14). Let (ai;j)(i;j)2e be the coecients of the scheme and let D = (Di)iav
be the discrete divergence dened as in (2.3)€ Let b(x) be a continuous velocity eld on R
and denéte (bi)i2v =€Pvb. Choose virtual coordinates (®i)i2v on the mesh satisfying

iR Roj< M;  8(i;i% 2 E;

4.8
B Xij < M; 8i2V: (4.8)
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Let Ki,’,.‘j be as in Denition 2.3 corresponding to (®i)i2v and let (ri(t))i2v be the residue
function given by

X e
2@ fig (B0 ej)aj;i = b+ rij;  8i2 V: (4.9)

Then the discrete commutator term A ¢ given through (4.5) can be bounded by

jAkj Cjloghj kdivbla:kukngi;«+ kbkygsakukiec)
+ C M§h2xk(ai;j)i;jzvqu(F)kuqu + C M=h2k(bi)izvlé|_q(c)kuk|_q
+ C(1=h)krkis kuks;
(4.10)
provided that 1 p< q 1, maxfl 1=q;1=2g, and M < M < hg< h.

Note that conditions (4.8) and (4.9) exactly correspond to (3.1) and (3.2) in Theo-
rem 3.1 once the time-dependency is removed.
Proof. We have that

X X
Ax=2 = (K&, ’Mhaiijui  ujjj
i;j2V 92V
= rKh()ei Bj) (B0 ®)aiijui Uujjj
i;j2V 92V
X X ) _ _
+ (&b M) rK"(ei  ®j) (B Bi) anijui  ujjj
i;j2vio2v
- A4 A

By Lemma 4.2 and assumption (4.8), one has that

h 2 2,
(Ko, ?(ih) rk"(e; ;) (B ®) (e J'CMI} TR CI }Mz.
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Therefore one can bound A(Kz) by

A XX CM?Z amjui )
K ijavioav (JXI )

X X cMm?2 X X cMm?2

: . aoijuijj + . . aesij U jj
i;j2vio2v (xi x;j+ h)d+2 ij2v io2v (Jxi xjj+ h)d+2
X X 1
cM?2(x) ! ajojuijx ) . '
1503 (i;i0)2E e j2v (ixi x;j+h)9=270
1)
+CM?(x) 1@ X aio;i (x)4 ald 1)
i;i0:(i;i0)2E
0 0 1, 11-q
B X X 1 - C
@ A d
@ G xj+ hyaezd il (x)°A

i;i0:(i;i%)2E j2Vv
C M 2=h2xk(ai;j)(i;j)zg qu(F)kUqu(C)Z

For A(Kl), one can apply the identity (4.9) to obtain
(1) X X h . .
A= rkK"(ei  Bj) (Rio  ®i)aio;ijui  Ujjj
i;j2vio2v

rkMCei ®y) B juiujj
i;j2v
X
+ rk"(ei ) rii jui ujjj
i:j2v

_ al11) (1;2),
= AT+ AR
Repeating the argument on A'?) we bound the residue term A(Kl;z) by

K 7

] X
A(1K,2)= rk" (e ®j) rijui ujjj

i;j2Vv
X C
Ui Ui
d+1 " )
oy X vi+ h)
C(1=h)krks(cykukes (o):
Finally, symmetrize the expression of A(Kl;l) to obtain
_ X
A(Klll) = rk"(ei ) bigui ujjj
i;j2Vv
1 X

- rk"(ei  ®j) (B B)jui  ujji:
2i;jZV
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P
Choose measurable sets (Vi)i2v RY and a piecewise constant extension u¥ =~ ;, uily,
by Lemma 2.6. Those satisfy

Z
jVij=i = i sup jx  Xij < 2x; 8i2V; Vi\\v;=7?; 8i;j2V:
Rd x2Vi
and
v [
suppu
+
B(0;1)
+
B(0; 3)
Vi
i2v
This leads us to introduce the continuous commutator term
Z
1. 1 . .
AGEY = 2 ek y) (80 ByDiuY (x) u¥ (v)] dxdy:
R2d

Notice that supp uV
+ B(0;1) and supp rkK" 2 B(0;2). Then for x 2
+ B(0;3),
eithery 2
+B(0; 1), making ju¥(x) uV(y)j= 0,0ry?2
+B(0; 1), making rK " (x
y) = 0. The same argument applies to y. As a consequence, the integral formulating
A(Kl‘l;l) can be taken over any subset of R2¢ including
+ B(0; 3) % In particular,
VA
AL - % o Tk ) (x) dyDiuY(x) u¥(y)j dxdy:
(" iav Vi)

Combine the above discussion with Lemma 4.2 and assumption (4.8), one has

Z
2A(1;1;1) A(lK;1)= rk"(x y) (dx) ky))juY (x) uY(y)j dxdy
(Sizvvi)2
X h . .
rk"(ei  rj) (B B)jui  ujji
i;j2Vv
X Z
rk"(x y) rK"(ei ej) (Bx) WBy)ju ujj dxdy
i;j2v  ViVj
X Z
+ rk"(ei ;) (b@&) b@E)) (be b@jui ujj dxdy
i;ji2v ViVi

Z IR 1
i;,-zxv av (jx#LMX)e b(y) jui  ujj dxdy

+ )S ZVV (JX—\LJMM)Q b(%)) (bie bj)é'ui ujj dxdy
[HPAY iV

C M=h? kbkiGkuka(c) + C(x=h)kbky:1§kuka(c):
Finally, the continuous commutator term A(Kl;l;l) can be estimated by Lemma 16 in [4].

The paper [4] also considered some non-linearity within the advection equation, which
makes the formulations more complicated than what we need here. For the sake of



completeness, we thus restate a simplied version of Lemma 16 in [4] with the notations of
our paper.
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Lemma 4.4. (Lemma 16 in [4], reformulated) Assume that for some 1< qir< 1,
we have u 2 L% and b belonging to Besov space qu;. Then provided 1 1=r,

4
rk"™(x  y)(b(x) b(y)) dxdy
R2d
z !
Cjloghj kdivbky:jloghj KM'(x y)ju(x) u(y)jdxdy + krbkg,  kukia:

R2d

We are going to apply this lemma by taking b= § u= u"¥ and r = maxfq;2g.
First we recall the classical bound krkaq_qo , Ckrbkia Ckbkwia. We alsoremark

that € b is dened € on
, But one can nevertheless extend it to RY with kbKyy 1:a(ra) Ckbkw 1iqq
). We also recall that, since we consider a bounded domain
and assume

1 p<q 1, then o kukis:1 Ckukgs.
Therefore, for 1 1=r = maxfl 1=q;1=2g, one has
VA

2A = e (xy) (BB be)iuY (x) U (y)] dxdy

R2d

VA
Cjloghj kdivbk§c)jlog hj KP(x  y)juV(x) uY(y)jdxdy + kBkwuoku' kg,
R2d
The terms involving u¥ can be further bounded by the discrete density (ui)iav. In
particular, applying Lemma 2.5 by choosing u = v = uY, fi;gc : R4 1 RY, k= 1;2
satisfying f1(x) = f2(x) = ®; for all x 2 Vi, and gi(x) = g2(x) = x for all x 2 RY, one
has
z X
KM(x  y)ju¥(x) uY(y)jdxdy C K"jui  ujjij jloghjkukng;i;e: 52V
R2d
This nally leads to the estimate
A Cilog hjkdivbkiic)kuKng, ;e + kbkwiakukis(c)y + C
K M=hZkbkickuks(c) + C(x=h)kbky e KUk c):
e

Combine the estimate for Q(l;l), %(1;2

) and Q(Z), we concISde (4.10), which nishes the
proof of Lemma 4.3.
We are now ready to conclude the proof of Theorem 3.1.
Proof of Theorem 3.1. Let us rst consider the case m = 1, i.e. the (®)i2v are time-
independent instead of just piecewise constant along time.
Then by Denition 2.3 and Proposition 4.1, one has that

0 1
VA
t . .od X o oA
ku(t)kn,;1;e Ku(0)kp ;1,a + sup jloghj =@ el jui(s) uj(s)ji" ds
0 hohl=2 ds 2V '
Z '
ku(0)kp et sup jloghj Ax(s)+ Dx(s)+ Rk(s) ds:o

hoh1=2
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Substituting Ax(s) + Dk(s) + Rk (s) by (4.3), (4.4) and (4.10), and rearranging the
terms, one deduces that

ku(t)khg;l;;a ku(o)khg;l;;a

Z,
+ C kdiv8(s)kiic)ku(s)kngy;1;;a + kb®s)kwuaku(s)kie(c)
0
+ kD(s)kiz(c)ku(s)kny;1;;e + Ku(s)kis(c)kD(S)Kkng;p;p( 1=p);a ds
Z,
+ C jlog hoj |\/|2=h2())( k(ai;j(s))isjav qu(F)kU(S)qu(C)O

+ jloghoj M=h? kb(§)kieku(s)ku(c,
+(jlog hoj x=h2)kb(&)kw1aku(s)kuc)

+(jlog hoj1 Jk(Ri(s))i2vkii(c) ds
z t
+ C  (jloghoj =ho)k(ri(s))iavkie(c)ku(s)kip(c) ds: 0

We can change the ku(s)kn,;1;;:a Norms into ku(s)kny;1; norms through Proposition 2.7
with hy = M,

ku(t)kng1; (Lo + L1+ Lz + L3)

= 1+ C(M=ho)2 ku(0)kny;1;

Zt
+ C kdivé(s)kLl(c)ku(s)khO;l; + kbgs)kwuaku(s)kpe )
0
+ kD(s)kpi(cyku(s)kne;1; + ku(s)kie(c)kD(s)Kng;p;p( 1=p) ds
Z,
+ C jlog hoj M2=h26( k(ai;j(S))i;jzvqu(F)ku(S)qu(c)O

+ jloghoj M=h? kb(§)kiiku(s)keac)
0
+(jlog hoj x=h?)kb(8)kww.aku(s)kia(c)

+(jlog hoj' )k(Ri(s))izvkii(c) ds

Z. #

+ C (jlog hoj =ho)k(ri(s))izvkie(c)ku(s)kie(c) ds

0
Here we rewrite the last term of L, by
z t z t X z t d X
k(Ri(S))izvkL1(c) ds = Ri(s);i ds = el ui(s)i dso
0 v 0 i2v S

= kU(O)kLl(c) kU(t)kLl(C)Z
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where we use R; 0 and identity (4.2). The coecient 1+ C(M=hg) is multiplied twice
because Proposition 2.7 is actually applied to the left and right hand side separately. Since
k(t) = minfk : t < txg = 1 (as we assume m = 1) we have k(t) + 1 = 2, so all coecients
matches to (3.3), which nishes the proof for the case m = 1.

When m > 1, within each interval [tk 1;tk] we still have constant (Iq(k))izv constant,
and the semi-norm ku(t)k,b .1;;el) Propagates exactly as above. However, at every end-

point tx one need to shift from ($(k))izv to (qe“”l))izv, yielding an extra C(M=ho)
factor.

Dene
Z t

Ll(, t) =C kdng(S)kLl(c)kU(S)th;l; + kws)kwl;q kU(S)kLp(C)

+ kD(s)kpi(cyku(s)kne;1; + ku(s)kie(c)kKD(S)Khg;p;p( 1=p) ds
Z,
Lz(,‘t): C j|0gh0j |V|2=hzxkéai;j($))i;j2vqu(F)ku(S)qu(C)
+ JlOghoJ M=h2 kb(?)quku(S)qu(C)+

[¢]
(j |Og hoj X=h2)kb()S)E\N1;q ku(S)qu (C)

+ (jloghoj' )k(Ri(s))iavkii(c)y ds
Z,
Ls(;t)= C (jlog hoj =ho)k(ri(s))izvkie(c)ku(s)kie(c) ds:
We now argue by induction that

ku(t)kp,. 1,0 1+ C(M=ho) © l(ku(o)kho;l;;a(l' + L1(0;t) + L2(0;t) + L3(0; 1))
k

by induction. The base case k = 1 was obtained as before, and for k > 1, one has
ku(t)kho;l,.;w) ku(tk)kho;l;;g(k) + La(tk 1;t)+ La(tk 1;t)+ La(tk 1;t)

1+ C(M=ho) ku(tik)kn,.1..ec n+ La(te 1;t)+ La(te 1;t)+ La(te 1;t)

(t) 1

+ C(M=hy) (ku(0)kp,.1,.q0 + L1(0;t) + L2(0; t) + L3(0; t)):
k

Finally, multiplying by 1+ C(M=ho) twice more, we are able to replace the discrete
semi-norm on both sides to ku(t)kng;1; or ku(0)kny;1;. This gives

ku(t)kny; 1+ C(M=ho) " (ku(0)kny,2; + L1 + Lz + L3)
k
= (Lo+ L1+ Ly + L3);

which nishes the proof of Theorem 3.1.

5. Proof of Theorem 3.3. This section is devoted to the proof of Theorem 3.3. We rst
note that all of our estimates are on domains with bounded measure, which lets us
immediately bound any LP or W*P norms by LY or W*9 with any q p.
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Within this section, the generic constant C that we use depends on
, the exponents p; g and the constant in the structural assumptions (1.14), and alsoon T and
the exponent s in the statement of Theorem 3.3.

Step 1: Constructing the space and time partitions. Choose m 2 N, and introduce
the straightforward time partition
O0=to< t1< < tm=T;
= I, ti= (I=m)T 8l=0;:::;m:
m
A very small choice of time step will lead to large terms in (3.3), while a larger value of
allows the velocity eld to oscillate more in each time interval making controlling L3 in (3.3)
more dicult. Thus, determine the optimal choice of turns out to a key step of the proof.
the partition is more complicated in the spatial direction. We divide the mesh into
large partitions roughly corresponds to large hypercubes of size with x that will be
determined later. At this moment, it suces to assume that we have for example 8 x
1.
More precisely, we divide
into subdomains f
kgk2J, roughly centered around points fyxgk2; 2 RY such that

B(y«k;)
k B(yk;C) and j@
W cd b

Next, choose a partition fVigk2s of the index set V
, by assigning i 2 V
to any Vi such that
suppi\
K= 7:
By dgnition suppi \
= ? "and one can nd at least one
k intersecting supp; so that k21 Vk = V

Then, for all k 2 J, dene

X
k= i Uc=supp «; Ug=fx2RY: (x)= 1g

12V
By denition U, ‘Ui and it is easy to verify that

Uk ¢

k + Bx; k

k Up + By; and C Mk ki

) k kk|_1 Cdl
Moreover, for all k 2 J, dene the \boundary" of Vi as those indices that do not intersect

with any index in another part of the domain or

@Vi= Vinfi2 Vijifj2Vand suppi\ supp; = ?; then (supp;) 1g:

Then this boundary has codimension 1 in the sense that by decomposing « = 0, I‘(“
X X
0] 1 0
o) i M = 5o UP=fx 2R D(x) = 1g;
iZ(an@Vk) i2@ Vi

one has



k
K Um+ Bax; (Uk nUBO) @
k + Bax; k (1)k|_1 cd 1x:
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Observe that the number jJj of domains
k can be estimated by jJj j
j=9. Hence the previous estimates yield

(UknU%) C(x=)j

X
j; S w C(x=)j
jik2l k2J Ty
For later discussion, we dene @V = k2) @Vk as the set of all boundary indices, and

@E= f(i;j)2 E:i2 @Vorj 2 @Vgthe set of all boundary edges.
Step 2: Constructing the virtual coordinates in Theorem 3.1. Introduce
(Bi(t))iav = PcB(t); (@ij(t))ijav = Peft):

the discretization of §(t; x) on faces and cells as in (2.1) and (2.2) respectively.

We introduce another piecewise constant velocity eld corresponding to the partition we
just constructed: For all 1 | m and all k 2 J, we take the average of b(t; x) on[§ 1;ti] V«
in the following sense

1 VA
bl = B(t;x) «(x) dtdx;

ju ot 1jk kkiig
) [t 15t

and dene the \piecewise" extension b(t; x) by

X
b(t; x) = k(X)) 8(tx) 2 [t wit)

Tk2)
We nally introduce as before the discretization on faces and cells of b(t; x),
(bi(t))iav = Pcb(t); (aj(t))i;j2v = Peb(t):

The extension b(t;x) from (b"*)11m.k2s is not exactly piecewise. Nevertheless, by our
construction in Step 1, each  has compact support on Ui, with ¢ = 1 on the set Uf,
with Ux n Ug small. In such sets Ug, one has that b = bk, Moreover, for interior indices
i 2 Vin @V, a;i(t) and bi(t) are not only the discretization of b(t; ), but also coincide with
the discretization of the constant velocity eld b'k.
Theorem 3.3 assumes that Denition (3.5) applies for constant elds. This yields
virtual coordinates (Ri(bc))iav; be 2 RY,
X
Rio b2 b asi(t) = bi(t)i+ A bY; 8t2 [t 1;t];i2 Vicn @V
i02v
(5.1)
Inspired by (5.1), we choose piecewise constant in time virtual coordinates on the mesh
(ei(t))i2v by
Ri(t) = R bi(t) ; 8t2[0;T)i2 V:
Then in the interiors indicesi 2 V. n @V, (5.1) implies that
X A

Oeio(t)  e(t)a(t) = bi(t)+ ri(bi(t));  8t2 [0;T]i2V
io2v
n@V: (5.2)

X

By our construction, we can see that on each time interval (tx 1/tk), the virtual co-

ordinates (®i(t))i2v are time-independent and we may use the notation (2'"))izv as in
Theorem 3.1.
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It is straightforward to deduce the uniform bounds
sup e E(!(O) < 2M;
(i:19)2E;1km ! !
su - (k) o .
p je Xij < 2M;
i2V;1km !

because the (Ei(k))iZV are obtained through (®i(bc))iav. Therefore, those virtual coordi-
nates satisfy the requirement of Theorem 3.1.
We reformulate the residue equation (3.2) as

X
(eio(t) ®i(t))ai;i(t) = Bi(t)i + ri(t)i; 8t2 [0;T];i2V: (5.3)
io2v
Note that ifi 2 VnV e e
, one has ajo;; 0 foralli®2 V andb; = (Peb); = 0. Hence the residue r; vanishes for all

i2VnV

Subtracting (5.2) from (5.3), we obtain
X
(eio(t) ri(t)) aioi(t) ai(t)= bi(®) bi(t)i+ ri(t) ¢ (bi(t))i;
i02v (5.4)
8t2[0;TLi2V
n@v:
By denition, we have jf (bi(t))j (Pmax)ijbi(t)j with in addition,
k(ei; aj)i;iavkie(ro;Tir) € kPr(b  b)kie(ro;71r)€Ckb  bkio(ro;7]
€ k(bi bi)izvkie(ro;T1c)® kPc(b  b)kie(o;T1r)€Ckb  bKye(ro;T)
)I

Therefore, the main obstacle to bound krkis(jo;71c) is to derive good estimates on
k8 bkie.

Step 3: Bounding kbe bk ,. We introduce the average in time of b(t; x) by Z
b'(x) = 8(t;x) dt; 8x 2
HLEERY

bo(t;x) = b'(x);  8(t;x) 2 [t 1t)

It is obvious that the two ways of averaging of velocity eld
8! b, B! °
and the discretizations Pc, P¢ are all linear mappings.

We can rst quantify the oscillation in time by comparing b&@nd °. For xed x 2 R¢,

the function b°(; x) is constant on each time interval [t| 1;t)), 1 | m. Therefore,
VA VA VA p

®t:x) bO(t;x) dxdt = ®t; ) 8(;x)d dxdt
[0;T]

[0;T] p
(t)
b(t; x) b(;x) ddxdt;(o;T]

Z I
1(t)

where |(t) denotes the interval 2 [t; 1:t).
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Sincetj t; 1=, we have that
Z[O,’T] e : o e |
b(t;x) b(t;x) dxdt Ckbky, (yv)((0;71
)’
Through interpolation, this shows that for 0 s 1,
kKB bkis(ro;m) €
) Cokbkiewerro;1)
)2
We can also bound spatial oscillations on b thanks to k°. For any t, denote | s.t. t 2
[ti 1;t), and write

X X 1 z
b(t; x) = k(x)b7 = k(x) - . B(t;y) «(y) dtdy
K2) 2 bt gk ke
) [t a5t Z
X 1 o
= k(X)) ———— bU(t;y) «(y) dy:
K21 k kkeig
P U
Moreover, since 5, «(x)= .7
i(x) = 1forall x 2 Z
, one has P
b°(t;x)  b(t; x) = k(x)bO(t; x) k(x) b(t;y) «(y) dy
k2! k2J koL o
) Z
X 1
= k(x) b%(t;x)  bO(t;y) «(y) dy:
K2) k kkerg

Therefore,
Z 0 q
b”(t; x)  b(t; x)" dxdt
[0;T]
A X 1 Z . , q
= k(x) ——— b (t;x)  bY(t;y) «(y) dy dxdt
[0;T] k k
VA
2 X ke 1
) k kk
Z7 Z
X 1
Tlot. 0 q [0;T]
k(x) WO x)  BO(t;y)" «(y) dydxdt
k2! I L
)
C bo(t;x)  bO(t;y)? dydx:
[0;T] oy k Ui\
Ui\

We recall that the last part of our assumption (1.14) states that fk 2 V : (suppk) \
B(x;x) = ?g C for all x 2 RY. From their construction, any point x 2



also

belongs to at most C
Zets Uy so that z z

BO(t; x)  b(t; x)q dxdt C 1 (x  y)bo(t; x) bo(t;y)q dydx;
(0;T) iB_j ¢
[0;T] c

by which we conclude

kb? bkia(fo;7] e
) Ckbky (wrayo;m)
):
Finally forany 1 p< g 1, one obtains that
ke bkie(io;T) e e
) € kbkieqwsrey o
) * KoKy sy 0,7y

) (5.5)
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As we mentioned in Step 2, one can also bound (@i;; &;j)i;j2v and (b€ bi)iav by the
right hand side of (5.5).

Step 4: Optimizing all parameters. We nally combine all previous estimates to try to
derive the best bound on the residue term (ri(t))i2v.

On the interior set V
n@V, by expanding (5.4) and using that jei.(t) ®i(t)j 2M, we have that

kr 1y e
nevKieoTic) C(M=x)k(ai;;  @j)i;javkie(ro;71r) + K(bi
bi)iavkie(ro;T1c) + k((Pmax)ijbij)izvKie(o;T1c)

C(M=x)k(ai;; @i;j)i;javkie(ro;T1F)
+ C(M=x)k(ai;; aj)i;j2vkie(ro;Tir) + k(bi  &)iavkie(ro;Tic) +
CkPmaxk 1= 1201 1([0,71c)K(bi)izvKia(ro;T10):

We recall that the admissible family of virtual coordinates has residue bound M in
L1=(1=p 1=a) Applying (5.5) and using 1 < (M=x) leads to

_ e
kr1,
e e
navKeotic) C(M=x)k(ai;j)i;jzv Peb kie(ro;7¥)
+ C(M=X) SkbkLP(WSJP)([O;T] . .
)+ kbkyagy 90,7y
)
+ CMkbqu([o;T]
): (5.6)
As for the boundary @V, we directly expand (5.3) to nd that
kr 1@vkie(io;7]c)
(5.7)
C(M=x)k(ai;j)i;jav Leekie(ro;T1r) + k(bi)izv€levkis(o;T1c)
C(M=x)(x=)T]j
1=p 1=q e
i k(ai;j)i;javkia(o;T1r) + kbkia(ro;m)
)7
by Helder inequality.
Since the residue r; vanishes for alli2 VnV
, we have
krkLp([O;T]C) kr 1,
k krlevk =x)k(ai.i)i.i (5.8)
navKie((o;T1c) + Kr levkie(o;rfe) C(M=x)k(ai;)i;jav
Peb kie(ro;Tir)
+ C(M=X) SkbkLg(Wi;p)(LO;T] € . .
)+ KbKya ey go;1)
)

+ (x=)17P 179 k(ai;j(t)ijav kia(ro;T1r) + KbKiro;m
)

+ CM kbRLq([O;T]



)
We are now ready to choose the parameters and . We also need to control the term

= 1+ C(M=ho) (t)+1 in Theorem 3.1, where k(t) represents the number of times
k

(®i(t))izv jumps within [0;t]. Notice that by increasing the constant C we have exp
Ck(t)(M=ho) , and we can bound k(t) by k(T) CT=. To control L3 and
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simultaneously, we use the following choice

1=p 1=q

= (x)1+(T= o = (x M=M)1=(1+s),

It rst results the claimed bound on in (3.6), namely
= exp C(1=ho)(M*M=x)*=(1*s);
This also yields a bound on the main residue term L3 in Theorem 3.1 by
Lz = C(jloghoj =ho) IfrkLle([O;t]C)k?k&le([o;t]c)
C(iloghoj =ho)krkieir(jo;t1c)kuk

( .
1 LpLy [0;t]C)°

Inserting (5.8) on krkys(j0;11c) nally provides "

Ls C (JIOghOJ =h0) (sz)(ai;j)i,’jZV PFpr([o;T]F)

e
+ (MM=x)1=(1+5)kbkﬁs'(wxs;p)t
+ I\/I(x) 1+(1=p 1sa) k(ai;j(t))i;jzvqu([o;T]F) + kbqu(Wl;q)
# ¢ x

t

+ Mkm(LGt(Lqi kUkL ]Lx(p[O;t]C)"

which nishes the proof of Theorem 3.3.

6. Proof of Theorem 3.4. We rst reduce, in subsection 6.1, the innite linear
system (3.7) to a nite linear system whose variables are fRigi2v,, by making use of the
periodic nature of the mesh. Due to the geometric nature of the meshes, both the matrix
and the inhomogeneous term in the linear system have certain properties, which we focus
on in subsections 6.2 and 6.3. Finally, in subsection 6.4 we conclude the uniform
boundedness result.

6.1. The linear system for periodic meshes. We rewrite (3.7) as

P P _
j2v ajilbe) Ri(be) = j2v aisi(bc)Rj(be)  bei;  8i2 V: (6.1)
Since the mesh is periodic as in Denition 1.6, we are looking for periodic solutions as
well, namely solutions satisfying

Rimy(i)(be) = Ri(be) + [m]L;  8bc 2 RY;[m]2 2% i2 v; (6.2)

P
where [m]L =", 4, mgL¢ 2 RY.
The following lemma makes explicit the nite linear systems that the variables %i,
reduced to i 2 Vo, need to solve to be solutions to (6.1) over the full mesh.
Lemma 6.1. Let (C; F) = figiav; fni;jg(i;j)2e be a periodic mesh as in Denition 1.6 and
b bc be a constant velocity eld. Consider a function (%i)i2v dened on all cells,
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satisfying (6.2). It is a solution of (6.1) if and only if its restriction (®i)i2v, satisfying
the following nite linear system: for all i 2 Vo,
Piav, (Ri2z¢ @rmiG)ilbe) Ri(be)
= P jave P [m)2z¢ @miG)i(be) Rj(be) (6.3)
+ P jave P [m]2z¢ @mmi(yi(be)[mIL bei:

In the formulation above we let ajmj(j);i = 0 if [m](j) lie outside the mesh V.

Proof. By Denition 1.6, for any i 2 Vo and any | 2 V, such that a;;; = 0, there exists
unique (j; [m]) 2 Vo Z9 such that | = [m](j). Therefore (6.1) is identical to
P P P P

i2ve [mi2z¢ @jilbe) Rilbe) = 5y, [my2z¢ Aiilbe)Rj(be)  bei;  8i2 Vo
By the periodic condition (6.2), this is also identical to (6.3), which nishes the proof. We
now introduce matrix notations on (6.3) to simplify the discussion in later subsec-
tions, p
A(bc) = (Aij(bc))isizves  Aij(be) = [my2z¢ @rmiiy;i(be):
Let AT (be) = (Aji(bc))i;j2v, denote the usual transpose matrix. In addition, let

. P P
(be) = diagfii(bc)giavo; i(be) = l2v,  [mi2z¢ ami();i(be);
P P
"(be) = (Nilbe))izve;  ilbe) = i2Vo [m]2zd agmi(jy;ilbe)[m]L bei:
Then the linear system (6.3) can be rewritten as
ii(bC)ki(bC) = P j2v, Aji(bc)kj(bc) + ’i(bc); 8i 2 Vo;

or more compactly,

( AT)(bc)R(be) = “(be); (6.4)
where ( AT)(bc) is a square matrix in R¥eVo and #(bc); "(be) 2 RYo?. We emphasize that
(6.4) each d coordinate separately, namely it should be understood as

( AT)(be)&(be) = "(be); = 1:::d;

with the same matrix (AT )(bc) for each coordinate.
We may also omit the variable be 2 R9 in the bracket when there is no ambiguity.
6.2. Recasting (6.4) into a discrete diusion operator. We can characterize the matrix
( AT) in the following manner.

Proposition 6.2. Dene the space of discrete diusion operators as

P p
M(n)= M2R"":Mi 0;Mj; 0; ;M= |_; Mi=0;8i;j=1:::5;n;i0=]

Then for all be 2 RY, ( AT )(bc) 2 M(jVoj).

Proof. The condition Mj; 0 in the denition of M(n) is actually redundant. It can be
easily derived by the conditions M;; 0 and iy Mj = 0. Thus, if suce to check

that (A ) satises the remaining properties in the denition.
Firstly, since AT is non-negative and is diagonal, it is obvious that the non-diagonal
entries of (AT ) are non-positive.
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P
Secondly, the identity |, ( AT )i = 0 can be derived by an expansion
0

P T
avo (AT =i 12v, Al
P P P _
12Vo  [m]2z¢ @[m](1);i 12ve  [ml2z¢ @rmi(y;i = O

Now turning to the last property, as the velocity eld is constant, we have that ajmj(i);1 =

ai;[ m]()- By taking the same expansion as before, we have
P P P P
T
2ve O AT = hy 224 A[m](1);i l2v 2z¢ A[m](i);!
0 P 0 P[m] p 0 P[m]
12Vo  [m]2zd @[m](1);i 12Vo  [m]2z¢ Q[ ml(D)*
P

Hence to prove |, ( AT)ii = 0, it suces to show that ,,

P P

ai;l 12y ali = 0;

Since the constant velocity eld is divergence-free, applying the divergence theorem to
the extended cell C,, we have

p P x ¢ x Z N
12v dil l2v aLi = be ni;i(x) dx be ni;i(x) dx
12v 12v
X

= be ni;i(x) dx Z
12V 7

= be ri(x) dx = (divbe)i(x) dx = 0;

Ci

which nish the proof.
Our next result is an inequality bounding the entries of ’(bc) by the entries of (
AT )(bc), which still relies on the divergence theorem but in a more intricate way.

Proposition 6.3. For all bc 2 RY and V1 Vo, the inhomogeneous term ’(b¢) in the
linear system (6.4) satises

P P . L .
12V, "(be) C(Vo) i2V1;j2VonV, JAij(bc)J+ JAji(bC)J;

where
C(Vo)= | sup x i
X;¥27 5y, SUPPI

S
Proof. By choosing an appropriate basis of RY, we may assume 02 ~,,, suppiandb
0
= (0;:::;0;1) without loss of generality. For r = 1;:::;(d 1), we then have
P P P .
("i)r = 12Vo  [m]2z9 Aml();i p=n mp(Lp)r; i 2 Vo;

while for k = d, the equation reads

) P P P ,
( i)d = 12V, [m]2z¢ a[m](l);i p=nl mp(Lp)d iy i2 VO:
Forr= 1;:::;d 1, notice that div x; bc = @ax = 0, so that
Z Z

P P
Xr be r i2v,i(x) dx="div xr be ;,y,i(x) dx= 0:
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For k = d, we have instead that div xq bc = @gxq = 1, leading

P P P
Zxabe r ipv,i(x) dx= Zdiv xabe oy, i(x) dx =y,
We can summarize all those relation in vector form, as
P P P _
i = 2V, [mj2zd @m0 p=m Mplp  bei; i 2 Vo;
and Z
P
X ber 2y, i(x) dx=",y bei:
For any i; j, denote 5
Xt = X be nj;i(x) * dx;
Z
Xj.i = X be nji(x)  dx;
Z
Xj;i= X5 Xj.i = x benji(x) dx:

[}
Notice that nimj(j);i(x) = nj;r myi)(x ;L1 mplp) by our periodic assumption, so that
one obtains that

Xip1Gyi - X0 miai z

= X be n[m](j);i(x)+ dx X be np m](i);j(X) dx Z

Z

+ +

= X be npmygyi(x)  dx X be nj;p my)(x)  dx

Z Z
= X be npmigi(x) C dx (x b1 MpLp) be npmygy;i(x) * dx

Z

+ P
= be Nimy);i(x)  dx 5oy Mplp

P
aml(j);i p=1 Mplp:
Hence ’ , can be reformulated as

P P
Y= gave mizze Xpmgyi Xp miayg o Deis 12 Vo
and the summation of ’i over any Vi1 V reads
P P P P . P
i2ve 0T i2ve javo  (mi2zd X(miGyio X[ mlGi); i2v, Deti
Decompose
P P P
2vi j2ve  tmizze Ximiii X[ mis
P P P .
= i2ve o java ml2ze XmiGyio X[ ml(i);
P P P

.
*o2vi j2vonva  [ml2zd X [mlG)i X[ ml(i);

Y1+ Y3



54 P.{E. JABIN anDp D. ZHOU

The term Y1 can be further simplied. By switching i and j and take the inverse m to
m in Z9, we have

P P p . p p p
Yi= pi2Vi pi2Vy Imi2ze X tml ()i v j2vi (m2z¢ X[ ml(i)sj
i2vi  j2vi (mi2ze X (i
Moreover,
Z
P P
i2Vy bCi: XbC iZVlri(X) dx
z P P P i2v
= X b v, jave [m12z¢N(mlG)i(x) dxP 7
= szvo F)[m]zzg X [m1(i);i
=p p p P p
= 2V, j2v, [m2zd x [ 17 4 i2vy  j2v nvy  [ml2zd x [ 1] .
m ();i 0 m();il~=
+
Yi+ Ya+ iP2V1 J'Z\E’Onv1 [m]zlgd Xtm1Gyi Ximigsi ¥ X0 mig); ¢

Therefore, if we dene

P P P
Y3 = i2Vy j2VenV,; [m]2zd Xim1();i X[J;n](j);i+x[ m](i);j
P P P
= i2Vi j2VonVi [m]2zd X Iml@G);i+ X[ ml(i);i

then we obtain that
P

iav, i = (Ya+Y2) (Yi+ Yo+ Y3)= Vi
Since
Ximitr:i ¥ X1 miy; €(Vo) aimigy + ajr miy = €(Vo) ap miciy;j + @amigyi
by taking the summation over i 2 V1;j 2 Vo and [m] 2 29, it is straightforward that
X
jY3j C(Vo) jAij(bc)j+ jAji(be)j ;i2vi;iavonva
which completes the proof.
6.3. Some properties of discrete diusion operators. To begin with, let us recall the
denition of irreducibility. A matrix is irreducible if it is not similar via a permutation of

indices to a block upper triangular matrix with more than one block of strictly positive
size. An equivalent denition is the following: Each matrix M can be associated to a

G if and only if Mj; = 0. Then M is irreducible if and only if G is strongly connected,
i.e. one can reach any vertex starting from any vertex.

Let | = f1;:::; ng, and consider any J; J€l. We denote by the submatrix M (J; J), the
matrix obtained by deleting from M all rows whose indexes are not in J and all
columns whose indexes are not in J&€ More precisely, if J = fji1;:::jkg and F =

fg;:: :ﬁkg, M (J; B it is dened by
M(J;ﬂiliiz =M

jipi%i, :
The following lemma shows that a discrete diusion operator, if it is not irreducible,
must be block-diagonal up to a permutation.
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of M are

N(M) = spanfl gi.q;
P
RangeM = fx 2 R' :* |, xi = 0;81 k mg:

Proof. We are going to prove there exists a decomposition 1 [[Im = | = f1;:::;ng by
induction on the dimension n. When n = 1 there is nothing to prove. Let’s consider n
2 and assume the decomposition exists for 1;:::;(n 1). If M is an irreducible n n
matrix, again there is nothing to prove. If M is reducible, then it is similar to a block
upper diagonal matrix via a permutation of indices, which means there existsJ | =

X X X X X X X X
0= Mi; = Mij; + Mi; = Mij:
i21 ]2 i2) j2) i21n)j2J PYRES
On the other hand,
X X
Mij = 0:
20 j21
Hence X X X x X X
M = Mij Mij = 0:
i20 j2nJ 20 j21 PYRES

Since the o-diagonal entries are all non-negative, one must have Mi; = 0 for all i 2 J
andj 2 | nJ. Therefore M(l;InJ)=0and M (I nJ;1)= 0.

Furthermore, M (J;J) 2 M(jJj) and M (InJ;In)) 2 M(jInJj). Notethatjlj;jlnlj<
n. Applying the induction argument on M (J;J) and M (InJ; InJ), we get decompositions
] = I(ll) T nandinl = I(z)j[l(z) - It is easy to verify that the decomposition

L= W @ @)
1 m (1 1 m(2

satises the properties asserted in the lemma.

It remains to determine the null space and range of M. Assume rst that M is
irreducible. Let x 2 N(M) and

J = fi21l :xj= maxxg:

By construction, ] = ? and we can argue by contradiction thatJ = 1|. IfJ = | and
J = 7?, by the irreducibility of M, one can ndi 2 J, j 2 | nJ such that M;; > 0.

However, for any i and so in particular any i 2 J,
i Mijx; = O:
By our assumption of M,
P
j2infig (Mijxj)

i2infig Mijmax; x| = 0;
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which implies that x; = max x| if Mj; > 0. Therefore, j 2 J whenever i 2 J and
Mi; > 0, a contradiction. In conclusion, we have J = | and x; = constant for alli 2 | or
N (M) = spanflg. As any column summation of M is zero, for any x 2 R', one has
P P P P
i Mipg = (0 Mig)xg = 0

! ]

Since codimRangeM = dimN(M) = 1, one has RangeM = fx 2 R' : Pi2| xi = 0g.
This concludes the proof when M is irreducible.

When M is reducible, we know, up to a permutation, that M is block diagonal and each

diagonal block M (lg; Ik) is irreducible. Applying the previous result to each M (I; Ik)

completes the proof.

‘1 when the non-negative

The next lemma allows us to estimate the norm of M 1

entries of M are bounded from both above and below.
Lemma 6.5. Dene
M(n;o0;1) = fM 2 M(n) : Mjj = 0Ooro< jMjjj< 1; 81 i;j n;i=j g

Then there exists a constant C(n;o;1) = Cz(n)(n 21) (n é) s.t. for any matrix M 2
M(n;o0;1) and ’ 2 Range M, there exists one % satisfying M& = ’ and k*k«
C(n;o0;1)k’k. Moreover, for xed M 2 M(n;o; 1) let us take the decomposition| = 11
[ [ Im asin Lemma 6.4. The solution ® above is uniquely determined by imposing the

conditions

P
i21, ®i=0; 8k= 1L:i;m:
Proof. Let us rst assume that M is irreducible. Let x be a solution of Mx = . PSince
N(M) = spanflg, we have that M(x 1) ="' for all 2 R. By taking = 1 i Xi
n
and® = (x 1) we have M% =’ and i ®i = 0. This solution is uniquely determined

and it remains to show that there is a uniform bound kRk: C(n;o;1)k’k<.
Dene

Jo=fl i n:%= 1ma>](n$b,-g;
Jy =fl i n:9j 2 Ji 1 8.t jMjij > ogl Jk 1; 8k 1;
Dk = maxf( max ®;) Rig:

i2) 1jn
Fori 2 Jxnlyx 1, takej 2 Jx 1 s.t. jMjij > 0, the equality on the j-th entry now reads
. . P . . P . . ,
iMjijRi + k=j IMjkj Rj k=i;j IMjKkiR =75
By the fact that the summation of each row of M is zero, one can rewritten the above
equation as
Lo P . . , P . .
jMjij(maxi 1 %i) = k=j IMijK] (maxi &1 Rj)+ 7 K=isj jMjj(maxi &1 R«)

by which we have | 0

1
Dk 1+ (n 21DF1+ k’ ke :
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By denition, D & 0. Hence by induction we obtain h
i
k
1+(n 2)% 1
Dk 0 k' k-1:
(n 2);
By the irreducibility of M, unless Jx = f1 i ng we have Jx ( Jk+1 (i.e. Jx is a proper
subset of Jx). This implies that jlk+1j jlkj + 1 and since jloj 1, it provesthatthatlJ, 1
=fl i ng.
Therefore, by taking C(n;o;1) and C2(n) such that

C(n;0;1) = C2(n)" 21) (n (1)) Dn 1;
we have (max;® min %) C(n;o;1)k’ka. By P i ®i = 0 we have min| %, 0
max| ®;. Hence k* k1 C(n;o;1)k’ke.
When M is reducible, we know, up to a permutation, that M is block diagonal and each
diagonal block M (lg; Ik) is irreducible. Applying the previous result to each M (I; Ik)
completes the proof.
6.4. Uniform boundedness. We are nally able to show our uniform boundedness re-

sult.

Theorem 6.6. Consider M 2 M(n) and’ 2 R™ satisfying that 9Co > 0, 8I° | =
f1;:::ng, p b

j210 ! CO j219;i21n10 JMIJJ + JMJIJ : (65)
Then there exists x 2 R" satisfying

Mx="; and kxk: CoCi(n);
for some constant C1(n) depending only on the dimension n.

Assuming for the moment that this theorem is correct. We can then immediately
derive Theorem 3.4.

Proof of Theorem 3.4. Combining Proposition 6.2 and 6.3, we see that the linear

system (6.4) satises the condition in.Theorem 6.6 with n = jVoj, M = ( AT),
Co = C(Vo). Moreover, since we assume i2v, SUPP being connected in Denition 1.6, it
is easy to verify that for some constant C

C(Vo)= sup ixyi CjVojx;
X;¥27 5y, SUPPI

where x is the discretization size of the mesh.

Hence by applying Theorem 6.6 to (6.4), we conclude that there are solutions &(bc)
for all possible be, with ‘1 norm uniformly bounded by

k* k1 C(Vo)C1(jVoj) C(iVoi)x;

where C(jVoj) depends only on jVoj; the number of cell functions in a period. We can
have the solutions satisfy that 8 > 0;%i(bc) = %Ri(bc) simply by redening %i(bc) =
Ri(bc=jbcj) for all be s.t. jbcj = 0. Finally, by Lemma 6.1 we can extend our solution ®(bc)
to a periodic solution on the entire mesh, satisfying all properties claimed in Theorem 3.4.
We now conclude the section with the proof of Theorem 6.6:
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’

Proof of Theorem 6.6. Let us begin with the solvability of Mx = ’. Take the decom-

position | = I3[ [ Im asin Lemma 6.4. By Lemma 6.4,
P
RangeM = fx 2 R' 1 ;,; xi = 0,81 k mg:

For all k = 1;:::;m, we have M (l; I nlg) = M (I nlg;lx) = 0. By (6.5) this implies

that Ik' = 0,8k = 1;:::;m. Therefore’ 2 RangeM and Mx = ’ is solvable.
We now turn to the proof of ‘! bound of x. We can WLOG assume Co = 1 and
maxi=j jMijj = 1 = 1, because the general case can be reduced to it by a scaling (

l'\{l)(c 1x3= ( 1C011’).
The result is immediate when n = 1 and we prove the cases n 2 by induction.
Assume the theorem holds for any p p matrices with p (n 1), we are going to show that

the theorem holds for n n matrices.
First, since
Mo(n) = M(n)\ fM 2 R"" : maxjMy;j = 1g
=]

is compact, it suces to show that there is a local bound. More explicitly, we are going
to show that for any M(©) 2 Mg(n), there is an open neighborhood U 3 M(®, s.t. for
allM 2 U\ Mo(n) and’ satisfying (6.5) with Co = 1, there is a constantC = C(n; U
\ Mo(n)) s.t. one can take x 2 R" satisfying Mx = ’ and kxk: C(n; U\Mg(n)).
Then by compactness, we conclude immediately that there is a uniform bound Ci(n) =
C(n; Mo(n)).

For arbitrary M (%) 2 Mg (n), introduce the irreducible decomposition | = 11 [IL Im as
in Lemma 6.4. For 1 k m, dene Ex = spanflyggiai,, Fk = fx 2 Ex : P Xi =
0g. In addition, dene Eq = spanfl; gm, Fo = fx 2 Eo : . Xi = 0g. Note that we
have

R" = (E1 Em)=(F1 Fm) Eo=(F1 Fm) Fo spanflg:

Since there are non-zero non-diagonal entries in M{?), there exists k such that jlxj > 1.
Hence m < n.
Let
o=min jMTj:i=jim0i=0;
p— 1 .
T 2nC(n; 1)(1+ 2 maxip<n C1(p))’

where the constant C(n;o; 1) is as in Lemma 6.5.
Dene the open set

Ur(M©)= mM2R"" t max jm M©@j< r
i;j n

Dene also the following linear mappings,
P:R"! Eo=spanfl,gl,; R"m

i
WX 1. X0 1y
X =1 J&‘LIZIkX
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i.e. we take the average on each Iy,
Q:R™! Eo = spanfl; gf.1 R"y

X m
! ykli,;
k=1

i.e. we project on the canonical basis of Eg, and nally
W :R™ ! RT"
(yari:o;ym) Vo (lajya; ci:sjlmiym):
For x 2 R" solving M x = ’, introduce the decomposition
X=X1+x2+ 1;;  x12(F1 Fm); x2 2 Fo:

Without loss of generality, we can assume = 0. We are going to discussion two
situations.
Case 1: kxzak«1 2maxip<n C1(p)kxik:. Since Fo Eo, x2 belongs to the image of Q
and as Q is trivially one-to-one from R™ to Eg, we can dene y> = Q (x2) 2 R™.
Since M (x1 + x2) = ', we have

(wa 'PMQ)(y2) = (WQ 'PM)(x2) = (WQ *P)(’) (WQ PM)(x1): (6.6)
Since p P
(wWQ 'PMQi= 5, 21, M
it is easy to verify that (WQ PMQ) 2 M(m).
Our goal is to apply the induction argument to the m m linear system (6.6). To
apply the induction argument, we need to provide proper estimates on the terms in the

right-hand side. For any J® J = f1;:::; mg, we have

szjﬂ (wQ *'P)(") (wQ 'PM)(x1) ,

= F ko (WQ P)() P ks (WQ TPM)(x1) ,
= L1+ La:
By our assumption on’,
jL1j = k240 P P21, i P k210;120n10 P 2121, IMijj + jMiij
=P k2505123000 (WQ IPMQ)u + (WQ TPMQ)i
On the other hand,
tai= % ® 21, PraMixai= P P i21, Mij(xa);

12)0 P j21, P k20 P P21, Mij(x1); + P 124nJ0 P j21, P k2Jo P P21, Mij(x1); =

k219;121n)0 P i21;21, IMij+ jMjij kxake
= vinge (WQ TPMQ)u+ (WQ 'PMQ)ik kxike:

In conclusion we have

>
P 1210 P j21, k2inJo P 121, Mij(x1)j + PIZJnJ“ Pj2I| Pk2J° Pmk Mij (x1);
>
>

P
Lt L2j (14 kxakea)  op0.00m0 (WQ IPMQ)a+ (WQ PMQ)i;
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which satises necessary assumption for the induction argument with Co = (1 +kxi k).
As a consequence, we have

kxaka = kyaka (1+ kxika)Ci(m) Ci(m)+ kxzk=2;
by using the relation between kx1 k and kxzk: assumed at the beginning of the case.
Hence, as claimed
kxaka 2Ci(m) Zlmax Ci(p);

p<n
kxk' kxake + kxaka 1+ 2'max Gi(p):

’

Case 2: kxaoks < 2maxip<n C1(p)kxik«. Since M(x1 + x2) = 7, we have
M(x1+ x2) + (M@ M)(x1 + x2)

=+ (MO M)(x1+ x2):

MO (x1) = MO (x1 + x2)

On each I I block (k = 1;:::m%) we can apply Lemma 6.5. For M 2 U, (M (©))\M(n),
this gives

kx1k C(n;o;1) k’k«1 + rd(1+ Zlmax Ci(p))kxika=
p<n

C(n;o;1)k’ks + kx1k=2:

By (6.5), foralli 21,
X
i’ iMijj + jMjij 2(n 1):
j2Infig
Hence

kxika 4(n  1)C(nig;1);
kxk« kxika + kxaka 4(n 1)C(n;o;1) 1+ 2 'max pC<4q(p) : This
nishes the study of Case 2.
Summarizing the results from Case 1 and Case 2, for arbitrary M (®) 2 Mg (n) we have

Ur (M (@) such that for all M 2 U, (M) and ’ satisfying (6.5) with Co = 1, one can
take x 2 RY satisfying

Mx="; and kxk: 4(n 1)C(n;o;1) 1+ 21ma%(<r(121(p) :
Recall that U,(M () is give by

1
2nC(N; 0; 1T+ 2 MaxXipen C1(p))

M2 R": max jm M©@j< r
n

r =

Ur(M )

. i;]
In conclusion, we can take

C n;U(MO\ Mo(n) = 4(n 1)C(n;o;1) 1+ 2 max Ci(p):

p<n
We can conclude the proof by compactness.
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We nish this section by explaining how one may be able to nd a (very rough) upper
bound in the previous proof. By Lemma 6.5, we have C(n;;1) = C2(n) (™ 1) whereC
(ny) only depends on the dimension n. For any M 2 M(n) let us dene

(M) = minjMjj:i=j;jMij= 0 ;
1 .
2nCz(n)[(M)] (" 1,(1+ 2maxip<n Ca(p))’

r(M) =

We are going to argue that for suciently small min = min(n) > 0 and arbitrary M(®) 2
Mo(n), there exists M 2 M(n) such that (M) min and M(© 2 U,,(M). Once this
argument is proved and min is given explicitly, by the proof of Theorem 6.6, we have

C n;Uym(M)\ Mo(n) 4(n  1)Ca(n)min(n)] " Y 1+ 2 max §<1n"°’ :

Therefore, we can take
Ci(n) = 4(n  1)C2(N)[min(n)] ™ 2 1+ 2 max C1(p);

which gives an explicit induction relation of C1(n). pen

We now describe how to nd such M. Let us construct a sequence fM (X'g M(n)

(starting with M (®)) by the following iterations,

(1) If MK = 0, we stop the sequence. Otherwise, take
(i(*); () 2 argmin jMi(jk)j:
(i3):i=i;im, =0

(2) For M) = 0, take the decomposition | = 10 11 a5 in Lemma 6.4.
Assume WLOG that i(k); jik) 2 J(k). By the equivalent denition of irreducible
matrix that the associated directed graph is strongly connected, one can take a

path j ) = J(k) jl);:::,'](k) = jlk) suchthatM(k) w = Oforalll=1;:::;(p
| e
1),
Let P (k) be the permutation matrix given by
8
1 if (i;7) = (i(; ()
> or (i;j) = (5100 1= Laise 1)
(k)
Piyj’ = orl—JZIanO,J(:);:::;jEJk)g
(
>
"0 else:
!
(3) Take M{k*1) = MK 4 (MK )(p k) )

For any (i;j) 2 12 such thati = j and (PX) 1);; = 1, we have M(ifj) < 0. By the
denition of (M (K)) it is easy to verify that the non-diagonal entries of M (k*1) given in this
way are again non-positive. Hence M k*1) 2 M(n) if M* 2 M(n). By induction, the
above procedure produces a sequence fM (K)g M(n). We are going to argue that
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for suciently small min, there must be an adequate candidate for M in fM (K)g before the
sequence ends.

First, recall the denition (M) = min jMjjj :i = j;jMijj = 0 , it is straightforward to
see that M (k)i(]k(:,j)z 0. Since there are only n>  n non-zero non-diagonal entries and
our process eliminates at least one entry at a time, the process must terminate somewhere
before step n? n.

Secondly, observe that kM (<*1) M (K k., (M (K)) and jM(k+1)j JMIJ j, 8f=j.By
induction,

(k+1) (0) P k m (k+1) .
kM Mk Lo (M), manM j 1
i=]
Thus, if
P 1 )
- 2nC2(n)(M® 1)) (" 1(1+ 2 maxipen C1(p))’

(M(')) r(M (k+1))

or equivalently
p 1=(n 1)
2nCa(n) 1+ 2 max Ci(p) Ko (M) (M (k*1));
p<n

then it is guaranteed that M© 2 U (k1) (M K1)

To ensure that M (¥*1) js an adequate candidate of M, we also need that (M (k1)) ..

Let us dene the function
( 1=(n 1) )
(r) = max min; 2nCz(n) 1+ 21max Ci(p) r ; (6.7)
p<n

P
and reformulate what we just discussed as the following: If (M (k*1)) (' _ k(M 1))), we
have that ' K, (M) r(MED) and (ME1) - o, so we can take M = M (k+1).
Let us assume that no candidate of M appears until step m. Then we should have

(MK < P kgt (M) for k= 1;:::m. Dene (©) = i, and dene X) induc-tively by
(k) — 1)y.
= ( p Ik=01()).
Obviously we have (M(?)) (0 Note that is |ncrea5|an for any xed min > 0. Therefore
we have (M) kot(my) kot () ) provided that (M
(1) (M foralll = 0;1;:::; (k 1). Applylng the |nduct|0n argument, we conclude
that (M (K)) (%) for all k = 0; 1 -----

Let us discuss the growth of “‘). Note that forr ! 0* and min ! 0% we have(r) !
0*. Therefore lim_,.10 ) = lim_, 10 ( kot M) = 0 provided that
lim_ .10 () = 0foralll = 1;:::;(k 1). Applying the induction argument, we
conclude that lim_,, 10 ) = 0 for all k 0. In particular, by taking suciently small min, one
would have " "(F 1

Since maxis=;j jMi(jO)j =|:f, let us take i;j s.t. jMi(jO)j = 1. Observing that

. . P P
MITEE ey 1T e
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For m < n? n, this implies thatjl\/lij(m”)j > 0, hence the iteration does not terminate at

step (m +1) either. By induction, unless there is an adequate candidate of M found, the
iteration does not terminate before step n2 n. Recall that the iteration must terminate
somewhere before step n> n as the non-zero entries are reducing, we conclude that an
adequate candidate of M must appear somewhere before step n> n.

7. Proof of remaining lemmas and propositions. In this section we collect the
remaining missing proofs of various technical lemmas. Let us begin with Lemma 2.5.
Proof of Lemma 2.5. The equation (2.8) is equivalent to
Z Z

d K (x;y)  KHx;y) julx)  v(y)ji® dxdy Clhi=ho)  K'%(x;y)ju(x) v(y)j® dxdy:
RZ

Notice that (x), yet K"(x), has compact support in the ball B(0; 2). Also, notice that
ifa(x)  faly)i jx yvi ix fa(x)j Gy faly)i ix o yi 2hg;
where h1 1=4 by our assumption. Hence, K (X;y) and K, (%;y) are non-zero only if jx

yj 5=2.
We further take the decomposition

f(x;y) 2 R?9 :jx vyj 5=2g = fjx vyj 1=2g[ fl=2< jx vyj 5=2g;
by which we can rewrite the double integral as

z

KhOx;y) KR y)iu(x)  v(y)i® dxdy

2d
R !

z z

= + Khx;y)  KHx;y) ju(x)  v(y)i® dxdy:
jx yjl=2 1=2<jx yj5=2

On the set fjx vyj 1=2g, we have jf1(x) fa(y)j jx vyj+ 2h1 1. Hence
(ifa(x)  fa(y)i) = (iga(x) g2(y)i) = 1; 8jx yj 1=2:

Thus we have

z . .
KM(x;y)  KM(x;y)ju(x) v(y)jP dxdy:
ix yil=2 g f
KM y) K x;y)
sup ; Z K POGy)iul) V()P dxdy;
ix yi1=2 K" (xy) R2d

where the coecient before the integral can be bounded by

. KPOGY)  KP(Gy) e (X ey
sup T sup (Jif (x) f(Nj+h,
x vii=2 Kfx; y) ix yil=2 HFtx (V) i+ h,

4h, d=hd+!

—————Chi=hg:
Y 1=ho
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Moreover, on the set f1=2 < jx vyj 5=2g,Z

K"(x;y)  KM(x;y) ju(x) v(y)i® dxdy
1=2<jx yj5=2

f
KMx;y) KM% y)SP 1 Ju(x)  v(4x=5+ y=5)P1=2¢<x yis=2
+ jv(4x=5+ y&5)  u(3x45 + 2y=5)j® + ju(3x=5+ 2y=5) v(2x=5+ 3y=5)j°

+ jv(2x=5+ 3y=5) u(x=5+ 4y=5)jP + ju(x=5+ 4y=5) v(y)j® dxdy:
As an example, let us look at the second term. With a change of variable
w= 3=5+ 2=5; z= x=5 y=5;

one has that

VA
5P 1 kh(x;y) Kh()é; y)jv(4x=5 + y=5) u(3x=5+ 2y=5)j dxdy 1=2<jx yjs=2
= 59+ 1o K'(w+ 2z;w  3z) K"'(w+ 2z;w  3z)ju(w) v(w+ z)j dwdz
1=10<jzj1=2 g f
KMfw + 2z;w  3z) K"(w+2z;w  32)
5 d+p 1 sup
Zw;z2Rd;1=1o<jzj1=2 Kf(w; w + z)

d th(w;w + z)ju(w) v(w+ z)j dwdz;
R2

where the coecient before the integral can be bounded by

Kh(w+ 2z;w  3z) KM(w+ 2z;w  3z)
g f

w;z2Rd;184B<jzj1=2 Kh(w;w + z)
KM (w+ 2z;w  3z) KM'(w+ 2z;w  3z)
= sup g 1 £
w;z2R4;1=10<jzj1=2

(ifi(w) fa(w+z)j+h)d
Chi Chi=ho:

The other four terms can be bounded by the same approach.
In conclusion, we have

z
K06 y)ju(x)  v(y)j dxdy
Z{Zd Z
= ) Kg(x;y)  K(xy) ju(x)  v(y)j dxdy + dth(X;\/)Ju(X) v(y)j dxdy
R2 R2
z

(1+ Chi=ho) K%(x; y)ju(x)  v(y)j dxdy:

(7.1)
Next we prove Lemma 2.6.
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Proof of Lemma 2.6. We rst choose measurable sets (Vi)i2v RY by the following.
Divide RY into small hypercubes
yd h p
Qm = nk= dx; (ng+ 1)= dx; 8[m] = (n1;:::;nq) 2 2°:
k=1
where each hypercube has diameter x.
Then, in each hypercube Q) choose measurable sets Vi;[mj, i 2 V satisfying
VA

Vi;[m] Q[m],' jVi;[m]j = i, 8i 2 V; and Vi;[m]\ Vj;[m] 8i;j 2 V;
Q[m]
which is always gossible since P i2v i 1 by our denition.
Choose Vi = = [, Vi [m] so that
jVij= i = i sup jx  Xij < 2x; 8i2V; and Vi\V; 8i;j2V:
Rd x2Vi
[}
Moreover, recall our assumption (2.6) thﬁtizv i(x) = 1,8x 2
+ B(0; 4). For any hypercube Qim)
+ B(0; 4), one has i2v 1Visimlj = iQqmii- Since we have assumed
X 1=16, it is easy to verify that Qqmj \
+ B(0; 3) = ? implies Qi
+ B(0; 4).
Then up to modication on a negligible set, one has that 2V
S s s Vi \
+ B(0;3) = i2v [m]2z¢ Vistm) \
S S + B(0; 3)
[m]2zd i2v Vi;[m] \
+ B(0; 3)
+ B(0; 3):
Recall our choice of piecewise constant extension u¥ = ., uily, and
(Ei; forx 2 Vi; i 2 V;
f(x) = S
X; forx 2 ,y Vi
Notice that Ui = 0 only if suppi

and we have assumed x 1=16. Hence the extended function u¥Y  satises suppuV
+ B(0;1). Also, by our assumption it is straightforward that

sup jx  f(x)j supsupjx Xij+ supjxi ®ij 2x+ ha < 1=4:y2Rrd
2V x2V; i2v

Finally, let us consider the integral
KM f(x)  fly)ju¥(x) uY(y)® dxdy:

R2d
We have proved supp uV
+ B(0;1) and by denition suppK" 2 B(0;2). Therefore, for x 2
+B(0; 3), either y 2
+B(0;1), making juV (x) uV (y)i = 0, or y 2

+B(0; 1), making K" (x y) = 0.

The same argument also applies to y and as a consequence, the above integral can be
taken instead over any subset of R29 including
+ B(0; 3) > In particular, it can be
reformulated as

Z X

KM f() fy)ju¥(x)  uY(y)j dxdy = Sfiui  ugjPig; ey
(i V) i;j2v
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which completes the proof.
We are now ready to prove Lemma 2.4, Proposition 2.7 and Proposition 2.8. Let us
start with Proposition 2.7, which is immediate:

Proof of Proposition 2.7. By Lemma 2.6, choose measurable sets (Vi)iov RY, take
piecewise constant extension u¥ = = .,, uily, and take fl(l);fz(l);fl(z);fz(z) :R4 1 R
by

(e forx2vsi2v;
fork= 132 fx) =)= F7 s T
X; for x 2

iy Vi:

Then it is straightforward that

kulg, o, " 0= sup jloghj X K e eMju ujey
hﬂh 1=2 i;j2v i j

sup jloghj Z K" f'90)  fy)juV (x) uY(y)i® dxdy;

hohl=2 R2d 1 2

and
for k;l= 1;2; sup jx f (x)j 2x+ h2 3haixzre

We now apply Lemma 2.5 with hy = 3h; < 1=4, which gives that
Ku kho;p;;X €@ (1+ Cha=ho) ki’,lkho?p"’i(l,:

Noticing (1 + x)**P 1+ x for all x 0, we conclude that

kKuKp,.p:.e (1 + Cha=ho) kuky .p..e0);

which nishes the proof.

Next, let us prove Proposition 2.8.
Proof of Proposition 2.8. Choose any labeling of the index set V, and dene

J:RY[0;1]! V
P
(y;1) ! minfi2 V: ;j(y) !'s:

Notice that there are only a bounded number of nonzero i(y) at any point y by our
assumption.

Dene also
F:v!
e
il X
Then for ally 2 RY, | 2 [0;1],
Z,
(F D)(y; 1) vy 2x u(y)=;n(y)= Uj(y;n dliiav
0
By Lemma 2.5, for all 11; !5 2 [0;1]
Z
R“Kh(x;y)juj(x;!l> Uy (y;1,)iP dxdy
Z
(1+ Cx=h) KM (F )06 11); (F I)y; 12) juspgr), Uiy )iP dxdy:

R2d
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Therefore, notice that K" F(i); F(j) = K" xi;x; = K
CKPOGy)julx) u(y)iPdxdy

5] ,hwhich implies that Z

R2

Z Z 1 VA 1 P
= Kh(x;y) UJ(X;[l)d!]_ UJ(y;!Z)d!Z dxdy
R2d 0 0
Z Z X b
K (x;y)uj(x;!) Ujy;1) dXdyd!ld!z
[0;1]2 R2d 7 1 2
(1+ Cx=h) KM (F )G 1) (F I)Y;12) Uspary Uy ) dxdydlidls
[0;1]2 R2d 1 2

= (1+ Cx=h) X Kfjui  uiPy:
i;j2Vv

Again by Lemma 2.5,

P
Kif(Pcu)i  (Pcu); ij

i;j2Vv

X 12 z p
= K = u(x)i(x) dx uy)ily) dy i
i;jZVZ i Rd j Rd

X

Kifu(x)  u(y)®i(x);(y)dxdy

izjzv R2d
= K" (F 1) 1) (F I)(y;12) u(x)  u(y)’dxdyd!id!, R
Z
(1+ Cx=h) K" (x; y)ju(x) u(y)j dxdy;

R2d

concluding the proof.
Lemma 2.4 can then be derived from Proposition 2.8.

Proof of Lemma 2.4. Since we have assumed h > hg > x and k(ui)iavkng;p; L, by
Proposition 2.8,

4

X
§ K"(x;y)ju(x) u(y)iPdxdy (1+ Cx=h)  K"jui, ujj®ijisjav
R

Cjlog hj;

where the constant C may depend on L.
Introduce the renormalization factor

Ch = jlogj=kKMk,1:

Then Cp is bounded form above and below uniformly with respect to h, and the renor-
malized kernel K" reads

K"(x) = KM"(x)=kK"ky: = Chjlogj *K"(x):
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Hence ku
z z 0
K" ?ukP, = (Cpjlog hj Lyp KP(x y) u(x) u(y)dy dx
R4 Rd
Z
Ciloghj PKK"KP % K"(x y)julx) uly)i® dydxZ
R
Cjloghj ! K"(x  y)ju(x) u(y)j® dydx:
R2d
This implies
ku KM 20k, Cjloghj ? (7.2)

We have nished the proofs of all lemmas and propositions in Section 2.2 but it remains
to prove Proposition 2.10 as claimed in the proof of Theorem 1.3.

Proof of Proposition 2.10. Let (C; F) be a mesh as in Denition 1.5 over

Rd

such that (1.14) hold. Assume that each face function ni;j 2 F is of form nj;j(x) =
Ni;jwi:j(x); 8x 2 RY, where N;.j is a unit vector and w;;j is a scalar function.

Then for1 p 1,

P°b  Peb

Lero;Tir) CXkbK

L"(W“p)i
where the constant only depends on p and the constant in the structural assumption
(1.14).

We are going to rst prove the inequality for any xed time t and To simplify the
notation we omit t in all the calculations.

By denition, we have

VA Z +
+
Peb P(F) b Py = b(x) Ni;j wi;j (x) dx b(x) Ni;jwi;j(x) dx
’ Rd Rd
We introduce the more general function
z Z .
I(b; N;w) = b(x) N +w(x) dx b(x) Nw(x) dx
Rd Rd

where N 2 RY is a unit vector and w is a non-negative, bounded function with compact
support. It is straightforward that I(b; N; w) 0 and for any two functions v;w 0,

[(b; N;w)+ I(b;N;Vv)

z y4 . y4

b(x) N w(x)i v(x) dx b(x) Nw(x) dx b(x) Nv(x) dx
" f + b(x) N w(x) + v(x)R

dx b(x) N w(x)+ v(x) dx
Rd Rd

= I(b;N;w+ v):

Hence if 0 w u, then I(b; N;w) I(b; N; u).
Moreover, | (b; N; w) is directly bounded by the following inequality
(z z . )

I(b; N; w) sup b(x) N w(+x) dx b(x) N w(x) dx
Rd Rd
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And it is easy to verify that (in distributional sense)

(z z . )
€ * @
b(x) N w(x) dx b(x) N w(x) dx
b4 R z v4
n o
= 1 b(x) N 0 w(x)dx+ 1 b(x) N w(x) dx 0 w(x) dx:
Rd Rd Rd
Thus the maximum is attair%ed at 2 =
b(x) Nw(x) dx = w(x) dx ;
Rd Rd
thus Z .
I(b; N; w) b(x) N w(x) dx
Rd
Z
1 . . )
WK s jb(x)  bly)jw(x)w(y) dxdy:

Notice that wi;; Cx 11p(x,.x) by our structural assumptions (1.14). Therefore,
Peb  PRb ;= 1(b; Nij;wis) 1(b; Nigj; C(x) *Lgqxx)

clx) *
kB(Xi;X)kLl R2d
When p= 1, we have

jb(x)  b(y)ide(xi;x) (X)L x;x) (y) dxdy:

Peb POb = sup Pgb PO°b (x) @ Y
FoLe(r) 2V Froi)
C(x)? xkbkya (x) @ Y=
CXkbkwl;12
When p = 1, we have
0 _ 0 _ i
Peb P bLl(F) = X Peb P bi;jx_ X Peb Pr[b‘jx
F i;j2v F 5 (D2E
= X C jb(x) b(y)j1B(xi;x)(x)1B(xi;x)(y) dxdy
(i57)26 <BOHeE— g
X c Z Z

- - jb(x) b(x+ z)j dxdy
(is] kB (xi;x)k L1 X2B(xi;x) jzj2x
;1) 2E Z
C

jb(x) b(x+ z)j dxdy
kB(xi; x)kit ,ope ii2x

CXkkal;l:
An interpolation completes thecase 1 p 1, i.e.
PFb PFbLP(F) CXkkal;p:

Integrating now over time, we conclude that

PFID PFpr([O,’T]F) CXkbkLp(Wl;p)i

X
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