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Abstract

This paper concerns the existence of global weak solutions da Leray for compressible Navier{Stokes{Fourier systems with
periodic boundary conditions and the truncated virial pressure law which is assumed to be thermodynamically unstable. More
precisely, the main novelty is that the pressure law is not assumed to be monotone with respect to the density. This provides
the rst global weak solutions result for the compressible Navier-Stokes-Fourier system with such kind of pressure law which is
strongly used as a generalization of the perfect gas law. The paper is based on a new construction of approximate solutions
through an iterative scheme and xed point procedure which could be very helpful to design ecient numerical schemes. Note
that our method involves the recent paper by the authors published in Nonlinearity (2021) for the compactness of the density
when the temperature is given.
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1. Introduction and main result

This paper is dedicated to Antonn Novotnywho had contributed so many innovative work to the the-
ory of compressible uids, specically to compressible Navier-Stokes-Fourier equations, and unfortunately
passed away suddenly on Thursday, June 03 2021.

The non-stationary Navier-Stokes-Fourier equations modeling viscous compressible and heat conduct-
ing uids, in the multi-dimensional in space case, have been extensively studied both from a theoretical
and a numerical point of view: see [10]. Yet many questions around the existence, uniqueness, or stabil-
ity of solutions have remained unsolved. The case of non-stationary barotropic Navier-Stokes equations
(namely without temperature) is somewhat better understood, in particular for the global existence of
weak solutions a la Leray ( [13]): see for instance [14], [6], [9], [11], [17], [1], [3] and references cited therein.
The present study addresses the theoretical problem of existence of so-called global weak solutions aa
Leray for the full system including the evolution of internal energy (temperature dependent case) for the
so-called virial pressure law.

One of the well-known diculty of such nonlinear system of uid mechanics with heat-conductivity is that
the a priori bounds based on the energy estimates are not strong enough to get equi-integrability of certain
quantities, such as the viscous dissipation quantity (see for instance [14]). This is compounded in the
present paper by a pressure law that is non-monotone in the density and hence thermodynamically
unstable.
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A rst helpful approach is to replace the internal energy equation by the entropy inequality supple-
mented by the total energy balance, as introduced by E. Feireisl and A. Novotny, explained in [7], [8]
with appropriate hypothesis on the pressure state laws. Unfortunately, this approach was initially limited to
thermodynamically stable state laws, namely

@Pjs > 0; @yej > 0O;

where P is the pressure state law and e is the internal energy depending on the density and the
temperature #.

On the other hand, the potential oscillations in the density due to the pressure laws can in principle be
controlled through the method in [1,3]. But a major diculty further lies in combining both approaches at
the level of an approximate system. We take a dierent point of view to bypass most this issue by
constructing solutions through a xed point argument.

Dene, in a periodic domain
= T9 for d 2, the so-called truncated virial pressure law

X N
(1) P;#)= +# Bn(#)"n=0

where > max(4;2N;d). The virial equation of state seems to have been proposed rst by M. Thiesen in
1885 and intensively studied by H. Kammerlingh Onnes (see [16]) at the beginning of the previous
century as an empirical extension of the ideal-gas law. The reader interested by Virial coecients of pure
gases and mixtures is referred to [5].

Such pressure laws is not monotone with respect to the density even after a xed value and there-fore
is not thermodynamically stable. They are nevertheless commonly used in practice. With proper
assumptions on the coecients B, (#), one can still ensure that @sej > 0 so that the system is at least
thermodynamically consistent.

We next consider the compressible Navier{Stokes{Fourier (CNSF) equations for the corresponding
state laws,

(2) @+ div(u) = 0;

(3) @t(U)+ div(u

u) divS+ rP = 0

(4) @¢(E) + div(uE) + div(Pu) = div(Su) + div(r#)

where E = juj?=2+ e is the energy with P = P (; #) and e = e(; #) respectively stand for the pressure
and the (specic) internal energy.
The initial condition are given by

(5) jt=0= 0 (u)jt=0 = Mo (E)jt=0 = oEo:

Note that the above initial conditions determine the corresponding value at t = 0 of the temperature
#ji=0 = Ho, provided that @we > 0.
For simplicity, we take the isotropic stress tensor

(6) S=(ru+ru')+ divuld

with and two constants satisfying the physical constraint > 0 and + 2=d > 0. In order to be consistent
with the second principle of Thermodynamics which implies the existence of the entropy as a closed
dierential form in the energy balance, the following compatibility condition, called \Maxwell equation"
between P and e has to be satised

(7) p-2 @, OF
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Navier-Stokes-Fourier with virial pressure

This allows to dene the internal energy directly from the pressure law, up to a function only of #, which
we take as 0 for simplicity. Namely for any arbitrary . > 0, and by using (1),

y4
1
l#)= PO #@#(f,@ﬁ)
) = 1W#ZdB# i #ZdB#I #20'5#-1
= m+ 1 g (Bn(#) — g (B1(#)) log + #° AB1(#)) : =

n=0
The specic entropy s = s(; #) is now also dened up to an additive constant by

@s 1 @e @s 1 @P

) er “wer N @ T rew

If (; #) are smooth and bounded from below away from zero and if the velocity eld is smooth, then
the total energy balance can formally be replaced by the thermal energy balance

Cvi@t+ u r#) div((#)r#) =S :ru #%ivu

whereS :ru = Tr(Sru).
Furthermore, dividing by #, we arrive at the entropy equation

H H# 1
(10) @¢(s) + div(su) div = S:ru
(F # #

. <2
+ Jr#J .

We will use both of the two equations (4) and (10) involving temperature, at dierent parts of our
argument, together with a third technical formulation derived from (4).
We emphasize that, a priori, the system (2)-(4) conserves the total mass

The total energy of the system, which is the sum of the kinetic and the potential energies, reads
z z o
jmj?
EG#,m)= E(;#;u)dx = —_+ e(;#) dxTd
Td 2

and is also conserved, namely,
E(; #; m)(t) = E(o; #0; mo);

with m = u, where e is obtained from equation (7).

We need several precise assumptions on the various coecients entering into equations (2)-(4) which
we now make explicit.

Assumption on the conductivity (#):
(11) 1(#+ 1) (#) 2(#+ 1); st 1 O(#H) o 1

where 1;5, > 0; and 4. Assumptions on

the pressure law P.

(1) The pressure P given by (1) contains a radiative part, namely

(12) @,Bo > O for # = 0;
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(2) For 2 4 =2 with some 4

(13) C # 1 Bo(#) #¢ 1 C s 2 B0 # %
(3) We assume

(14) Bi1 Cq for some Cq; 2 R;
(4) For n 2, the coecients B, is concave in the sense that

(15) i(#ZBO) 0;

d# n

(5) We also assume that the following is true forn 0 and n= 1

(16) B + B + HBI(#)j + jBa(#)j Cal M
(6) There exist some constants B,, and < min(; 2 ),

(17) j#2 B (#)j + #jBa(#)] + j#Bn(#) Bnj C#l 227
(7) Finally we also assume the following property on the entropy s

(18) The specic entropy s is a concave function of ( 1;e):

Remark 1.1. The above assumption on s ensures that the C, coecient is non-negative

1

(19) Cy = @ = ig
@ #H2 @e 2

where the second equality comes from that @s=@e= # 1.

Remark 1.2. Let us comment that the results described for in instance in [8] are based on a radiative
part and a cold pressure part. In the truncated pressure law, this corresponds respectively to the terms
#Bo(#) and .

We emphasize that none of the assumptions above require a sign on B, (#), except on Bg. Hence as
claimed, the truncated virial pressure may not be monotone in for some values of # or .

We are now ready to state our main result.

R
Theorem 1.1. Assume the initial data #o, mp and o 0 with [40= Mo > O satisfy
) jmoj?
E(o; #o;mp = 24 ge(o; ) dx < 1
¢ 20

where mg = 0 when ¢ = 0. Suppose that the pressure state law P (; #) is given by (1) with the as-
sumptions (12){(17) and assume (18) on the entropy. Then there exists a global weak solution (; u; #) to
Compressible Navier{Stokes{Fourier System. More precisely it satises (2){(3) with (6) in the distri-bution
sense, the following entropy inequality

## 1 .\ (#)jr#tj?

S :ru

(20) @(s) + div(su) div O S —

where s is dened by (9) and the energy inequality
z. z

%, e 1) (1) dx JMo]
Td 2 20

2
+ ge(o; Ho)dx: Td
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Moreover, we have
u2 L2(0; T; HY(TY)); jmj2=22 LY(0; T; LY(TY))

u2 c([0; T]; L2=%*2/(19) weak );

for any T > 0, the weak regularity
2 C([0; T]; L(TY) weak )\ L*2((0; T) T9) where 0< a< 1=d

#2 L(0;T;L=(1 2=d)(7d)), log#2 L2(0; T; HY(TY);

and the initial conditions satised by (; u;s) in a weak sense

jt=0 = o; Ujt=0 = Mpo; Sjt=0+ oS(o; #o):

We remark that we use the notation 2 C([0; T]; L(TY) weak ) to mean that is weakly continuous in
time in L: for any t, ! t, we have that (t,;:) ! (t;:) for the weak topology of L(RY).

Theorem 1.1 is the rst result providing global existence of weak solutions for the heat conducting
Navier-Stokes equations with a thermodynamical unstable pressure law depending on the density and the
temperature.

The main idea in the proof is to separate the density and momentum equations (2)-(3) from the
energy equation (4). For a given #(t; x) satisfying appropriate energy bounds, our assumptions on the
pressure law let us use [3] (see also the introductory paper [2]) more or less directly. This article focused on
the barotropic system, namely (2)-(3), but with pressure laws that are inhomogeneous in time and space.
It is thus a good tool for the task of obtaining existence of and u for a given #.

We also need to obtain existence of some # solving (4) for a given and u, again with appropriate
energy bounds. This does not seem to t in any classical framework of non-linear parabolic equations
and therefore requires careful approach. We use a dierent formulation, that is loosely based on (4) (and

formally equivalent when all quantities are smooth). We also need a proper approximated equation to
resolve a potential degeneracy where # is close to 0. This nally allows us to obtain a global, weak solution
to our variant formulation to (4). We do not have strong enough bounds to recover (4) rigorously from
that but it is enough to obtain an inequality in the entropy formulation (20) together with the opposite
inequality in the propagation of the total energy (as can be surmised from the formulation in Theorem 1.1).
The last step in the proof is obviously to conclude the xed point argument, through the Leray-
Schauder theorem. This is a rather short but very challenging step. The issue is that we cannot yet
recover the usual energy estimate: Before we do obtain a xed point, the piece of the energy that we
obtain from the existence on (2)-(3) does not t with the piece of the energy that we obtain from (4).
This is where the exact formulation of the Leray-Schauder theorem is critical and must be combined with
the precise choice we have made of the decomposition.

2. Previous result concerning the compressible Navier-Stokes-Fourier system.

In every previous work concerning the global existence of weak solutions, the viscous stress tensor is
assumed to be isotropic
S=(ru+ru’)+ divuld;

with coecients ; either constant or depending only on #. Concerning the pressure state law, we can cite
the two following assumptions:

1) The pressure law as a monotone perturbation of the barotropic case. It is due to E. Feireis| who
considered pressure laws under the form

P(;#) = Pc()+ #Px();



D. Bresch, P.-E. Jabin, F. Wang

where
Pc(0)=0; P) a1 ! b for > 0;
Pc() az + b forall O
(21) P(0)=0;  PS() Oforall 0;Py()
c(l+ );
and
> d=2; < 240!‘ d= 2; = 3ﬂ‘or d=3

with constants a; > 0, a, b and P¢, Py in C[0; +1) \ C1(0; +1). In agreement with Maxwell law and
the entropy denition, it implies the following form on the internal energy

% bels)

ef; #) = P°—szds + Q)

where Q%(#) = C,(#) (specic heat at constant volume). The entropy is given by

Zy
s = “Clas w0
s
where Hy () is the thermal pressure potential given through
VA
Hy() = Px(s)=s2ds:

The heat conductivity coecient is assumed to satisfy
1(#+ 1) (#) 2(#+ 1) for all # 0

R
with constants ; > 0 and 2. The thermal energy Q = Q(#) = #OCV(z)dz has not yet been
determined and is assumed to satisfy \ Cyv(z) > 0and Cy(#) c(1+#72 1). Because the energy and

. 22[0;+1
pressure satisfy

@e(; #) 0; @P(;#) >0
@# @

the estimate on Hy gives a control on in L1(0; T; L1(

)) and through the entropy equation a controlon # in L2(0; T; L%(
)) in dimension 3 and in L2(0; T; LP(

)) for all p< + 1 in dimension 2.

Because the entropy estimates does not provide an H,! bound on u, E. Feireisl combines it with

a direct energy estimate (see below). Therefore one obtains the exact equivalent of estimates as in the
barotropic case

z

sup  juj?dx C + E(o;uo); Z
t
t
(22) sup dx C; Z
z T

jruj?dx C:o

in this temperature dependent case. Using such information, he may then prove the extra integrability
z.z
"3 dxdt C(T;E(g; up))o
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for 0 < a < min(1=d;2d= 1). We will give more details later-on for such estimate for the truncated
virial pressure law.

2) Self-similar pressure laws with large radiative contribution. It is due to E. Feireisl and A. Novotny
who consider pressure laws exhibiting both coercivity of type and #* for large densities and tempera-tures
namely

P(;#) = # 1)Q(#ﬁ - 3#43«/ith a> 0; > 3=2;
with
Q2 C*([0; +1)); Q(0) = 0; Q%z)> oforallz 0;
and
M, O\Z(Z) =Qi>0

In agreement to Maxwell law and the denition of entropy, it implies the following form on the internal
energy and the entropy

1 o#01 #
. - ) 4+ [
e(l #) ( 1) Q(#1=( 1)[ a ’
and 42 #3
s(;#)=S 1= + ?7
They impose
z °()z
0< s9%z)= 1 Qfz) Qi) <c< +1 forallz > 0;

1 z VA

with limzi+1 S(Z) = 0 so that thermodynamical stability holds. Therefore the energy provides uniform
bounds iq L 1XL 1 for #* and . One assumes in this case that the viscosities and heat conductivity satisfy

; 2 CY([0; +1)) are Lipschitz with (1+ #) (#); 0 (#); 0> 0;

and
2 c*([0; +1); o1+ #3) (#) 1(1+ #); 0< o 1:

Almost everywhere convergence of the temperature is obtained using the radiation term. Extra integra-
bility on P (; #) can be derived just as in the barotropic case. Finally the same procedure as in the
barotropic case is followed to have compactness on the density, relying heavily on the monotonicity of the
pressure @P(;#)=@ > 0. This gives global existence of weak solutions (in a the same sense that we precise
later). Remark the term a#%=3 in the pressure law can help to get compactness in space and time using
commutation between strictly convex function and weak convergence.

With respect to these previous works, we focus here, as in the barotropic case, in removing the
assumption of monotonicity on the pressure law with respect to the density, considering the truncated
virial pressure law on which we do not want to assume too restrictive assumptions, namely, a pressure law
(1) with the assumptions (12){(18).

3. The direct entropy estimate
3.1. A formal entropy bound

We explain here the general framework for our result on the Navier{Stokes{Fourier system. The
estimates here closely follow the ones pioneered by P.{L. Lions, and E. Feireisl and A. Novotny.
With respect to the previous discussion, we only present them here in a more general context as in
particular we will not need the monotonicity of P.
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If one removes the monotonicity assumption on P then thermodynamic stability does not hold any-
more. Following P.{L. Lions, it is however possible to obtain the entropy dissipation estimate directly by
integrating the entropy equation

zZ.Z ., R Z
jruj Jr . .
— 4+ (#) —dxdt C s(t;x)dx: o
# H oy

Therefore the entropy bound dissipation holds under the general assumption that there exists C s.t.

(23) s(;#) Ce(;#)+ ¢
Z
R Il that P(O:# H@4P (O # ?
eca a e= mi#)+ (P(°;#) @4P (°; ))do;
02
@h;
and @s= -
Z
We also have that @ss = @gue=H#, therefore as long as m(#) 0 with
#
m (sﬁds C(1+ m(#));
#
and z @ Z p H@,P
E 4P 0.
0 cC+C —a d’;

for some C > 0 then (23) is automatically satised and one obtains the entropy bound dissipation.
Moreover if e(#;) 1=C then one also has that 2 L ! Lyx. ,

Assuming now that
1(#+ 1) (#) 2(8#+ 1),
with 2, one deduces from the entropy estimate that Z
A
(#+ 1)jr#jdxdt < 1; o
Td

showing that log # 2 thHi and #7212 L2 H 1 ,or by Sobolev embedding # 2 L L:(lxzzd) for d 3.

By a Helder estimate, it is also possible to obtain a Sobolev-like, Ltﬂwi"pz, bound on u
Z T Z p1=p2 z T VA :2 p1=2
. p jruj
jrujP? dx dt dxdt
0 H
0 !
.12 P2 P)3lp 3 p)Y (2 pa)=2
#P2=2 P2) gy dt <1;
0

provided that p,=(2 p2) = =(1 2=d) and p1=(2 p1)= or

2 2d

(24) p1= 1_*_7, p2 = mi

Unfortunately this Sobolev estimate does not allow to derive the gain of integrability on the density as

usually. Actually one requires a LZH}! estimate on u (the critical point is in fact the LZ with value in

some Sobolev in x). Instead one can easily extend the argument by E. Feireisl and A. Novotny: For any
(), one can write

z
& d
.2
Jupm + d

)+

S:ru-=
(P(#;) o) + () divu:

z z y4

t
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This leads to the assumption that there exists some s.t.

c ! C () C+C;

25 b -
(25) P(#;) 0+ () C '+ #+ el#);
with
26 . .
(26) L2,
Indeed, with (25), one has
z,z z.2
S :rudxdt E(g;#o;mg)+ C T4+ H2+ JO—E'(';'ql';—)—jdivujdxdt:0
0
Using that S is Newtonian, this leads to
z.2
(27) 2 2
0

jruj2 dxdt C E(g;#o; mg)+ C krukLt‘X kt + #ZkLH;

and the desired H! bound follows from (26). It is now possible to follow the same steps to obtain an
equivalent of the extra integrability on the density if > d=2
z.z
(28) @ dxdt C(T;E(o; #o0; mo)); for all a< 1=d:
0

Note here that the assumptions (25)-(26) are likely not optimal. They nevertheless already cover the
truncated virial law we consider here.

3.2. The assumptions on the pressure law to get the above estimates

For convenience, we repeat here all the assumptions presented above and will show that the truncated
virial pressure laws satisfy them under the assumptions related to the coecients B,. To derive the
important estimates mentioned in the sections above, the pressure law P (; #) has to be a positive
pressure law satisfying the following properties: For some C > 0 and > d

8 Z z
P (; #) such that OZ@dB—C + C P %d(’;
_ Z(P(%#) #@y (%#) o vo# "
e(; #) = m(#) : % p & m#H)+ +——= c
S with m(#) 0
< Zy o
(29) and M B4gs C(1+ m(#)) C (1+ #lra =2(xa)y. #
1(#+ 1) (#) 2(#% 1); ; constant and 4;
c!? C () C +c;
PGH) 0+ () CreCHrC P e
>
j@4P(;#)j C*+ CH!
for
8
1 4,5 2< .
2
+a+1
(30) 3< ﬁ4< 2,> =
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where we recall that a < min (1=d; 2=d 1) = 1=d since > d here. We also assume that the specic
heat is positive (as is necessary for the physics) i.e.
(31) Cv = @ue(;#)> 0; 8 #
and that the pressure contains a radiative part
(32) @4P(= 0;#)> O:
We do not need to impose monotony on P and it is enough that
(33) @P(;#) C 1+ C#* with 2 4 < =2:

Finally the initial data has to satisfy

02 L(%); #o2 L* (%) ,
(34) ) 4
with ¢ 0; #o> 0in and 0= Mo> 0;d

and

z

_ JUoJ . .

(35) Eo = ——+—o¢€(o;Ho) < +1:

a2 ( ) 0

3.3. The truncated virial pressure law satises the properties needed for the estimates above

The truncated pressure law mentioned in the introduction

X N
P(;#)= + # Bn(#)nn:O

with > 2N 4 satisfy the assumptions described before. Choosing m = constant for simplicity in this
example, this leads to

1

e;#)= m+ 7

n 1
#BO(f) - #789(#)log + #2B(); ©
n2

For simplicity, let us assume that B; = constant, which is the normal virial assumption, so that this
term vanishes. The entropy reads

){\‘ n 1 1
s(; #) = (#BS(#) + Bn(#)) T B1 log + (#Bo(#) + Bo(#)) =

n2

n

1) We assume that the pressure contains a radiative part, namely that Bg is convex in # with C 1## 1
Bo(#) #* Tand C 1#+* 2 BO(#) # 2 where 2 4 =2. This already satises (32).

2) For n 2, the coecients B, can have any sign but we require a concavity assumption:
d 2.0
—(#°B7) O:
d#( n)

This ensures, with the assumption on Bg, that the specic heat C, = @ye(;#) satises (31). This is
again a classical assumption for the virial. Note that it would be enough to ask this concavity of some of

10
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them and moreover that this is automatically satised if B,  #, that is precisely for the coecients
contributing to the non-monotony of P in .

3) We also require some specic bounds on the B,, namely that there exist B, and " > 0 s.t.

jHBL(#)j+ jBa(#)j C# L

2n
(36) jBo(#)j + j#Bo(#) Bnj C#2 ' :
First of all this gives us a bound from below on e
N 3 + +
1 LH ¥o1e(H) m+
C HH #
nl
n=2 |
1 ){\l 0
m + i+ C 11 ¢ 1oy BY ;

n=2

by Young’s inequality, so that this implies (29),. Assumption (33) is proved with an identical calculation.
The same calculation also proves Assumption (29); by showing thats C ( 1+ #* + 1).

4) Then choosing

X n
(37) () = + Bn + Bo;
1 2nN n
and using again the second part of (36) we have that
. 0 . X . . X 1 2n
P 0+ 0 C j#Bn(#) Bnj" C #2 "
nN nN

CN (Z2+#2 ")

still by Young’s inequality. This yields the wanted estimate with the right inequalities on 1 and ;. The
same calculation also proves that j@sPj C (=2*" + #=2 ") with required assumptions on 3; 4.

Note for a xed # then P (; #) is indeed increasing with respect to after a critical 4 which dependson #
and can be arbitrarily large where # >> 1. This is the reason why P does not satisfy any of the
classical monotonicity assumption and why our new approach is needed. Our pressure law has two
important parts: the radiative term (corresponding to n = 0) to get compactness on the temperature and
the () term to get compactness on the density in time and space.

Remark 3.1. In our work, the viscosity coecients ; are independent of the temperature #. Instead several
models use temperature dependent coecients (#); (#). To handle that case, the proof given below would
have to be modied; the compactness of the temperature would have to be established rst following what has
been done in previous work for monotone pressure laws in previous works.

4. The new strategy to get global existence of weak solutions

The main diculty is the construction of regular enough solutions of some approximate system that will
allow us to derive our key a priori estimates and pass to the limit. We obtain solutions of the
approximate system through a xed point argument that strongly relies on our recent paper [3].

More precisely, we consider the following First Step: We start with a prescribed temperature # so that
p(; #(t; x)) satises the assumptions in [3] for an heterogeneous pressure p(; t; x). This provides a map # !
(; u) with (; u) a global weak solution of

(38) @+ div(u) = 0;

11
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and
(39) @¢(u) + div(u
u) u (+ )rdivu + r(p(; #(t; x))) = 0:

The novelty in the present paper is the Second Step: The construction of the associated temperature
through the energy equation corresponding to the pressure without the barotropic part 1=( 1) namely
the one corresponding to

XN
R(;#)=# B,(#)":
n=0
To do so, we rewrite the energy equation
(40) @(e) + div(eu) + PdRu =S :ru + div((#)r#)

in terms of a quasi-linear parabolic equation on g = e.
Our goal is then to complete the xed point argument by solving this equation for a xed density and
velocity eld u. This is a non-trivial problem as the equation is singular and it requires several extra steps:

¢ First of all, we need to regularize and u in space and time, be far from vacuum for the density and
remove the singularity in e near the 0 temperature using a parameter ". That will allow us touse in a
rst step the classical result [12] by O.A. Ladyzenskaya, V.A. Solonnikov, N.N. Uraltceva and get
existence ( [12]) of some classical solution g for the-regularized equation.

¢ In a second step, we may pass to the limit " | 0 to obtain the actual solution g, using the
expected a priori estimates for classical solutions.

¢ The third step consists in recovering the temperature # such that e(; #) = g using an implicit
function procedure thanks to the key property @se > 0 and the fact that # is more regular.

e The last step consists in deriving uniform estimates on # by transforming estimates from step 1
and making sure that there are uniform in the various regularizing parameters. This uniform
estimate is obtained through the entropy equation derived from the energy equation as explained
earlier.

Once this is done, we obtain a map on the temperature #: From an initial #;, we obtain (; u) solving
(38)-(39). We then obtain the \new" temperature # that solves (40) for those and u.

The Third and Last Step is then to get a xed point on the temperature, for example through Schauder
theorem, we need to obtain some compactness on the map. This turns out to be rather straightforward: if
#; is bounded in some appropriate Sobolev space, then log # belongs to some H1 and we can derive
compactness in space and time using the radiative part in the pressure law.

5. First step: Obtaining and u given #

The goal of this section is to obtain existence of appropriate solutions and u if we already know the
temperature #. This will form the rst step in our nal xed point argument.

This step heavily relies on the existence result already obtained in [3] to construct (; u) solution
of the compressible Navier-Stokes equations with an heterogeneous pressure law P (t; x; ) with explicit
dependence on time and position.

5.1. Recalling the main result from [3]

The result in [3] requires the following assumptions with > 3d=(d + 2):

(P1) There exists q> 2,0 =2 and a smooth function Py such that

iP(t;x;s)  Po(t;x;s)j CR(t;x)+ Cs for R 2 L9([0; T] TY)

12
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(P2) There exists p< + 2=d 1 and q > 2 with #; 2 L9([0; T] T9), such that
c s #1(t; x) Po(t;x;s) CsP+ #(t;x):
(P3) There exists p< + 2=d 1 and #; 2 L9([0; T] T9) with g > 1 such that
j@Po(t; x;s)j CsP + #(t; x):

(P4) jryPo(t; x;s)j Cs™2+ #3(t;x) for #3 2 L2(0; T; L2d=(d+2)(Td)),
and the following one for the propagation of compactness on the density:

(P5) The pressure P is locally Lipschitz in the sense that

iP(t;x;z) P(Ly;w)j Qxy;z;w)+C(z t+w b

+ (R(t; x) + R(t;y)) jz wj

for some R 2 Ls0([0; T]T9) with sg > 1. Moreover for any sequence (t; x) uniformly bounded in
LL([0; TI; L(9)) then Q(t; x; v; k(t; x); k(t; y)) is uniformly bounded in LS:([0; T] T29) for some s
> 1.

(P6) For any sequence (t; x) uniformly bounded in L1([0; TJ]; L(%)), the functions Q; P satisfy that
for somern,! Oash! 0

Z,2

fh = Sup ———— Kn(x y) jB(t;x) P(t;y)j*
Kk kKHkLl 0 T2d

+ jQt; x; v k(5 x); k(t; y))j*t dxdydt;

where
1 1

nlx) = (h+ jxj)d’ for jxj =

with K smooth in 9 nB(0; 1=4) and with compact support in ¢ n B(0; 1=3).

We are now ready to recall the main result from [3]

R
Theorem 5.1. Assume the initial data mp and o 0 with [40= Mo > 0 satisfy

z 2
E(o; mo) = J OJMEP(O; X;0) dx < 1; 7d
29
where ref
P(t;x;s
ep(t;x;) = ( —)20&
s
with mg = 0 when ¢ = 0. Suppose that the pressure P is given by (1) with properties (12){(17). Then for
any T > 0 there exists a global weak solution to Compressible Navier{Stokes System (2){(3) with the strain

tensor (6). Namely it satises the equations in a Distribution sense, the following bounds
u2 L2(0; T; HY(TY)); jimj?=2 2 LY(0; T; LY(TY))

2 C([0; T]; L(TY) weak )\ LP((0;T) TY) where 0< p< (d+ 2)=d 1

13
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and the initial conditions in a weak sense with the heterogeneous pressure state law P satisfying the energy
inequality

z z .z
Eo(;u)dx + S :ryudxds E(g; uo)Td
7 7 o Td
t
+ divy u(s; x) (P (s; x; (s; x)) Po(s; x; (s; x))) ds dx
0 Td
z°z
+ ((@+e0)(t;x;) + u (rxeo)(t; x;)) dxds; 0 T¢
where Z
Po(t; x; s
Eo; u) = juj®=2+ eo(t; x;); eo(t; x;) = ol 4)d's;—ref

2
s

Finally if some sequence P, satises uniformly the assumptions (P1) (P 6) then the corresponding
solution , is compact in L}([0; T] 9).

5.2. Existence given #

We may easily deduce an existence result from 5.1, by checking that for a given #(t; x), the pressure
P(t;x;) = P(#(t;x);), where P (#;) satises (12){(18), also satises (P1)-(P6) above.

Theorem 5.2. Assume that #2 L "([0; T]9)\LY([0; T]; W:L(9)) for some > 0 and " small enough.
Assume thatRP(#;) given by (1) with (12){(17). Assume moreover that the initial data mg and ¢ 0 with
;40= Mo> 0 satisfy
zZ. .,
JmOJiLwP(O; X;0) dx < 1; Td
0

ref
P(#(t; x);s
ep(t;x;) = ( (#dsf
s
with mg = 0 when ¢ = 0. Then for any T > 0 there exists a global weak solution to Compressible
Navier{Stokes System (2){(3) with the strain tensor given by (6). More precisely it satises the equations in

the distribution sense and the bounds

E(o; mo) =

where

u2 L2(0; T; HY(TY)); jui=2 2 LY(0; T; LY (TY))
2 C([0; T1; L(TY) weak ) \ LP((0; T) T9) where 0< p< (d+ 2)=2 1

with the initial conditions in a weak sense and with the heterogeneous pressure state law P (#(t; x); :)
satisfying the energy inequality

z z .z
Eo(; u)dx + S :ryudxds E(g;ug)
+ divx u(s; x) (P (#(s;x); (s;x))  Po((s;x)))dsdx; o
Td
where
X N
Po() = + B n; n=0
- Z
Eo(;u) = juj’=2+ eo(); P .
€y = ofs) dzs' f
s

n0

Finally if some sequence #, is uniformly bounded in L " ([0; T]9)\L1([0; T]; W:1(¥)), then the

corresponding solution , is compact in L1([0; T] 9).

14
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Proof.
Property (P1). We note that
X N X N
P Poj  j#(t;x)Bal#(t;x))  Bai" N T4 j#(t;x) Ba(#(t; x) Baj~t 2"

n=0 n=0

By assumption (17), this implies that
X N
iP Poj N2+ C jH(t;x)]T?) "= N T4 €N jH(E X)) a0
This leads us to dene
R(t;x) = N j#(t; X2

and we can immediately verify that R 2 L9, for some q > 2 since we assumed that #2 L., " with for "
smalf enough w.r.t. ".

Property (P2). We can check (P2) almost immediately as well by taking #.(t;x) = C for some large
constant C, as for example
X N
jPo j iBaj" C+Cl;
n=0
where we recall that N =2.

Properties (P3) and (P4). As indicated in the statement of the theorem, we take Pg = 9() () where
is given by (37), that is

X N
Po(t;x;)= + B, ™

n=0
This directly implies (P3) and (P4) since Pg does not explicitly depends on t or x and thus @:Po = 0and
r«Po = 0. Consequently we also have that @y = 0 and ryeg = 0 so that we do not have the
corresponding terms in the energy equality.
Properties (P5) and (P6). Observe that

jP(tx;z) P(y;w)j C(z T+ w Y)jz wj

X
+ C jH(t;x) Ba(#(t;x)) + #(ty) Ba(#(t;y))i(2" T+ w" Yjz  wj
n=0

X
+ C jH(t; x) Bn(#(t;x))  #(t;y) Ba(#(t;y))j(z" + w"):
n=0
Therefore
jP(t;x;z)  P(ty;w)j
N

X 1
C zl+wl+ JH(tX)B(#(t;x) + #(Gy) BB YY) 2 wj
(42) n=0

XN
+ C j#(t;x)Ba(#(t;x))  #(ty)Ba(#(t;y))i (2" + w"):
n=0

We can hence choose any FE s.t.

X N
B(t; x) jH#(t; x) Bn(#(t; x)) Bnj

n=0

15
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or from (17) again, for some small " > 0,

X N (200 1)
R(t; x) j#(t;x)j (2 :n=0
Of course, since
( 2n)( 1)
as ? 2n +2n 2° 2n;
( n)2

1;
we may simply take
RB(t; x) = C j#(t;x)j

Since # 2 Lt;X"0 and , this immediately imply that P 2 &,., féf some so > 1, provided again that
"0 ijs small enough. Moreover since # ZtLl)W‘1 for some > 0, by interpolation we deduce that

re 2 LStOWf’0 for some * 0 and for some sg > 1. This directly implies property (P6) on P. €
From (42), we take

XN
Q(t;x;y;z;w) = C o jH(t; x) Ba(#(t;x))  #(t;y) Ba(#(t;y)j (2" + w"):
n=0

Consider now any sequence  uniformly bounded in L, 1x. We may directly bound for s; > 1 small
enough

X N
kQ(t; v k(tx) k(t ks Ckicky o k# (5 x) Bn (#(t; x)) Bk sy = nsp:
' n=0 v

Still using assumption (17), we have that

2n

k#(t; x) B, (#(t; x)) BnkLilL;( ns ), kik I .
Ltl 2 L 2( nsq)

X

Clearly both ;" 1=2 and 2 nsﬁlzz as long as s1 < 2.Since #2 L., "o, we can take up to s; = 2 and
T ;
have Q(t; x; y; k(t; x); k(t; ¥)) 2 Lt unifermly in k.

We may similarly prove property (P6) for Q,
z.2

h y) .S
———jQ(t; x; ¥; k(L x); k(L 1 C kik
o K Rk ) (6% 5 k(6 x); k(L5 y))] kkeog

N
x £7 2 h y)

2d I:k‘%hk1
L

ns
S1 1

J#(t; x) Ba(#(t; x))  #(t;y) Bn(#(t; y)j ™

n=0 O

From our previous argument we know that # B (#) B _does belong to Lstl L, 1 and in fact to some
LF;LqX with p > s; and q > — - Moreoover since # 2 Ll\{v;1 and B, is locally Lipschitz from (17),
we also have that #B _(#) B 2 thW i1 for some 9> 0. By interpolation, this nally implies that

[00]

#Bn(#) Bn 2 LIW, "' which proves (P6) for Q. O

6. Second step: Solve the temperature equation with , u given

We rst start to solve an equation related to the energy and then use an implicit function procedure
to nd the corresponding temperature. This is the important and new part in the global existence
construction procedure.

16
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6.1. An equivalent system with good unknowns
From (7), it is straightforward to check that

1

X n 1 1
# B"n(#)n—f #BO(#) -
Nn2

(43) e= m(#)+
Instead of working on the system involving the quantity e, we present here an equivalent system with
what will prove to be an easier unknown to handle

(44) g= ¢

where e is given by

X n 1 1

— 2 0 20 .

(45) e= # BY,(#) ——+ #°8%4#) "+
2nN

where we recall that N < =2. Dene a new pressure P by

N
(46) BR=# B,(#)":
n=0
Then the good unknown g satises
(47) @g+ div(gu)+ Bdivu=S :ru + div((#)r#);

where S :ru = Tr(Sru) as before.

Remark 6.1. From the assumption 14 on P, it follows easily that #2B° Q for n 2, which implies that B,
is a decreasing function in # for n 2. Moreover, in view of assumptions 12 and 14, we have that

e> 0; > 0; for #> 0:

@ @
6.2. The solvability of the quasi-linear parabolic system

Consider the equation

* &
(48) @ (ai(t;x; f5rf)) + aol(t; x; F;rf) = 0 (;x)2 Qr = [0;T] T

with the initial condition

(49) fjt=0 = fo:

[0; T],x 2 T9, f 2 R and p 2 RY to obtain a solution f(t; x).
Theorem 6.1 ( [12]). Suppose that

e (H1). The system (48) is parabolic in the sense that

X
(50) c(f)if? @a@cz(f)jjz; .
)

where cg, ¢1, and ¢, are positive, continuous and potentially depend on f.

17
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e (H2). For (t;x) 2 Qr and for any f and p, the inequality

X
(51) jai(t; x; ;5 p)j+ jaolt; x; f5p)i b(ifj; jpi)a(t; x) i

holds with a continuous function b and a function 1 2 L1(Q7).
e (H3). With jfj M where M > 0 is a constant large enough and arbitrary p , we have the bound

n n
(52) X jag+ @ o+ By jag ea(t jpid):ien
@f Bi=l @x
for some c3 > 0.
* (H4). The functions aj, @a=@p;, @a=@x;, and @a=@f are Helder continuous with exponent ,
=2, , and respectively.
(H5). The following bounds holds,

@3 ' @ai.@ao_ @ao_ @3
@f’ @’ @’ f’ @t

(53)

for any jfj; jpj M for some suciently large constant M, whéFéz);)(t; x) 2 L"P with r;p 2.
Assuming fg 2 C§+, then there exists a unique solution f of the system 48 such that f 2 Cl“LtZZC2+
Moreover, we have @xf 2 L2.

X

6.3. Solving an approximate system

In order to solve the system, one way is to see (47) as a quasi-linear parabolic equation of the unknown
function g, namely # = #(; g). Equation (47) is in the right form since

X ¢
(54) @g ge_(aa(t;x;g;rg))+ ao(t;x;g;rg) = 0;
where
@ o @ @
(55) aj= guit+ ((#)r#); = gui+ (#) g@ig+ # "~ @
and
(56) ag= EBdivu S :ru:

There are however several regularity issues when trying to apply directly Theorem 6.1, which forces us to
introduce several approximations. First of all, there is a singularity in @H#=@g when g or # is close to 0.
Second the assumptions on the various functions a; and ag require some additional regularity on and u.

This leads us to look at an approximate system where we modify the relation between g and #. More
specically, for a given " > 0, we rst solve in g, the system

X G .
(57) @gr ge_(ai(t; X; g";rgr)) + aglt; x;g;rg") = 0;
with
(58) a(tixignre) = guit () go@g+ (1) BF

18
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and
(59) a'f')(t; X;gw;rgr)= Bdivu S :ru:

However we take

X n 1 1
(60) g = e en=" e BO (#) —+ #°Bo(%) 5
Nn2 n 1

which changes the relation between #+ and g-, resolves the degeneracy around # = 0 and also implicitly
modies the a;.
Finally, we adapt the pressure P to match the new energy and keep

XN
(61) = "HlogH + H#H Bn(H)":
n=0

We then have the following existence theorem for the approximate equation.

Theorem 6.2. Let P be dened in (61) and #- be dened in term of g« through (60) for some 2 C1C2Jt' N
and u 2 C,}Cfﬂ Then for any initial data go > 0 with go 2 C2;, there exists a unique classical solution g

2 ClJ':zC2+ o the system (54) where the a’ and a" are given respectively by (58) and (59).

Proof. To simplify the notations, within this proof, we omit the " subscript as it will not cause any
confusion; we take the limit " ! 0 in the next subsection. We use Theorem 6.1 to prove the existence
result.

Important relations between g and #. Through (60), we rst observe that # can be seen as #(t; x; g) or
#(; g). This can be proved by showing that g is strictly increasing in # by dierentiating (60). We nd that

n

X
(62 &. R ) e S eg (),
nN

2
and by assumptions 12 and 14 we easily get a lower bound for @g=-@#
@,

1
0 2 n 4 1,
+ 2#B +O# BOO 0 + # :

Using assumptions 12, 14, and 15, we may further deduce an upper bound for @g=@# as
X

@g "+ C #l Me= Ty ec (e e sl Vs 1)onn
Combining the above two inequalities gives
1 -
(63) o ! @#%+ C(# Y+ #0 V= 1) From the

denition of g in (60), we have that g = 0 if #= 0. As a consequence,
" 1 " ( N)g=
(64) #+ C—#“ g "#+ C(#"+ H# #=):

We also need an upper bound of @#=@gin term of g as

(65) %g: ggl . .Cc. s C
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together with a lower bound

@t @' 1 1
(66) g = ©Hf Y CHE N M (g)—

with M " being a smooth function of g, where we used (63) and (64).
Hypothesis (H1). We also note, for further use, that (11) yields

(67) 1 (#) C(g7*+ 1):

We can then make explicit the various coecients with for example

@+
ailt;x;g;p) = aibru;gp) = gui+ (#(8) @g pi+ (#(;8)) @@

"l

This directly implies that

- - wm® la;
%btx @gt;x @# t;x

where |4 is the identity matrix. Therefore, we obtain

20T ..2
C C
1) @p @JJ
a
for any 2 RY provided jgj co where c1 and ¢, are non-vanishing and depend polynomially on g, which
veries (50).

Hypothesis (H2). From the equation

X n
g="# #28° (#) — #2B9(#);
2nN

again viewing # as a function of both g and , we take derivative with respect to , keeping g xed, to get

_on 20 210 210 n o1,
0= & o d#(ﬁB (#)) " c&t(#B (#))@# 2:\1#8 (# _ n "%

from where one obtains

P
@#; 5 ) N #2 0(#) n 1 X

gOmn 1 @
@ " In d\#(#ZBO(#:E) 1—'Ld#(#230 #C)) N R 1 n o

2

By (65), assumptions 14 and 15, it holds

@H C X n " @1
0
el 20N " et
e )
(68) "S- c# +C42g
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Combining (55) with the estimates (65), (67), and (68), we further get

X Cg=t+ C
jai(t;x;g;p)j C gkukys + iei

(69) + C(g™* + 1)(1ﬁg1=”)krku:

In view of 59, (61), assumptions 12, and 15, we similarly obtain an upper bound of ag as
(70) jaoj C (1+ #* + # N7 )kdivuk,: + kS :ruk, 1 Cg+ C;

by using again the regularity of and u. Hence the condition (51) is veried by collecting the estimates (69)
and (70).

Hypothesis (H3){(H4). Next we turn to the verication of (52). First, we compute the derivative of a; as
2

I T 2
@g @g @2 @@ @@

From (62), it is straightforward to get

e 1 .

@ ", gy (#2BO(#)"=(n 1)+ F(#2B(#))’
which leads to

P
@% 2on g BPBO(#)"=(n 1)+ 0 (28O (#)  eree
— P TN .

" aonday (H2BO (#))"=(n 1)+ 4, (#2BY (#)) G

By combining our previous bounds, we can prove that
n

X' jaj+ @' (14 jpi)+ jaj cs(g) (1+ jpi?)
=1 o

for some c3 > 0 which depends on " and is polynomial in g and hence bounded whenever g M. We may
perform again similar calculations for all @ai=@x; which yields the bound (52). The same formula and the
regularity of and u ensures that aj, @a=@p;, @ai=@x;, and @a=@f are Helder continuous with respect to
t; x; g; and p. We can check the bound (53) in the same manner.

This satises all assumptions of Theorem 6.1 as long as we can ensure that g > 0. This follows from a
straightforward maximum principle applied to any classical solution of (54): See the positivity part just
below.

Positivity of g. We note that we can rewrite (54) as

@g+ div(gU) = ry (;I=t)@(§i’q rg + (#) @§+S:ru E divu;

where

U=u+(#)r@#—:
g

Remark that S : ru 0. Moreover # = 0 when g = 0 and for 0 g 1, we have that

C
iBjc# g
while by (68), we have still for 0 g 1 that
C
%#2 2. =
@ n g
This ensures that the solution g and then # are both strictly positive. O
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6.4. Existence of solutions # such that the entropy dened by (9) satises the equation (10).

From the previous result, we may pass to the limit 0 to obtain the following existence result.

Theorem 6.3. Assume that © 2 Ly, #9 2 Lx*. Assume moreover that 2 L1([0; TI; L(9)) andu 2 L%([0;
T]; H1(¥)) and solve the continuity equation (2). Then there exists #2 L1(0; T; L#(9))\ L([0; T] 9) such
that
VA Z 7 Z . Z
T jri? T

(71) sup #* dx + (#) 4dx dt +
Td 0 Td 0 Td

jruj?

dxdt C(kk 1 L IEl;Ik 2 }')t;Htx

for some constant depending on the norms (kkL1L ; kukLzH1 and on the initial data © and #°). Fur-
thermore, dening the entropy through the relation’

)(\‘ n 1 1
(72) s= B (#) " = Bo(#) ; Bi(#) = #B,(#)+ 2B(#);

n=2
then
(73) kSkLt i1 ;" kS ukLt'x 1C(kk|-1|-x;ktUkL2H1);t
and s solves the following inequation in the sense of distributions

: (#) , jr#j?
(74) @¢(s) + div(su) ry rott + S iru +7(#)
# # #2

with an initial condition satised weakly through the following inequality
(75) Sjt=0+ o0S(o; #o):

Finally dening g through the identities (44)-(45), we also have the energy equality
z z z.z

(76) g(t; x)dx = go(x) dx + (S:ru P divu)(s;x)dsdx:
Td Td 0o T

Proof. The strategy of the proof is straightforward. Given u 2 thH 1X, we construct ur 2 C1 that
converges to u strongly in L2H1. For simplicity, we consider here an approximation by convolution.
Given 2 L1L, we construct 2 C 1 by convoluting through the same kernel, uniformly bounded in L1 L «
art1d converging to in L, Ly for ewery p< 1. Observe that the standard commutator estimate implies that
@ + div(uv) = Rv;

where R | 0in L2L{ with 1=p= 1=2+ 1=,

We also choose #2 = "+ #9 which is uniformly in Lx*. For any xed " > 0, we then obtain a classical
solution g« to (54) with (58)-(59). We then have to pass to the limit as " ! 0 in the system.

Uniform bounds. The critical point is hence to derive appropriate estimates on g and #- that are uniform in
". This is naturally based on equivalent energy and entropy estimates. To start with the energy, by
directly integrating the equation on g rst in space and then in time, we obtain

z z z .7
g (t; x) dx = g2(x) dx + (S :ru« R divur)(s; x)dxds:
Td Td o Td
From our assumptions on the initial conditions © and #°, we have uniform bounds on g2 in L1. Indeed for
any n, (°)" converges to (°)" strongly in [ ". From assumption (16), (#9)2 B (#°) converges strongly
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in L=0 "), Since "+—= % we directly obtains that g converges to g° strongly in L1 and,that it is
uniformly bounded in L.
Moreover by convexity of the H! norm, we also have that
z.z
. 2 .
St :ruwdxds kuk 3 WO

X

Td

This yields that
z

(77) g (t; x) dx C + kukb? + kukp2py kPrI§ 22
Td t t X t;x

It remains to control the norm in the right-hand side. From the denition of P+€ we have that

X N
KReky o K#e Ba(#) "y 4 "kt log ik,

n=0
From the L Lx bound on , this implies that

X N
kRrky,  k#0 Bo(#0)ky gokek 1D+ kit log#ik, ;nzo
;X t t X t;x

with 1=g, = 1=2 n=or g, = 2=( 2n).
We may now use assumption (17) to further bound

2n

két B (#0)kpan C + C kitok,

t-x
This lets us deduce that for some < 1=2,

z

sup gr(t;x)dx C(kk 1, ;kuk2y1)(1+ kitnk ):
d t X t X

2
t T LiL

X

For further use in a later section, we also note that we have the more precise estimate

0 1

Z. 7 Kk

1
(78) j®jjdivujdxdt kuk, . @ — b4 ¢ k#kT2A
0 Td tx Ly

From the denition of g+, we also have that
£ 1 £ X 2 R0
g (t; x) dx c # dx k#s Bn(#lf")”ukthLl:X
Td n=2

Using again the L} Lx bound on , this implies that

XN X N
k#2 B (#) "k u, 2 k#2 BO(#)k
n=0

kok"™1, ;n=2
1] ® 1 n
L Lt M L,|_'t

with 1=, = 1 n=.
Now use assumption (16) to obtain, again for some € 1,

K#? B S (#+)k C ki B0

L K
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This shows that, again for some & 1,

Z VA
1 e
Sl:p y g+ (t; x) dx éupt y # dx C kleLt ) Ck#nkLl%,;' 3
For further use, we even have the more precise estimate
VA Z VA

(79) sup g.(t; x) dx 1 sup # dx c 1 sup dx: t

Td € Td € Td
Therefore, inserting those estimates into (77) yields that

Z Z
(80) sup #.dx C + C sup g (t;x)dx C+ C(kkyx ;kuky yi)(1+ k#k ): R
t Td H‘d t t X LtLX

On its own, we cannot obtain a priori estimates just from (80) and we need also an entropy bound. Since
for " > 0, g» and #+ are smooth and # > 0, we can dene

n )d\‘ n 1 1
sv= _log#- B, (#) ~ _+ “Bg#);
) n=2 n 1 -
with dB, (#)=d# = #B%(#) + 2B (#) so that #- %; = %.
Note that
@g @g
W= —= H + "
@g @#@t @@t
where we recall that
@g _ . X 2R0 " d 200 )
2 - ) S %) > O
2nN
for any " > 0 and for g« = v e,
@_ , # X 1
rn = #:80(#)". 2 #rBY(#) 5
n=2
This lets us write that
%(@t#w ur ry#«) = g« divur @%'@tw Ur Fyn) . divu»

+ Sosrun + ry((He) re#e):
Since we have kept the critical relation,

_ 2 @ @F
e = @+# aH

this yields

v s % 8@ g

+ Serrun 4 ry((#0) re#e):

Because the critical relation above also implies that

@s _ 1 @P
@ 2 @4 '
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we nally deduce that
(#-)

@¢(+s») + div(»svur) = ry ry#n
(81) He
s # o # jrinj?
Ru sv# » + Sq:rus + (#» :
@__ . b S1 (#)
@ @ #?
The rst key point to make use of (81) is that we still have that s+ C g+. Hence
z.2 2 z V4
(#) ) gxdtc g(t= T;x)dx 059(x) dx
o Td #2 Td Td
@s 1 @g

+ kRekiaLp so+ @ ﬁﬁ“kxp

We may hence immediately use (80) together with the H! estimate on ur. We note that, just as for g,
we have initial uniform bounds on 9s%,in L. Indeed since #° = #%+ ", and #° 2 L# then

k" log #%k.: "jlog"j+ "k#%k.: ! O; as" ! O:

Moreover, again using assumption (16), we also have the strong convergence in L1 of BE#9) (°)" just as
for g%. Consequently we have the strong convergence in L! of 2s% ta ©s® with a uniform bound in " which
allows to derive
Z1Z jrinj?
o La (# ) ?dxdt(:"' kUkL2H1t+xC(kkL1L,!(uIX(LZHl)(tl:' k#k )(S%tll-x

H
+ kRvk 2P X @< 1 @E";
hebx @ - @:_

Our second critical point is that we have a simplied expression

L Gwle N e
Te e A

n=2

where the log #+ term vanish. In particular this expression is smooth around #+ = 0 and only blows up
as H#« 1 1.
Recalling the denition of B£ we note that

d
el B, & =B%+#B® # % 2°0- g0
# B) B B
so that in the end
@, 10 X n
" T = Bp(# n
S @ . @ n( )I’] 1
n=2
Using the L Lx bound on, this implies that
N N
H 1 , X X n 1
S+ w @@ . @ @i C Bn(#:)" 1LtLp Cc k"ka L, an(#")kLzhlpn ; ¢ x
L2Ly th=2 n=2
with
1 n 1 1 n 1 1 1 n 1 1 n
P = o =1 o =5 - =5 On;

which was the exponent dened earlier when controlling the norm of P+€in L2.
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Therefore this term can be bounded in exactly the same way through assumption (17), yielding

@s# 1 @ :
Sv+ v =7 C+ C(kk 1+ k#tk ):
@ - @, i (kkpag)( t ) L

t

This let us obtain by adding (82) and (80) that

z Z.2 o
(83)  sup #*dx+ (#) ) ) axdt ¢+ Clik s jkyk s a) (3 kibk )iTe,
t o Td " #2 v el thx

We are now ready to conclude our a priori estimates. By assumption (11) and Poincare inequalities,

y z .,z o
# dx #¢ dx + 0 (#0) TP gy
Td Td Td #‘2

so that, since 2,

L . z -, z .z . (84)

k#: k> CT™ sup #* dx . + Ct (#+) :
L H# 2
tox T4 o Td "

Because < 1=2 and 24, this inequality is enough to bound the right-hand side of (83) in terms of its

left-hand side. Hence we eventually have the uniform in " estimates
z z.2 2
(85) sup sup ## dx + sup (# ).J 4de dt C(kk 1 'ka_k 2 1)y
t Td " 0 Td #2 Lt X Lt X

Those bounds directly imply that # 2 L1([0; TI; L#(9)) \ L([0; T] 9) as claimed. Because (#) 1,
(85) also shows that

z.z
sup jriog #:j%dx dt C(kkLlLt,'kUkLZHl)t;T
"o _yd * X
(86) and supZ 2 jlog#.j dxdt C(kk + ;kuk 2 1)
0 Td 2 t X t x

again by Poincare inequality.
To conclude those a priori estimates, note that we nally have that

z.z .
ru
(87) sup T gudt c(kk 1 kuk 2 )3 o
Td H Ly Lx tx
Limit passage " ! 0. We can now send " ! 0 to get a weak solution of (54). From our previous estimates,

we know that g- is uniformly bounded in L L, for some p > 1. This lets us extract a sub-sequence, still
denoted g, that converges weak-* to some g in L L for some p > 1.

To derive the compactness on #+ through the classical Aubin-Lions approach, we require controls on
g+ ur and » s» u». We may bound directly by Sobolev embeddings

kgrurkpy kurky o kgrkg i

It is straightforward to bound the L2 norm of g« in the same manner as we bounded the L2 norm of Pe
earlier: Assumption (17) indeed implies the same behavior for #2B° (#) and # B (#).

For further use, we also observe that by using the " > 0 in (17), we may use some interpolation on
#+ between L1 Lx* and L2L, leading actually to

(88) kgrurkpe  C(kky Lskykyp kb o
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for some p > 1. The same applies to P& so that we also have that
(89) kg"kLﬁ'.x C(kkLt LX1;kukLtsz);1

for some q > 1.

A similar discussion applies to » s+, with in fact much simpler estimates. First of all B, b€haves like #B%
+ 2BO instead of #2 B? (#) so that the coecients n 2 in the expansion are easier to handle than for g-.
Secondly, the " log #+ in » s+ is immediately bounded by (86). Hence we also have that

(90) k" S"U”kLt_s C(kkLlL’.tku,!(Lsz);t 1

for some p > 1.

We now turn to the compactness argument. We may extract a subsequence #+, converging weak-*
to #in L% Lx*. Furthermore by (85) it follows that #+ is compact in space. Since « is also compact in
space, the denition (60) of g+ together with our a priori estimates directly implies that g« is compact in
space. For similar reasons, » s+ is compact in space.

We now obtain from Equation (57) and Equation (81) that both @g' and @¢(+s) are bounded in
thWX L1 thanks to (88)-(90) and our previous a priori estimates. By Aubin-Lions, this shows that g+ and »
s+ are compact in L.t

Upon further extraction, we may therefore assume that both g+ and - s+ converge pointwise a:e:
respectively to g and some S. Of course » converges a:e: to . By assumptions (12) and (15), @xg" 0 and
more precisely @4g- is uniformly away from 0 for #+ > # for any # > 0. This proves that for a xed value of
o(t; x), gn = gn(+; #+) is one-to-one in #-.

The pointwise convergence of g+ therefore implies the pointwise convergence of #+ to some #, and
hence the compactness and convergence of #+ to # in L. }. A rst consequence is that we may pass to the
limit in (60) and obtain that the limits , # and g solve (45). Similarly , # and s solve (72).

Energy equation (76). It remains to pass to the limit in the integral of Equation (57) on g+ and in
Equation (81). Since u- is converging a:e: to u, we have the a:e: convergence of g« u» and » s» u- to
respectively g u and su. By the equi-integrability provided by (88) and (90), we can apply dominated
convergence and obtain the strong convergence of g+ u» and » s u-.

Obviously we directly have the strong convergence of S+ : ru«. We also have pointwise convergence
inside the formula (61) dening P€ so that , # and P€satisfy (46). By (89), we hence have that P-
converges to B in Ltz;x, again by dominated convergence. Since div ur converges strongly to div u in Ltz;x,
this yields the convergence of B div u~. It is now possible to integrate Equation (57) and pass to the
limit in all resulting terms to obtain the claimed energy equality (76).

Entropy inequation (74). It remains to derive the limit of Equation (81) on » s«. Our previous analysis
shows that

@ , 1 @
Re  svd 1 0;
@ " @
strongly as " ! 0.
We can also prove that div “%r#" I div %r# in the distribution sense. Denoting e(#) s.t.
e9= ¥ \ve note that

#
e
%#n = r(e(#+)):
As before e(#+) converges a:e: to e(#). By assumption (11), je(#)j C (log#+ #). On the other hand, by
combining (11) and (85), we also have that
z.2 z.2
sup #,2jr#t j2dxdt = sup jr#=2j? dxdt: "
o Td "0 T
By Sobolev embedding, we have that #- is uniformly bounded in L{.szz with 1=2 = 1=2 1=d (or2 <
1 for d = 2). By interpolation with the uniform bound in Lt1 Lx*, we obtain a uniform bound for
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#+ in LP, for some p > . As a consequence e(#-) is equi-integrable and converges strongly in L;.,1to
e(#), proving the required limit.

It is important to highlight that the same argument would not apply to the limit of div ((#+) r##«). Any
anti-derivative of (#) behaves like #*1 as #! 1. Therefore it would not in general be possible to control
it through our a priori estimates. This is the main objection that prevents us from passing to the limit in
the whole equation (57) for g-.

We are also not able to pass to the limit in the two remaining terms in the right-hand side of Equa-tion
(81). We have for example the a:e: convergence of #% S« :ru» but we cannot prove equi-integrability,

as #—1,,- could be large. However we can obtain inequalities which lead to the limiting inequation.

We recall that the function (a;b) ! "’% is jointly convex in (a;b). Consequently if some functions

an; bn converge to functions a; b in L1 (or even in some appropriate weak topology) then
This immediately implies that

a2 a, ?
TIlmlnf 5

1 1
S:ru Iim'imﬁ#? irue:
gS: nb " Se: :
Second by denoting (#) s.t. 9= ((#))172=#, we have that

jréejz .
(#") T: Jr(#")_l2: !
Therefore, we also have that
. #.2 . #".2
#) 1 Jiminf (g1
2 10 2

The same arguments allow us to deduce (71) from our a priori estimates (85)-(87). Concerning (75), we
use that Z
2[0;T]! (s)(t; ) dx ’ 2 cY
Jand’ O

is a sum of a non-decreasing function and a continuous function taking advantage of the entropy inequality.
This completes the proof. O
7. Third Step: Fixed Point procedure and proof of main result

We are now ready to prove our main result. Denote
E =L . (0;T] 9\ LY([0; TI; W(%); with 0> 0
as in Theorem 5.2 and any 0< < 1. For any R > 0, denote as well
Ltlwx;l Rg: t;x

We now dene the operator L on E that will have a xed point. For a given #; in E, we may use
Theorem 5.2 to obtain solutions and u to (2)-(3), and satisfying the estimates

Er = f# 2 E jkitk o+ kitk

2L h,; u2LZHE

Hence and u satisfy all the conditions in Theorem 6.3. We may hence apply Theorem 6.3 to obtain #
= L(#;) that solves the various estimates listed in the statement of Theorem 6.3. In particular by (71), we
immediately have, from the bounds (11) on, that
Z+Z
T ey AT H?
(1+ j#j)" Z——dxdt< 1:0
Td #2
Since # 2 L{ Lx* as well, Poincare inequality immediately shows that # 2 L,.,. Moreover we also have

directly from the inequality above that #2 L, H, 1 Hence for any 0 < < 1, we have that # 2 L, wi, This
implies that L : E | E.
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We can also check that for any R > 0, the image L(ERr) is pre-compact in E. Consider therefore any
sequence #, 2 Eg. From the estimates in Theorem 5.2, we have that for some Cg and the ,,; u, obtained
from #, satisfy the uniform bound

supk K Pt sup ku ngthjHC ‘nR
t X n X

Moreover Theorem 5.2 also implies that , is compact in L. L
Consequently, the estimates (71) from Theorem 6.3 yields, also for some Cgr

z.2

. L .2
sup kL(#n)ki1is + SUp (1 + L)) T e et o
n ! n Td |-(#n)2

We next observe that the entropy inequation (74) provides a uniform control on @¢(,sn). We may indeed
rewrite (74) as

X L(# )({(’#H#n) +

(Lt ITHH I

L(#, 2
where s, = s(n; L(#n)) and M, is a sequence of non-negative Radon measures. Hence by integrating in t
and x, we have the bound

@t(nSn)+ div(n Sn Un)+ Mn(t; X) =r Sn :1rUn +

L(#n)

z.2 Z Z z:2
M (dt; dx) = 05(%; #9) n Snjt=T dX + —~ Sp :rup, dxdt
o Td ZTdZ Td o Td¢ #Hy
T . .22
L(#
" (e ITHEIT G e
Td (# )

From (73) and (71), we deduce immediately that the total mass of M,, as a measure in t and x, is
uniformly bounded in n. Using again (73) and (71), this implies that @( s, ), is uniformly bounded in
M. + thWX 1;1, with M¢x the set of Radon measures with bounded mass.

From the compactness of ,, the compactness in space of L(#,), we have compactness in space for ,sn
and now compactness in time. Up to extracting a subsequence, we can hence deduce the pointwise
convergence of ,s,. Following the same argument as in the proof of Theorem 6.3, and in particular
assumption (18), this yields the pointwise convergence of L(# ). )

From the uniform bounds on L(#,) in Ly.,, this in turn implies the compactness of L(#,) in L., . By

interpolation between L., " and LZ HL, we also obtain compactness in L} W‘l, showing that the image
L(ER) is pre-compact.

The last and more delicate point to use the Leray-Schauder xed point is to show that there exists R s.t.
forany #2 E with #= ‘L(#) for * 2 [0; 1], we have that #2 Er. For such #2 E with #= ‘L(#), we start
with recalling from Theorem 5.2 that

z z.,z
( + juj®=2)dx + S :ryudxds E(o;uo) "
Z .7 o Td
+ y divy u(s; x) (P (#(s; x); (s; x)) Po((s; x)))dsdx: o

From the denition of Pg,
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Therefore the coecients in P Pg behave in the same way as for P+ &hat we had used before and we
may use (78) with

0 1
z.2 Kk
1 —

iP Pojjdivujdxdt kuk, . @ — Sty cok#k2A

0 Td t x Cc Lily

This implies that
y z .z
( + juj®=2)dx + jrxuj?dxds C + C k#k, ST
o Td X

We will use as an intermediary object the function
VAN A
(91) 4(t) = C + o jreuj?(s; x) dx ds + k#k 20, 4, L(%))

It will be important to note that 4(t) is continuous in time for a xed choice of #, even if it is of course not
equi-continuous for all possible choices of #. On the other hand since # = ‘L(#), any norm of # is
bounded by the corresponding norm of L(#). Using the Poincare inequality (84), and since < , this proves
that

Z o=y Z T A
C T2 sup  L(#)* dx + Cr (L(#))
tT 7o o T L(#)

. .2
jrL(#)] dx dt

k#k

LiLx

for some < 1.
Therefore the norms of and u together with 3 are controlled through the corresponding norms of
L(#),
Z Z
(+ juj®=2)dx +
d

2

jrxuj?dxds C x(t)
d

T T

0
Z -
(92) c?2+ 217 sup  L(#)* dx

t T d
z.2

+ Cr (L(#))

#

jri(#)j?
I 4dx( J dt;oTd
L(#)2
where the constant C depends only on the initial data and more precisely the initial total energy. Turning
to Theorem 6.3, we recall the important Energy equality (76) which implies that
z z.z

g(t;x)dx C + (S:ru PRdivu)dxds
Td 0o Td

R
for all time. Using again (78) and the Poincare inequality (84) together with (92) to control jrujZ, we
obtain that

Z
sup glt;x)dx C (T tr
Td
z = #
(93) C2+ 271772 sup  L(#)* dx
t T1d
ZZ . .2
L(#
+ Ct (L(#))Jr(idxdtzo
Td L(#)2
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From (79), this shows that

VA
sup (L#)*(t; x)dx C (T)#
tT o
Z - Z .7
2 2+ =2 o T er(#)jZ
C°+C°T™ sup L(#)*dx +C T (L(#)) — dxdt:t T1d
0 Td L(#)2

On the other hand, since s C g, we also obtain by integrating the inequation (74), and by combining the
result with (93) and the previous inequality, we nally obtain the critical estimate

z Z.7 L
sup  (L#)"(t; x) dx + (L) = gxdt ¢ ()
Td 0o Td L(#)2
z by
(94) C2+C2T77? sup  L(#)* dx
tT  Td
Z+.Z : -2
+ Cr ) I e o
Td L(#)2

Of course < 1 but unfortunately we only have 24 so that we could have that =4 > 1, which prevents us
from concluding at once and forces us to employ a much more careful argument. The key point is to use
the time continuity of 4 dened in (91). Since < 1, denote

M= supCr=1 X X=2;
X>0

and
=2C+3Cr=1C?2+2Cy1 M:

Assuming that =4 > 1, we choose T 1 s.t.
T72(C)7* < min(1=2; 1=2C):

From the continuity of #(t) in time, we may dene tg T the largest time s.t. #(t) . From (94), we also
have that Z

sup (L#)*(t; x) dx C :tto

Td

From using a second time (94), we deduce that

Z12 jri(#)j2
(L(#))Jﬁdxdt 2C2+2C2T2(C)™*+ 2M < 3C%+ 2M:0 Td

However at t = T, taking again (94) now implies that
#(T) C+CT72(C)™ Y+ Cr-1(3C%2+2M)< 2C +
3CT=1C2+ 2CT=1M =
This shows that to = T and yields a corresponding bound on L(#) in L} L* and in L., in terms of the
initial energy. The same argument that we used at the beginning of the proof then show that L(#) 2 E R for
some R depending only on the initial energy. Since # = ‘L(#), we also have that # 2 Er and we have

checked all assumptions of the Leray-Schauder xed point theorem. Consequently, for this choice of T,
there exists a xed point #2 E s.t. #= L(#).

We hence obtain a solution (; u; #) to (2), (3) and the entropy inequation (20) on [0; T]. By
combining the estimates in Theorems 5.2 and 6.3, we also recover all a priori estimates in Theorem 1.1
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and it only remains to derive the global energy bound to have Theorem 1.1 on [0; T]. We rst add the
energy bounds (41) given by Theorem 5.2 and (76) given by Theorem 6.3.

z z VAN A Z Eo(;u)dx
+ g(t; x) dx + S :ryudxds Eg(%u®) dx+ g%(x) dx
Td .7 Td o T¢ Td
+ (S :ryxu + (P(#(s;x); (s;x)) Po((s; x)) ) divu)(s; x) ds dx:
o Td
By recombining the terms, we obtain that
0 1
z z X z
n 0.40
E(; u; #)dx + @ Bn A dx E("; #°; mg) dx
T T nN n 1 Td
(95) 0 1 0 1
Z X (0 n Z tZ X
+ @ Bnﬁdx divu(s;x) @ B, "A dxds;
n
T nN o T nN

as we can easily recognize the total energy E of the system. We also emphasize that it was critical in the
formulations of both Theorem 5.2 and Theorem 6.3 that the terms P Py and Pedo not contain , as we
would not be able to make sense of div u. However since n =2, we have no diculty in handling divu". In
particular, we may easily remove the " terms from (95) through the use of renormalized solutions. Since
2 Ly, and u 2 Hy,,, the classical theory of renormalized solutions, from [4] for example, shows that for any
smooth, bounded function f(), we have in the sense of distributions that

@f() + div(uf()) = (f() £0()) divu:
By integrating over x, we have that
z z z.z
f()dx = (%) dx + (f()  £°)) divu(s; x)dxds: T¢
Td o Td
Since 2 Ly 1L and divu 2 L,,? we may now apply this to a sequence f+ with f+(x) ! x" as"! 0and
obtain 7 7 7 Z
t
"dx = (°)" dx (n 1) " div u(s; x) dx ds;
Td Td o Td

which leads to the desired energ\éinequality

E(; #; m)dx T¢ E(o; #0; mo) dx:
Td

The last remaining point is to extend this solution on [0; T] to a solution that is global in time. This
is naturally achieved by repeating the xed point argument starting from T. To do so, we highlight the
conditions on the initial data that Theorem 5.2 and Theorem 6.3 require: one needs #9 2, L%, 02 L
together with %ju®j2 2 L1 . Equivalently, we can require E(%; u%; #% < 1. Indeed from (79), we have that

Z Z Z
juj? dx + dx + #* dx C E(p; #o; mo): T¢
T
As seen earlier in the proof, the time of existence T is a function of the various norms of the initial data
or again equivalently E(g; #o; mo). From the propagation of energy, we have that E(; #; m)j¢=7 is dominated
by E(o; #%; mg) and therefore the existence time T can be chosen uniformly whether startingatt= 0, t =
T or t= 2T. This ensures global existence.
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