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Abstract

This paper concerns the existence of global weak solutions a la Leray for compressible Navier{Stokes{Fourier systems with
periodic boundary conditions and the truncated virial pressure law which is assumed to be thermodynamically unstable. More
precisely, the main novelty is that the pressure law is not assumed to be monotone with respect to the density. This provides
the rst global weak solutions result for the compressible Navier-Stokes-Fourier system with such kind of pressure law which is
strongly used as a generalization of the perfect gas law. The paper is based on a new construction of approximate solutions
through an iterative scheme and xed point procedure which could be very helpful to design ecient numerical schemes. Note
that our method involves the recent paper by the authors published in Nonlinearity (2021) for the compactness of the density
when the temperature is given.
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1. Intro duct ion and main result

This paper is dedicated to Antonn Novotny who had contributed so many innovative work to the the-
ory of compressible uids, specically to compressible Navier-Stokes-Fourier equations, and unfortunately
passed away suddenly on Thursday, June 03 2021.

The non-stationary Navier-Stokes-Fourier equations modeling viscous compressible and heat conduct-
ing uids, in the multi-dimensional in space case, have been extensively studied both from a theoretical
and a numerical point of view: see [10]. Yet many questions around the existence, uniqueness, or stabil-
ity of solutions have remained unsolved. The case of non-stationary barotropic Navier-Stokes equations
(namely without temperature) is somewhat better understood, in particular for the global existence of
weak solutions a la Leray ( [13]): see for instance [14], [6], [9], [11], [17], [1], [3] and references cited therein.
The present study addresses the theoretical problem of existence of so-called global weak solutions a la
Leray for the full system including the evolution of internal energy (temperature dependent case) for the
so-called virial pressure law.

One of the well-known diculty of such nonlinear system of uid mechanics with heat-conductivity is that
the a priori bounds based on the energy estimates are not strong enough to get equi-integrability of certain
quantities, such as the viscous dissipation quantity (see for instance [14]). This is compounded in the
present paper by a pressure law that is non-monotone in the density and hence thermodynamically
unstable.

© 2023 Didier Bresch, Pierre–Emmanuel Jabin, Fei Wang, licensee De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

mailto: pejabin@psu.edu
http://www.ams.org/mathscinet/msc/msc2010.html
http://creativecommons.org/licenses/by-nc-nd/3.0/


N

@e @P

D. Bresch, P.-E. Jabin, F. Wang

A  rst helpful approach is to replace the internal energy equation by the entropy inequality supple-
mented by the total energy balance, as introduced by E.  Feireisl and A. Novotny, explained in [7], [8]
with appropriate hypothesis on the pressure state laws. Unfortunately, this approach was initially limited to
thermodynamically stable state laws, namely

@Pj# >  0; @#ej >  0;

where P  is the pressure state law and e is the internal energy depending on the density  and the
temperature #.

On the other hand, the potential oscillations in the density due to the pressure laws can in principle be
controlled through the method in [1,3]. But a major diculty further lies in combining both approaches at
the level of an approximate system. We take a dierent point of view to bypass most this issue by
constructing solutions through a xed point argument.

Dene, in a periodic domain
 =  Td  for d  2, the so-called truncated virial pressure law

(1) P (; #) =   +  # 
X

B n ( # ) n  n = 0

where  >  max(4; 2N; d). The virial equation of state seems to have been proposed rst by M. Thiesen in
1885 and intensively studied by H. Kammerlingh Onnes (see [16]) at the beginning of the previous
century as an empirical extension of the ideal-gas law. The reader interested by Virial coecients of pure
gases and mixtures is referred to [5].

Such pressure laws is not monotone with respect to the density even after a xed value and there-fore
is not thermodynamically stable. They are nevertheless commonly used in practice. With proper
assumptions on the coecients Bn (#), one can still ensure that @#ej >  0 so that the system is at least
thermodynamically consistent.

We next consider the compressible Navier{Stokes{Fourier (CNSF)  equations for the corresponding
state laws,

(2) @t +  div(u) =  0;
(3) @t(u) +  div(u
 u) div S  +  r P  =  0;
(4) @t(E) +  div(uE ) +  div(P u) =  div(S u) +  div(r#)

where E  =  juj2=2 +  e is the energy with P  =  P (; #) and e =  e(; #) respectively stand for the pressure
and the (specic) internal energy.

The initial condition are given by

(5) jt=0 =  0 (u)jt=0 =  m0 (E )j t = 0  =  0 E0 :

Note that the above initial conditions determine the corresponding value at t =  0 of the temperature
#jt=0 =  #0, provided that @#e >  0.

For simplicity, we take the isotropic stress tensor

(6) S  =  ( r u  +  r u T  ) +  div uId

with  and  two constants satisfying the physical constraint  >  0 and  +  2=d >  0. In order to be consistent
with the second principle of Thermodynamics which implies the existence of the entropy as a closed
dierential form in the energy balance, the following compatibility condition, called \Maxwell equation"
between P  and e has to be satised

(7) P  =  2 
@ 

+  # 
@# 

:
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This allows to dene the internal energy directly from the pressure law, up to a function only of #, which
we take as 0 for simplicity. Namely for any arbitrary c >  0, and by using (1),

(8)

Z
e(; #) =  

c  

 2        P (0; #)      # 
@# 

(0; #)

N

=  m +  
 1 

n = 0  

#2 
d#

(Bn (#)) 
n 1 

#2 
d#

(B1 (#)) log  +  #2 
d#

(B1 (#)) :

The specic entropy s =  s(; #) is now also dened up to an additive constant by

(9)
@s 1 @e
@# # @# and

@s 1 @P
@#

2 @#

If (; #) are smooth and bounded from below away from zero and if the velocity eld is smooth, then
the total energy balance can formally be replaced by the thermal energy balance

Cv(@t# +  u  r # )  div((#)r#) =  S  : r u  #
@

P
(; #) 

div u

where S  : r u  =  Tr ( S r u ) .
Furthermore, dividing by #, we arrive at the entropy equation

(10) @t(s) +  div(su) div 
(
#

)r
#

 
=  

1 
S  : r u  +  

jr#j2  
:

We will use both of the two equations (4) and (10) involving temperature, at dierent parts of our
argument, together with a third technical formulation derived from (4).

We emphasize that, a priori, the system (2)-(4) conserves the total mass
Z Z

(t; ) dx = 0 dx:
T d                                                T d

The total energy of the system, which is the sum of the kinetic and the potential energies, reads

E(; #; m) =  
Z

E(; #; u) dx =  
Z

jmj2 
+  e(; #)

 
dx T d

T d

and is also conserved, namely,
E (; #; m)(t) =  E(0; #0; m0);

with m =  u, where e is obtained from equation (7).

We need several precise assumptions on the various coecients entering into equations (2)-(4) which
we now make explicit.
Assumption on the conduct iv i ty  (#):

(11) 1(# +  1)  (#)  2(# +  1); 3# 1  0(#)  4# 1

where 1; 2 >  0; and   4. Assumptions on
the pressure law P .

(1) The pressure P  given by (1) contains a radiative part, namely

(12) @#B0 >  0 for # =  0;
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(2) For 2  #   =2 with some   4

(13) C  1##  1  B0 (#)  ##  1; C  1##  2  B0 (#)  ##  2;

(3) We assume

(14) B 1   C1  for some C1  2  R;

(4) For n  2, the coecients B n  is concave in the sense that

(15)
d#

(#2B0 )   0;

(5) We also assume that the following is true for n  0 and n =  1

(16) j#3B000(#)j +  j#2B00(#)j +  j#Bn (#)j +  jBn (#)j  C #(  n) # =  1 ";

(6) There exist some constants B n  and  <  min(; 2 #),

(17) j#2 B0 (#)j +  #jBn (#)j +  j#Bn (#) Bn j   C  #( 2n)=2 ";

(7) Finally we also assume the following property on the entropy s

(18) The specic entropy s is a concave function of (  1; e):

Remark 1.1. The above assumption on s ensures that the Cv  coecient is non-negative

(19) Cv =  
@# 

=   
#2 @e

s

 

1 

 0

where the second equality comes from that @s=@e =  # 1.

Remark 1.2. Let us comment that the results described for in instance in [8] are based on a radiative
part and a cold pressure part. In the truncated pressure law, this corresponds respectively to the terms
#B0 (#) and .

We emphasize that none of the assumptions above require a sign on Bn (#), except on B0 . Hence as
claimed, the truncated virial pressure may not be monotone in  for some values of # or .

We are now ready to state our main result.

Theorem 1.1. Assume the initial data #0, m0 and 0  0 with 
R

Td  0 =  M0 >  0 satisfy

E(0; #0; m0

)
 =  

Z
jm0j2 

+  0e(0; #0)
 
dx <  1

T d

where m0 =  0 when 0 =  0. Suppose that the pressure state law P (; #) is given by (1) with the as-
sumptions (12){(17) and assume (18) on the entropy. Then there exists a global weak solution (; u; #) to
Compressible Navier{Stokes{Fourier System. More precisely it satises (2){(3) with (6) in the distri-bution
sense, the following entropy inequality

(20) @t(s) +  div(su) div
 

(
#

)r
#  

 
1  

S  : r u  +  
(#)jr#j2

where s is dened by (9) and the energy inequality
Z [uj2 

+  e(; #)(t) dx  
Z  jm0j2 

+  0e(0; #0)dx: T d

T d

4



Navier-Stokes-Fourier with virial pressure

Moreover, we have
u 2  L2 (0; T ; H 1 (Td )); jmj2=2 2  L 1 (0; T ; L 1 (T d ) )

u 2  C ([0; T ]; L2=(+2) (Td ) weak );

for any T >  0, the weak regularity

 2  C ([0; T ]; L(Td) weak ) \  L+a ((0; T )  Td ) where 0 <  a <  1=d

# 2  L(0; T ; L=(1 2=d) (Td)); log # 2  L2 (0; T ; H 1 (Td ));

and the initial conditions satised by (; u; s) in a weak sense

jt=0 =  0; ujt=0 =  m0; sjt=0 +   0s(0; #0):

We remark that we use the notation  2  C ([0; T ]; L(Td ) weak ) to mean that  is weakly continuous in
time in L :  for any tn !  t, we have that (tn; :) !  (t; :) for the weak topology of L(Rd ) .

Theorem 1.1 is the rst result providing global existence of weak solutions for the heat conducting
Navier-Stokes equations with a thermodynamical unstable pressure law depending on the density and the
temperature.

The main idea in the proof is to separate the density and momentum equations (2)-(3) from the
energy equation (4). For a given #(t; x) satisfying appropriate energy bounds, our assumptions on the
pressure law let us use [3] (see also the introductory paper [2]) more or less directly. This article focused on
the barotropic system, namely (2)-(3), but with pressure laws that are inhomogeneous in time and space.
It is thus a good tool for the task of obtaining existence of  and u for a given #.

We also need to obtain existence of some # solving (4) for a given  and u, again with appropriate
energy bounds. This does not seem to t in any classical framework of non-linear parabolic equations
and therefore requires careful approach. We use a dierent formulation, that is loosely based on (4) (and

formally equivalent when all quantities are smooth). We also need a proper approximated equation to
resolve a potential degeneracy where # is close to 0. This nally allows us to obtain a global, weak solution

to our variant formulation to (4). We do not have strong enough bounds to recover (4) rigorously from
that but it is enough to obtain an inequality in the entropy formulation (20) together with the opposite
inequality in the propagation of the total energy (as can be surmised from the formulation in Theorem 1.1).

The last step in the proof is obviously to conclude the xed point argument, through the Leray-
Schauder theorem. This is a rather short but very challenging step. The issue is that we cannot yet

recover the usual energy estimate: Before we do obtain a xed point, the piece of the energy that we
obtain from the existence on (2)-(3) does not t with the piece of the energy that we obtain from (4).

This is where the exact formulation of the Leray-Schauder theorem is critical and must be combined with
the precise choice we have made of the decomposition.

2. Previous result concerning the compressible Navier-Stokes-Fourier system.

In every previous work concerning the global existence of weak solutions, the viscous stress tensor is
assumed to be isotropic

S  =  ( r u  +  r u T  ) +   div u Id;

with coecients ;  either constant or depending only on #. Concerning the pressure state law, we can cite
the two following assumptions:

1) The pressure law as a monotone perturbation of the barotropic case. It is due to E .  Fe i re is l  who
considered pressure laws under the form

P (; #) =  Pc () +  #P# ();
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where

(21)

Pc(0) =  0; Pc ()  a1
 1 b for  >  0;

Pc ()  a2
 +  b for all   0;

P# (0) =  0; P# ()   0 for all   0; P# ()
c(1 +  );

and
 >  d=2;  <  

2 
for d =  2;  =  

3 
for d =  3

with constants a1 >  0, a2, b and Pc, P #  in C [ 0 ; + 1 )  \  C 1 (0; +1) .  In agreement with Maxwell law and
the entropy denition, it implies the following form on the internal energy

e(; #) =  
Z  Pc(s)

ds +  Q(#); ?

where Q0(#) =  Cv (#) (specic heat at constant volume). The entropy is given by

s(; #) =  
Z #  Cv (s)

ds H# () ;  ?

where H # ( )  is the thermal pressure potential given through

H # ( )  =  
Z  

P#(s)=s2ds: ?

The heat conductivity coecient  is assumed to satisfy

1(# +  1)  (#)  2(# +  1) for all #  0;

with constants 1 >  0 and   2. The thermal energy Q =  Q(#) =  
R #  Cv (z)dz has not yet been

determined and is assumed to satisfy Cv (z ) >  0 and Cv (#)  c(1 + #=2 1). Because the energy and
pressure satisfy

@e(; #) 
>  0;

@P (; #) 
>  0

the estimate on H #  gives a control on  in L 1 (0 ; T ; L 1 (
))  and through the entropy equation a control on # in L2 (0; T ; L6 (
))  in dimension 3 and in L2 (0; T ; Lp (
))  for all p <  + 1  in dimension 2.

Because the entropy estimates does not provide an H x  bound on u, E .  Fe i re is l  combines it with
a direct energy estimate (see below). Therefore one obtains the exact equivalent of estimates as in the
barotropic case

(22)

Z
sup juj2 dx  C  +  E(0; u0); Z

sup  dx  C;  Z
t

Z

jruj2  dx  C:  0

in this temperature dependent case. Using such information, he may then prove the extra integrability
Z Z

+ a  dxdt  C (T ; E (0; u0)) 0

6
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for 0 <  a <  min(1=d; 2d=   1). We will give more details later-on for such estimate for the truncated
virial pressure law.

2) Self-similar pressure laws with large radiative contribution. It is due to E .  Fe i re is l  and A .  Novotny
who consider pressure laws exhibiting both coercivity of type  and #4 for large densities and tempera-tures
namely

P (; #) =  #=( 1)Q(
#1=( 1)

 )  +  
3

#4 with a >  0;  >  3=2;

with
Q 2  C 1 ([0; +1)) ; Q(0) =  0; Q0(Z ) >  0 for all Z   0;

and

Z ! + 1  

Q(Z )  
=  Q 1  >  0:

In agreement to Maxwell law and the denition of entropy, it implies the following form on the internal
energy and the entropy

=( 1) 4
e(; #) =  

(  1)         
Q(

#1=( 1) )  +  a 
 
;

and

They impose

s(; #) =  S  
#1=( 1)

 
 
+  

4a #3 
:

0 <   S 0 (Z ) =  
 1 

Q(Z ) Q0 (
Z
)Z 

<  c <  + 1  for all Z  >  0;

with l i m Z ! + 1  S ( Z )  =  0 so that thermodynamical stability holds. Therefore the energy provides uniform
bounds in L 1 L 1  for #4 and . One assumes in this case that the viscosities and heat conductivity satisfy

;  2  C 1 ( [0; +1))  are Lipschitz with (1 +  #)  (#); 0  (#); 0 >  0;

and
 2  C 1 ( [0; +1); 0(1 +  #3)  (#)  1(1 +  #3); 0 <  0  1:

Almost everywhere convergence of the temperature is obtained using the radiation term. Extra integra-
bility on P (; #) can be derived just as in the barotropic case. Finally the same procedure as in the
barotropic case is followed to have compactness on the density, relying heavily on the monotonicity of the
pressure @P(;#)=@ >  0. This gives global existence of weak solutions (in a the same sense that we precise
later). Remark the term a#4=3 in the pressure law can help to get compactness in space and time using
commutation between strictly convex function and weak convergence.

With respect to these previous works, we focus here, as in the barotropic case, in removing the
assumption of monotonicity on the pressure law with respect to the density, considering the truncated
virial pressure law on which we do not want to assume too restrictive assumptions, namely, a pressure law
(1) with the assumptions (12){(18).

3. T h e  direct entropy estimate

3.1. A  formal entropy bound

We explain here the general framework for our result on the Navier{Stokes{Fourier system. The
estimates here closely follow the ones pioneered by P . { L .  Lions, and E .  Fe i re is l  and A .  Novotny.
With respect to the previous discussion, we only present them here in a more general context as in
particular we will not need the monotonicity of P .

7
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If one removes the monotonicity assumption on P  then thermodynamic stability does not hold any-
more. Following P . { L .  Lions, it is however possible to obtain the entropy dissipation estimate directly by
integrating the entropy equation

Z t Z 
 
j ruj2  

+  (#)
jr

#
j2  

dx dt  C  
Z 

s(t; x) dx: 0

Therefore the entropy bound dissipation holds under the general assumption that there exists C  s.t.

(23)

Recall that

and

s(; #)  C  e(; #) +  
 
:

e =  m(#) +  
Z  (P (0; #) #@#P (0; #)) 

d0; 
?

@s =   
@P 

:

We also have that @#s =  @#e=#, therefore as long as m(#)  0 with 
Z

#  m0(s
)
 
ds  C (1 +  m(#));

#

and
     

Z 

02 d0  C  +  C  
Z P  #@#P 

d0;

for some C  >  0 then (23) is automatically satised and one obtains the entropy bound dissipation.
Moreover if e(#; )   1 =C then one also has that  2  L 1  L x .

Assuming now that
1 (# +  1)  (#)  2 (# +  1);

with   2, one deduces from the entropy estimate that Z
Z

(# +  1) jr#j dxdt <  1 ;  0
T d

showing that log # 2  L 2 H 1  and #=2 2  L 2  H 1  or by Sobolev embedding # 2  L  L=( 1  2=d) for d  3.
By a H•older estimate, it is also possible to obtain a Sobolev-like, Lt

1 W 1;p2 , bound on u
Z T  Z 

jrujp 2  dx
p1 =p2 

dt  
Z T  Z 

jruj2  
dx dt

p1=2

0
0

Z Z p (2 p )=(p (2 p ) ) (2 p1)=2

#p2=(2 p2 ) dx dt <  1 ;
0

provided that p2=(2 p2) =  =(1 2=d) and p1=(2 p1) =   or

(24) p1 =  
1 +  

; p2 =  
d ( +  1) 2

:

Unfortunately this Sobolev estimate does not allow to derive the gain of integrability on the density as
usually. Actually one requires a L t  H x  estimate on u (the critical point is in fact the L t  with value in
some Sobolev in x). Instead one can easily extend the argument by E .  Fe i re is l  and A .  Novotny: For any
(), one can write

Z Z Z Z
2 dt

 
juj2 +  

dt

 
()  +

 
S  : r u  =
(P (#; ) 0()  +  ()) divu:
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This leads to the assumption that there exists some  s.t.

C  1 C   ()   C  +  C;
(25)

P (#; ) 0()  +  ()
 
 C  1 +  #2 +  

p
e(#; )  ;

with

(26) 1  2
; 2  2

 
:

Indeed, with (25), one has
Z Z Z Z

S  : ru dx dt   E(0; #0; m0) +  C 1 +  #2 + e(#; ) j div uj dx dt: 0

                                                                                            0

Using that S  is Newtonian, this leads to
Z Z

(27)
0

 
j ruj2  dx dt  C  E(0; #0; m0) +  C  k r u k L t ; x  

k1 +  #2 kLt ; x
;

and the desired H 1  bound follows from (26). It is now possible to follow the same steps to obtain an
equivalent of the extra integrability on the density if  >  d=2

Z Z
(28) + a  dx dt  C(T ; E (0; #0; m0)); for all a <  1=d:

0

Note here that the assumptions (25)-(26) are likely not optimal. They nevertheless already cover the
truncated virial law we consider here.

3.2. The assumptions on the pressure law to get the above estimates

For convenience, we repeat here all the assumptions presented above and will show that the truncated
virial pressure laws satisfy them under the assumptions related to the coecients Bn .  To  derive the
important estimates mentioned in the sections above, the pressure law P (; #) has to be a positive
pressure law satisfying the following properties: For some C  >  0 and  >  d

8
P ( ; #)  such that 

Z 

02 d0  C  +  C  
Z P

 
#@#P 

d0;

e(; #) =  m(#) +  
?  

(P (0; #) #@#

P
(0; #)) 

d0  m(#) +  
 1 

+  
#

:

> with m(#)  0

(29) and  
#  m0(s) ds  C (1 +  m(#))  C  (1 +  #(+a 1)=2(+a) ); #

1 (# +  1)  (#)  2 (# +  1); ;  constant and   4;

C  1 C   ()   C   +  C;

jP (; #) 0()  +  ()j  C  1 +  C  #2 +  C e(; #);
:j@# P (; #)j  C 3  +  C #4

for
8

1  2
; 2 <  

2
 
;

(30)  3 <  
 +  a +  1

; 4 <  
2

 
; >

d  
 +

>  0; #   2

9



2

1
0

N

 1 X
n

n 1

1 0
1

X
0 0 1

n 1

0

d
n

D. Bresch, P.-E. Jabin, F. Wang

where we recall that a <  min (1=d; 2=d 1) =  1=d since  >  d here. We also assume that the specic
heat is positive (as is necessary for the physics) i.e.

(31) Cv =  @#e(; #) >  0; 8; #;

and that the pressure contains a radiative part

(32) @#P ( =  0; #) >  0:

We do not need to impose monotony on P  and it is enough that

(33) @P (; #)  C   1
 +  C  ## with 2  #  <  =2:

Finally the initial data has to satisfy

0 2  L(d ); #0 2  L # ( d )
(34)

with 0  0; #0 >  0 in d
Z

and 0 =  M0 >  0; d

and

(35) E0 =  
Z

d 2 
j
(
u

)
0j2 

+  0e(0; #0)
 
<  + 1 :

3.3. The truncated virial pressure law satises the properties needed for the estimates above

The truncated pressure law mentioned in the introduction

P (; #) =   +  # 
X

B n ( # ) n  n = 0

with  >  2N  4 satisfy the assumptions described before. Choosing m =  constant for simplicity in this
example, this leads to

N

e(; #) =  m +  
 1 

n2 

#2 B0 (#) 
n 1 

#2B0 (#) log  +  #2B0 (#) ;

For simplicity, let us assume that B 1  =  constant, which is the normal virial assumption, so that this
term vanishes. The entropy reads

N n 1
s(; #) =   (# Bn (#) +  Bn (#)) +  B 1  log  +  (#B0 (#) +  B0 (#)) :

n2

1) We assume that the pressure contains a radiative part, namely that B 0  is convex in # with C  1 ##  1

B0 (#)  ##  1 and C  1 ##  2  B0 (#)  ##  2 where 2  #   =2. This already satises (32).

2) For n  2 , the coecients B n  can have any sign but we require a concavity assumption:

d#
(#2 B0 )   0:

This ensures, with the assumption on B0 , that the specic heat Cv  =  @#e(; #) satises (31). This is
again a classical assumption for the virial. Note that it would be enough to ask this concavity of some of

10
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them and moreover that this is automatically satised if B n    #, that is precisely for the coecients
contributing to the non-monotony of P  in .

3) We also require some specic bounds on the B n  namely that there exist B n  and " >  0 s.t.

j# Bn (#)j +  jBn (#)j  C  #
     n  

#  1 ";

(36) jBn (#)j +  j# Bn (#) Bn j   C # 2       1     2 n       " :

First of all this gives us a bound from below on e

 1 N n 1 e(; #)  m +  
 1 

+

C          
 

     
n = 2  

# #           #                    

n 1

 1 N   "0

 m +  
 1 

+  C
 

C  
n = 2

+ ;

by Young’s inequality, so that this implies (29)2. Assumption (33) is proved with an identical calculation.
The same calculation also proves Assumption (29)1 by showing that s  C  (  1 +  ##  +  1).

4) Then choosing

(37) () = +  
X  

B n

n
+  B0 ;

2nN

and using again the second part of (36) we have that

jP 0()  +  ()j  C j# Bn (#) Bn j n   C # 2      1          "  n

n N n N

C  N  (=2 +  #=2 " );

still by Young’s inequality. This yields the wanted estimate with the right inequalities on 1 and 2. The
same calculation also proves that j@#Pj  C  (=2+"  +  #=2 " )  with required assumptions on 3; 4.

Note for a xed # then P (; #) is indeed increasing with respect to  after a critical #  which depends on #
and can be arbitrarily large where # > >  1. This is the reason why P  does not satisfy any of the
classical monotonicity assumption and why our new approach is needed. Our pressure law has two
important parts: the radiative term (corresponding to n =  0) to get compactness on the temperature and
the ()  term to get compactness on the density in time and space.

Remark 3.1. In our work, the viscosity coecients ;  are independent of the temperature #. Instead several
models use temperature dependent coecients (#); (#). To  handle that case, the proof given below would
have to be modied; the compactness of the temperature would have to be established rst following what has
been done in previous work for monotone pressure laws in previous works.

4. T h e  new strategy to get global existence of weak solutions

The main diculty is the construction of regular enough solutions of some approximate system that will
allow us to derive our key a priori estimates and pass to the limit. We obtain solutions of the
approximate system through a xed point argument that strongly relies on our recent paper [3].
More precisely, we consider the following F i rs t  Step: We start with a prescribed temperature # so that
p(; #(t; x)) satises the assumptions in [3] for an heterogeneous pressure p(; t; x). This provides a map # !
(; u) with (; u) a global weak solution of

(38) @t +  div(u) =  0;

11
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and

(39) @t(u) +  div(u
 u) u ( +  ) rd ivu +  r(p(; #(t; x)))  =  0:

The novelty in the present paper is the Second Step: The construction of the associated temperature
through the energy equation corresponding to the pressure without the barotropic part  1=(   1) namely
the one corresponding to

P (; #) =  #
X

B n ( # ) n :
n = 0

To  do so, we rewrite the energy equation

(40) @t(e) +  div(eu) +  P divu =  S  : r u  +  div((#)r#)

in terms of a quasi-linear parabolic equation on ge =  e.
Our goal is then to complete the xed point argument by solving this equation for a xed density  and

velocity eld u. This is a non-trivial problem as the equation is singular and it requires several extra steps:

• First of all, we need to regularize  and u in space and time, be far from vacuum for the density and
remove the singularity in e near the 0 temperature using a parameter ". That will allow us to use in a
rst step the classical result [12] by O.A. Ladyzenskaya, V.A. Solonnikov, N.N. Uraltceva and get
existence ( [12]) of some classical solution ge for the regularized equation.

• In a second step, we may pass to the limit " !  0 to obtain the actual solution ge, using the
expected a priori estimates for classical solutions.

• The third step consists in recovering the temperature # such that e(; #) =  ge using an implicit
function procedure thanks to the key property @#e >  0 and the fact that # is more regular.

• The last step consists in deriving uniform estimates on # by transforming estimates from step 1
and making sure that there are uniform in the various regularizing parameters. This uniform
estimate is obtained through the entropy equation derived from the energy equation as explained
earlier.

Once this is done, we obtain a map on the temperature #: From an initial #i, we obtain (; u) solving
(38)-(39). We then obtain the \new" temperature # that solves (40) for those  and u.
The T h i r d  and Last  Step is then to get a xed point on the temperature, for example through Schauder
theorem, we need to obtain some compactness on the map. This turns out to be rather straightforward: if
#i is bounded in some appropriate Sobolev space, then log # belongs to some H 1  and we can derive
compactness in space and time using the radiative part in the pressure law.

5. F i rs t  step: Obtaining  and u given #

The goal of this section is to obtain existence of appropriate solutions  and u if we already know the
temperature #. This will form the rst step in our nal xed point argument.

This step heavily relies on the existence result already obtained in [3] to construct (; u) solution
of the compressible Navier-Stokes equations with an heterogeneous pressure law P (t; x; ) with explicit
dependence on time and position.

5.1. Recalling the main result from [3]

The result in [3] requires the following assumptions with  >  3d=(d +  2):

(P1) There exists q >  2, 0    =2 and a smooth function P0 such that

jP (t; x; s) P0(t; x; s)j  C R(t ; x)  +  C s for R  2  Lq ([0; T ]  T d)

12
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(P2) There exists p <   +  2=d 1 and q >  2 with #1 2  Lq ([0; T ]  T d), such that

C  1s #1(t; x)  P0(t; x; s)  C sp +  #1(t; x):

(P3) There exists p <   +  2=d 1 and #2 2  Lq ([0; T ]  T d) with q >  1 such that

j@tP0(t; x; s)j  C sp +  #2(t; x):

(P4) jrx P0 (t; x; s)j  Cs=2 +  #3(t; x) for #3 2  L2 (0; T ; L2d=(d+2) (T d )).

and the following one for the propagation of compactness on the density:

(P5) The pressure P  is locally Lipschitz in the sense that

jP (t; x; z) P (t; y; w)j  Q(t; x; y; z; w)+C (z  1 +  w 1)

+  (P (t; x) +  P (t; y)) jz wj

for some P  2  Ls0 ([0; T ] T d) with s0 >  1. Moreover for any sequence k (t; x) uniformly bounded in
L 1 ( [ 0 ;  T ]; L ( d ) )  then Q(t; x; y; k (t; x); k (t; y)) is uniformly bounded in Ls1 ([0; T ]  T 2d) for some s1
>  1.

(P6) For any sequence k (t; x) uniformly bounded in L 1 ( [ 0 ;  T ]; L(d )),  the functions Q; P satisfy that
for some rh !  0 as h !  0

Z T  Z
rh =  sup 

k K H k L 1 0 T 2 d
K h (x  y) jP (t; x) P (t; y)j 0

+  jQ(t; x; y; k (t; x); k (t; y))js1      dxdydt;

where

K h ( x )  =  
(h +  jxj)d ; for jxj  

4
;

with K h  smooth in d n B(0; 1=4) and with compact support in d n B(0; 1=3).

We are now ready to recall the main result from [3]

Theorem 5.1. Assume the initial data m0 and 0  0 with 
R

Td  0 =  M0 >  0 satisfy

E(0; m0) =  
Z

jm0j2 
+  0eP (0; x; 0)

 
dx <  1 ;  T d

where

eP (t; x; ) =  
Z 

P (t; x; s) 
ds 

r e f

with m0 =  0 when 0 =  0. Suppose that the pressure P  is given by (1) with properties (12){(17). Then for
any T >  0 there exists a global weak solution to Compressible Navier{Stokes System (2){(3) with the strain
tensor (6). Namely it satises the equations in a Distribution sense, the following bounds

u 2  L2 (0; T ; H 1 (Td )); jmj2=2 2  L 1 (0; T ; L 1 (T d ) )

 2  C ([0; T ]; L(Td) weak ) \  Lp ((0; T )  Td ) where 0 <  p <  (d +  2)=d 1

13
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and the initial conditions in a weak sense with the heterogeneous pressure state law P  satisfying the energy
inequality

Z Z t Z

E0(; u) dx + S  : r x u dx ds  E (0; u0) T
d

Z t Z            0       T d

+ divx u(s; x) (P (s; x; (s; x)) P0(s; x; (s; x))) ds dx
Z 0 Z Td

+ ((@te0)(t; x; ) +  u  (rx e0 )(t; x; )) dx ds; 0       T d

where

E0(; u) =  juj2=2 +  e0(t; x; ); e0(t; x; ) =  
Z 

P0(t; x; s) 
ds: r e f

Finally if some sequence P n  satises uniformly the assumptions (P 1)   (P 6) then the corresponding
solution n  is compact in L1 ([0; T ]  d).

5.2. Existence given #

We may easily deduce an existence result from 5.1, by checking that for a given #(t; x), the pressure
P (t; x; ) =  P (#(t; x); ), where P (#; ) satises (12){(18), also satises (P1)-(P6) above.

Theorem 5.2. Assume that # 2  L  "0 ([0; T ] d ) \ L1 ([0; T ]; W ;1(d)) for some  >  0 and "0 small enough.
Assume that P (#; ) given by (1) with (12){(17). Assume moreover that the initial data m0 and 0  0 with

d 0 =  M0 >  0 satisfy

E(0; m0) =  
Z

jm0j2 
+  0eP (0; x; 0)

 
dx <  1 ;  T d

where
eP (t; x; ) =  

Z 
P (#(t; x); s) 

ds: 
r e f

with m0 =  0 when 0 =  0. Then for any T >  0 there exists a global weak solution to Compressible
Navier{Stokes System (2){(3) with the strain tensor given by (6). More precisely it satises the equations in
the distribution sense and the bounds

u 2  L2 (0; T ; H 1 (Td )); juj2=2 2  L 1 (0; T ; L 1 (T d ) )

 2  C ([0; T ]; L(Td) weak )  \  Lp ((0; T )  Td ) where 0 <  p <  (d +  2)=2 1

with the initial conditions in a weak sense and with the heterogeneous pressure state law P (#(t; x); :)
satisfying the energy inequality

Z Z t Z
E0(; u) dx + S  : r x u dx ds  E (0; u0)

(41) T d
Z t Z            0       T d

+ divx u(s; x) (P (#(s; x); (s; x)) P0 ((s; x))) ds dx; 0
T d

where

P0 () =   +  
X

B n  
n; n = 0

E0(; u) =  juj2=2 +  e0();
e0 =  

Z
 
P0 (s) 

ds: r e f

Finally if some sequence #n is uniformly bounded in L  "0 ([0; T ] d ) \ L1 ([0; T ]; W ;1(d)), then the
corresponding solution n  is compact in L1 ([0; T ]  d).

14
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Proof.

Property (P1). We note that

jP P0j  
X

j#(t ; x ) B n (#(t ; x ) )  Bn j n   N  =2 +  
X

j#(t ; x ) B n (#( t ; x )  Bn j=(  2n) :
n = 0                                                                                                           n = 0

By assumption (17), this implies that

jP P0j  N  =2 +  C  
X

j # ( t ; x ) j  =(2 ) "  =  N  =2 +  C  N  j#(t; x)j=2 ": n = 0

This leads us to dene
R(t; x)  =  N  j#(t; x)j=2 ";

and we can immediately verify that R  2  Lt ; x  for some q >  2 since we assumed that # 2  Lt ; x  
"0 

with    for "
small enough w.r.t. ".

Property (P2). We can check (P2) almost immediately as well by taking #1(t; x) =  C  for some large
constant C , as for example

jP0 j  
X

j B n j n   C  +  C  N ;
n = 0

where we recall that N   =2.

Properties (P3) and (P4). As indicated in the statement of the theorem, we take P0 =  0()   ()  where
is given by (37), that is

P0 (t; x; ) =   +  
X

B n  
n:

n = 0

This directly implies (P3) and (P4) since P0 does not explicitly depends on t or x  and thus @tP0 =  0 and
r x P 0  =  0. Consequently we also have that @te0 =  0 and r x e 0  =  0 so that we do not have the
corresponding terms in the energy equality.

Properties (P5) and (P6). Observe that

Therefore

(42)

jP (t; x; z) P (t; y; w)j  C  (z 1 +  w 1) jz wj

+  C  
X

j#(t ; x ) B n (#(t ; x ) )  +  #(t; y) Bn(#(t; y))j (zn 1 +  wn 1) jz wj
n = 0

+  C  
X

j#(t ; x ) B n (#(t ; x ) )  #(t; y) Bn(#(t; y))j (zn +  wn):
n = 0

jP (t; x; z) P (t; y; w)j

 C z 1 +  w 1 +  
X

j#(t ; x ) B n (#(t ; x ) )  +  #(t; y) Bn(#(t; y))j      n jz wj
n = 0

+  C  
X

j#(t ; x ) B n (#(t ; x ) )  #(t; y) Bn(#(t; y))j (zn +  wn):
n = 0

We can hence choose any P  s.t.

P (t; x)  
X

j#(t ; x ) B n (#(t ; x ) )  Bn j      n  ;
n = 0

15
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or from (17) again, for some small " >  0,

P (t; x)  
X

j # ( t ; x ) j  (      2 n ) (      1 )   " : n = 0

Of course, since
( 2n)( 1)

( n) 2
as 2 2n   +  2n  2 2 2n;

we may simply take
P (t; x) =  C  j#(t; x)j ":

Since # 2  Lt ; x  
"0     

and   , this immediately imply that P  2  Lt ; x  for some s0 >  1, provided again that
"0 is small enough. Moreover since # 2  L1W ;1 for some  >  0, by interpolation we deduce that

P  2  Ls 0 W ;s 0  for some  >  0 and for some s0 >  1. This directly implies property (P6) on P .
From (42), we take

Q(t; x; y; z; w) =  C  
X

j#(t ; x ) B n (#(t ; x ) )  #(t; y) Bn(#(t; y))j (zn +  wn):
n = 0

Consider now any sequence k uniformly bounded in L t  L x .  We may directly bound for s1 >  1 small
enough

kQ(t; x; y; k (t; x); k (t; y)kLs1      C  kk kL t  L  
X

k#(t ; x ) B n (#(t ; x ) )  B n k
L s 1 L = (      n s 1 ) :

n = 0

Still using assumption (17), we have that

     2 n

k#(t; x) B (#(t; x)) B  k s = (      n  s  )   k#k 2 :
t x

L
s 1            2           "  

L
s 1        2 (      n s 1 )       "

Clearly both  2n  1=2 and 2( ns  
)
  1=2 as long as s1 <  2. Since # 2  Lt ; x  

"0
, we can take up to s1 =  2 and

have Q(t; x; y; k (t; x); k (t; y)) 2  Lt ; x  uniformly in k.
We may similarly prove property (P6) for Q,

Z

0

T Z

2d K
h

(x
 y) 

jQ(t; x; y; k (t; x); k (t; y))js1  C  k k k L 1 L

 
N T

K
h

(x
 y) 

j#(t; x) Bn (#(t; x)) #(t; y) Bn(#(t; y)j      n s 1

s1  
     n s 1  

:
n = 0      0

2d h 
L
1

From our previous argument we know that # B (#)   B  does belong to L s 1 L      n s 1      and in fact to some
L p L q  with p >  s1 and q >   ns  . Moreover since # 2  L1W ;1 and B n  is locally Lipschitz from (17),
we also have that # B (#)   B  2  L1W 0 ;1 for some 0 >  0. By interpolation, this nally implies that

00

# Bn (#) B n  2  Lt
1 Wx

     n s 1      which proves (P6) for Q.

6. Second step: Solve the temperature equation with , u given

We rst start to solve an equation related to the energy and then use an implicit function procedure
to nd the corresponding temperature. This is the important and new part in the global existence
construction procedure.
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6.1. An equivalent system with good unknowns

From (7), it is straightforward to check that

(43) e =  m(#) +  
 1 

#2      
X  

B0 (#) 
n  1 

+  #2B0 (#)
1

:
N n2

Instead of working on the system involving the quantity e, we present here an equivalent system with
what will prove to be an easier unknown to handle

(44)

where e is given by

(45)

g =  e;

e =   #2      
X  

B0 (#) 
n  1 

+  #2B0 (#)
1

;
2nN

where we recall that N  <  =2. Dene a new pressure P  by

(46)

Then the good unknown g satises

P  =  # 
X

B n ( # ) n :
n = 0

(47) @tg +  div(gu) +  P  div u =  S  : r u  +  div((#)r#);

where S  : r u  =  Tr ( S r u )  as before.

Remark 6.1. From the assumption 14 on P , it follows easily that #2B0  0 for n  2, which implies that B n

is a decreasing function in # for n  2. Moreover, in view of assumptions 12 and 14, we have that
e >  0;

@# 
=  

@# 
>  0; for # >  0:

6.2. The solvability of the quasi-linear parabolic system

Consider the equation

(48) @tf   
i       

@x
i 
(a i ( t ; x ; f ; r f ) )  +  a0 (t ; x; f ; r f )  =  0 (t; x) 2  QT =  [0; T ]  Td

with the initial condition

(49) f jt=0  =  f0 :

We recall here the classical assumptions on the functions a0 and a =  (a1; a2; : : : ; ad)(t; x; f; p) for t 2
[0; T ], x  2  Td , f  2  R  and p 2  Rd  to obtain a solution f (t; x).

Theorem 6.1 (  [12]). Suppose that

• (H1). The system (48) is parabolic in the sense that

(50) c1(f )jj2  
X  @ai 

i j   c2(f )jj2; i ; j

where c0, c1, and c2 are positive, continuous and potentially depend on f .
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• (H2). For (t; x) 2  QT and for any f  and p, the inequality

(51)
X

ja i ( t ; x ; f ; p ) j  +  ja0(t; x; f; p)j  b(jf j; jpj)1(t; x) i

holds with a continuous function b and a function 1 2  L1 (QT ).
• (H3). With jf j  M where M >  0 is a constant large enough and arbitrary p , we have the bound

(52)  
n  

jaij +  
@ai (1 +  jpj) +  

n       @ai 
 +  ja0j  c3(1 +  jpj2): i = 1

i ; j = 1

for some c3 >  0.
• (H4). The functions ai , @ai=@pj, @ai=@xj, and @ai=@f are H•older continuous with exponent ,

=2, , and  respectively.
• (H5). The following bounds holds,

(53)
@ai @ai     @a0 @a0 @a0

@f       @t @p       @f        @t

for any jf j; jpj  M for some suciently large constant M , where 2(t; x) 2  Lr;p  with r; p  2.

Assuming f0  2  C 2 + ,  then there exists a unique solution f  of the system 48 such that f  2  C 1 + = 2 C 2 +.
Moreover, we have @t;xf 2  L 2 .

6.3. Solving an approximate system

In order to solve the system, one way is to see (47) as a quasi-linear parabolic equation of the unknown
function g, namely # =  #(; g). Equation (47) is in the right form since

(54) @tg   
i       

@
x

i 
(ai (t; x; g ; rg)) +  a0 (t; x; g ; rg) =  0;

where

(55) ai =   gui +  ( (# ) r#) i  =   gui +  (#)
@

g
 
@ig +  (#)

@
@i

and

(56) a0 =  P  div u S  : r u :

There are however several regularity issues when trying to apply directly Theorem 6.1, which forces us to
introduce several approximations. First of all, there is a singularity in @#=@g when g or # is close to 0.
Second the assumptions on the various functions ai and a0 require some additional regularity on  and u.

This leads us to look at an approximate system where we modify the relation between g and #. More
specically, for a given " >  0, we rst solve in g", the system

(57) @tg"   
i       

@
x

i 
(ai (t; x; g" ; rg" )) +  a0 (t; x; g" ; rg" ) =  0;

with

(58) ai (t; x; g" ; rg" ) =   g"ui +  (#") @g
" @ig" +  (#" ) 

@ 
@i;
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and

(59)

However we take

(60) g" =  e";

a0 (t; x; g" ; rg" ) =  P"  div u S  : r u :

e" =  " 
#" #2      

X  
B0 (#" ) 

n  1 
+  #2 B0 (#")

1
;

N n2

which changes the relation between #" and g", resolves the degeneracy around # =  0 and also implicitly
modies the ai.

Finally, we adapt the pressure P"  to match the new energy and keep

(61) P"  =   " #" log #" +  #" 
X

B n ( # " ) n :
n = 0

We then have the following existence theorem for the approximate equation.

Theorem 6.2. Let P  be dened in (61) and #" be dened in term of g" through (60) for some  2  C 1 C 2 +

and u 2  C 1 C 2 + .  Then for any initial data g0 >  0 with g0 2  C 2 + ,  there exists a unique classical solution g
2  C 1 + = 2 C 2 +  to the system (54) where the a" and a" are given respectively by (58) and (59).

Proof. To  simplify the notations, within this proof, we omit the " subscript as it will not cause any
confusion; we take the limit " !  0 in the next subsection. We use Theorem 6.1 to prove the existence
result.
Important relations between g and #. Through (60), we rst observe that # can be seen as #(t; x; g) or
#(; g). This can be proved by showing that g is strictly increasing in # by dierentiating (60). We nd that

(62)
@# 

=  " 
2nN 

d#
(# 2B0 (#))

n 1 
+  

d#
(#2B0 (#));

and by assumptions 12 and 14 we easily get a lower bound for @g=@#

@# 
 " +  2 #B0

 +  #2B00
  " +  

C
 
##  1:

Using assumptions 12, 14, and 15, we may further deduce an upper bound for @g=@# as

@
g 

 " +  C  
X  

#( n) # =  1 kk n
1   " +  C  (##  1 +  #( N ) # =  1): 0nN

Combining the above two inequalities gives

(63) " +  
C

 
##  1  

@# 
 " +  C  (##  1 +  #( N ) # =  1): From the

denition of g in (60), we have that g =  0 if # =  0. As a consequence,

(64) " # +  
C  

##   g  " # +  C  (##  +  #( N )# =):

We also need an upper bound of @#=@g in term of g as
 1

(65)
@g 

=
@#

 
" +  ##  1  

"
 
;
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together with a lower bound

(66)
@# @g  1 1 1
@g           @#               " +  C  ##  1 +  C  #( N ) 0 =          M (g)

with M  " being a smooth function of g, where we used (63) and (64).

Hypothesis (H1). We also note, for further use, that (11) yields

(67) 1  (#)  C  (g=# +  1):

We can then make explicit the various coecients with for example

ai(t; x; g; p) =  ai (; r; u; g; p) =   g ui +  (#(; g)) 
@

g
 
pi +  (#(; g)) 

@g 
@i:

This directly implies that

@
a

=  (#)
@#

Id  =  (#)
@g

 

 1 

Id ;

t;x                               t;x                                                     t;x

where Id  is the identity matrix. Therefore, we obtain

c1jj2  T  
@p

  c2jj2

for any  2  Rd  provided jgj  c0 where c1 and c2 are non-vanishing and depend polynomially on g, which
veries (50).

Hypothesis (H2). From the equation

g =  " #   
X  

#2B0 (#) 
n

+  #2B0 (#);
2nN

again viewing # as a function of both g and , we take derivative with respect to , keeping g xed, to get

0 =  " 
@ 

2nN 
d#

(#2B0 (#))
@

 n 1 
+  

d#
(#2B0 (#))

@
 

2nN 

#2B0 (#)
n 1

n 1:

from where one obtains
P

@ 
=  

" 
P

2 n  

2 

d# (#2B0 (#)) n 1 +  d# (#2B0 (#)) 
=  

2
nN

 
n 1

#2B0 (#)n 1
@#

:

By (65), assumptions 14 and 15, it holds

                                                                                    
@

" +  ##  1 
2nN 

n      1
#2B0 (#)n 1

C (  N )  = "
+  ##  1

(68)  
" 

+  C  #  
" 

+  C  g1=# :
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Combining (55) with the estimates (65), (67), and (68), we further get

X
jai (t ; x; g ; p) j  C  g ku k L 1  +  

C g = #  +  C  
jpj

i

(69) +  C (g = #  +  1) (
1 

+  g 1 = # ) k r k L 1:

In view of 59, (61), assumptions 12, and 15, we similarly obtain an upper bound of a0 as

(70) ja0j  C  (1 +  ##  +  #( N )# =) k div u k L 1  +  kS : r u k L 1   C g +  C;

by using again the regularity of  and u. Hence the condition (51) is veried by collecting the estimates (69)
and (70).

Hypothesis (H3){(H4). Next we turn to the verication of (52). First, we compute the derivative of ai as
@ai

(
t;

x
; g; p) 

=   ui +  0(#)
@

#2 

p +  (#)
@g# 

p +  0(#)
@

#
 @#

r +  (#) 
@2# 

r

From (62), it is straightforward to get

@# 1
@g "  2nN d# (#2B0 (#)) n=(n 1) +  d# (#2 B0 (#))

which leads to

@2#                
P

2 n N  d#2 (#2B0 (#)) n=(n      1) +  d#2 (#2B0 (#))       @# @g2

"        2nN d# (#
2B0 (#)) n=(n      1) +  d# (#2B0 (#)) 

2 @g

By combining our previous bounds, we can prove that
n 

jaij +  i  
 (1 +  jpj) +  jaj  c3(g) (1 +  jpj2)

i = 1

for some c3 >  0 which depends on " and is polynomial in g and hence bounded whenever g  M. We may
perform again similar calculations for all @ai=@xj which yields the bound (52). The same formula and the
regularity of  and u ensures that ai, @ai=@pj, @ai=@xj, and @ai=@f are H•older continuous with respect to
t; x; g; and p. We can check the bound (53) in the same manner.

This satises all assumptions of Theorem 6.1 as long as we can ensure that g >  0. This follows from a
straightforward maximum principle applied to any classical solution of (54): See the positivity part just
below.
Positivity of g. We note that we can rewrite (54) as

@tg +  div(g U ) =  r x (#) 
@g

 r g  +  (#) 
@g 

g +  S  : r u  P  div u;

where
U =  u +  ( # ) r  

@
g
#

:

Remark that S  : r u   0. Moreover # =  0 when g =  0 and for 0  g  1, we have that

jP j  C  #  
" 

g;

while by (68), we have still for 0  g  1 that

@
  C  #2  

" 
g2:

This ensures that the solution g and then # are both strictly positive.
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6.4. Existence of solutions # such that the entropy dened by (9) satises the equation (10).

From the previous result, we may pass to the limit " !  0 to obtain the following existence result.

Theorem 6.3. Assume that 0 2  L x ,  #0 2  L x # .  Assume moreover that  2  L 1 ( [ 0 ;  T ]; L ( d ) )  and u 2  L2 ([0;
T ]; H 1 (d )) and solve the continuity equation (2). Then there exists # 2  L 1 (0 ; T ;  L # ( d ) ) \  L([0; T ]  d) such
that

(71) sup
Z

##  dx +  
Z T  Z

(#) 
jr#j2  

dx dt +  
Z T  Z jruj2  

dx dt  C (kk 1       ; kuk 2      1 ); t
T d                                        0         T d                                                                           0         T d

for some constant depending on the norms ( k k L 1 L  ; kukL 2 H 1  and on the initial data 0 and #0). Fur-
thermore, dening the entropy through the relation

(72) s =

then

N n 1
!

 Bn (#) + B0 (#) ;
n = 2

Bn (#)  =  # B0
0(#) +  2 Bn (#);

(73) kskLt L 1  +  ks ukLt ; x  
 C ( k k L 1 L x  ; kukL2 H 1);

and s solves the following inequation in the sense of distributions

(74) @t(s) +  div(s u)  r x  
(#) 

r x #
 
+  

1 
S  : r u  +  (#) 

j r#j2

with an initial condition satised weakly through the following inequality

(75) sjt=0+   0s(0; #0):

Finally dening g through the identities (44)-(45), we also have the energy equality
Z Z Z Z

(76) g(t; x) dx = g0 (x) dx + (S  : r u  P  div u)(s; x) ds dx:
T d                                                  T d                                              0       T d

Proof. The strategy of the proof is straightforward. Given u 2  L2 H 1 ,  we construct u" 2  C 1  that
converges to u strongly in L2 H 1 .  For simplicity, we consider here an approximation by convolution.
Given  2  L 1 L ,  we construct " 2  C 1  by convoluting through the same kernel, uniformly bounded in L 1 L x
and converging to  in L t  L x  for every p <  1 .  Observe that the standard commutator estimate implies that

@t" +  div(" u") =  R" ;

where R "  !  0 in L 2 L x  with 1=p =  1=2 +  1=.
We also choose #0 =  " +  #0 which is uniformly in L x # .  For any xed " >  0, we then obtain a classical

solution g" to (54) with (58)-(59). We then have to pass to the limit as " !  0 in the system.

Uniform bounds. The critical point is hence to derive appropriate estimates on g" and #" that are uniform in
". This is naturally based on equivalent energy and entropy estimates. To  start with the energy, by
directly integrating the equation on g" rst in space and then in time, we obtain

Z Z Z Z
g"(t; x) dx = g0 (x) dx + (S"  : r u "  P"  div u")(s; x) dx ds:

T d                                                     T d                                              0       T d

From our assumptions on the initial conditions 0 and #0, we have uniform bounds on g0 in L1 . Indeed for
any n, (0 )n converges to (0 )n strongly in L= n .  From assumption (16), (#0)2 B0 (#0) converges strongly
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in L = (  n) . Since  
n  +   =  1, we directly obtains that g0 converges to g0 strongly in L 1  and that it is

uniformly bounded in L1 .
Moreover by convexity of the H 1  norm, we also have that

This yields that

(77)

Z Z
S "  : r u "  dx ds  kuk2

 2      1 : 0
T d

Z

T d  
g" (t; x) dx C  +  kukL2 H

x

 
+  kukL 2 H 1  kP" kL t ; x

:

It remains to control the norm in the right-hand side. From the denition of P" , we have that

kP" kL t ; x  
 
X

k # "  Bn (#" ) n kL t ; x  
+  " k#" log #" kLt ; x

:
n = 0

From the L t  L x  bound on , this implies that

kP" kL t ; x  
 
X

k # "  Bn (#" )kL t  L x
n  k " k L 1 L  +  " k#" log #" kLt ; x

;  n = 0

with 1=qn =  1=2 n= or qn =  2 =( 2n).
We may now use assumption (17) to further bound

     2 n

k#" Bn (#" )kL t  L
q n   C  +  C  k#"kL2 

2       :

This lets us deduce that for some  <  1=2,
Z

sup 
T d  

g" (t; x) dx  C ( k k L 1 L  ; kukL2 H 1 ) (1 +  k#"k  
 ):

For further use in a later section, we also note that we have the more precise estimate

Z Z
0

=2
1

(78)
0 T d  

jP"j j div u"j dx dt  kukLt H x  
@ L t  L x  +  C  k#"k=2 

 
A :

From the denition of g", we also have that

Z Z N

g"(t; x) dx # dx  k#2 B0 (# " ) n k L 1 L 1  :
n = 2

Using again the L t  L x  bound on , this implies that

X
k # 2  B0 (#" ) n kL t  L x  

 
X

k # 2  B0 (# " )k L 1 L qe       k " k n
1 L x  

; n = 2

n = 0

with 1=qe =  1 n=.
Now use assumption (16) to obtain, again for some  <  1,

k#" B n (# " ) k L 1 L qe         C  k#"k #  (  n)=:
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This shows that, again for some  <  1,

sup
Z

Td 
g" (t; x) dx  

1 
sup 

Z

Td  
# dx C k k 1 L      Ck#"k  

L #  :

For further use, we even have the more precise estimate
Z Z Z

(79) sup g (t; x) dx sup # dx C   sup  dx: t
T d                                                                 t          T d                                                                   t         T d

Therefore, inserting those estimates into (77) yields that
Z Z

(80) sup 
T d  

# dx  C  +  C  sup 
T d  

g" (t; x) dx  C  +  C ( k k L 1 L x  ; kukLt H 1 ) (1 +  k#"k  
 ):

On its own, we cannot obtain a priori estimates just from (80) and we need also an entropy bound. Since
for " >  0, g" and #" are smooth and #" >  0, we can dene

N n 1
s" =  

" 
log #" 

n = 2  

Bn (#" )  
n 1 

+  
" 

B0 (#" );

with dBn(#)=d# =  # B00(#) +  2 B0 (#) so that #" 
@s" =  @e" .

Note that
@tg" =  

@# 
@t#" +  

@ 
@t";

where we recall that

@# 
=  " 

2nN 
d#

(# 2B0 (#" ))
n 1 

+  
d#

(#2B0 (#" )) >  0;

for any " >  0 and for g" =  " e",

N

@ 
=   " 

" n = 2  

#2 B0 (#" ) n 2 #2 B0 (#" ) 
" 

:

This lets us write that

@# 
(@t#" +  u"  r x # " )  =   g" div u"   

@ 
(@t" +  u"  r x " )  P"  div u"

+  S "  : r u "  +  r x ( ( # " ) r x # " ) :

Since we have kept the critical relation,

P"  =  2 
@ 

+  # 
@# 

;

this yields

@# 
(@t#" +  u"  r x # " )  =    

@ 
R "  #" @# 

div u"

+  S "  : r u "  +  r x ( ( # " ) r x # " ) :

Because the critical relation above also implies that

@s" 1 @P"

@            2 @#
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we nally deduce that

@t(" s" ) +  div(" s" u") =  r x  
(#" ) 

r x # "

(81)
R "  s" +  " @

s"   
#

" @g
" 
 
+  

#
" 

S "  : r u "  +  (#" ) 
jr#" j2  

:

The rst key point to make use of (81) is that we still have that " s"  C  g". Hence
Z T  Z

(#" ) 
jr#" j2  

dx dt C  
Z

g"(t =  T ; x) dx 
Z

0 s0 (x) dx
0 T d " T d T d

@s" 1 @g"
L t  L x @ #" @ L 2 L x

We may hence immediately use (80) together with the H 1  estimate on u". We note that, just as for g0,
we have initial uniform bounds on 0 s0 in L1 . Indeed since #0 =  #0 +  ", and #0 2  L #  then

k" log #0kL1  " j log "j +  " k#0kL1 !  0; as " !  0:

Moreover, again using assumption (16), we also have the strong convergence in L 1  of Bn (#0 ) (0 )n just as
for g0. Consequently we have the strong convergence in L 1  of 0 s0 to 0 s0 with a uniform bound in " which
allows to derive

Z T  Z
(#" ) 

jr#" j2  
dx dt C  +  kukL 2 H 1  +  C ( k k L 1 L  ; kukL2 H 1) (1 +  k#"k  

 )  (82)

+  kR" kL t  L x  
s" +  " @ 

  
#

" @ L 2 L x
 
:

Our second critical point is that we have a simplied expression

N

s" +  " @ 
  

#
" @ 

=  
n=2

(#" B0 B n )  
n 1 

n  1;

where the log #" term vanish. In particular this expression is smooth around #" =  0 and only blows up
as #" !  1 .

Recalling the denition of Bn ,  we note that

d#
(
#
B0 

B
n

)
 =  B0 +  # B00 #

B

00 2
B

0 =   B0 ;

so that in the end
N

s" +  " @ 
  

#
" @ 

=  
n = 2  

Bn (#" )  
n 1 

n  1:

Using the L t  L x  bound on , this implies that
N N

s" +  " @ 
  

#
" @ L 2 L x

 
 C  

n = 2  

Bn (#" ) n  1
L

t

 L
p   C  

n = 2  

k" kL
  

L x  
kBn (#" )kL 2 L p n  ;

with
1 n 1 1 n 1 1 1 n 1 1 n

n p p 2 2 n

which was the exponent dened earlier when controlling the norm of P"  in L2 .
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Therefore this term can be bounded in exactly the same way through assumption (17), yielding

s" +  " @ 
  

#
" @ L 2 L x

 
 C  +  C ( k k L 1 L x  ) (1 +  k#"k  

 ):

This let us obtain by adding (82) and (80) that

(83) sup
Z

##  dx +  
Z T  Z

(#" ) 
jr#" j2  

dx dt  C  +  C (kk 1       ; kuk 2      1 ) (1 +  k#"k       ): T d

0         T d                                     "

We are now ready to conclude our a priori estimates. By assumption (11) and Poincare inequalities,
Z Z = Z

# dx ##  dx + (#" ) dx;
T d                                            T d                                                            T d                                     "

so that, since   2,
Z  = Z Z  (84)

k#" kL
2 L   C  T  =2      

 sup 
T d  

##  dx               +  C T            
0         T d  

(#" )      
#"        

dx dt       :

Because  <  1=2 and   2 #, this inequality is enough to bound the right-hand side of (83) in terms of its
left-hand side. Hence we eventually have the uniform in " estimates

(85) sup sup
Z

##  dx +  sup
Z T  Z

(# ) 
jr#" j2  

dx dt  C (kk 1       ; kuk 2      1 ): "
t         T d                                        " 0         T d                                     "

Those bounds directly imply that # 2  L 1 ( [ 0 ;  T ]; L # ( d ) )  \  L([0; T ]  d) as claimed. Because (#)  1,
(85) also shows that

(86)

Z Z
sup 

0 T d  
j r log  #"j2 dx dt  C ( k k L 1 L  ; kukL2 H 1); T

and sup j log # j dx dt  C (kk 1       ; kuk 2      1 ); "
0         T d

again by Poincare inequality.
To  conclude those a priori estimates, note that we nally have that

(87) sup
Z T  Z jruj2  

dx dt  C (kk 1       ; kuk 2      1 ): " 0
T d

Limit passage " !  0. We can now send " !  0 to get a weak solution of (54). From our previous estimates,
we know that g" is uniformly bounded in L t  L p  for some p >  1. This lets us extract a sub-sequence, still
denoted g", that converges weak-* to some g in L t  L x  for some p >  1.

To  derive the compactness on #" through the classical Aubin-Lions approach, we require controls on
g" u" and " s" u". We may bound directly by Sobolev embeddings

kg" u" kL t ; x  
 ku" kLt H x  

kg" kLt ; x
:

It is straightforward to bound the L 2  norm of g" in the same manner as we bounded the L 2  norm of P"
earlier: Assumption (17) indeed implies the same behavior for #2 B0 (#) and # Bn (#).

For further use, we also observe that by using the " >  0 in (17), we may use some interpolation on
#" between L 1 L x #  and L 2 L ,  leading actually to

(88) kg" u" kL t ; x  
 C (kkL t  L  ; kukLt H x  

);
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for some p >  1. The same applies to P"  so that we also have that

(89) kP" kL t ; x  
 C (kkL t  L x  ; kukLt H x  

);

for some q >  1.
A  similar discussion applies to " s", with in fact much simpler estimates. First of all B n  behaves like # B00

+  2 B0 instead of #2 B0 (#) so that the coecients n  2 in the expansion are easier to handle than for g".
Secondly, the " log #" in " s" is immediately bounded by (86). Hence we also have that

(90) k" s" u" kL t ; x  
 C ( k k L 1 L  ; kukL 2 H x  

);

for some p >  1.
We now turn to the compactness argument. We may extract a subsequence #", converging weak-*

to # in L 1 L x # .  Furthermore by (85) it follows that #" is compact in space. Since " is also compact in
space, the denition (60) of g" together with our a priori estimates directly implies that g" is compact in
space. For similar reasons, " s" is compact in space.

We now obtain from Equation (57) and Equation (81) that both @tg" and @t(" s" ) are bounded in
L1 Wx thanks to (88)-(90) and our previous a priori estimates. By Aubin-Lions, this shows that g" and "
s" are compact in Lt;x .

Upon further extraction, we may therefore assume that both g" and " s" converge pointwise a:e:
respectively to g and some S . Of course " converges a:e: to . By assumptions (12) and (15), @#"g"  0 and
more precisely @#"g" is uniformly away from 0 for #" >  # for any # >  0. This proves that for a xed value of
" (t; x), g" =  g"(" ; #") is one-to-one in #".

The pointwise convergence of g" therefore implies the pointwise convergence of #" to some #, and
hence the compactness and convergence of #" to # in Lt;x . A  rst consequence is that we may pass to the
limit in (60) and obtain that the limits , # and g solve (45). Similarly , # and s solve (72).

Energy equation (76). It remains to pass to the limit in the integral of Equation (57) on g" and in
Equation (81). Since u" is converging a:e: to u, we have the a:e: convergence of g" u" and " s" u" to
respectively g u and s u. By the equi-integrability provided by (88) and (90), we can apply dominated
convergence and obtain the strong convergence of g" u" and " s" u".

Obviously we directly have the strong convergence of S "  : r u " .  We also have pointwise convergence
inside the formula (61) dening P"  so that , # and P  satisfy (46). By (89), we hence have that P"
converges to P  in Lt;x , again by dominated convergence. Since div u" converges strongly to div u in Lt;x ,
this yields the convergence of P"  div u". It is now possible to integrate Equation (57) and pass to the
limit in all resulting terms to obtain the claimed energy equality (76).
Entropy inequation (74). It remains to derive the limit of Equation (81) on " s". Our previous analysis
shows that

R " s" +  " @ 
  

#
" @

 !  0;

strongly as " !  0.
We can also prove that div ( # " )  r # " !  div (# )  r #  in the distribution sense. Denoting e(#) s.t.

e0 =  (#) , we note that
(#" ) 

r # "  =  r (e(#" )) :

As before e(#") converges a:e: to e(#). By assumption (11), je(#)j  C  (log # +  #). On the other hand, by
combining (11) and (85), we also have that

Z Z Z Z
sup # 2 j r #  j2 dx dt =  sup jr#=2 j2 dx dt: "

0         T d                                                                               "         0         T d

By Sobolev embedding, we have that #" is uniformly bounded in LL 2 = 2  with 1=2 =  1=2   1=d (or 2 <
1  for d =  2). By interpolation with the uniform bound in L 1 L x # ,  we obtain a uniform bound for
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#" in Lt ; x  for some p >  . As a consequence e(#") is equi-integrable and converges strongly in Lt ; x  to
e(#), proving the required limit.

It is important to highlight that the same argument would not apply to the limit of div ((#" ) r#" ) .  Any
anti-derivative of (#) behaves like #+1 as # !  1 .  Therefore it would not in general be possible to control
it through our a priori estimates. This is the main objection that prevents us from passing to the limit in
the whole equation (57) for g".
We are also not able to pass to the limit in the two remaining terms in the right-hand side of Equa-tion

(81). We have for example the a:e: convergence of  1  S "  : r u "  but we cannot prove equi-integrability,
as #

   could be large. However we can obtain inequalities which lead to the limiting inequation.
We recall that the function (a; b) !  a2     

is jointly convex in (a; b). Consequently if some functions
an; bn converge to functions a; b in L 1  (or even in some appropriate weak topology) then a2 

 lim inf an  .
This immediately implies that

# 
S  : r u   lim inf 

#
" 

S "  : r u " :

Second by denoting (#) s.t. 0 =  ((#))1=2=#, we have that

(#" ) 
jr#" j2  

=  jr(#" )j2 : "

Therefore, we also have that

(#) 
jr#j2  

 lim inf (#" ) 
jr#" j2  

: "
The same arguments allow us to deduce (71) from our a priori estimates (85)-(87). Concerning (75), we
use that Z

 2  [0; T ] !  (s)(t; ) ’dx ’  2  C1(
) and ’   0

is a sum of a non-decreasing function and a continuous function taking advantage of the entropy inequality.
This completes the proof.

7. T h i r d  Step: F i x e d  Po int  procedure and proof of main result

We are now ready to prove our main result. Denote

E  =  L  
"

0
([0; T ]  d) \  L1 ([0; T ]; W ;1(d)); with "0 >  0

as in Theorem 5.2 and any 0 <   <  1. For any R  >  0, denote as well

E      =  f# 2  E  j k#k      "0 +  k#k ;1  Rg: t ; x

We now dene the operator L  on E  that will have a xed point. For a given #i in E ,  we may use
Theorem 5.2 to obtain solutions  and u to (2)-(3), and satisfying the estimates

 2  L t  L x ; u 2  L t  H x :

Hence  and u satisfy all the conditions in Theorem 6.3. We may hence apply Theorem 6.3 to obtain #
=  L(# i )  that solves the various estimates listed in the statement of Theorem 6.3. In particular by (71), we
immediately have, from the bounds (11) on , that

Z T  Z
(1 +  j#j) 

j r x #j2  
dx dt <  1 :  0

T d

Since # 2  L t  L x #  as well, Poincare inequality immediately shows that # 2  Lt;x .  Moreover we also have
directly from the inequality above that # 2  L t  H x .  Hence for any 0 <   <  1, we have that # 2  L t  W

;1. This
implies that L  : E  !  E .
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We can also check that for any R  >  0, the image L ( E R )  is pre-compact in E .  Consider therefore any
sequence #n 2  E R .  From the estimates in Theorem 5.2, we have that for some C R  and the n; un obtained
from #n satisfy the uniform bound

sup k k 1       +  sup ku k 2      1   C  : n
n

Moreover Theorem 5.2 also implies that n  is compact in Lt;x .
Consequently, the estimates (71) from Theorem 6.3 yields, also for some C R

sup kL(#n )k L 1 L #  +  sup
Z T  Z

(1 +  jL(#n )j) 
j r x L (# n ) j 2  

dx dt  C R :  0
T d

We next observe that the entropy inequation (74) provides a uniform control on @t(nsn). We may indeed
rewrite (74) as

@t(n sn ) +  div(n sn un ) +  Mn(t; x) = r x  L (#n )  
)  

r x L ( # n )
 
+  

L(#n )  
S n  : r u n  +

(L(#n ))  
j rL (#

)
) j 2  

;

where sn =  s(n ; L(#n )) and Mn is a sequence of non-negative Radon measures. Hence by integrating in t
and x, we have the bound

Z Z Z Z Z Z
M (dt; dx) = 0 s(0; #0)  n  sn jt=T dx + S n  : r u n  dx dt

0 T d                                                     T d                                                        T d                                                            0         T d

+  
T

(L (#  ))  
j rL (# n ) j 2  2 

dx dt: 0
T d                                                          n

From (73) and (71), we deduce immediately that the total mass of Mn, as a measure in t and x, is
uniformly bounded in n. Using again (73) and (71), this implies that @ ( s )  is uniformly bounded in
M t ; x  +  L1 W  1;1, with M t ; x  the set of Radon measures with bounded mass.

From the compactness of n, the compactness in space of L(#n ),  we have compactness in space for nsn
and now compactness in time. Up to extracting a subsequence, we can hence deduce the pointwise
convergence of nsn. Following the same argument as in the proof of Theorem 6.3, and in particular
assumption (18), this yields the pointwise convergence of L (#  ).

From the uniform bounds on L(#n )  in Lt;x , this in turn implies the compactness of L (#n )  in Lt ; x  
". By

interpolation between Lt ; x  
" and L t  H x ,  we also obtain compactness in L t  W

;1, showing that the image
L ( E R )  is pre-compact.

The last and more delicate point to use the Leray-Schauder xed point is to show that there exists R  s.t.
for any # 2  E  with # =  ‘ L (#)  for ‘  2  [0; 1], we have that # 2  E R .  For such # 2  E  with # =  ‘ L(#) ,  we start
with recalling from Theorem 5.2 that

Z Z Z
( +  juj2=2) dx + S  : r x u dx ds  E (0; u0) T

d

Z t Z                         0       T d

+ divx u(s; x) (P (#(s; x); (s; x)) P0 ((s; x))) ds dx: 0
T d

From the denition of P0,

P  P0 =  
X

( B n ( # )  Bn ) n :
n = 0
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Therefore the coecients in P    P0 behave in the same way as for P"  that we had used before and we
may use (78) with

Z Z
0

=2
1

0 T d  
jP P0j j div uj dx dt  kukLt H x  

@ L t  L x  +  C  k#k=2 
 
A :

This implies that

Z Z Z
( +  juj2=2) dx + jr x uj2  dx ds  C  +  C  k#k2      : T d

0       T d

We will use as an intermediary object the function

Z Z
(91) # (t) =  C  +  

0 T d  
jrx uj2 (s; x) dx ds +  k#kL2([0; t]; L ( d ) ) :

It will be important to note that # (t) is continuous in time for a xed choice of #, even if it is of course not
equi-continuous for all possible choices of #. On the other hand since # =  ‘ L(#) ,  any norm of # is
bounded by the corresponding norm of L(#).  Using the Poincare inequality (84), and since  <  , this proves
that

k#kLt L   C  T  =2 sup
Z

L(#) #  d x

!  =#  

+  C T  

Z T  Z
(L(#))  

j r L (#) j 2  
dx dt

 

;
tT      T d 0 T d

for some  <  1.
Therefore the norms of  and u together with #  are controlled through the corresponding norms of

L(#),

Z Z Z
( +  juj2=2) dx + jr x uj2  dx ds  C  # (t)

T d 0 T d

 =

(92)  C 2  +  C 2  T  =2 sup L(#) #  dx

+  C T  

Z t Z 
T

(L(#))  
j r L (#) j 2  

dx dt
 

; 0 T d

where the constant C  depends only on the initial data and more precisely the initial total energy. Turning
to Theorem 6.3, we recall the important Energy equality (76) which implies that

Z Z t Z
g(t; x) dx  C  + (S  : r u  P  div u) dx ds

T d                                                                   0       T d

for all time. Using again (78) and the Poincare inequality (84) together with (92) to control 
R 

jruj2 , we
obtain that

Z
sup g(t; x) dx  C   (T ) tT
T d

 =

(93)  C 2  +  C 2  T  =2 sup L(#) #  dx
d

+  C T  

Z T  Z
(L(#))  

j r L (#) j 2  
dx dt

 

: 0
T d
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From (79), this shows that
Z

sup (L#)# (t; x) dx  C   (T )
tT d

 C 2  +  C 2  T  =2 sup
Z

L(#) #  dx
 =#  

+  C
Z T  Z

(L(#))  
j r L (#) j 2  

dx dt
 

: t         T d

0 T d

On the other hand, since s  C  g, we also obtain by integrating the inequation (74), and by combining the
result with (93) and the previous inequality, we nally obtain the critical estimate

sup
Z

(L#)# (t; x) dx +  
Z T  Z

(L(#))  
j r L (#) j 2  

dx dt  C   (t) tT
T d                                                                    0         T d

Z  =#

(94)  C 2  +  C 2  T  =2 sup        L (#) #  dx
tT      T d

+  C T  

Z T  Z
(L(#))  

j r L (#) j 2  
dx dt

 

: 0
T d

Of course  <  1 but unfortunately we only have   2 # so that we could have that  =# >  1, which prevents us
from concluding at once and forces us to employ a much more careful argument. The key point is to use
the time continuity of #  dened in (91). Since  <  1, denote

M =  sup C T = 1  X  X=2;
X > 0

and
 =  2 C +  3 C T = 1  C 2  +  2 C T = 1  M:

Assuming that  =# >  1, we choose T  1 s.t.

T  =2 ( C  )  =#  <  min(1=2; 1=2C):

From the continuity of # (t) in time, we may dene t0  T the largest time s.t. # (t)  . From (94), we also
have that Z

sup (L#)# (t; x) dx  C  : tt0
T d

From using a second time (94), we deduce that
Z T  Z

(L(#))  
j r L (#) j 2  

dx dt  2 C 2 +  2 C 2 T  =2 ( C  )  =#  +  2 M <  3 C 2 +  2 M: 0         T d

However at t =  T , taking again (94) now implies that

# (T )  C  +  C  T  =2 ( C  )  =#  1 +  CT = 1 (3 C 2  +  2 M ) <  2 C +

3 C T = 1  C 2  +  2 C T = 1  M =  :

This shows that t0 =  T and yields a corresponding bound on L (#)  in L t  L #  and in Lt ; x  in terms of the
initial energy. The same argument that we used at the beginning of the proof then show that L (#)  2  E R  for
some R  depending only on the initial energy. Since # =  ‘ L(#) ,  we also have that # 2  E R  and we have
checked all assumptions of the Leray-Schauder xed point theorem. Consequently, for this choice of T ,
there exists a xed point # 2  E  s.t. # =  L(#).

We hence obtain a solution (; u; #) to (2), (3) and the entropy inequation (20) on [0; T ]. By
combining the estimates in Theorems 5.2 and 6.3, we also recover all a priori estimates in Theorem 1.1
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and it only remains to derive the global energy bound to have Theorem 1.1 on [0; T ]. We rst add the
energy bounds (41) given by Theorem 5.2 and (76) given by Theorem 6.3.

Z Z Z Z Z E0(; u) dx
+          g(t; x) dx +                S  : r x u dx ds   E0(0; u0) dx +          g0 (x) dx

T d
Z t Z T d 0 T d T d

+ (S  : r x u  +  (P (#(s; x); (s; x)) P0 ((s; x)) P )  div u)(s; x) ds dx:
0       T d

By recombining the terms, we obtain that
Z Z Z

E (; u; #) dx + @ B n A dx E(0; #0; m0) dx

(95)
T d

0
T d

1  
n N

0 1

+ @
X  

B n  
(0

)

n 
A  dx  

t
div u(s; x) @

X  
B n  

n A dx ds;

T d           
n N                                                    0       T d                                                 

n N

as we can easily recognize the total energy E of the system. We also emphasize that it was critical in the
formulations of both Theorem 5.2 and Theorem 6.3 that the terms P    P0 and P  do not contain , as we
would not be able to make sense of div u . However since n  =2, we have no diculty in handling div u n. In
particular, we may easily remove the n  terms from (95) through the use of renormalized solutions. Since
2  Lt ; x  and u 2  Ht;x , the classical theory of renormalized solutions, from [4] for example, shows that for any
smooth, bounded function f () ,  we have in the sense of distributions that

@tf() +  div(u f ()) =  ( f ( )  f 0 () ) div u:

By integrating over x, we have that
Z Z

f () dx = f (0 ) dx + ( f ( )  f 0 () ) div u(s; x) dx ds: T d

T d                                               0       T d

Since  2  L t  L  and div u 2  Lt;x , we may now apply this to a sequence f "  with f " (x )  !  x n  as " !  0 and
obtain Z Z Z Z

n dx = (0 )n dx (n 1) n  div u(s; x) dx ds;
T d                                     T d                                                                        0       T d

which leads to the desired energy inequality
Z

E (; #; m) dx  T d E (0; #0; m0) dx:
T d

The last remaining point is to extend this solution on [0; T ] to a solution that is global in time. This
is naturally achieved by repeating the xed point argument starting from T . To  do so, we highlight the
conditions on the initial data that Theorem 5.2 and Theorem 6.3 require: one needs #0 2  L # ,  0 2  L
together with 0 ju0j2 2  L1 . Equivalently, we can require E(0; u0; #0) <  1 .  Indeed from (79), we have that

Z Z Z
dx +  dx + ##  dx  C  E(0; #0; m0): T d

T d                                    T d

As seen earlier in the proof, the time of existence T is a function of the various norms of the initial data
or again equivalently E(0; #0; m0). From the propagation of energy, we have that E (; #; m)jt=T is dominated
by E(0; #0; m0) and therefore the existence time T can be chosen uniformly whether starting at t =  0, t =
T or t =  2T . This ensures global existence.
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