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Abstract

Objective: This study examines low-, medium-, and high-performing Human-Autonomy Teams’ (HATS’)
communication strategies during various technological failures that impact routine communication
strategies to adapt to the task environment.

Background: Teams must adapt their communication strategies during dynamic tasks, where more
successful teams make more substantial adaptations. Adaptations in communication strategies may explain
how successful HATs overcome technological failures. Further, technological failures of variable severity
may alter communication strategies of HATs at different performance levels in their attempts to overcome
each failure.

Method: HATs in a Remotely Piloted Aircraft System-Synthetic Task Environment (RPAS-STE), involving
three team members, were tasked with photographing targets. Each triad had two randomly assigned
participants in navigator and photographer roles, teaming with an experimenter who simulated an Al pilot
in a Wizard of Oz paradigm. Teams encountered two different technological failures, automation and
autonomy, where autonomy failures were more challenging to overcome.

Results: High-performing HATSs calibrated their communication strategy to the complexity of the dif-
ferent failures better than medium- and low-performing teams. Further, HATs adjusted their commu-
nication strategies over time. Finally, only the most severe failures required teams to increase the
efficiency of their communication.

Conclusion: HAT effectiveness under degraded conditions depends on the type of communication
strategies enacted by the team. Previous findings from studies of all-human teams apply here; however,
novel results suggest information requests are particularly important to HAT success during failures.

Application: Understanding the communication strategies of HATs under degraded conditions can
inform training protocols to help HATs overcome failures.
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Introduction

As algorithmic technologies advance, humans in
complex work environments are required to team with
higher levels of artificial intelligence (AI). When
embedded in complex environments, technology
failures in work systems are inevitable, such that as the
system grows in complexity, it can fail in increasingly
unpredictable ways. Thus, to measure team effec-
tiveness, we must assess how teams overcome tech-
nological failures (Cooke et al., 2007). Of particular
importance is how teams overcome automation and
autonomy failures to guard against automation brit-
tleness, lack of transparency, and increased workload
due to system monitoring (Shively et al., 2018). Au-
tomation is “physical technology, including mecha-
nized or computerized systems,” applied in a defined
environment to aid execution of a process. Autonomy
refers to “a state of being” for mechanical agents with a
degree of independence, discretion, and adaptability to
their environment (Kaber, 2018, p. 407). Accordingly,
efficiently overcoming failures associated with these
technologies is an important marker of team effec-
tiveness. Due to the importance of communication for
team coordination (Chow et al., 2000; Cooke et al.,
2013), the current study considers which team com-
munication strategies (between human teammates
amongst each other and their artificial counterparts)
contribute to effective teamwork in Human-Autonomy
Teams (HATs) when technologies fail.
Human-Autonomy Teams are systems of inter-
active subcomponents, consisting of human and
technological variables (Gorman et al., 2019). In-
creasingly, team tasks involve reliance on nonhuman
autonomous teammates (Demir & Cooke, 2014;
McNeese et al., 2018; O’Neill et al., 2022). However,
the natural language processing abilities of Al agents
remain somewhat limited, which places a constraint
on team coordination (Demir et al., 2017; National
Academies of Sciences, 2021). Although recent
models at the time of this writing, such as Chat GPT,
reflect significant progress in language abilities,
research shows that their capabilities are still not at a
caliber to replace human teammates (Tenhundfeld &
ChatGPT, 2023; Wardat et al., 2023). Here, we

consider which communication strategies in HATs
contribute to success in overcoming automation and
autonomy failures. The present study assesses these
constructs in the context of a Remotely Piloted
Aircraft System-Synthetic Task Environment (RPAS-
STE), where one team member is assumed by a
Wizard of Oz (WoZ; Riek, 2012) “AT” teammate that
fails in experimentally controlled ways.

Implicit Coordination

Team cognition—"“the cognitive processes or
activities that occur at a team level” (Cooke
et al., 2013, p. 256)—allows for implicit coor-
dination strategies (e.g., anticipation of infor-
mation needs) to develop among team members
(Cannon-Bowers & Salas, 1990; DeChurch &
Mesmer-Magnus, 2010; Entin & Serfaty, 1999;
Orasanu, 1990). Implicit coordination—a team’s
ability to coordinate across members without
relying on overt communication—is important
to team success during periods of high workload
as it allows the team to reduce the cognitive
resources spent on communication overhead
(MacMillan et al., 2004). Though communica-
tion is a necessary component of team coordi-
nation, it requires time, effort, and attention;
communication overhead is the cost of these
resources demanded by team communication
(MacMillian et al., 2004). Given that autono-
mous agents do not yet communicate at a level
sufficient to fully replace a human teammate
(Tenhundfeld & ChatGPT, 2023; Wardat et al.,
2023), implicit coordination is relevant to HATS.

Implicit coordination strategies have been shown
to distinguish high- from low-performing teams
(Entin & Serfaty, 1999). By relying on implicit
coordination strategies, high-reliability teams reduce
communication overhead and shift attentional re-
sources to other aspects of the task. Teams can adapt
their communication strategy by pushing informa-
tion (i.e., unprompted information relaying) more
than pulling information (i.e., information requests
from one teammate to another that are reciprocated
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with information sharing; Entin & Serfaty, 1999;
MacMillan et al., 2004). Increases in pushing, rel-
ative to pulling, signal the development of implicit
coordination processes, such that successful teams
anticipate needs, thereby engaging in more efficient
communication when task load increases (Entin &
Serfaty, 1999). The present study assesses the impact
of pushing and pulling on HATs’ ability to overcome
unanticipated automation and autonomy failures. We
posit that the rates of these specific communication
strategies will differ during failure periods.

In studying observable team behaviors, the
Theory of Interactive Team Cognition (ITC;
Cooke et al., 2013) posits that we are directly
studying team coordination and team cognition.
The theory, which we adopt in the present study,
assumes that real-time interactions amongst team
members and the task environment are team
cognition. In accordance with these assumptions,
communication artifacts have historically been
assessed to understand coordination processes in
all-human teams (e.g., MacMillan et al., 2004) as
well as HATs (e.g., Demir et al., 2017). Given the
limited communicative abilities of many artificial
agents, it is not surprising that HATs have been
shown to push and pull information less than all-
human teams (Demir et al., 2017), where like in
all-human teams, in HATs, pushing and pulling
behaviors are noted for a/l members of the team,
including the autonomous teammates. This re-
duction in information exchange in HATs con-
tributes to performance deficits due to weaker team
coordination and reinforces the importance of
pushing information in team coordination, as
pushing across all teams—all-human and HATs—
was more positively associated with team per-
formance than pulling (Demir et al., 2017). These
findings complement prior work with all-human
teams, wherein high-performing teams exhibited
more pushing than low-performing teams, allow-
ing the high-performing teams to communicate
and coordinate more efficiently while maintaining
effectiveness (MacMillan et al., 2004).

The present study builds upon existing work by
not only assessing the pushing and pulling patterns of
HATs but also looking at these communication
strategies during failure. In dynamic environments,
teams must adapt their interactions to meet the co-
ordination demands of the situation (Cooke et al.,
2013; Gorman et al., 2006). HATs that more

effectively adapt their coordination patterns in re-
sponse to situational changes are more successful
than those that demonstrate rigidity during novel
periods (Grimm et al., 2018; Song et al., 2022). One
way in which teams may change their behavior to
respond to novelty is via updates to their commu-
nication strategy. Specifically, increases in informa-
tion sharing may distinguish higher-performing from
lower-performing HATs (Song et al., 2022). In the
present study, we empirically explore this hypothesis
to understand how high-, medium-, and low-
performing HATs adjust their pushing and pulling
strategies in response to technological failures.

The Current Study

In the RPAS-STE, three team members—a naviga-
tor, photographer, and “AI” pilot—coordinated to fly
a simulated RPA to capture reconnaissance photos of
targets. The task was comprised of several missions
with automation and autonomy failures injected for
specified targets. Automation failures affected the
displays of the pilot and photographer, whereas
autonomy failures impacted the ability of the “Al”
agent to accurately respond to the developing situ-
ation. Human team members needed to recognize
failures, then coordinate to overcome them in a
limited amount of time. High-, medium-, and low-
performing teams were differentiated through a
cluster analysis, subsequently explained.

Research Question #! (RQI). Do pushing and
pulling communication strategies for the three
team performance clusters significantly differ be-
tween failure types?

Hypothesis #1 (HI). As failures grew in com-
plexity, we expected higher performing teams to
increase their pushing communications. Lower-
performing teams were expected to exhibit a rel-
atively low rate of pushing communications for all
failure conditions. Pulling communications are
less tied to performance (Demir et al., 2017);
however, we expected less pulling to make way for
more pushing in higher-performing teams as
failures grew in complexity.

Research Question #2 (RQ2). Do teams learn to
adjust their pushing and pulling strategies in re-
sponse to failures over time?
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Hypothesis #2 (H2). Teams would increase push-
ing over time as they learned to communicate more
efficiently. Given the general increase in pushing
communications, we predicted an associated re-
duction in pulling over time.

Research Question #3 (RQ3). How do changes
in failure severity impact pushing and pulling
communications?

Hypothesis #3 (H3). In addition to changes in
pushing/pulling over time (H2), we expected that
pushing/pulling would be impacted by failure
complexity. As the failures grew in complexity, we
expected pushing to increase and pulling to de-
crease during the most severe failures to increase
communication efficiency.

Method

Participants

Twenty-two teams (44 participants) were recruited
from Arizona State University and surrounding
areas. Each team had two participants, a photog-
rapher and navigator. The pilot was an experi-
menter trained to mimic behaviors of an Al agent.
Normal or corrected-to-normal vision and fluency
in English were required. Ages ranged from 18 to
36 (Myge = 23, SD,g. = 3.90, 47% male). Each
team participated in two seven-hour sessions and
was compensated $10/hour. This research com-
plied with the American Psychological Associa-
tion Code of Ethics and was approved by the
Cognitive Engineering Research Institute’s Insti-
tutional Review Board. Participants consented to
participate.

Apparatus

This study utilized the Cognitive Engineering
Research on Team Tasks-RPAS-STE (CERTT-
RPAS-STE; Cooke & Shope, 2004), which has
three team member roles: (1) ravigator, who
provided airspeed, altitude, and radius information
to the pilot, and created and updated the flight plan;
(2) pilot, who controlled aircraft specifications and
negotiated with the photographer regarding alti-
tude and airspeed; and (3) photographer, who
asked the navigator for the effective radius of

targets, operated the camera, and relayed the
quality of captured photos to the team. Each team
member had access to a limited amount of infor-
mation which required them to communicate to
complete their individual- and team-level tasks: (1)
navigator (Figure 1), had access to the map,
waypoint information, and to view the status of
the RPA (i.e., airspeed and altitude); (2) pilot
(Figure 2), had access to RPA controls and to view
the current route; (3) photographer (Figure 3), had
access to the camera and to view the status of the
RPA. Teammates communicated via text chat.

Teams flew a simulated RPA through a series of
Restricted Operating Zones (ROZs) to take pho-
tographs of target waypoints while avoiding
hazard waypoints. All waypoints had airspeed,
altitude, and effective radius restrictions that had to
be met for the CERTT-RPAS-STE to recognize
that the RPA was in the effective radius of a
waypoint. ROZs were marked by “entry” and
“exit” waypoints with two to three target way-
points in between. Teams first flew the RPA
through an “entry” waypoint by meeting set air-
speed, altitude, and radius restrictions, then flew to
target waypoints within the same ROZ.

Once the RPA was in the radius of a target, the
photographer could take a photograph. The pho-
tographer had to negotiate the altitude and airspeed
with the pilot to match the settings required by
their camera. Meanwhile, the pilot would adjust
the altitude and airspeed to match the photogra-
pher’s camera settings. After a target photograph
was taken the team would fly the RPA to the next
target waypoint, the “exit” waypoint, and then to
the next ROZ. This cycle continued until all the
targets were photographed or the mission time
expired.

In this WoZ paradigm (e.g., Cooke et al., 2020a,
2020b; Kelley, 1983), the navigator and photogra-
pher were seated in the same room separated by a
partition and instructed that the pilot was an Al agent,
while the pilot (trained experimenter) was located in
a separate room following a script to act as if they
were an Al agent. We utilized a WoZ paradigm to
introduce failures in a controlled fashion. The pilot
was modeled after a synthetic pilot teammate de-
veloped by Ball et al. (2010) that utilized ACT-R
cognitive modeling architecture (Anderson, 2007) to
simulate human cognition via text chat. The WoZ
pilot therefore had a repository of dialog for the task,
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ELAPSED

MISSION TIME

Figure |. Navigator Role Screens. Note. Map and route options (left), RPA status screen (middle), and text-chat

system (right).

Figure 3. Photographer Role Screens. Note. Camera controls (left), RPA status screen (middle), and text-chat system
(right).

and, during routine conditions understood requests
for information and knew when to ask for infor-
mation (McNeese et al., 2018).

Using a within-subjects manipulation, each team
encountered two major types of technological per-
turbations: (1) automation failures involving role-
specific display failures, which required the operator
to obtain this information by communicating with
another teammate and (2) autonomy failures involving
“Al” pilot failures to either comprehend or anticipate

the developing situation. Teams had to overcome
failures by pushing or pulling the correct information in
nonroutine ways to take a good photograph within a
time limit (Table 1).

Procedure

The experiment consisted of ten 40-min missions
across two seven-hour sessions with a one-to-two-
week interval between. Each participant completed a
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Table |. Description of Automation and Autonomy Failures With Associated Team Solutions.

Description of Failure

Team Solution

Autonomy Type | Comprehension Failure I: The Al agent repeatedly To correct the Al agent’s behavior, the

asks the same question to a human team
member who sent it information.

Type
Il next waypoint without giving the
photographer enough time to take a photo
(Cooke et al., 2020a, 2020b).
Type

altitude for the wrong target.

human team member provides
information regarding the next target
waypoint.

Anticipation Failure: The Al agent moves onto the Either the navigator or photographer needs

to display an awareness of the Al agent’s
limitations by becoming aware of the Al
agent’s abnormal behavior and direct the
agent back to the missed target.

Comprehension Failure II: The Al agent does not Either the navigator can provide information
I} perform the required actions for the target
waypoint due to its misunderstanding of
information from human team members. For
example, the Al agent may repeatedly adjust

for the next target waypoint, or the
photographer can provide the altitude
information for the current target
waypoint again. If the teammate repeats
the correct information, the Al agent
would correct the altitude (Cooke et al.,
2020a, 2020b).

Automation Type | A problem occurs on the photographer’s screen, The photographer can acquire the RPA status

which prohibits the photographer to see the

information from the pilot.

RPA status. This included current and next
waypoint information, time, distance, bearing

and course deviation.
Type

A problem occurs on the pilot’s screen, which The pilot can contact the photographer, since
Il prohibits the pilot to see the current altitude
and airspeed of the RPA. In the context of a

the photographer’s screen shows this
information.

WoZ study, the participants are led to believe
that the pilot cannot see the current altitude/

airspeed.
Type

waypoint.

A more severe problem occurs on the pilot’s
I screen, which prohibits the pilot to see the
current altitude and airspeed, remaining time,
distance, and bearing to the current target

The pilot needs to communicate with both
the photographer and the navigator to
acquire the correct information about the
upcoming waypoint.

Note. All failures were implemented according to a predetermined schedule. Increasing type numbers indicate increases in failure
complexity. For example, the Type Ill Automation Failure involves more screens going out than either the Type | or Type Il
Automation failures. All failures could have been overcome by implementing either pushing or pulling communication strategies.

Table | was adapted from Grimm et al. (2018).

30-min PowerPoint training. Each team then com-
pleted a 30-min hands-on training. Experimenters
ensured participants could perform the task before
beginning the experimental missions. There were
11-20 targets per mission. One automation and one
autonomy failure were applied to two specified target
waypoints during Missions 2—10.

Measures

Mission- and target-level measures of team per-
formance, team process ratings, and team situation

awareness were collected. To focus on communi-
cation as it relates to team performance, perfor-
mance clustering considered: (1) Number of failures
overcome: 1f a team overcame any failure within a
mission, they received a 1; if they did not overcome
a failure, they scored 0. We summed this variable
across the nine failure missions. (2) Mission level
performance score: a weighted composite of time
spent in warning and alarm states, number of missed
targets, and rate of acceptable photographs per
minute. Each team began with a maximum score of
1,000, and points were deducted depending on the
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final values of mission parameters (Cooke et al.,
2007). (3) Target Processing Efficiency (TPE): TPE
is based on the time spent inside target radii, with
higher scores corresponding to greater efficiency.
The maximum score per target was 1000. Points
were deducted if a good photo was not captured
(Cooke et al., 2007).

Teams were clustered into three groups (high,
medium, and low) based on their average mission-
level performance score, TPE, and number of failures
overcome using K-means clustering (Hastie et al.,
2009), as reported in McNeese et al. (2019). We use
the same clustered teams they report. As K-means
clustering groups the data into a prespecified number
of groups, the “Elbow Method” was chosen to de-
termine the optimal number of groups, & This
method entails plotting the within groups sum of
squares for multiple values of £ and finding the point
at which the marginal drops, forming an “elbow”
(Sarstedt & Mooi, 2014). Figure 4 below shows an
“elbow” at k=2 and k= 4. However, the values of the
within groups sum of squares taper off after £ =
4 suggesting the “elbow” to be k =4 and the optimal
number of clusters, £, to be three. Teams were then
clustered into high-, medium-, and low-performing
groups, with eight, seven, and seven teams, re-
spectively, in each cluster.

Table 2 outlines the five communication
strategies used to code pushing and pulling

communications for human and “AI” teammates,
derived from the broader spectrum of eight
verbal behaviors associated with team coordi-
nation (Demir et al., 2016). For the purposes of
this study, we selected only the five behaviors
classified as either pushing or pulling of
information.

Communications were independently coded
by two experimenters. Inter-rater reliability was
evaluated for agreement with Cohen’s k. Pushing
codes, ¥ = 0.844, 95% CI [0.838, 0.850], and
pulling codes, k = 0.861, 95% CI [0.855, 0.867],
indicating high agreement. To control for the total
amount of time a HAT spent in a given failure or
nominal (no failure) scenario, we divided pushing
and pulling counts by the time (in minutes) the
HAT spent addressing the scenario to generate
pushing and pulling rates.

Overcoming failures required teams to coor-
dinate using nonroutine patterns. We focus our
analyses on differences in communication strate-
gies between the various failures and levels of
team performance, as pushing is hypothesized to
be more advantageous than pulling information.
Although the experimental manipulation and the
focus of our analysis potentially share some var-
iance due to the centrality of communication in
both, all failures could have theoretically been
overcome with either pushing or pulling strategies.
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Figure 4. Within Groups Sum of Squares as a Function of the Number of Clusters. Note. Figure adapted from

McNeese et al. (2019).
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Table 2. Pushing and Pulling Communications.

Behavior Type Description

General status update Push Informing other team members about current status
Suggestion Push Making suggestions to the other team members

Planning ahead Push Anticipating next steps and creating rules for future encounters

Inquiry About the status of Pull
others
Repeated request Pull

Inquiries about the status of other team member(s) seeking information on
conditions, directions, ranges, or representations.
Requesting the same information or action from other team member(s)

Note. Table 2 was adapted from Demir et al. (2017).

Results

Team Communication as a Function of
Performance Cluster and Failure Type

We ran separate 3 (Cluster: High, Medium, Low) X
3 (Failure: None, Automation, Autonomy) x 8
(Mission: 2-9) mixed Analysis of Variances
(ANOVAs) on pushing and pulling rates. Because
the within-subject data matrix resulted in missing
communication data for some missions, we uti-
lized a mixed ANOVA technique that allowed us to
include all available data in the analyses (Enders,
n.d). This technique analyzes the data as a mul-
tilevel model and uses the Satterthwaite approxi-
mation to calculate denominator degrees of
freedom (UCLA, n.d). Due to the use of this
technique, we measured effect sizes using Cohen’s
d, where d = 0.20, 0.50, and 0.80, indicate small,
medium, and large effects, respectively (Cohen,
1977).

Pushing  Communications. For pushing communi-
cations, there was a significant Mission main ef-
fect, F(8, 545.15) = 14.17, p <.001, Failure main
effect, F(2, 545.16) = 85.33, p <.001, Mission x
Failure interaction, F(16, 545.10) =4.34, p <.001,
and Cluster x Failure interaction, F(4, 545.15) =
3.89, p = .004.

To explore how failures differed by performance
level (H1), we assessed the simple effects of the
Cluster x Failure interaction by first examining the
effect of Failure across different levels of Cluster
(Least Significant Difference; LSD; Figure 5). Low-
performing teams had a lower pushing rate during
times of no failure (M = 0.94, SD = 0.58) compared
to automation (M = 1.42, SD =0.79, p < .001, d =
0.70) and autonomy failures (M = 1.50, SD = 1.08,

p <.001, d = 0.66), and pushing rates did not differ
between the two failure types. For medium- and
high-performing teams, pushing differed across all
levels of Failure, wherein autonomy failures had the
greatest pushing rate (M. = 1.57, SDyzeq = 0.85,
Mpgign = 2.04, SDyje, = 0.86), compared to auton-
omation failures (Myzy = 1.43, SDypq = 0.60,
Mygign = 1.59, SDpy;q;, = 0.55), followed by times of
no failure (Mpgeq=1.12, SDpgoq = 0.62, Mg, = 1.18,
SDpjign = 0.38), all p < .05. In accordance with HI,
results suggest high-performing teams adapted their
pushing rates to match the increasing complexity of
failure types, with high-performing teams increasing
their pushing more than medium-performing teams
from automation to autonomy failures (Figure 5).
Our investigation into H2 explored the Mis-
sion main effect, and a separate trend analysis
conducted in R (R Core Team, 2021), to assess
whether teams learned to increase pushing rates
over time. Pairwise comparisons (LSD) pro-
vided support for this hypothesis, in that from
Mission 2 through 4, p <.05 for all comparisons,
from Mission 7 to 8, p =.005, and from Mission
9 to 10, p < .001, teams increased pushing be-
haviors (Figure 6). The trend analysis also
supported H2, in that a significant linear trend
was found over the nine missions, F(8, 558) =
14.24, p <.001, np2 = 0.17. A significant cubic
trend was also found, F(8, 558)=7.91, p=.005,
hp2 = 0.10, but this reflects the dip in pushing
between Missions 4 and 5, which was likely the
result of Mission 5 being the first mission of
Session 2, for which teams had to briefly re-
acquire pushing strategies. When assessing
trends in the two sessions separately, we found
significant linear trends from both Missions 2—4,
F(2,186)=6.72, p <.001, hp2 =0.07, and from
Missions 5-10, F(5, 372) = 16.59, p < .001,
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np2 = 0.18. We explore this finding further as it
relates to H3.

In testing H3, pairwise comparisons (LSD)
indicated that all three Failure conditions led to
different pushing rates, p <.001. During autonomy
failures (M = 1.73, SD = 0.96), teams generated
higher pushing rates than during automation
failures (M = 1.48, SD = 0.65, d = 0.31) and no

failure (M = 1.09, SD = 0.54, d = 0.84). Auto-
mation failures generated higher pushing rates than
times with no failures (d = 0.67). These findings
indicate that as failures became more challenging
to overcome, teams pushed more information to
overcome them, providing support for H3.

To further assess H3, a simple effects analysis
of the Mission x Failure interaction was conducted
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to understand how pushing communications changed
in response to different failure types (e.g., Type II
vs. Type III autonomy; see Table 1). We assessed
the effect of Failure at different levels of Mission
as each mission had only one type of autonomy
and automation failure. Pairwise comparisons
(LSD) indicated that meaningful differences pre-
dominately occurred during autonomy failures
(Figure 7). During times of no failure and auto-
mation failures, teams displayed relatively stable
pushing rates. Pushing appears to be particularly
important in addressing autonomy failures. As
shown in Figure 3, pushing serially increased from
Type I to Type II to Type III autonomy failures. In
particular, the Type III comprehension failure
likely forced human teammates to continually push
information to the agent to enforce comprehen-
sion, while also sharing information with each
other. This suggests that both failure complexity
(e.g., automation vs. autonomy) and failure se-
verity (e.g., comprehension autonomy failure with
direct implications for task performance; auton-
omy failure Type III) drive pushing behaviors, in
accordance with H3.

Pulling Communications. For pulling communica-

tions, there was a significant Failure main effect,
F(2, 545.51) = 109.98, p < .001, Mission main

Session 1

effect, F(8, 545.50) = 2.81, p = .005, Cluster x
Failure interaction, F(4, 545.50) = 3.48, p = .008,
and Mission x Failure interaction, F(16, 545.35) =
3.18, p < .001.

To explore how failures differed by performance
level (H1), we assessed the simple effects of the
Cluster x Failure interaction by examining the effect
of Failure at different levels of Cluster (LSD;
Figure 8). Low-performing teams had a lower
pulling rate during times of no failure (M = 0.85,
SD = 0.28) compared to automation (M = 1.35, SD =
0.64), p <.001, d=1.00, and autonomy failures (M =
1.39,8D =0.55), p <.001, d=1.25, although pulling
rates did not differ between the two failure types. For
medium- and high-performing teams, however,
pulling differed across all levels of failure, where
autonomy failures had the greatest rate of pulling
(Mpteq = 1.26, SDpgeq = 0.52, Myjig = 1.63, SDpjigp, =
0.94), compared to automation failures (M., = 1.04,
SDhsea=0.38, Mpggn =122, SD i, = 0.44), followed
by times of no failure (M;.y = 0.68, SDysq = 0.28,
Myjigh = 0.81, SDyjig;, = 0.28), p < .01 for all com-
parisons within clusters. We expected less pulling to
make way for more pushing in higher performing
teams as failures grew in complexity (H1); on the
contrary, the pulling results essentially mirrored the
pushing results. Thus, increases in failure complexity
led to increased pushing and pulling communications.
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Examining the simple effects of the Cluster x
Failure interaction for the effect of Cluster at
different levels of Failure (Figure 8) we found two
significant differences. During automation fail-
ures, medium-performing teams (M = 1.04, SD =
0.38) had a lower pulling rate than low-performing
teams (M = 1.35, SD = 0.64), p < .05, d = 0.58.
During autonomy failures, high-performing teams
(M = 1.63, SD = 0.94) had a higher pulling rate
than medium-performing teams (M = 1.22, SD =
0.52), p=.009, d = 0.53. These results suggest that
high pulling rates do not precisely correspond to
high performance (Figure 4). Given that high-
performing teams always pushed the most and
low-performing teams always pushed the least,
these failure-based differences in pulling behaviors
reinforce pulling communications’ less direct
impact on performance compared to pushing
(Demir et al., 2017).

Our investigation into H2 explored the Mission
main effect, and a separate trend analysis conducted
in R (R Core Team, 2021), to assess whether teams
adapted their communication strategy over time.
Pairwise comparisons (LSD) revealed only a sig-
nificant decrease in pulling during Mission 8 (M =
0.94, SD = 0.46) compared to all other missions (p <
.05; Figure 9). The dip in pulling at Mission 8 may be
attributable to the challenge of overcoming both a
Type III automation and autonomy failure. This was

corroborated by Mission 4, where two Type III
failures occurred resulting in a dip in pulling. The
trend analysis revealed a significant linear trend, F{(8,
558)=4.15,p = .04, npz = 0.06, suggesting a slight
decreasing trend over the nine missions, further
supporting H2. When assessed separately for the two
sessions, no significant trends were found.

In testing H3, pairwise comparisons (LSD) of
the Failure main effect revealed the three Failure
conditions had different pulling rates, p <.001 for
all comparisons. Mirroring pushing, autonomy
failures (M = 1.43, SD = 0.74) generated the
highest pulling rate, compared to automation
failures (M = 1.21, SD = 0.51), followed by times
of no failure (M = 0.78, SD = 0.29). Contrary to
expectations, pulling may also play a role in
overcoming complex failures. This is likely due to
the nature of autonomy comprehension failures,
which may require human team members to re-
peatedly ask the pilot for information.

To further understand how pulling rates changed
in response to different failures (H3), we conducted a
simple effects analysis of the Mission x Failure in-
teraction. Because each mission had only one type
(e.g., Type L, Type II, and Type II; see Table 1) of
autonomy and automation failure, we assessed the
effect of Failure at different levels of Mission (LSD).
As shown in Figure 10, for automation failures,
pulling was relatively stable except for a peak at
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Mission 3 (M = 1.57, SD = 0.60, p < .05), which
significantly differed from all missions except Mis-
sion 6, (p =.07). For autonomy failures, a slight peak
in pulling was observed during Mission 5 (M =1.73,
SD = 1.15), which differed from Missions 3, 4, 6, 7,
and 8 (p <.05), and a valley during Mission 8 (M =
1.02, SD = 0.65), which differed from all missions
(p < .05) except Mission 4 (p = .08). The Mission
4 and 8 valleys in pulling communications corre-
spond to peaks in pushing that came in response to
Type III automation and autonomy failures. Fur-
thermore, though not statistically significant, we
observed a downward trend in pulling over time
during times of no failure, which partially supports
H2. This pulling decline was met with a slight in-
crease in pushing during routine times. Though
pulling has a less systematic relationship with
overcoming failures, teams do seem to adopt more
efficient communication strategies as they become
familiar with the task.

Control Analysis. We ran a control analysis to test
whether our findings could be due to the overall
frequency of communication rather than pushing
or pulling specifically. To do this, we ran a 3
(Cluster) x 3 (Failure) x 9 (Mission) mixed AN-
OVA on the number of chat messages (i.c., overall
communication frequency) for Missions 2—10. We
were unable to replicate the findings of the
prior analyses and did not find a Cluster effect

(p = .802), indicating that the effects reported
above are specific to pushing and pulling, not
communication in general.

Discussion

Our hypotheses were partially supported, with the
data revealing a more complex picture than an-
ticipated. H1 predicted higher pushing rates for
higher performing teams across the three failure
types, wherein higher pushing rates would occur
with more complex failures. Furthermore, we
predicted an associated reduction in pulling during
complex failures, as pushing is more efficient.
Thus, pushing should be relied on during periods
of high workload (MacMillan et al., 2004) and has
been found to be more strongly associated with
performance (Demir et al., 2017). The former was
supported, wherein high-performing teams better
calibrated their communication rates to the degree
of failure complexity. Medium-performing teams
managed to adapt their communication as the
failure situation changed, but not with the fidelity
of high-performing teams, and low-performing
teams failed to update their communications to
match the autonomy failures. What appeared to
differentiate medium- and high-performing teams
was how they handled pulling behaviors, which
was unexpected. Though past literature suggests
high-performing teams might trade pulling for
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pushing communications during times of high
stress (MacMillan et al., 2004), this only seemed to
be the case for medium-performing teams. Perhaps
due to increased bandwidth, high-performing
teams matched the complexity of the failures
through both increased pushing and pulling
communications.

This finding is reminiscent of Ashby, (1956) Law
of Requisite Variety, which posits that for acceptable
performance of a controlled system, the variety
demanded by the system must be matched by the
controller’s increased behavioral variety required to
control the system. This is exhibited in the current
study by the varying degree of communication rates
across the three performance levels, for which high-
performing teams exhibit increased pushing and
pulling rates for all three failure states, whereas the
other performance clusters engaged in a narrower
range of communication rates. Additionally, the re-
lationship between increased variety in pushing/
pulling and performance cluster was contingent on
failure type, with low-performing teams exhibiting
increased pulling for automation failures and high-
performing teams exhibiting increased pulling for
autonomy failures. This suggests that both the
amount of communication variety and the #pe of
communication variety contribute to team effec-
tiveness under degraded conditions.

H2 predicted that teams would increase pushing
over time. We also hypothesized a reciprocal re-
duction in pulling, as teams learned to reduce
communication overhead (MacMillan et al., 2004).
Though teams tended to increase pushing over time,
this was only matched with a downward trend in
pulling during times of no failure. Thus, we infer the
boundaries of the communication overhead frame-
work may not extend to tasks involving failure
perturbations. In the present study, the nature of the
failure may have been a partial driver of commu-
nication demands, wherein effective teams may not
have been able to reduce their reliance on pulling to
reduce communication overhead. Though, theoreti-
cally, pushing was an equally viable strategy to
addressing failures, pulling communications may
have been a default strategy to overcome failures.

Lastly, H3 predicted that more severe failures
would require teams to rely more on pushing than
pulling. This tradeoff was observed in only the most
complex failure environments involving both Type
III automation and autonomy failures. It is possible
that the Type III failures may have required teams to
adjust the efficiency of their communications such
that more attention could be paid to the task
(MacMillan et al., 2004). In failures of lesser severity,
there was little evidence of a systematic push-pull
tradeoff. This points to an explanation of the
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communication overhead framework that goes be-
yond prior theories, which attribute the emergence of
efficient communication strategies to shared mental
models (Entin & Serfaty, 1999; MacMillan et al.,
2004). Here, we see that differences in pushing and
pulling communications may also be context/task-
dependent and likely driven by the changing con-
straints of the environment. In times of nonroutine
team coordination, even with potential training for
team coordination in place, shared mental models
may not always capture the nuances of the present
situation. Thus, in accordance with ITC, team co-
ordination strategies reflect the momentary demands
of the task environment, wherein task constraints are
reflected in team communication strategies.

Limitations and Future Directions

The present study may have been limited in several
ways. First, the task environment was itself a high
workload situation, wherein, even without failures,
some teams could not process all targets within the
allotted time. Additionally, the experiment span-
ned two seven-hour sessions, which could have
contributed to fatigue. These sources of fatigue
may impact the generalizability of the results.
Though HATs tend to work in complex environ-
ments, future research should explore how the
task’s workload directly impacted communication
overhead, separate from the failure conditions.

Another limitation is the type of environmental
variety mentioned in the previous section. The
present study used a limited set of failures to enact
experimental control. The failures the present
study adopted may provide only a small number of
potential perturbations that would occur in actual
RPAS scenarios. Future research should explore a
larger variety of failures to better generalize to field
settings.

Finally, we expected teams to overcome au-
tonomy and automation failures using specific
pushing and pulling communications that were
rooted primarily in failures involving the “Al”
pilot. Assuming the different failures may con-
strain different pushing and pulling strategies that
teams employ, the impact of communication
failures on the HAT system could be further ex-
plored if they occurred in different roles on the
team other than the pilot.

Conclusion

The current study contributes to a growing body of
knowledge on HAT communication and team
performance (e.g., Demir et al., 2017). Failures
implemented in the present study were uniquely
positioned to be studied using team communica-
tion, as their solution required novel communi-
cation patterns. Like prior work using all-human
teams (e.g., MacMillan et al., 2004), the an-
ticipation of team member needs via pushing
communications was evident in high-performing
HATs. However, we also saw a preponderance of
pulling communications that contributed to HAT
success in failure-laden contexts—a finding not
previously observed in all-human teams. In de-
signing autonomous agents, close attention should
be paid to their ability to not only communicate
effectively but also their agility in adapting their
interaction patterns to meet the changing com-
plexity of dynamic and often degraded environ-
ments in which they are deployed (Song et al.,
2022).

Key Points

¢ Higher performing teams had higher rates of
pushing behaviors across failure types, wherein
higher rates of pushing occurred with higher
complexity failures.

® Higher performing teams better calibrated their
communication behavioral complexity to the
degree of failure complexity compared to
medium performing teams, and low performing
teams failed to adjust their communications.

e It is not just the amount of communication
variety but the type of communication variety
that contributes to team effectiveness in de-
graded conditions.

e Teams tended to adjust their communication
strategies in response to failures over time by
increasing their pushing communications. How-
ever, this was not consistently matched with a
decrease in pulling communications.

® Only the most severe autonomy comprehension
failures required teams to confront the effi-
ciency of their communications behaviors
through which teams relied more on pushing
communications than pulling communications.
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