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Introduction

As algorithmic technologies advance, humans in

complex work environments are required to team with

higher levels of artificial intelligence (AI). When

embedded in complex environments, technology

failures in work systems are inevitable, such that as the

system grows in complexity, it can fail in increasingly

unpredictable ways. Thus, to measure team effec-

tiveness, we must assess how teams overcome tech-

nological failures (Cooke et al., 2007). Of particular

importance is how teams overcome automation and

autonomy failures to guard against automation brit-

tleness, lack of transparency, and increased workload

due to system monitoring (Shively et al., 2018). Au-

tomation is “physical technology, including mecha-

nized or computerized systems,” applied in a defined

environment to aid execution of a process. Autonomy

refers to “a state of being” formechanical agents with a

degree of independence, discretion, and adaptability to

their environment (Kaber, 2018, p. 407). Accordingly,

efficiently overcoming failures associated with these

technologies is an important marker of team effec-

tiveness. Due to the importance of communication for

team coordination (Chow et al., 2000; Cooke et al.,

2013), the current study considers which team com-

munication strategies (between human teammates

amongst each other and their artificial counterparts)

contribute to effective teamwork inHuman-Autonomy

Teams (HATs) when technologies fail.

Human-Autonomy Teams are systems of inter-

active subcomponents, consisting of human and

technological variables (Gorman et al., 2019). In-

creasingly, team tasks involve reliance on nonhuman

autonomous teammates (Demir & Cooke, 2014;

McNeese et al., 2018; O’Neill et al., 2022). However,

the natural language processing abilities of AI agents

remain somewhat limited, which places a constraint

on team coordination (Demir et al., 2017; National

Academies of Sciences, 2021). Although recent

models at the time of this writing, such as Chat GPT,

reflect significant progress in language abilities,

research shows that their capabilities are still not at a

caliber to replace human teammates (Tenhundfeld &

ChatGPT, 2023; Wardat et al., 2023). Here, we

consider which communication strategies in HATs

contribute to success in overcoming automation and

autonomy failures. The present study assesses these

constructs in the context of a Remotely Piloted

Aircraft System-Synthetic Task Environment (RPAS-

STE), where one team member is assumed by a

Wizard of Oz (WoZ; Riek, 2012) “AI” teammate that

fails in experimentally controlled ways.

Implicit Coordination

Team cognition—“the cognitive processes or

activities that occur at a team level” (Cooke

et al., 2013, p. 256)—allows for implicit coor-

dination strategies (e.g., anticipation of infor-

mation needs) to develop among team members

(Cannon-Bowers & Salas, 1990; DeChurch &

Mesmer-Magnus, 2010; Entin & Serfaty, 1999;

Orasanu, 1990). Implicit coordination—a team’s

ability to coordinate across members without

relying on overt communication—is important

to team success during periods of high workload

as it allows the team to reduce the cognitive

resources spent on communication overhead

(MacMillan et al., 2004). Though communica-

tion is a necessary component of team coordi-

nation, it requires time, effort, and attention;

communication overhead is the cost of these

resources demanded by team communication

(MacMillian et al., 2004). Given that autono-

mous agents do not yet communicate at a level

sufficient to fully replace a human teammate

(Tenhundfeld & ChatGPT, 2023; Wardat et al.,

2023), implicit coordination is relevant to HATs.

Implicit coordination strategies have been shown

to distinguish high- from low-performing teams

(Entin & Serfaty, 1999). By relying on implicit

coordination strategies, high-reliability teams reduce

communication overhead and shift attentional re-

sources to other aspects of the task. Teams can adapt

their communication strategy by pushing informa-

tion (i.e., unprompted information relaying) more

than pulling information (i.e., information requests

from one teammate to another that are reciprocated
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with information sharing; Entin & Serfaty, 1999;

MacMillan et al., 2004). Increases in pushing, rel-

ative to pulling, signal the development of implicit

coordination processes, such that successful teams

anticipate needs, thereby engaging in more efficient

communication when task load increases (Entin &

Serfaty, 1999). The present study assesses the impact

of pushing and pulling on HATs’ ability to overcome

unanticipated automation and autonomy failures. We

posit that the rates of these specific communication

strategies will differ during failure periods.

In studying observable team behaviors, the

Theory of Interactive Team Cognition (ITC;

Cooke et al., 2013) posits that we are directly

studying team coordination and team cognition.

The theory, which we adopt in the present study,

assumes that real-time interactions amongst team

members and the task environment are team

cognition. In accordance with these assumptions,

communication artifacts have historically been

assessed to understand coordination processes in

all-human teams (e.g., MacMillan et al., 2004) as

well as HATs (e.g., Demir et al., 2017). Given the

limited communicative abilities of many artificial

agents, it is not surprising that HATs have been

shown to push and pull information less than all-

human teams (Demir et al., 2017), where like in

all-human teams, in HATs, pushing and pulling

behaviors are noted for all members of the team,

including the autonomous teammates. This re-

duction in information exchange in HATs con-

tributes to performance deficits due to weaker team

coordination and reinforces the importance of

pushing information in team coordination, as

pushing across all teams—all-human and HATs—

was more positively associated with team per-

formance than pulling (Demir et al., 2017). These

findings complement prior work with all-human

teams, wherein high-performing teams exhibited

more pushing than low-performing teams, allow-

ing the high-performing teams to communicate

and coordinate more efficiently while maintaining

effectiveness (MacMillan et al., 2004).

The present study builds upon existing work by

not only assessing the pushing and pulling patterns of

HATs but also looking at these communication

strategies during failure. In dynamic environments,

teams must adapt their interactions to meet the co-

ordination demands of the situation (Cooke et al.,

2013; Gorman et al., 2006). HATs that more

effectively adapt their coordination patterns in re-

sponse to situational changes are more successful

than those that demonstrate rigidity during novel

periods (Grimm et al., 2018; Song et al., 2022). One

way in which teams may change their behavior to

respond to novelty is via updates to their commu-

nication strategy. Specifically, increases in informa-

tion sharing may distinguish higher-performing from

lower-performing HATs (Song et al., 2022). In the

present study, we empirically explore this hypothesis

to understand how high-, medium-, and low-

performing HATs adjust their pushing and pulling

strategies in response to technological failures.

The Current Study

In the RPAS-STE, three team members—a naviga-

tor, photographer, and “AI” pilot—coordinated to fly

a simulated RPA to capture reconnaissance photos of

targets. The task was comprised of several missions

with automation and autonomy failures injected for

specified targets. Automation failures affected the

displays of the pilot and photographer, whereas

autonomy failures impacted the ability of the “AI”

agent to accurately respond to the developing situ-

ation. Human team members needed to recognize

failures, then coordinate to overcome them in a

limited amount of time. High-, medium-, and low-

performing teams were differentiated through a

cluster analysis, subsequently explained.

Research Question #1 (RQ1). Do pushing and

pulling communication strategies for the three

team performance clusters significantly differ be-

tween failure types?

Hypothesis #1 (H1). As failures grew in com-

plexity, we expected higher performing teams to

increase their pushing communications. Lower-

performing teams were expected to exhibit a rel-

atively low rate of pushing communications for all

failure conditions. Pulling communications are

less tied to performance (Demir et al., 2017);

however, we expected less pulling to make way for

more pushing in higher-performing teams as

failures grew in complexity.

Research Question #2 (RQ2). Do teams learn to

adjust their pushing and pulling strategies in re-

sponse to failures over time?
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Hypothesis #2 (H2). Teams would increase push-

ing over time as they learned to communicate more

efficiently. Given the general increase in pushing

communications, we predicted an associated re-

duction in pulling over time.

Research Question #3 (RQ3). How do changes

in failure severity impact pushing and pulling

communications?

Hypothesis #3 (H3). In addition to changes in

pushing/pulling over time (H2), we expected that

pushing/pulling would be impacted by failure

complexity. As the failures grew in complexity, we

expected pushing to increase and pulling to de-

crease during the most severe failures to increase

communication efficiency.

Method

Participants

Twenty-two teams (44 participants) were recruited

from Arizona State University and surrounding

areas. Each team had two participants, a photog-

rapher and navigator. The pilot was an experi-

menter trained to mimic behaviors of an AI agent.

Normal or corrected-to-normal vision and fluency

in English were required. Ages ranged from 18 to

36 (Mage = 23, SDage = 3.90, 47% male). Each

team participated in two seven-hour sessions and

was compensated $10/hour. This research com-

plied with the American Psychological Associa-

tion Code of Ethics and was approved by the

Cognitive Engineering Research Institute’s Insti-

tutional Review Board. Participants consented to

participate.

Apparatus

This study utilized the Cognitive Engineering

Research on Team Tasks-RPAS-STE (CERTT-

RPAS-STE; Cooke & Shope, 2004), which has

three team member roles: (1) navigator, who

provided airspeed, altitude, and radius information

to the pilot, and created and updated the flight plan;

(2) pilot, who controlled aircraft specifications and

negotiated with the photographer regarding alti-

tude and airspeed; and (3) photographer, who

asked the navigator for the effective radius of

targets, operated the camera, and relayed the

quality of captured photos to the team. Each team

member had access to a limited amount of infor-

mation which required them to communicate to

complete their individual- and team-level tasks: (1)

navigator (Figure 1), had access to the map,

waypoint information, and to view the status of

the RPA (i.e., airspeed and altitude); (2) pilot

(Figure 2), had access to RPA controls and to view

the current route; (3) photographer (Figure 3), had

access to the camera and to view the status of the

RPA. Teammates communicated via text chat.

Teams flew a simulated RPA through a series of

Restricted Operating Zones (ROZs) to take pho-

tographs of target waypoints while avoiding

hazard waypoints. All waypoints had airspeed,

altitude, and effective radius restrictions that had to

be met for the CERTT-RPAS-STE to recognize

that the RPA was in the effective radius of a

waypoint. ROZs were marked by “entry” and

“exit” waypoints with two to three target way-

points in between. Teams first flew the RPA

through an “entry” waypoint by meeting set air-

speed, altitude, and radius restrictions, then flew to

target waypoints within the same ROZ.

Once the RPAwas in the radius of a target, the

photographer could take a photograph. The pho-

tographer had to negotiate the altitude and airspeed

with the pilot to match the settings required by

their camera. Meanwhile, the pilot would adjust

the altitude and airspeed to match the photogra-

pher’s camera settings. After a target photograph

was taken the team would fly the RPA to the next

target waypoint, the “exit” waypoint, and then to

the next ROZ. This cycle continued until all the

targets were photographed or the mission time

expired.

In this WoZ paradigm (e.g., Cooke et al., 2020a,

2020b; Kelley, 1983), the navigator and photogra-

pher were seated in the same room separated by a

partition and instructed that the pilot was anAI agent,

while the pilot (trained experimenter) was located in

a separate room following a script to act as if they

were an AI agent. We utilized a WoZ paradigm to

introduce failures in a controlled fashion. The pilot

was modeled after a synthetic pilot teammate de-

veloped by Ball et al. (2010) that utilized ACT-R

cognitive modeling architecture (Anderson, 2007) to

simulate human cognition via text chat. The WoZ

pilot therefore had a repository of dialog for the task,
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and, during routine conditions understood requests

for information and knew when to ask for infor-

mation (McNeese et al., 2018).

Using a within-subjects manipulation, each team

encountered two major types of technological per-

turbations: (1) automation failures involving role-

specific display failures, which required the operator

to obtain this information by communicating with

another teammate and (2) autonomy failures involving

“AI” pilot failures to either comprehend or anticipate

the developing situation. Teams had to overcome

failures by pushing or pulling the correct information in

nonroutine ways to take a good photograph within a

time limit (Table 1).

Procedure

The experiment consisted of ten 40-min missions

across two seven-hour sessions with a one-to-two-

week interval between. Each participant completed a

Figure 1. Navigator Role Screens. Note. Map and route options (left), RPA status screen (middle), and text-chat

system (right).

Figure 2. Pilot Role Screens. Note. RPA status screen (left), RPA controls (middle), and text-chat system (right).

Figure 3. Photographer Role Screens.Note.Camera controls (left), RPA status screen (middle), and text-chat system

(right).
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30-min PowerPoint training. Each team then com-

pleted a 30-min hands-on training. Experimenters

ensured participants could perform the task before

beginning the experimental missions. There were

11–20 targets per mission. One automation and one

autonomy failure were applied to two specified target

waypoints during Missions 2–10.

Measures

Mission- and target-level measures of team per-

formance, team process ratings, and team situation

awareness were collected. To focus on communi-

cation as it relates to team performance, perfor-

mance clustering considered: (1)Number of failures

overcome: If a team overcame any failure within a

mission, they received a 1; if they did not overcome

a failure, they scored 0. We summed this variable

across the nine failure missions. (2) Mission level

performance score: a weighted composite of time

spent inwarning and alarm states, number ofmissed

targets, and rate of acceptable photographs per

minute. Each team began with a maximum score of

1,000, and points were deducted depending on the

Table 1. Description of Automation and Autonomy Failures With Associated Team Solutions.

Description of Failure Team Solution

Autonomy Type I Comprehension Failure I: The AI agent repeatedly

asks the same question to a human team
member who sent it information.

To correct the AI agent’s behavior, the

human team member provides
information regarding the next target

waypoint.
Type

II

Anticipation Failure: The AI agent moves onto the

next waypoint without giving the
photographer enough time to take a photo

(Cooke et al., 2020a, 2020b).

Either the navigator or photographer needs

to display an awareness of the AI agent’s
limitations by becoming aware of the AI

agent’s abnormal behavior and direct the
agent back to the missed target.

Type
III

Comprehension Failure II: The AI agent does not
perform the required actions for the target

waypoint due to its misunderstanding of

information from human team members. For
example, the AI agent may repeatedly adjust

altitude for the wrong target.

Either the navigator can provide information
for the next target waypoint, or the

photographer can provide the altitude

information for the current target
waypoint again. If the teammate repeats

the correct information, the AI agent
would correct the altitude (Cooke et al.,

2020a, 2020b).

Automation Type I A problem occurs on the photographer’s screen,
which prohibits the photographer to see the

RPA status. This included current and next
waypoint information, time, distance, bearing

and course deviation.

The photographer can acquire the RPA status
information from the pilot.

Type

II

A problem occurs on the pilot’s screen, which

prohibits the pilot to see the current altitude
and airspeed of the RPA. In the context of a

WoZ study, the participants are led to believe
that the pilot cannot see the current altitude/

airspeed.

The pilot can contact the photographer, since

the photographer’s screen shows this
information.

Type

III

A more severe problem occurs on the pilot’s

screen, which prohibits the pilot to see the
current altitude and airspeed, remaining time,

distance, and bearing to the current target
waypoint.

The pilot needs to communicate with both

the photographer and the navigator to
acquire the correct information about the

upcoming waypoint.

Note. All failures were implemented according to a predetermined schedule. Increasing type numbers indicate increases in failure

complexity. For example, the Type III Automation Failure involves more screens going out than either the Type I or Type II

Automation failures. All failures could have been overcome by implementing either pushing or pulling communication strategies.

Table 1 was adapted from Grimm et al. (2018).
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final values of mission parameters (Cooke et al.,

2007). (3) Target Processing Efficiency (TPE): TPE

is based on the time spent inside target radii, with

higher scores corresponding to greater efficiency.

The maximum score per target was 1000. Points

were deducted if a good photo was not captured

(Cooke et al., 2007).

Teams were clustered into three groups (high,

medium, and low) based on their average mission-

level performance score, TPE, and number of failures

overcome using K-means clustering (Hastie et al.,

2009), as reported in McNeese et al. (2019). We use

the same clustered teams they report. As K-means

clustering groups the data into a prespecified number

of groups, the “Elbow Method” was chosen to de-

termine the optimal number of groups, k. This

method entails plotting the within groups sum of

squares for multiple values of k and finding the point

at which the marginal drops, forming an “elbow”

(Sarstedt & Mooi, 2014). Figure 4 below shows an

“elbow” at k= 2 and k= 4.However, the values of the

within groups sum of squares taper off after k =

4 suggesting the “elbow” to be k = 4 and the optimal

number of clusters, k, to be three. Teams were then

clustered into high-, medium-, and low-performing

groups, with eight, seven, and seven teams, re-

spectively, in each cluster.

Table 2 outlines the five communication

strategies used to code pushing and pulling

communications for human and “AI” teammates,

derived from the broader spectrum of eight

verbal behaviors associated with team coordi-

nation (Demir et al., 2016). For the purposes of

this study, we selected only the five behaviors

classified as either pushing or pulling of

information.

Communications were independently coded

by two experimenters. Inter-rater reliability was

evaluated for agreement with Cohen’s κ. Pushing

codes, κ = 0.844, 95% CI [0.838, 0.850], and

pulling codes, κ = 0.861, 95% CI [0.855, 0.867],

indicating high agreement. To control for the total

amount of time a HAT spent in a given failure or

nominal (no failure) scenario, we divided pushing

and pulling counts by the time (in minutes) the

HAT spent addressing the scenario to generate

pushing and pulling rates.

Overcoming failures required teams to coor-

dinate using nonroutine patterns. We focus our

analyses on differences in communication strate-

gies between the various failures and levels of

team performance, as pushing is hypothesized to

be more advantageous than pulling information.

Although the experimental manipulation and the

focus of our analysis potentially share some var-

iance due to the centrality of communication in

both, all failures could have theoretically been

overcome with either pushing or pulling strategies.

Figure 4. Within Groups Sum of Squares as a Function of the Number of Clusters. Note. Figure adapted from

McNeese et al. (2019).
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Results

Team Communication as a Function of

Performance Cluster and Failure Type

We ran separate 3 (Cluster: High, Medium, Low) ×

3 (Failure: None, Automation, Autonomy) × 8

(Mission: 2–9) mixed Analysis of Variances

(ANOVAs) on pushing and pulling rates. Because

the within-subject data matrix resulted in missing

communication data for some missions, we uti-

lized a mixed ANOVA technique that allowed us to

include all available data in the analyses (Enders,

n.d). This technique analyzes the data as a mul-

tilevel model and uses the Satterthwaite approxi-

mation to calculate denominator degrees of

freedom (UCLA, n.d). Due to the use of this

technique, we measured effect sizes using Cohen’s

d, where d = 0.20, 0.50, and 0.80, indicate small,

medium, and large effects, respectively (Cohen,

1977).

Pushing Communications. For pushing communi-

cations, there was a significant Mission main ef-

fect, F(8, 545.15) = 14.17, p < .001, Failure main

effect, F(2, 545.16) = 85.33, p < .001, Mission ×

Failure interaction, F(16, 545.10) = 4.34, p < .001,

and Cluster × Failure interaction, F(4, 545.15) =

3.89, p = .004.

To explore how failures differed by performance

level (H1), we assessed the simple effects of the

Cluster × Failure interaction by first examining the

effect of Failure across different levels of Cluster

(Least Significant Difference; LSD; Figure 5). Low-

performing teams had a lower pushing rate during

times of no failure (M = 0.94, SD = 0.58) compared

to automation (M = 1.42, SD = 0.79, p < .001, d =

0.70) and autonomy failures (M = 1.50, SD = 1.08,

p < .001, d = 0.66), and pushing rates did not differ

between the two failure types. For medium- and

high-performing teams, pushing differed across all

levels of Failure, wherein autonomy failures had the

greatest pushing rate (MMed = 1.57, SDMed = 0.85,

MHigh = 2.04, SDHigh = 0.86), compared to auton-

omation failures (MMed = 1.43, SDMed = 0.60,

MHigh = 1.59, SDHigh = 0.55), followed by times of

no failure (MMed = 1.12, SDMed = 0.62,MHigh = 1.18,

SDHigh = 0.38), all p < .05. In accordance with H1,

results suggest high-performing teams adapted their

pushing rates to match the increasing complexity of

failure types, with high-performing teams increasing

their pushing more than medium-performing teams

from automation to autonomy failures (Figure 5).

Our investigation into H2 explored the Mis-

sion main effect, and a separate trend analysis

conducted in R (R Core Team, 2021), to assess

whether teams learned to increase pushing rates

over time. Pairwise comparisons (LSD) pro-

vided support for this hypothesis, in that from

Mission 2 through 4, p < .05 for all comparisons,

from Mission 7 to 8, p = .005, and from Mission

9 to 10, p < .001, teams increased pushing be-

haviors (Figure 6). The trend analysis also

supported H2, in that a significant linear trend

was found over the nine missions, F(8, 558) =

14.24, p < .001, ηp
2 = 0.17. A significant cubic

trend was also found, F(8, 558) = 7.91, p = .005,

hp
2 = 0.10, but this reflects the dip in pushing

between Missions 4 and 5, which was likely the

result of Mission 5 being the first mission of

Session 2, for which teams had to briefly re-

acquire pushing strategies. When assessing

trends in the two sessions separately, we found

significant linear trends from both Missions 2–4,

F(2, 186) = 6.72, p < .001, hp
2 = 0.07, and from

Missions 5–10, F(5, 372) = 16.59, p < .001,

Table 2. Pushing and Pulling Communications.

Behavior Type Description

General status update Push Informing other team members about current status

Suggestion Push Making suggestions to the other team members

Planning ahead Push Anticipating next steps and creating rules for future encounters

Inquiry About the status of
others

Pull Inquiries about the status of other team member(s) seeking information on
conditions, directions, ranges, or representations.

Repeated request Pull Requesting the same information or action from other team member(s)

Note. Table 2 was adapted from Demir et al. (2017).
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ηp
2 = 0.18. We explore this finding further as it

relates to H3.

In testing H3, pairwise comparisons (LSD)

indicated that all three Failure conditions led to

different pushing rates, p < .001. During autonomy

failures (M = 1.73, SD = 0.96), teams generated

higher pushing rates than during automation

failures (M = 1.48, SD = 0.65, d = 0.31) and no

failure (M = 1.09, SD = 0.54, d = 0.84). Auto-

mation failures generated higher pushing rates than

times with no failures (d = 0.67). These findings

indicate that as failures became more challenging

to overcome, teams pushed more information to

overcome them, providing support for H3.

To further assess H3, a simple effects analysis

of the Mission × Failure interaction was conducted

Figure 5. Performance Cluster by Failure Type Interaction on Pushing Communication Rate. Note. Error bars
represent 95% confidence intervals (CIs).

Figure 6. Average Rate of Pushing Behaviors over Missions 2-10. Note. Error bars represent 95% CIs.
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to understand how pushing communications changed

in response to different failure types (e.g., Type II

vs. Type III autonomy; see Table 1). We assessed

the effect of Failure at different levels of Mission

as each mission had only one type of autonomy

and automation failure. Pairwise comparisons

(LSD) indicated that meaningful differences pre-

dominately occurred during autonomy failures

(Figure 7). During times of no failure and auto-

mation failures, teams displayed relatively stable

pushing rates. Pushing appears to be particularly

important in addressing autonomy failures. As

shown in Figure 3, pushing serially increased from

Type I to Type II to Type III autonomy failures. In

particular, the Type III comprehension failure

likely forced human teammates to continually push

information to the agent to enforce comprehen-

sion, while also sharing information with each

other. This suggests that both failure complexity

(e.g., automation vs. autonomy) and failure se-

verity (e.g., comprehension autonomy failure with

direct implications for task performance; auton-

omy failure Type III) drive pushing behaviors, in

accordance with H3.

Pulling Communications. For pulling communica-

tions, there was a significant Failure main effect,

F(2, 545.51) = 109.98, p < .001, Mission main

effect, F(8, 545.50) = 2.81, p = .005, Cluster ×

Failure interaction, F(4, 545.50) = 3.48, p = .008,

and Mission × Failure interaction, F(16, 545.35) =

3.18, p < .001.

To explore how failures differed by performance

level (H1), we assessed the simple effects of the

Cluster × Failure interaction by examining the effect

of Failure at different levels of Cluster (LSD;

Figure 8). Low-performing teams had a lower

pulling rate during times of no failure (M = 0.85,

SD = 0.28) compared to automation (M = 1.35, SD =

0.64), p < .001, d = 1.00, and autonomy failures (M =

1.39, SD = 0.55), p < .001, d = 1.25, although pulling

rates did not differ between the two failure types. For

medium- and high-performing teams, however,

pulling differed across all levels of failure, where

autonomy failures had the greatest rate of pulling

(MMed = 1.26, SDMed = 0.52,MHigh = 1.63, SDHigh =

0.94), compared to automation failures (MMed = 1.04,

SDMed= 0.38,MHigh= 1.22, SDHigh= 0.44), followed

by times of no failure (MMed = 0.68, SDMed = 0.28,

MHigh = 0.81, SDHigh = 0.28), p ≤ .01 for all com-

parisons within clusters. We expected less pulling to

make way for more pushing in higher performing

teams as failures grew in complexity (H1); on the

contrary, the pulling results essentially mirrored the

pushing results. Thus, increases in failure complexity

led to increased pushing and pulling communications.

Figure 7. Average Rate of Pushing Behaviors over Mission, Split by Failure Type. Notes. Lines represent broad failure

type (none, automation, autonomy), and markers represent different failure subtypes (I, II, or III). Error bars
represent 95% CIs.
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Examining the simple effects of the Cluster ×

Failure interaction for the effect of Cluster at

different levels of Failure (Figure 8) we found two

significant differences. During automation fail-

ures, medium-performing teams (M = 1.04, SD =

0.38) had a lower pulling rate than low-performing

teams (M = 1.35, SD = 0.64), p < .05, d = 0.58.

During autonomy failures, high-performing teams

(M = 1.63, SD = 0.94) had a higher pulling rate

than medium-performing teams (M = 1.22, SD =

0.52), p = .009, d = 0.53. These results suggest that

high pulling rates do not precisely correspond to

high performance (Figure 4). Given that high-

performing teams always pushed the most and

low-performing teams always pushed the least,

these failure-based differences in pulling behaviors

reinforce pulling communications’ less direct

impact on performance compared to pushing

(Demir et al., 2017).

Our investigation into H2 explored the Mission

main effect, and a separate trend analysis conducted

in R (R Core Team, 2021), to assess whether teams

adapted their communication strategy over time.

Pairwise comparisons (LSD) revealed only a sig-

nificant decrease in pulling during Mission 8 (M =

0.94, SD = 0.46) compared to all other missions (p <

.05; Figure 9). The dip in pulling atMission 8may be

attributable to the challenge of overcoming both a

Type III automation and autonomy failure. This was

corroborated by Mission 4, where two Type III

failures occurred resulting in a dip in pulling. The

trend analysis revealed a significant linear trend, F(8,

558) = 4.15, p = .04, ηp
2 = 0.06, suggesting a slight

decreasing trend over the nine missions, further

supporting H2.When assessed separately for the two

sessions, no significant trends were found.

In testing H3, pairwise comparisons (LSD) of

the Failure main effect revealed the three Failure

conditions had different pulling rates, p < .001 for

all comparisons. Mirroring pushing, autonomy

failures (M = 1.43, SD = 0.74) generated the

highest pulling rate, compared to automation

failures (M = 1.21, SD = 0.51), followed by times

of no failure (M = 0.78, SD = 0.29). Contrary to

expectations, pulling may also play a role in

overcoming complex failures. This is likely due to

the nature of autonomy comprehension failures,

which may require human team members to re-

peatedly ask the pilot for information.

To further understand how pulling rates changed

in response to different failures (H3), we conducted a

simple effects analysis of the Mission × Failure in-

teraction. Because each mission had only one type

(e.g., Type I, Type II, and Type II; see Table 1) of

autonomy and automation failure, we assessed the

effect of Failure at different levels of Mission (LSD).

As shown in Figure 10, for automation failures,

pulling was relatively stable except for a peak at

Figure 8. Performance Cluster by Failure Type Interaction on Pulling Rates. Note. Error bars represent 95% CIs.
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Mission 3 (M = 1.57, SD = 0.60, p < .05), which

significantly differed from all missions except Mis-

sion 6, (p = .07). For autonomy failures, a slight peak

in pulling was observed during Mission 5 (M = 1.73,

SD = 1.15), which differed from Missions 3, 4, 6, 7,

and 8 (p < .05), and a valley during Mission 8 (M =

1.02, SD = 0.65), which differed from all missions

(p < .05) except Mission 4 (p = .08). The Mission

4 and 8 valleys in pulling communications corre-

spond to peaks in pushing that came in response to

Type III automation and autonomy failures. Fur-

thermore, though not statistically significant, we

observed a downward trend in pulling over time

during times of no failure, which partially supports

H2. This pulling decline was met with a slight in-

crease in pushing during routine times. Though

pulling has a less systematic relationship with

overcoming failures, teams do seem to adopt more

efficient communication strategies as they become

familiar with the task.

Control Analysis. We ran a control analysis to test

whether our findings could be due to the overall

frequency of communication rather than pushing

or pulling specifically. To do this, we ran a 3

(Cluster) × 3 (Failure) × 9 (Mission) mixed AN-

OVA on the number of chat messages (i.e., overall

communication frequency) for Missions 2–10. We

were unable to replicate the findings of the

prior analyses and did not find a Cluster effect

(p = .802), indicating that the effects reported

above are specific to pushing and pulling, not

communication in general.

Discussion

Our hypotheses were partially supported, with the

data revealing a more complex picture than an-

ticipated. H1 predicted higher pushing rates for

higher performing teams across the three failure

types, wherein higher pushing rates would occur

with more complex failures. Furthermore, we

predicted an associated reduction in pulling during

complex failures, as pushing is more efficient.

Thus, pushing should be relied on during periods

of high workload (MacMillan et al., 2004) and has

been found to be more strongly associated with

performance (Demir et al., 2017). The former was

supported, wherein high-performing teams better

calibrated their communication rates to the degree

of failure complexity. Medium-performing teams

managed to adapt their communication as the

failure situation changed, but not with the fidelity

of high-performing teams, and low-performing

teams failed to update their communications to

match the autonomy failures. What appeared to

differentiate medium- and high-performing teams

was how they handled pulling behaviors, which

was unexpected. Though past literature suggests

high-performing teams might trade pulling for

Figure 9. Average Rate of Pulling Behaviors over Missions 2-10. Note. Error bars represent 95% CIs.
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pushing communications during times of high

stress (MacMillan et al., 2004), this only seemed to

be the case for medium-performing teams. Perhaps

due to increased bandwidth, high-performing

teams matched the complexity of the failures

through both increased pushing and pulling

communications.

This finding is reminiscent of Ashby, (1956) Law

of Requisite Variety, which posits that for acceptable

performance of a controlled system, the variety

demanded by the system must be matched by the

controller’s increased behavioral variety required to

control the system. This is exhibited in the current

study by the varying degree of communication rates

across the three performance levels, for which high-

performing teams exhibit increased pushing and

pulling rates for all three failure states, whereas the

other performance clusters engaged in a narrower

range of communication rates. Additionally, the re-

lationship between increased variety in pushing/

pulling and performance cluster was contingent on

failure type, with low-performing teams exhibiting

increased pulling for automation failures and high-

performing teams exhibiting increased pulling for

autonomy failures. This suggests that both the

amount of communication variety and the type of

communication variety contribute to team effec-

tiveness under degraded conditions.

H2 predicted that teams would increase pushing

over time. We also hypothesized a reciprocal re-

duction in pulling, as teams learned to reduce

communication overhead (MacMillan et al., 2004).

Though teams tended to increase pushing over time,

this was only matched with a downward trend in

pulling during times of no failure. Thus, we infer the

boundaries of the communication overhead frame-

work may not extend to tasks involving failure

perturbations. In the present study, the nature of the

failure may have been a partial driver of commu-

nication demands, wherein effective teams may not

have been able to reduce their reliance on pulling to

reduce communication overhead. Though, theoreti-

cally, pushing was an equally viable strategy to

addressing failures, pulling communications may

have been a default strategy to overcome failures.

Lastly, H3 predicted that more severe failures

would require teams to rely more on pushing than

pulling. This tradeoff was observed in only the most

complex failure environments involving both Type

III automation and autonomy failures. It is possible

that the Type III failures may have required teams to

adjust the efficiency of their communications such

that more attention could be paid to the task

(MacMillan et al., 2004). In failures of lesser severity,

there was little evidence of a systematic push-pull

tradeoff. This points to an explanation of the

Figure 10. Average Rate of Pulling Behaviors over Mission. Note. Lines represent broad failure type (none,

automation, autonomy), and markers represent different failure subtypes (I, II, or III). Error bars represent 95% CIs.
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communication overhead framework that goes be-

yond prior theories, which attribute the emergence of

efficient communication strategies to shared mental

models (Entin & Serfaty, 1999; MacMillan et al.,

2004). Here, we see that differences in pushing and

pulling communications may also be context/task-

dependent and likely driven by the changing con-

straints of the environment. In times of nonroutine

team coordination, even with potential training for

team coordination in place, shared mental models

may not always capture the nuances of the present

situation. Thus, in accordance with ITC, team co-

ordination strategies reflect the momentary demands

of the task environment, wherein task constraints are

reflected in team communication strategies.

Limitations and Future Directions

The present study may have been limited in several

ways. First, the task environment was itself a high

workload situation, wherein, even without failures,

some teams could not process all targets within the

allotted time. Additionally, the experiment span-

ned two seven-hour sessions, which could have

contributed to fatigue. These sources of fatigue

may impact the generalizability of the results.

Though HATs tend to work in complex environ-

ments, future research should explore how the

task’s workload directly impacted communication

overhead, separate from the failure conditions.

Another limitation is the type of environmental

variety mentioned in the previous section. The

present study used a limited set of failures to enact

experimental control. The failures the present

study adopted may provide only a small number of

potential perturbations that would occur in actual

RPAS scenarios. Future research should explore a

larger variety of failures to better generalize to field

settings.

Finally, we expected teams to overcome au-

tonomy and automation failures using specific

pushing and pulling communications that were

rooted primarily in failures involving the “AI”

pilot. Assuming the different failures may con-

strain different pushing and pulling strategies that

teams employ, the impact of communication

failures on the HAT system could be further ex-

plored if they occurred in different roles on the

team other than the pilot.

Conclusion

The current study contributes to a growing body of

knowledge on HAT communication and team

performance (e.g., Demir et al., 2017). Failures

implemented in the present study were uniquely

positioned to be studied using team communica-

tion, as their solution required novel communi-

cation patterns. Like prior work using all-human

teams (e.g., MacMillan et al., 2004), the an-

ticipation of team member needs via pushing

communications was evident in high-performing

HATs. However, we also saw a preponderance of

pulling communications that contributed to HAT

success in failure-laden contexts—a finding not

previously observed in all-human teams. In de-

signing autonomous agents, close attention should

be paid to their ability to not only communicate

effectively but also their agility in adapting their

interaction patterns to meet the changing com-

plexity of dynamic and often degraded environ-

ments in which they are deployed (Song et al.,

2022).

Key Points

· Higher performing teams had higher rates of

pushing behaviors across failure types, wherein

higher rates of pushing occurred with higher

complexity failures.
· Higher performing teams better calibrated their

communication behavioral complexity to the

degree of failure complexity compared to

medium performing teams, and low performing

teams failed to adjust their communications.
· It is not just the amount of communication

variety but the type of communication variety

that contributes to team effectiveness in de-

graded conditions.
· Teams tended to adjust their communication

strategies in response to failures over time by

increasing their pushing communications. How-

ever, this was not consistently matched with a

decrease in pulling communications.
· Only the most severe autonomy comprehension

failures required teams to confront the effi-

ciency of their communications behaviors

through which teams relied more on pushing

communications than pulling communications.
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