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Abstract

Skraaning and Jamieson (2023) raise some interesting issues related to the response of humans to
automation failures and offer a taxonomy of failure types that broadens its definition. In this
commentary a further attempt to broaden the scope of automation failures is made that places
failures within a sociotechnical system of multiple humans and multiple machine components
including automation. A suggestion of how one might understand the system’s response to
automation failures is offered and the inclusion of autonomy is raised as another complication.
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Expanding Human Response to Automation Failures to Sociotechnical Systems

Skraaning and Jamieson (2023) examine the concept of automation failures and human
performance in response to those failures. Their claim is that automation failure as defined as a
failure of solely the support system is overly narrow. Also, they argue that automation failure
defined as any human misconception about automation is too broad. They go on to provide
examples of automation failures in the aviation domain in which the automation worked as
designed but was provided inaccurate data by another failed part of the system. These they
labeled as “Systemic Automation Failures,” a term that I fully endorse. Skraaning and Jamieson
(2023) go on to provide a taxonomy of automation failures that include the Systemic
Automation Failures in addition to Elementary Automation Failures and failures arising from
Human-Automation Interaction Breakdowns. It is interesting that “Human and Organizational

Slips” are excluded from the taxonomy of automation induced challenges - more on this later.

From Human Automation Interaction to Human Automation Systems

I agree with Skraaning and Jamieson (2023), on the need to broaden our concept of
automation failure and human performance challenges but would go at least one step further by
proposing that most automation that humans interact with today and that presents the majority of
challenges to human performance is embedded in a large and complex sociotechnical system
(Carayon, 2006). Automation is not monolithic but occurs within a system of other machine
components and other automation. In most cases, including the ones referenced by Skraaning
and Jamieson (2023) — nuclear power plants and aviation — the system is one consisting of not
only multiple machines and automated components, but also multiple humans, often with

complex work interdependencies. In these sociotechnical systems it is difficult to parse the



single operator interacting with a single automation out of the entire system. As an alternative to
predicting the human’s response to automation failure, we might predict the system’s response to

Systemic Automation Failures.

This systems thinking has led to a recent focus on human-automation teaming rather than
human — automation interaction (O’Neill, McNeese, Baron, & Shelbe, 2022). A team is a system
with team members that have a common goal and with varying degrees of interdependency
(Cooke, Cohen, et al., 2022). Taking a systems perspective, it follows that teams need to be
measured at the team level in the context of their task (Cooke, Gorman, et al., 2013). One way to
measure at the team level is to focus that measurement on system interactions such as team

communication or joint activity (Cooke & Gorman, 2009).

Indeed, it is because of complex and often unanticipated system interactions that it is
difficult to isolate system components and point to a single point of failure. When perturbations
(or failures) are introduced to the system, it is the system that responds to the failure by either
adapting by reorganization and overcoming the failure or breaking down. Often a single failure
will cascade through a system impacting other components along the way. This is depicted in
Reason’s (1990) “Swiss Cheese Model” of accidents in which accidents occur through multiple
holes or weaknesses in layers of defenses that happen to align and result in an accident. This is
realized in most aviation, medical, and industrial accidents as reported in Casey’s (1998) stories
in his book, “Set Phasers on Stun.” The aviation examples of Skraaning and Jamieson (2023) are
not single failure points. The Boeing 737 MAX accident that they describe resulted from a failed
sensor and the failure of Boeing to draw attention to the new automation and its expected

behavior (Skraaning & Jamieson, 2023).



Broadening the view of automation failures from human automation interaction to
human-automation systems may enable the reconsideration of the “Human and Organizational
Slips” that Skraaning and Jamieson (2023) excluded from the taxonomy of automation induced
challenges. That is human slips due to poor mental models of automation may be driven by the
design or affordances of the automation (e.g.., Tesla’s “auto pilot”) design as well as training that
does not map well onto the automation (e.g., Boeing 737 MAX) or that cannot keep up with
design changes (e.g., Tesla updates). These human slips may not be unrelated to features of the

automation.

Predicting System Response in Sociotechnical Systems

Given the complexity of system failures and the system’s responses to failures in
sociotechnical systems, how might system response to failures be studied? Gorman, et al. (2019)
have developed an approach to examining cascading failures through layers of a system — a
layered dynamics approach. One example of the application of this approach to a sociotechnical
system is in a recent AFOSR-supported project that examined distributed space operations in the
face of failures or perturbations (Yin, et al., 2022). This system is distributed in time (i.e., varied
communication latencies) and space and includes automation (robots) and multiple humans. The
scenario, informed through interviews with space operation experts, included the following
human and machine components, mostly played by humans: NASA Mission Control, Jet
Propulsion Lab (JPL), International Space Station with two astronauts (one a space walker), a
Lunar colony with one human and one untrustworthy robot, a Lunar Orbiter, a Mars Rover
(played by a Husky Robot controlled with built-in latencies by JPL), and a Mars Orbiter. Each
player had a script of actions and communications that took place over custom push-to-talk

radios. Perturbations (e.g., asteroid strike on moon, untethered space walker) were introduced at



set times in the scenario. Measures were taken continuously of communications (i.e., who was
talking to whom), vehicle positioning (for the orbiters and Rover), and heart rate variability for
the untethered space walker and human who is rebuilding equipment on the lunar surface to

quickly restore oxygen supply after asteroid strike.

The layered dynamics approach involves examining system reorganization or adaptation
in the face of a perturbation. Reorganization of the system is measured in terms of significant
changes in entropy across communication, positioning, and physiological signals. Figure 1
depicts the communication channel usage over time (raw data on who is talking to whom). The
series of communication channel patterns serves as a signal for the communication layer.
Significant changes in entropy of that signal are taken as points of reorganization — often in
response to a perturbation (Figure 2). With this analysis applied to all the system layers it is
possible to see how communication, positioning, and physiology are impacted by a system
failure and exactly which components of the system are impacted. Cascading impact can also be
seen in changes in entropy in regard to the timing of the perturbation. Future work in this area
will apply machine learning techniques to detect and predict system anomalies so that they can

be quickly attended to and mitigated by mission command.
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Figure 1. Patterns of communication channels over time.
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Figure 2. Examining changes in entropy of the communication patterns over time

communication layer.
Automation vs. Autonomy

One more issue that complicates this a bit is the increasing talk of autonomy, the
difference between automation and autonomy, and what role they each play in sociotechnical
systems. There is no fully autonomous system at this time. One could argue that humans are not
fully autonomous in the sense that they depend on others in their social system as well as
technology to survive. Systems like the Mars Rover have some functions that are carried out
autonomously and some that are fully controlled by humans. There have been several proposed
levels of automation and autonomy over the years (Wickes, et al., 2010; Vagia, et al., 2016). In
most systems there are functions with mixed levels of autonomy. Autonomy is generally

considered to have more intelligence than automation. That said, what happens when



intelligent autonomy fails? Are human expectations of autonomy different than automation? Is

the response different?

In an experiment by Demir, et al. (2021) in simulated remotely piloted aircraft System
(RPAS) ground control in which a three-member teame took reconnaissance photos from a single
RPAS, one team member was replaced by a confederate who acted as autonomy and failed in
specific ways (e.g., comprehension errors). In other cases, aspects of the display that provided
location information failed (i.e., automation failure). Both autonomy and automation failures
served as perturbations for the participants. However, the two human team members treated the
failures differently. The automation failures were handled by adaptation of coordination
procedures. They would work around failure by communicating information to each other that
they had and that was needed. However, in cases of autonomy failures, the only way teams
overcame the failure was to persist in badgering the autonomy to carry out the requested action.
However, in many cases the teams gave up and moved on to the next target, failing to get a
photo. In some cases the human participants indicated that they must be at fault, as the artificial
intelligence that was making the mistakes should know better than they about this task as they
were new to it. The expectations for autonomy exceeded the expectations for automation and

thus the response to failure was very different.

Conclusion

Skraaning and Jamieson (2023) certainly raise valid points about the need to expand the
definition of automation failures. In their introduction of the term Systemic Automation
Failures, they hint at the complexity and interdependencies of systems and relevance to defining
automation failures. They also separate human failures from the system. In contrast, looking at

automation (or autonomy) failures through a sociotechnical lens reveals possibilities for other



ways to study these systems and to predict system response. Finally, intelligent and more
autonomous systems open up new possibilities for human and system responses due to changing
expectations. Skraaning and Jamieson (2023) make a very interesting case for broadening our
view of automation failures and human response. There is even more that we should consider in

today’s complex systems of humans and technology.
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