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Abstract

Skraaning and Jamieson (2023) raise some interesting issues related to the response of humans to 
automation failures and offer a taxonomy of failure types that broadens its definition. In this 
commentary a further attempt to broaden the scope of automation failures is made that places 
failures within a sociotechnical system of multiple humans and multiple machine components 
including automation.  A suggestion of how one might understand the system’s response to 
automation failures is offered and the inclusion of autonomy is raised as another complication.
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Expanding Human Response to Automation Failures to Sociotechnical Systems

Skraaning and Jamieson (2023) examine the concept of automation failures and human 

performance in response to those failures.  Their claim is that automation failure as defined as a 

failure of solely the support system is overly narrow.   Also, they argue that automation failure 

defined as any human misconception about automation is too broad.  They go on to provide 

examples of automation failures in the aviation domain in which the automation worked as 

designed but was provided inaccurate data by another failed part of the system.  These they 

labeled as “Systemic Automation Failures,” a term that I fully endorse.  Skraaning and Jamieson 

(2023)  go on to provide a taxonomy of automation failures that include the Systemic 

Automation Failures in addition to Elementary Automation Failures and failures arising from 

Human-Automation Interaction Breakdowns.  It is interesting that “Human and Organizational 

Slips” are excluded from the taxonomy of automation induced challenges - more on this later.

From Human Automation Interaction to Human Automation Systems

I agree with Skraaning and Jamieson (2023), on the need to broaden our concept of 

automation failure and human performance challenges but would go at least one step further by 

proposing that most automation that humans interact with today and that presents the majority of 

challenges to human performance is embedded in a large and complex sociotechnical system 

(Carayon, 2006).  Automation is not monolithic but occurs within a system of other machine 

components and other automation.  In most cases, including the ones referenced by Skraaning 

and Jamieson (2023) – nuclear power plants and aviation – the system is one consisting of not 

only multiple machines and automated components, but also multiple humans, often with 

complex work interdependencies.   In these sociotechnical systems it is difficult to parse the 
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single operator interacting with a single automation out of the entire system.   As an alternative to 

predicting the human’s response to automation failure, we might predict the system’s response to 

Systemic Automation Failures.  

This systems thinking has led to a recent focus on human-automation teaming rather than 

human – automation interaction (O’Neill, McNeese, Baron, & Shelbe, 2022).  A team is a system 

with team members that have a common goal and with varying degrees of interdependency 

(Cooke, Cohen, et al., 2022).   Taking a systems perspective, it follows that teams need to be 

measured at the team level in the context of their task (Cooke, Gorman, et al., 2013). One way to 

measure at the team level is to focus that measurement on system interactions such as team 

communication or joint activity (Cooke & Gorman, 2009). 

Indeed, it is because of complex and often unanticipated system interactions that it is 

difficult to isolate system components and point to a single point of failure.  When perturbations 

(or failures) are introduced to the system, it is the system that responds to the failure by either 

adapting by reorganization and overcoming the failure or breaking down.  Often a single failure 

will cascade through a system impacting other components along the way.  This is depicted in 

Reason’s (1990) “Swiss Cheese Model” of accidents in which accidents occur through multiple 

holes or weaknesses in layers of defenses that happen to align and result in an accident.  This is 

realized in most aviation, medical, and industrial accidents as reported in Casey’s (1998) stories 

in his book, “Set Phasers on Stun.” The aviation examples of Skraaning and Jamieson (2023) are 

not single failure points.  The Boeing 737 MAX accident that they describe resulted from a failed 

sensor and the failure of Boeing to draw attention to the new automation and its expected 

behavior (Skraaning & Jamieson, 2023).
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Broadening the view of automation failures from human automation interaction to 

human-automation systems may enable the reconsideration of the “Human and Organizational 

Slips”  that Skraaning and Jamieson (2023) excluded from the taxonomy of automation induced 

challenges. That is human slips due to poor mental models of automation may be driven by the 

design or affordances of the automation (e.g.., Tesla’s “auto pilot”) design as well as training that 

does not map well onto the automation (e.g., Boeing 737 MAX) or that cannot keep up with 

design changes (e.g., Tesla updates).  These human slips may not be unrelated to features of the 

automation.

Predicting System Response in Sociotechnical Systems

Given the complexity of system failures and the system’s responses to failures in 

sociotechnical systems, how might system response to failures be studied?  Gorman, et al. (2019) 

have developed an approach to examining cascading failures through layers of a system – a 

layered dynamics approach.  One example of the application of this approach to a sociotechnical 

system is in a recent AFOSR-supported project that examined distributed space operations in the 

face of failures or perturbations (Yin, et al., 2022).  This system is distributed in time (i.e., varied 

communication latencies) and space and includes automation (robots) and multiple humans.  The 

scenario, informed through interviews with space operation experts, included the following 

human and machine components, mostly played by humans:  NASA Mission Control, Jet 

Propulsion Lab (JPL), International Space Station with two astronauts (one a space walker), a 

Lunar colony with one human and one untrustworthy robot, a Lunar Orbiter, a Mars Rover 

(played by a Husky Robot controlled with built-in latencies by JPL), and a Mars Orbiter.  Each 

player had a script of actions and communications that took place over custom push-to-talk 

radios.  Perturbations (e.g., asteroid strike on moon, untethered space walker) were introduced at 
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set times in the scenario.  Measures were taken continuously of communications (i.e., who was 

talking to whom), vehicle positioning (for the orbiters and Rover), and heart rate variability for 

the untethered space walker and human who is rebuilding equipment on the lunar surface to 

quickly restore oxygen supply after asteroid strike.  

The layered dynamics approach involves examining system reorganization or adaptation 

in the face of a perturbation.  Reorganization of the system is measured in terms of significant 

changes in entropy across communication, positioning, and physiological signals.  Figure 1 

depicts the communication channel usage over time (raw data on who is talking to whom).   The 

series of communication channel patterns serves as a signal for the communication layer.   

Significant changes in entropy of that signal are taken as points of reorganization – often in 

response to a perturbation (Figure 2).  With this analysis applied to all the system layers it is 

possible to see how communication, positioning, and physiology are impacted by a system 

failure and exactly which components of the system are impacted.  Cascading impact can also be 

seen in changes in entropy in regard to the timing of the perturbation.  Future work in this area 

will apply machine learning techniques to detect and predict system anomalies so that they can 

be quickly attended to and mitigated by mission command.
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Figure 1.  Patterns of communication channels over time.

Figure 2.  Examining changes in entropy of the communication patterns over time 

communication layer.

Automation vs. Autonomy

One more issue that complicates this a bit is the increasing talk of autonomy, the 

difference between automation and autonomy, and what role they each play in sociotechnical 

systems.  There is no fully autonomous system at this time.  One could argue that humans are not 

fully autonomous in the sense that they depend on others in their social system as well as 

technology to survive.  Systems like the Mars Rover have some functions that are carried out 

autonomously and some that are fully controlled by humans.  There have been several proposed 

levels of automation and autonomy over the years (Wickes, et al., 2010; Vagia, et al., 2016).  In 

most systems there are functions with mixed levels of autonomy.  Autonomy is generally 

considered to have more intelligence than automation.    That said, what happens when 
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intelligent autonomy fails?  Are human expectations of autonomy different than automation?  Is 

the response different?

In an experiment by Demir, et al. (2021) in simulated remotely piloted aircraft System 

(RPAS) ground control in which a three-member teame took reconnaissance photos from a single 

RPAS, one team member was replaced by a confederate who acted as autonomy and failed in 

specific ways (e.g., comprehension errors).  In other cases, aspects of the display that provided 

location information failed (i.e., automation failure).  Both autonomy and automation failures 

served as perturbations for the participants.  However, the two human team members treated the 

failures differently.  The automation failures were handled by adaptation of coordination 

procedures.  They would work around failure by communicating information to each other that 

they had and that was needed.  However, in cases of autonomy failures, the only way teams 

overcame the failure was to persist in badgering the autonomy to carry out the requested action.  

However, in many cases the teams gave up and moved on to the next target, failing to get a 

photo.  In some cases the human participants indicated that they must be at fault, as the artificial 

intelligence that was making the mistakes should know better than they about this task as they 

were new to it.  The expectations for autonomy exceeded the expectations for automation and 

thus the response to failure was very different.

Conclusion

Skraaning and Jamieson (2023) certainly raise valid points about the need to expand the 

definition of automation failures.  In their introduction of the term Systemic Automation 

Failures, they hint at the complexity and interdependencies of systems and relevance to defining 

automation failures.  They also separate human failures from the system.  In contrast, looking at 

automation (or autonomy) failures through a sociotechnical lens reveals possibilities for other 
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ways to study these systems and to predict system response.  Finally, intelligent and more 

autonomous systems open up new possibilities for human and system responses due to changing 

expectations.  Skraaning and Jamieson (2023) make a very interesting case for broadening our 

view of automation failures and human response.  There is even more that we should consider in 

today’s complex systems of humans and technology.
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