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Abstract

We survey recent developments related to the problem of classifying vector bundles on
algebraic varieties. We focus on the striking analogies between topology and algebraic
geometry, and the way in which the Morel–Voevodsky motivic homotopy category can be
used to exploit those analogies.
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1. Introduction

The celebrated Poincaré–Hopf theorem implies that the vanishing locus of a suitably
generic vector field on a closed, smooth manifoldM is topologically constrained: the number
of points at which a generic vector field vanishes is equal to the Euler characteristic of M .
More generally, one may ask: given a vector bundle E on a compact smooth manifold, what
sorts of constraints are present on the topology of vanishing loci of generic sections? If M
is a connected, closed, smooth manifold of dimension d and E is a rank r vector bundle
on M , then by the corank of E we will mean the difference d � r . The classical work of
Eilenberg, Stiefel, Steenrod, and Whitney laid down the foundations for results restricting
the topology of vanishing loci of generic sections for bundles of a fixed corank; these results
appear essentially in modern form in Steenrod’s book [57]. For example, one knows that if
the corank of E is negative, then E admits a nowhere vanishing section and if the corank
of E is 0, then a generic section vanishes at a finite set of points, and the cardinality of
that finite set is determined by purely cohomological data (the Euler class of E and the
corresponding Euler number ofE). The situation becomes more interesting when the corank
of E is positive, to which we will return momentarily.

In the mid-1950s, Serre created a dictionary between the theory of vector bundles
in topology and the theory of projective modules over a commutative ring [55, 56]. Echo-
ing M. M. Postnikov’s MathSciNet review of Serre’s paper, J. F. Adams prosaically wrote
in his review of H. Bass’ paper [22]: “This leads to the following programme: take defini-
tions, constructions and theorems from bundle-theory; express them as particular cases of
definitions, constructions and statements about finitely-generated projective modules over a
general ring; and finally, try to prove the statements under suitable assumptions”. One of the
results Serre presented to illustrate this dictionary was the algebro-geometric analog of exis-
tence of nowhere vanishing sections for negative corank projective modules, now frequently
referred to as Serre’s splitting theorem, which we recall in algebro-geometric formulation:
if E is a rank r vector bundle over a Noetherian affine schemeX of dimension d , then when
r > d , E Š E 0 ˚ OX .

After the Pontryagin–Steenrod representability theorem, topological vector bundles
on smooth manifolds (or spaces having the homotopy type of a CW complex) can be analyzed
using homotopy theoretic techniques. Extending Serre’s analogy further and using celebrated
work of Bass, Quillen, Suslin, and Lindel, F. Morel showed that algebraic vector bundles on
smooth affine varieties could be studied using an algebro-geometric homotopy theory: the
Morel–Voevodsky motivic homotopy theory. In this note, we survey recent developments
in the theory of algebraic vector bundles motivated by this circle of ideas, making sure to
indicate the striking analogies between topology and algebraic geometry.

To give the reader a taste of the methods we will use, we mention two results here.
First, we state an improvement of Serre’s splitting theorem mentioned above (for the moment
it suffices to know that A1-cohomological dimension is bounded above by Krull dimension,
but can be strictly smaller). Second, we will discuss the splitting problem for projective
modules in corank 1, which goes beyond any classical results.
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Theorem 1.1. If k is a field, andX is a smooth affine k-scheme of A1-cohomological dimen-
sion � d , then any rank r > d bundle splits off a trivial rank 1 summand.

Conjecture 1.2. Assume k is an algebraically closed field, and X D SpecR is a smooth
affine k-variety of dimension d . A rank d � 1 vector bundle E on X splits off a free rank 1
summand if and only if 0 D cd�1.E/ 2 CHd�1.X/.

In Theorem 4.12 we verify Conjecture 1.2 in case d D 3; 4 (and k has characteristic
not equal to 2). To motivate the techniques used to establish these results, we begin by ana-
lyzing topological variants of these conjectures. We close this note with a discussion of joint
work with Mike Hopkins which addresses the difficult problem of constructing interesting
low rank vector bundles on “simple” algebraic varieties. As with any survey, this one reflects
the biases and knowledge of the authors. Limitations of space have prevented us from talking
about a number of very exciting and closely related topics.

2. A few topological stories

In this section, we recall a few topological constructions that elucidate the ap-
proaches we use to analyze corresponding algebro-geometric questions studied later.

2.1. Moore–Postnikov factorizations
Suppose f WE!B is a morphism of pointed, connected topological spaces having

the homotopy type of CW complexes that induces an isomorphism of fundamental groups
(for simplicity of discussion). Write F for the “homotopy” fiber of f , so that there is a fiber
sequence

F ! E
f
! B

yielding a long exact sequence relating the homotopy of F , E, and B .
A basic question that arises repeatedly is the following: given a mapM ! B , when

can it be lifted along f to a map M ! E? To approach this problem, one method is to
factor f in such a way as to break the original lifting problem into simpler problems where
existence of a lift can be checked by, say, cohomological means.

One systematic approach to analyzing this question was laid out in the work of
Moore–Postnikov. In this case, one factors f so as to build E out of B by sequentially
adding higher homotopy of f (keeping track of the induced action of �1.E/ Š �1.B/ on
the fiber). In more detail, the Moore–Postnikov tower of f consists of a sequence of spaces
��if , i � 0 and morphisms fitting into the following diagram:

E

��zz $$
� � � // ��iC1f / /

$$

��if

� �

// ��i�1f

zz

// � � �

B:

(2.1)
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The key properties of this factorization are that (i) the composite maps E ! ��if ! B

all coincide with f , (ii) the maps E ! ��if induce isomorphisms on homotopy groups
in degrees � i , (iii) the maps ��if ! B induce isomorphisms on homotopy in degrees
> i C 1, and (iv) there is a homotopy pullback diagram of the form

��if / /

��

B�1.E/

��
��i�1f // K�1.E/.�i .F /; i C 1/:

(2.2)

In particular, the morphism ��if ! ��i�1f is a twisted principal fibration, which means
that a morphism M ! ��i�1f lifts along the tower if and only if the composite
M ! K�1.E/.�i .F /; i C 1/ lifts to B�1.E/. The latter map amounts to a cohomology
class on M with coefficients in a local coefficient system; this cohomology class is pulled
back from a “universal example” the k-invariant at the corresponding stage. If the obstruc-
tion vanishes, a lift exists. Lifts are not unique in general, but the ambiguity in choice of a
lift can also be described.

2.2. The topological splitting problem
In this section, to motivate some of the algebro-geometric results we will describe

later, we review the problem of deciding whether a bundle of corank 0 or 1 on a closed
smooth manifold M of dimension d C 1 has a nowhere vanishing section. We now phrase
this problem as a lifting problem of the type described in the preceding section.

In this case, the relevant lifting problem is:

BO.d � 1/

f

��
M

'
//

9‹

::

BO.d/:

To analyze the lifting problem, we describe the Moore–Postnikov factorization of f . The
homotopy fiber of f coincides with the standard sphere Sd�1 Š O.d/=O.d � 1/.

The stabilization map O.d � 1/! O.d/ is compatible with the determinant, and
there are thus induced isomorphisms �1.BO.d � 1// ! �1.BO.d// Š Z=2 compatible
with f . Note, however, that the action of Z=2 on the higher homotopy of BO.d/ depends
on the parity of d : when d is odd the action is trivial, while if d is even the action is nontrivial
in general and even fails to be nilpotent. Of course, Sd�1 is .d � 2/-connected.

Remark 2.1. At this stage, the fact that bundles of negative corank on spaces have the homo-
topy type of a CW complex of dimension d follows immediately from obstruction theory
granted the assertion that the sphere S r is an .r � 1/-connected space in conjunction with
the fact that negative corank means r > d .

In order to write down obstructions, we need some information about the homotopy
of spheres: the first nonvanishing homotopy group of Sd�1 is �d�1.S

d�1/ which coincides

2149 Vector bundles on algebraic varieties



with Z for all d � 2 (via the degree map). Likewise, �d .S
d�1/ is Z if d D 3 and Z=2 if

d > 3 and is generated by a suitable suspension of the classical Hopf map � W S3 ! S2.
Assume now X is a space having the homotopy type of a finite CW complex of

dimension d C 1 for some fixed integer d � 2 (to eliminate some uninteresting cases) and
� W X ! BO.d/ classifies a rank d vector bundle on X . The first nonzero k-invariant for f
yields a map X ! KZ=2.�d�1.S

d�1/; d/, i.e., an element

e.�/ 2 Hd
�
X;ZŒ��

�
called the (twisted) Euler class, where ZŒ�� is Z twisted by the orientation character �
defined by applying �1 to the morphism X ! BO.d/! B.Z=2/.

Assuming this primary obstruction vanishes, one may choose a lift to the next
stage of the Postnikov tower. If we fix a lift, then there is a well-defined secondary obstruc-
tion to lifting, that comes from the next k-invariant: this obstruction is given by a map
X ! KZ=2.�d .S

d�1/; d C 1/, i.e., a cohomology class in HdC1.X;ZŒ��/ if d D 3 or
HdC1.X;Z=2/ if d ¤ 3; in the latter case the choice of orientation character no longer
affects this cohomology group.

If one tracks the effect of choice of lift on the obstruction class described above, one
obtains a map KZ=2.�d�1.S

d�1/; d � 1/! KZ=2.�d .S
d�1/; d C 1/, which is a twisted

cohomology operation. If d D 3, the map in question is a twisted version of the Pontryagin
squaring operation, while if d > 3 the operation can be described as Sq2

Cw2[, where w2

is the second Stiefel–Whitney class of the bundle. In that case, the secondary obstruction
yields a well-defined coset in

o2.�/ 2 H
dC1.X;Z=2/=.Sq2

C w2[/H
d�1

�
X;ZŒ��

�
This description of the primary and secondary obstructions was laid out carefully by the
early 1950s by S. D. Liao [37].

Finally, the dimension assumption on X guarantees that a lift of � along f exists if
and only if these two obstructions vanish. In principle, this kind of analysis can be continued,
though the calculations become more involved as the indeterminacy created by successive
choices of lifts becomes harder to control and information about higher unstable homotopy
of spheres is also harder to obtain. For a thorough treatment of this and even more general
situations, we refer the reader to [61].

Remark 2.2. The analysis of the obstructions can be improved by organizing the calcu-
lations differently. The Moore–Postnikov factorization has the effect of factoring a map
f WX! Y as a tower of fibrations where the relevant fibers are Eilenberg–Mac Lane spaces.
However, there are many other ways to produce factorizations of f with different constraints
on the “cohomological” properties of pieces of the tower.

3. A quick review of motivic homotopy theory

Motivic homotopy theory, introduced by F. Morel and V. Voevodsky [41], provides a
homotopy theory for schemes over a base. While there are a number of different approaches
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to constructing the motivic homotopy category that work in great generality, we work in a
very concrete situation. By an algebraic variety over a field k, we will mean a separated,
finite type, reduced k-scheme. We write Smk for the category of smooth algebraic varieties;
for later use, we will also write Smaff

k for the full subcategory of Smk consisting of affine
schemes.

The category Smk is “too small” to do homotopy theory, in the sense that various
natural categorical constructions one would like to make (increasing unions, quotients by
subspaces, etc.) can leave the category. As such, one first enlarges Smk to a suitable category
Spck of “spaces”; one may take Spck to be the category of simplicial presheaves on Smk and
the functor Smk ! Spck is given by the Yoneda embedding followed by the functor viewing
a presheaf on Smk as a constant simplicial presheaf.

3.1. Homotopical sheaf theory
Passing to Spck has the effect of destroying certain colimits that one would like to

retain. To recover the colimits that have been lost, one localizes Spck and passes to a suitable
“local” homotopy category of the sort first studied in detail by K. Brown–S. Gersten, A. Joyal,
and J. F. Jardine: one fixes a Grothendieck topology � on Smk and inverts the so-called
� -local weak equivalences on Spck ; we refer the reader to [34] for a textbook treatment. We
write H� .k/ for the resulting localization of Spck . If X 2 Spck , then a base-point for X

is a morphism x W Spec k ! X splitting the structure morphism. There is an associated
pointed homotopy category and these homotopy categories can be thought of as providing a
convenient framework for “nonabelian” homological algebra.

Henceforth, we take � to be the Nisnevich topology (which is finer than the Zariski
topology, but coarser than the étale topology). For the purposes of this note, it suffices to
observe that the Nisnevich cohomological dimension of a k-scheme is equal to its Krull
dimension, like the Zariski topology.

In the category of pointed spaces, we can make sense of wedge sums and smash
products, just as in ordinary topology. We also define spheres S i , i � 0, as the constant
simplicial presheaves corresponding to the simplicial sets S i . For any pointed space .X ; x/,
we define its homotopy sheaves �i .X ; x/ as the Nisnevich sheaves associated with the
presheaves on Smk defined by

U 7! homHNis.k/.S
i
^UC;X ; x/I

here the subscript C means adjoint a disjoint base-point. These homotopy sheaves may be
used to formulate a Whitehead theorem.

If G is a Nisnevich sheaf of groups on Smk , then there is a classifying space B G
such that for any smooth k-scheme X one has a functorial identification of pointed sets of
the form

homHNis.k/.X;B G/ D H1
Nis.X;G/:

For later use, we set

Vectn.X/ WD H1
Zar.X;GLn/ D H1

Nis.X;GLn/ D homHNis.k/.X;BGLn/I
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where we as usual identify isomorphism classes of rank n vector bundles locally trivial with
respect to the Zariski topology on X with GLn-torsors (and the choice of topology does not
matter).

If A is any Nisnevich sheaf of abelian groups on Smk , then for any integer n� 0 there
are Eilenberg–Mac Lane spaces K.A; n/, i.e., spaces with exactly one nonvanishing homo-
topy sheaf, appearing in degree n, isomorphic to A. For such spaces, homHNis.k/.X;K.A; n//
has a natural abelian group structure, and there are functorial isomorphisms of abelian groups

homHNis.k/

�
X;K.A; n/

�
D Hn

Nis.X;A/:

With this definition, for essentially formal reasons there is a suspension isomorphism for
Nisnevich cohomology with respect to the suspension S1

^ .�/.

3.2. The motivic homotopy category
The motivic homotopy category is obtained as a further localization of HNis.k/: one

localizes at the projection morphisms X �A1 !X . We write H.k/ for the resulting homo-
topy category; isomorphisms in this category will be referred to as A1-weak equivalences.
Following the notation in classical homotopy theory, we write

ŒX ;Y �A1 WD homH.k/.X ;Y /

and refer to this set as the set of A1-homotopy classes of maps from X to Y .
If X is a space, we will write �A1

0 .X / for the Nisnevich sheaf associated with the
presheafU 7! ŒU;X �A1 on Smk ; we refer to �A1

0 .X / as the sheaf of connected components,
and we say that X is A1-connected if �A1

0 .X / is the sheaf Spec.k/.
We consider Gm as a pointed space, with base point its identity section 1. In that

case, we define motivic spheres

S i;j
WD S i

^ G^ j
m :

We caution the reader that there are a number of different indexing conventions used for
motivic spheres. One defines bigraded homotopy sheaves �A1

i;j .X ; x/ for any pointed space
as the Nisnevich sheaves associated with the presheaves on Smk

U 7!
�
S i;j

^UC;X
�

A1 I

we write �A1

i .X ; x/ for �A1

i;0 .X /. We will say that a pointed space .X ; x/ is
A1-k-connected for some integer k � 1 if it is A1-connected and the sheaves �A1

i .X ; x/

are trivial for 1 � i � k. Because of the form of the Whitehead theorem in the Nisnevich
local homotopy category, the sheaves �A1

i .�/ detect A1-weak equivalences.
We write ��

k
for the cosimplicial affine space with

�n
k WD Spec kŒx0; : : : ; xn�=

�X
i

xi D 1

�
:

For any space X , we write SingA1

X for the space diag hom.��;X /. There is a canonical
map X ! SingA1

X and the space SingA1

X is called the singular construction on X . For
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a smooth scheme U , the set of connected components �0.SingA1

X .U // will be called the
set of naive A1-homotopy classes of maps U ! X (by construction, it is the quotient of the
set of morphisms U ! X by the equivalence relation generated by maps U � A1 ! X ).
Again, by definition there is a comparison morphism

�0.SingA1

X .U //! ŒU;X �A1 : (3.1)

Typically, the map (3.1) is far from being a bijection.

3.3. A1-weak equivalences
We now give a number of examples of A1-weak equivalences, highlighting some

examples and constructions that will be important in the sequel.

Example 3.1. A smooth k-scheme X is called A1-contractible if the structure morphism
X ! Speck is an A1-weak equivalence. By construction, An is an A1-contractible smooth
k-scheme. However, there are a plethora of A1-contractible smooth k-schemes that are non-
isomorphic to An. For instance, the Russell cubic threefold, defined by the hypersurface
equation x C x2y C z2 C t3 D 0 is known to be nonisomorphic to affine space and also
A1-contractible [28]. See [16] for a survey of further examples.

Example 3.2. If f W X ! Y is a Nisnevich locally trivial morphism with fibers that are
A1-contractible smooth k-schemes, then f is an A1-weak equivalence. Thus, the projection
morphism for a vector bundle is an A1-weak equivalence. A vector bundle E over a scheme
X can be seen as a commutative algebraic X -group scheme, so we may speak of E-torsors;
E-torsors are classified by the coherent cohomology group H1.X; E / (in particular, vector
bundle torsors over affine schemes may always be trivialized). Vector bundle torsors are
Zariski locally trivial fiber bundles with fibers isomorphic to affine spaces, and the projection
morphism for a vector bundle torsor is an A1-weak equivalence.

By an affine vector bundle torsor over a schemeX we will mean a torsor � W Y !X

for some vector bundle E on X such that Y is an affine scheme. Jouanolou proved [35,

Lemme 1.5] that any quasiprojective variety admits an affine vector bundle torsor. Thomason
[63, Proposition 4.4] generalized Jouanolou’s observation, and the following result is a special
case of his results.

Lemma 3.3 (Jouanolou–Thomason homotopy lemma). If X is a smooth k-variety, then X
admits an affine vector bundle torsor. In particular, any smooth k-variety is isomorphic in
H.k/ to a smooth affine variety.

Definition 3.4. By a Jouanolou device for a smooth k-variety X we will mean a choice of
an affine vector bundle torsor p W Y ! X .

Example 3.5. WhenX D P n there is a very simple construction of a “standard” Jouanolou
device QP n. Geometrically, the standard Jouanolou device for P n may be described as the
complement of the incidence divisor in P n �P n where the second projective space is viewed
as the dual of the first, with structure morphism the projection onto either factor.
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Example 3.6. If X is a smooth projective variety of dimension d , then we may choose a
finite morphism  W X ! P d . Pulling back the standard Jouanolou device for P d along  ,
we see that X admits a Jouanolou device QX of dimension 2d .

Example 3.7. For n 2 N, consider the smooth affine k-schemeQ2n�1 defined as the hyper-
surface in A2n

k
given by the equation

Pn
iD1 xiyi D 1. Projecting onto the first n-factors, we

obtain a map p W Q2n�1 ! An X 0 which one may check is an affine vector bundle torsor.
For any integer n� 0, An X 0 is A1-weakly equivalent to Sn�1;n (see [41, §3.2, Example 2.20])
and consequently Q2n�1 is A1-weakly equivalent to Sn�1;n as well.

Example 3.8. For n 2 N, consider the smooth affine k-scheme Q2n defined as the hyper-
surface in A2nC1

k
given by the equation

nX
iD1

xiyi D z.1 � z/:

The variety Q2 is isomorphic to the standard Jouanolou device over P 1. The variety P 1 is
A1-weakly equivalent to S1;1 and thereforeQ2 is A1-weakly equivalent to S1;1 as well. For
n � 2, one knows that Q2n is A1-weakly equivalent to Sn;n [2, Theorem 2].

3.4. Representability results
If F is a presheaf on Smk , we will say that F is A1-invariant (resp. A1-invariant

on affines) if the pullback map F .X/! F .X � A1/ is an isomorphism for all X 2 Smk

(resp. X 2 Smaff
k ). A necessary condition for a cohomology theory on smooth schemes to

be representable in H.k/ is that it is A1-invariant and has a Mayer–Vietoris property with
respect to the Nisnevich topology. One of the first functors that one encounters with these
properties is that which assigns to a smooth k-scheme its Picard group. Morel and Voevodsky
showed [41, §4 Proposition 3.8] that ifX is a smooth k-scheme, then the A1-weak equivalence
P1 ! BGm induces a bijection ŒX;P1�A1 Š Pic.X/.

If A is a sheaf of abelian groups on Smk , then the functors Hi
Nis.�;A/ frequently

fail to be A1-invariant (taking A D Ga gives a simple example) and therefore fail to be
representable on Smk . The situation above where ADGm provides the prototypical example
of a sheaf whose cohomology is A1-invariant (here the zeroth cohomology is the presheaf
of units, which is even A1-invariant on reduced schemes). Following Morel and Voevodsky,
we distinguish the cases where sheaf cohomology is A1-invariant.

Definition 3.9. A sheaf of groups G on Smk is called strongly A1-invariant if for i D 0; 1

the functors Hi
Nis.�;G/ on Smk are A1-invariant. A sheaf of abelian groups A on Smk is

called strictly A1-invariant if for all i � 0 the functors Hi
Nis.�;A/ on Smk are A1-invariant.

The fundamental work of Morel, which we will review shortly, demonstrates the
key role played by strongly and strictly A1-invariant sheaves. Nevertheless, various natural
functors of geometric origin fail to be A1-invariant on smooth schemes.
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Example 3.10. If r � 2, then the functor H1
Nis.�; GLr / fails to be A1-invariant on all

schemes. For an explicit example, consider the simplest case. By a theorem of Dedekind–
Weber frequently attributed to Grothendieck every rank n vector bundle on P 1 is isomorphic
to a unique line bundle of the form

Ln
iD1 O.ai / with the ai weakly increasing. On the other

hand, consider P 1 � A1 with coordinates t and x. The matrix 
t x

0 t�1

!
determines a rank 2 vector bundle on P 1 �A1 whose restriction to P 1 � 0 is O.1/˚O.�1/

and whose restriction to P 1 � 1 is O ˚ O. In contrast, Lindel’s theorem affirming the Bass–
Quillen conjecture in the geometric case shows that H1

Nis.�;GLr / is A1-invariant on affines.
The next result generalizes this last observation.

Theorem 3.11 (Morel, Schlichting, Asok–Hoyois–Wendt). IfX is a smooth affine k-scheme,
then for any r 2 N there are functorial bijections of the form

�0

�
SingA1

Grr .X/
� �
!ŒX;Grr �A1

�
!Vectr .X/:

Remark 3.12. The above result was first established by F. Morel in [40] for r ¤ 2 and k an
infinite, perfect field, and his proof was partly simplified by M. Schlichting whose argument
also established the case r D 2 [51]. The version above is stated in [13].

Remark 3.13. While the functor of isomorphism classes of vector bundles is A1-invariant
on smooth affine k-schemes, even the latter can fail for G-torsors under more general group
schemes, e.g., the special orthogonal group scheme SOn (see [47] or [45]). Furthermore, while
GLn-torsors are always locally trivial with respect to the Nisnevich (and even the Zariski)
topology, for an arbitrary smooth k-group scheme G, one only knows that G-torsors are
locally trivial with respect to the étale topology.

In [14, 15], it is shown that if G is an isotropic reductive group scheme (see [14,

Definition 3.3.5] for the definition), then the functor assigning toX 2 Smaff
k the set H1

Nis.X;G/
is representable by BG. This observation has a number of consequences, e.g., the following
result about quadrics (see Examples 3.7 and 3.8).

Theorem 3.14 ([1,14,15]). For any integer i � 1 and any X 2 Smaff
k , the comparison map

�0

�
SingA1

Qi .X/
� �
!ŒX;Qi �A1

is a bijection, contravariantly functorial in X .

3.5. Postnikov towers, connectedness and strictly A1-invariant sheaves
Recall from Definition 3.9 the notion of strongly or strictly A1-invariant sheaves

of groups. F. Morel showed that such sheaves can be thought of as “building blocks” for
the unstable A1-homotopy category. Morel’s foundational works [39, 40] can be viewed as
a careful analysis of strictly and strongly A1-invariant sheaves of groups and the relation-
ship between the two notions. More precisely, Morel showed that working over a perfect
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field k, the A1-homotopy sheaves of a motivic space are always strongly A1-invariant, and
that strongly A1-invariant sheaves of abelian groups are automatically strictly A1-invariant.

To check this, Morel showed that strongly (resp. strictly) A1-invariant sheaves of
groups come equipped with a package of results/tools that are central to computations; this
package of results is essentially an extension/amalgam/axiomatization of work of Bloch–
Ogus and Gabber on étale cohomology exposed in [26] and Rost [50].

Example 3.15. Some examples of A1-invariant sheaves that will appear in the sequel are:

• unramified Milnor K-theory sheaves KM
i , i � 0 (see [50, Corollary 6.5, Proposi-

tion 8.6] where, more generally, it is shown that any Rost cycle module gives rise
to a strictly A1-invariant sheaf);

• the Witt sheaf W or unramified powers of the fundamental ideal in the Witt ring Ij ,
j � 0 (this follows from [46]); and

• unramified Milnor–Witt K-theory sheaves KMW
i , i 2 Z (see [40, Chapter 3] for

this assertion, or [31, Corollary 8.5,Proposition 9.1] where this observation is gen-
eralized to so-called Milnor–Witt cycle modules).

3.16 (Moore–Postnikov factorizations). There is an analog of the Moore–Postnikov factor-
ization of a map f W E !B of spaces along the lines described in Section 2. For concreteness
we discuss the case where E and B are A1-connected and f induces an isomorphism on
A1-fundamental sheaves of groups for some choice of base-point in E .

Given f as above, there are ��if 2 Spck together with maps E ! ��if , ��if !B

and ��if ! ��i�1f fitting into a diagram of exactly the same form as (2.1) (replacing
E by E and B by B). The relevant properties of this presentation are similar to those
sketched before (replacing homotopy groups by homotopy sheaves), together with a homo-
topy pullback diagram of exactly the same form as (2.2). We refer to this tower as the
A1-Moore–Postnikov tower of f and the reader may consult [40, Appendix B] or [5, §6] for a
more detailed presentation.

If X is a smooth scheme, then a map  W X ! B lifts to Q W X ! E if and only if
lifts exist at each stage of the tower, i.e., if and only if a suitable obstruction vanishes. These
obstructions are, by construction, valued in Nisnevich cohomology on X with values in a
strictly A1-invariant sheaf (see [5, §6] for a more detailed explanation).

By analogy with the situation in topology, we will use the A1-Moore–Postnikov fac-
torization to study lifting problems by means of obstruction theory. The relevant obstructions
will lie in cohomology groups of a smooth scheme with coefficients in a strictly A1-invariant
sheaf. This motivates the following definition.

Definition 3.17. LetX be a smooth k-scheme. We say thatX has A1-cohomological dimen-
sion � d if for any integer i > d and any strictly A1-invariant sheaf F, Hi

Nis.X;F/ D 0. In
that case, we write cdA1.X/ � d .
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Example 3.18. If X is a smooth k-scheme of dimension d , then X necessarily has
A1-cohomological dimension � d as well. Since An has A1-cohomological dimension
� 0, the A1-cohomological dimension can be strictly smaller than Krull dimension; Exam-
ple 3.6 gives numerous other such examples.

3.6. Complex realization
Assume k is a field that admits an embedding �C W k ,! C. The functor that assigns

to a smooth k-variety X the complex manifold X.C/ equipped with its classical topology
extends to a complex realization functor

RC W H.k/! H

where H is the usual homotopy category of topological spaces [41, §3.3]. By construction,
complex realization preserves finite products and homotopy colimits. It follows that the com-
plex realization of the motivic sphere Sp;q is the ordinary sphere SpCq , and consequently
the complex realization functor induces group homomorphisms of the form

�A1

i;j .X; x/.C/! �iCj

�
X.C/; x

�
for any pointed smooth k-scheme .X; x/.

SupposeX is any k-scheme admitting a complex embedding and fix such an embed-
ding. Write Vecttop

r .X/ for the set of isomorphism classes of complex topological vector
bundles on X . There is a function

Vectr .X/! Vecttop
r .X/

sending an algebraic vector bundle E over X to the topological vector bundle on X.C/
attached to the base change of E to XC . We will say that an algebraic vector bundle is
algebraizable if it lies in the image of this map.

As rank r topological vector bundles are classified by the set ŒX.C/; BU.r/� of
homotopy classes of maps from X.C/ to the complex Grassmannian, it follows that the
function of the preceding paragraph factors as

Vectr .X/! ŒX;Grr �A1 ! Vecttop
r .X/:

Theorem 3.11 implies that the first map is a bijection if X is a smooth affine k-scheme (or,
alternatively, if r D 1). More generally, combining Theorem 3.11 and Lemma 3.3 one knows
that any element of ŒX;Grr �A1 may be represented by an actual rank r vector bundle on any
Jouanolou device QX of X ; this suggests the following definition.

Definition 3.19. If X is a smooth k-scheme, then by a rank r motivic vector bundle on X
we mean an element of the set ŒX;Grr �A1 .

Question 3.20. If X is a smooth complex algebraic variety, then which topological vector
bundles are algebraizable (resp. motivic)?
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4. Obstruction theory and vector bundles

In order to apply the obstruction theory described in the previous sections to ana-
lyze algebraic vector bundles, we need more information about the structure of the clas-
sifying space BGLn including information about its A1-homotopy sheaves, and the struc-
ture of the homotopy fiber of the stabilization map BGLn ! BGLnC1 induced by the map
GLn ! GLnC1 sending an invertible matrix X to the block matrix diag.1;X/.

4.1. The homotopy sheaves of the classifying space of BGLn

We observed earlier that BGL1 D BGm is an Eilenberg–Mac Lane space for the
sheaf Gm: it is A1-connected, and has exactly 1 nonvanishing A1-homotopy sheaf in degree 1,
which is isomorphic to Gm. For n � 1, the analysis of homotopy sheaves of BGLn uses
several ingredients. First, Morel–Voevodsky observed that BGL D colimn BGLn (for the
inclusions described above) represents (reduced) algebraic K-theory after [41, §4 Theorem

3.13]. Second, Morel observed that there is an A1-fiber sequence of the form

AnC1
X 0! BGLn ! BGLnC1; (4.1)

and that AnC1 X 0 is A1-.n� 1/-connected. Furthermore, Morel computed [40] the first non-
vanishing A1-homotopy sheaf of AnC1 X 0 in terms of what he called Milnor–Witt K-theory
sheaves (Example 3.15).

Putting these ingredients together, one deduces

�A1

i .BGLn/ Š KQ
i ; 1 � i � n � 1;

where KQ
i is the (Nisnevich) sheafification of the Quillen K-theory presheaf on Smk . Fol-

lowing terminology from topology, sheaves in this range are called stable, and the case i D n

is called the first unstable homotopy sheaf. In [3], we described the first unstable homotopy
sheaf of BGLn.

The group scheme GLn maps to GLn.C/ under complex realization; the latter is
homotopy equivalent to U.n/. For context, we recall some facts about homotopy of U.n/.
A classical result of Bott, refining results of Borel–Hirzeburch [24, Theorem 25.8] asserts that
the image of �2n.BU.n// inH2n.BU.n// is divisible by precisely .n� 1/Š [25]. This result
implies the assertion that �2n.U.n// D nŠ.

Complex realization yields a map �A1

n;n.GLn/! �2n.U.n//. One can view the cel-
ebrated “Suslin matrices” [59] as providing an algebro-geometric realization of the generator
of �2n.U.n//. Analyzing the fiber sequence of (4.1) and putting all of the ingredients above
together, we obtain the following result (we refer the reader to Example 3.15 for notation).

Theorem 4.1 ([3, Theorem 1.1]). Assume k is a field that has characteristic not equal to 2.
For any integer n � 2, there are strictly A1-invariant sheaves Sn fitting into exact sequences
of the form:

0! SnC1 ! �A1

n .BGLn/! KQ
n ! 0; n oddI

0! SnC1 �KM
nC1=2 InC1

! �A1

n .BGLn/! KQ
n ! 0; n even,

where
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(1) there is a canonical epimorphism KM
n =.n � 1/Š! Sn which becomes an iso-

morphism after n � 2 contractions (see [3, §2.3] for this terminology);

(2) there is a canonical epimorphism Sn ! KM
n =2 such that the composite

KM
n =.n � 1/Š! Sn ! KM

n =2

is reduction modulo 2;

(3) the fiber product is taken over the epimorphism SnC1 ! KM
nC1=2 and a sheafi-

fied version of Milnor’s homomorphism InC1 ! KM
nC1=2.

Moreover, if k admits a complex embedding, then the map

�A1

n;nC1.BGLn/.C/! �2nC1

�
BU.n/

�
Š Z=nŠ

induced by complex realization is an isomorphism.

Bott’s refinement of the theorem of Borel–Hirzebruch turns out to have an algebro-
geometric interpretation. Indeed, in joint work with T. B. Williams [12] we showed that Sn

can described using a “Hurewicz map” analyzed by Andrei Suslin [60]. Suslin’s conjecture
on the image of this map is equivalent to the following conjecture.

Conjecture 4.2 (Suslin’s factorial conjecture). The canonical epimorphism KM
n =

.n � 1/Š! Sn is an isomorphism.

Remark 4.3. The conjecture holds tautologically for nD 2. For nD 3, Suslin observed the
conjecture was equivalent to the Milnor conjecture on quadratic forms, which was resolved
later independently by Merkurjev–Suslin and Rost. The conjecture was established for nD 5

in “most” cases in [12] (see the latter for a precise statement); this work relies heavily on the
computation by Østvær–Röndigs–Spitzweck of the motivic stable 1-stem [49].

4.2. Splitting bundles, Euler classes, and cohomotopy
Morel’s computations around An X 0 in conjunction with the fiber sequences

of (4.1) allow a significant improvement of Serre’s celebrated splitting theorem for smooth
affine varieties over a field that we stated in the introduction.

Proof of the motivic Serre Splitting Theorem 1.1. Suppose X is a smooth affine k-variety
having A1-cohomological dimension � d , and suppose � W X ! BGLr classifies a rank
r > d vector bundle on X . We proceed by analyzing the A1-Moore–Postnikov factorization
of the stabilization map (4.1) with n D r � 1. In that case, combining the fact that Ar X 0 is
A1-.r � 2/-connected and the A1-cohomological dimension assumption on X , one sees all
obstructions to splitting vanish.

Remark 4.4. The proof of this result does not rely on the Serre splitting theorem. Since
A1-cohomological dimension can be strictly smaller than Krull dimension (Example 3.18),
this statement is strictly stronger than Serre splitting. Importantly, the improvement achieved
here seems inaccessible to classical techniques.
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The algebro-geometric splitting problem in corank 0 on smooth affine varieties of
dimension d over a field k has been analyzed by many authors. When k is an algebraically
closed field, M. P. Murthy proved that the top Chern class in Chow groups is the only obstruc-
tion to splitting [42]. When k is not algebraically closed, vanishing of the top Chern class is
known to be insufficient to guarantee splitting, and Nori proposed some ideas to analyze this
situation. His ideas led Bhatwadekar and Sridharan [23] to introduce what they called Euler
class groups and to provide one explicit “generators and relations” answer to this question.
At the same time, F. Morel proposed an approach to the splitting problem in corank 0, which
we recall here.

Theorem 4.5 (Morel’s splitting theorem [40, Theorem 1.32]). Assume k is a field and X
is a smooth affine k-variety of A1-cohomological dimension � d . If E is a rank d vector
bundle on X , then E splits off a free rank 1 summand if and only if an Euler class
e.E/ 2 Hd

Nis.X;KMW
d

.det E// vanishes.

Remark 4.6. The Euler class of Theorem 4.5 is precisely the first nonvanishing obstruction
class, as described in Paragraph 3.16. A related “cohomological” approach to the splitting
problem in corank 0 was proposed by Barge–Morel [20] and analyzed in the thesis of the
second author [29]. The cohomological approach was in most cases shown to be equivalent
to the “obstruction-theoretic” approach in [6]. We also refer the reader to [51] for related
results on the theory of Euler classes, extending also to singular varieties.

The next result shows that the relationship between Euler classes à la Bhatwadekar–
Sridharan and Euler classes à la Morel is mediated by another topologically inspired notion:
cohomotopy (at least for bundles of trivial determinant).

Theorem 4.7 ([8, Theorem 1]). Suppose k is a field, n and d are integers, n � 2, and X
is a smooth affine k-scheme of dimension d � 2n � 2. Write En.X/ for the Bhatwadekar–
Sridharan Euler class group.

• The set ŒX;Q2n�A1 carries a functorial abelian group structure;

• There are functorial homomorphisms:

En.X/
s
! ŒX;Q2n�A1

h
! Hd

Nis.X;K
MW
n /

where the “Segre class” homomorphism s is surjective and an isomorphism if k
is infinite and d � 2, and the Hurewicz homomorphism h is an isomorphism if
d � n.

Remark 4.8. The group structure on ŒX;Q2n�A1 is an algebro-geometric variant of Borsuk’s
group structure on cohomotopy. The second point of the statement includes the algebro-
geometric analog of the Hopf classification theorem from topology.

4.3. The next nontrivial A1-homotopy sheaf of spheres
In Section 2.2 we described a cohomological approach to the splitting problem in

corank 1 for smooth closed manifolds of dimension d ; this approach relied on the computa-
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tion of �d .S
d�1/. In order to analyze the algebro-geometric splitting problem in corank 1

using the A1-Moore–Postnikov factorization we will need as input further information about
the homotopy sheaves of Ad X 0. We now describe known results in this direction. For tech-
nical reasons, we assume 2 is invertible in what follows.

4.3.1. The KO-degree map
In classical algebraic topology, all of the “low degree” elements in the homotopy of

spheres can be realized by constructions of “linear algebraic” nature. The situation in alge-
braic geometry appears to be broadly similar. The first contribution to the “next” nontrivial
homotopy sheaves of motivic spheres requires recalling the geometric formulation of Bott
periodicity for Hermitian K-theory given by Schlichting–Tripathi.

We write O for the infinite orthogonal group. In topology, Bott periodicity iden-
tifies the 8-fold loop space of O with itself and identifies the intermediate loop spaces in
concrete geometric terms. In algebraic geometry, Schlichting and Tripathi proved that the
4-fold P 1-loop space �4

P1O also coincides with O and realized suitable intermediate loop
spaces: �n

P1O is isomorphic to GL =O when n D 1, Sp when n D 2 and GL = Sp when
n D 3, where Sp is the stable sympletic group, GL=O is the ind-variety of invertible sym-
metric matrices, and GL=Sp is the ind-variety of invertible skew-symmetric matrices [52,

Theorems 8.2 and 8.4].
A slight modification of the Suslin matrix construction [59, Lemma 5.3] yields a map

un W Q2n�1 ! ��n
P1O

called the (unstable) KO-degree map in weight n that was analyzed in detail in [7]. The
terminology stems from the fact that this map stabilizes to the “unit map from the sphere
spectrum to the Hermitian K-theory spectrum” in an appropriate sense. The schemeQ2n�1

is A1-.n � 2/-connected by combining the weak equivalence of Example 3.7 and Morel’s
connectivity results for An X 0. Thus, un factors through the A1-.n� 2/-connected cover of
��n

P1O .
Taking homotopy sheaves on both sides, there are induced morphisms

�A1

i .u/ W �A1

i .Q2n�1/! �A1

i .��n
P1O/:

This homomorphism is trivial if i < n� 1 by connectivity estimates. If i D n� 1, via Morel’s
calculations one obtains a morphism KMW

n ! GWn
n whose sections over finitely generated

field extensions of k can be viewed as a quadratic enhancement of the “natural” map from
Milnor K-theory to Quillen K-theory defined by symbols; we will refer to it as the natural
homomorphism (the natural homomorphism is known to be an isomorphism if n � 4; the
case n � 2 is essentially Suslin’s, n D 3 is [7, Theorem 4.3.1], and n D 4 is unpublished work
of O. Röndigs).

When i D n, we obtain a morphism

�A1

n .An
X 0/ Š �A1

n .Q2n�1/! �A1

n .��n
P1O/ Š GWn

nC1;

where the right-hand term is by definition a higher Grothendieck–Witt sheaf (obtained by
sheafifying the corresponding higher Grothendieck–Witt presheaf on Smk). The above map
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is an epimorphism for n D 2; 3 and it follows from these observations that the morphism is
an epimorphism after .n � 3/ contractions [7, Theorem 4.4.5].

4.3.2. The motivic J-homomorphism
The classical J-homomorphism has an algebro-geometric counterpart that yields the

second contribution to the “next” homotopy sheaf of motivic spheres. The standard action
of SLn on An extends to an action on the one-point compactification P n=P n�1. The latter
space is a motivic sphere P 1^n and thus one obtains a map

†n
P1SLn ! P 1^n

:

As SLn is A1-connected, it follows that †n
P1 SLn is A1-n-connected.

The first nonvanishing A1-homotopy sheaf appears in degree n C 1; for n D 2,
it is isomorphic to KMW

4 , while for n � 3 it is isomorphic to KM
nC2; this follows from

A1-Hurewicz theorem combined with [17, Proposition 3.3.9] using the fact that
�A1

1 .SLn/ D KM
2 for n � 3 and properties of the A1-tensor product [17, Lemma 5.1.8].

Combining the above discussion with that of the previous section, we see that for
n � 3, we may consider the composite maps KM

nC2 ! �A1

nC1.P
1^n

/! GWn
nC1; this com-

posite is known to be zero, but the map induced by the J-homomorphism fails to be injective.
Instead, it factors through a morphism

KM
nC2=24! �A1

nC1.P
1^n

/! GWn
nC1:

Furthermore, the map on the right fails to be surjective. The unstable description above is
not present in the literature, but it is equivalent to the results stated in [12]. In [49], the stable
motivic 1-stem was computed in the terms above: the above sequence is exact on the left
stably. The next result compares the unstable group to the corresponding stable group.

Theorem 4.9. For any integer n � 3, the kernel UnC1 of the stabilization map

�A1

nC1.P
1^n

/! �A1

nC1.�
1

P1†
1

P1P 1^n
/

is a direct summand; the stabilization map is an isomorphism if n D 3, i.e., U4 D 0.

Conjecture 4.10. For n � 4, the sheaf UnC1 is zero.

Remark 4.11. Conjecture 4.10 would follow from a suitable version of the Freudenthal
suspension theorem for P 1-suspension.

4.4. Splitting in corank 1

Using the results above, we can analyze the splitting problem for vector bundles in
corank 1. The expected result was posed as a question by Murthy [43, p. 173] which we stated
in the introduction as Conjecture 1.2. Murthy’s conjecture is trivial if d D 2. In [4] and [5]

we established the following result, which reduces Murthy’s question to Conjecture 4.10.

Theorem 4.12. Let X be a smooth affine scheme of dimension d � 2 over an algebraically
closed field k. A rank d � 1 vector bundle E on X splits off a trivial rank 1 summand if and

2162 A. Asok and J. Fasel



only if cd�1.E/ 2 CHd�1.X/ is trivial and a secondary obstruction

o2.E/ 2 Hd
Nis
�
X;�A1

d�1.A
d�1

X 0/
�

vanishes. This secondary obstruction vanishes if d D 3;4 or if Conjecture 4.10 has a positive
answer.

To establish this result, one uses the assumptions that X is smooth affine of Krull
dimension d and k is algebraically closed in a strong way. Indeed, these assertions can be
leveraged to show that the primary obstruction, which is a priori an Euler class, actually coin-
cides with the .d � 1/st Chern class. The secondary obstruction can be described by Theo-
rem 4.9 and the form of the secondary obstruction is extremely similar to Liao’s description in
Section 2.2: it is a coset in Chd .X/=.Sq2

C c1.E/[/Chd�1.X/where Chi .X/ D CHi .X/=2.
Once more, the assumptions on X guarantee that Chd .X/ is trivial and thus the secondary
obstruction is so as well.

4.5. The enumeration problem
If a vector bundle E splits off a free rank 1 summand, then another natural question

is to enumerate the possible E 0 that become isomorphic to E after adding a free rank 1
summand. This problem may also be analyzed in homotopy theoretic terms as it amounts
to enumerating the number of distinct lifts. This kind of problem was studied in detail in
topology by James and Thomas [33] and the same kind of analysis can be pursued in algebraic
geometry.

The history of the enumeration problem in algebraic geometry goes back to early
days of algebraic K-theory. Indeed, the Bass–Schanuel cancellation theorem [22] solves the
enumeration problem for bundles of negative corank. Suslin’s celebrated cancellation the-
orem [58] solved the enumeration problem in corank 0. In all of these statements, “cancel-
lation” means that there is a unique lift. On the other hand, Mohan Kumar observed [38]

that for bundles of corank 2, uniqueness was no longer true in general. Nevertheless, Suslin
conjectured that the enumeration problem had a particularly nice solution in corank 1.

Conjecture 4.13 (Suslin’s cancellation conjecture). If k is an algebraically closed field, and
X is a smooth affine k-scheme of dimension d � 2. If E and E 0 are corank 1 bundles that
become isomorphic after addition of a trivial rank 1 summand, then E and E 0 are isomorphic.

The above conjecture is trivial when d D 2. It was established for E the trivial bundle
of rank d � 1 in [30] and d D dim.X/ under the condition that .d � 1/Š is invertible in k.
The above conjecture was also established for d D 3 in [4] (assuming 2 is invertible in k).
Paralleling the results of James–Thomas in topology [33], P. Du was able to prove in [27] that
Suslin’s question has a positive answer for oriented vector bundles in case the cohomology
group Hd

Nis.X;�
A1

d
.Ad X 0// vanishes. This vanishing statement would follow immediately

from Conjecture 4.10.
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5. Vector bundles: nonaffine varieties and

algebraizability

In this final section, we survey some joint work with M. J. Hopkins related to the
classification of motivic vector bundles (see Definition 3.19), its relationship to the alge-
braizability question (see Question 3.20), and investigate the extent to which A1-homotopy
theory can be used to analyze vector bundles on projective varieties.

5.1. Descent along a Jouanolou device
If X is a smooth algebraic k-variety, then there is always the map

Vectr .X/! ŒX;BGLr �A1 (5.1)

from rank r vector bundles to rank r motivic vector bundles. WhenX is affine, Theorem 3.11
guarantees that this map is a bijection, and examples show that the map fails to be an isomor-
phism outside of this case. Nevertheless, it is very interesting to try to quantify the failure of
the above map to be a bijection.

If� W QX!X is a Jouanolou device forX , then it follows from the definitions that the
map (5.1) coincides with �� W Vectr .X/! Vectr . QX/ under the bijection of Theorem 3.11.
The morphism � is faithfully flat by construction, and therefore, vector bundles on X are
precisely vector bundles on QX equipped with a descent datum along � .

Since � W QX ! X is an affine morphism, it follows that QX �X
QX is itself an affine

scheme, and the two projections p1; p2 W QX �X
QX ! QX are A1-weak equivalences. Thus,

pullbacks p�
1 and p�

2 are bijections on sets of isomorphism classes of vector bundles. In
fact, since the relative diagonal map splits the two projections, the two pullbacks actually
coincide on isomorphism classes. In descent-theoretic terms, these observations mean that
any vector bundle E on QX can always be equipped with an isomorphism p�

1E
�

! p�
2E , i.e.,

a predescent datum. Thus, the only obstruction to descending a vector bundle along � is
whether one may choose a predescent datum that actually satisfies the cocycle condition.
With this observation in mind, it seems natural to analyze the question of whether every
vector bundle can be equipped with a descent datum along � .

Question 5.1. If X is a smooth k-variety and � W QX ! X is a Jouanolou device for X , then
is the pull-back map

p�
W Vectn.X/! Vectn. QX/

surjective?

Theorem 5.2 (Asok, Fasel, Hopkins). SupposeX is a smooth projective k-variety of dimen-
sion d . If either (i) d � 2 or (ii) k is algebraically closed and d � 3, then Question 5.1 admits
a positive answer, i.e., every vector bundle on QX admits a descent datum relative to � .

5.2. Algebraizability I: obstructions
If X is a smooth complex algebraic variety, then we considered the map

Vectr .X/! Vecttop
r .X/
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and posed the question of characterizing its image. We observed that this map factors through
the set of motivic vector bundles, so one necessary condition for a topological vector bundle
to be algebraizable is that it admits a motivic lift. In particular, this means that the Chern
classes of the topological vector bundle in integral cohomology must lie in the image of
the cycle class map. It is natural to ask if algebraizability of Chern classes is sufficient to
guarantee that a vector bundle admits a motivic left.

In caseX is projective, this question has been for instance studied in [53] where it is
proved that any vector bundle with algebraic Chern classes is algebraizable if dim.X/D 2. In
case of projective threefolds, positive results are given by Atiyah–Rees and Bănică–Putinar
respectively in [18] and [19]. If X is affine, the works of Swan–Murthy [44] and Murthy–
Kumar [36] show that the answer to the question is positive if X is of dimension � 3 as
a consequence of the following statement: Given any pair .˛1; ˛2/ 2 CH1.X/ � CH2.X/,
there exists a vector bundle E on X with ci .E/ D ˛i . However, in dimension 4, additional
restrictions on Chern classes arise from the action of the motivic Steenrod algebra.

Theorem 5.3 ([10, Theorem 2]). If X is a smooth affine 4-fold, then a pair .c1; c2/ 2

CH1.X/ � CH2.X/ are Chern classes of a rank 2 bundle on X if and only if c1, c2 sat-
isfy the additional condition Sq2.c2/C c1c2 D 0, where

Sq2
W CH2.X/! CH3.X/=2

is the Steenrod squaring operation, and c1c2 is the reduction modulo 2 of the cup product.

Remark 5.4. This obstruction is sufficient to identify topological vector bundles on a
smooth affine fourfold X having algebraic Chern classes which are not algebraizable [10,

Corollary 3.1.5]. One example of such anX is provided by the open complement in P 1 � P 3

of a suitable smooth hypersurface Z of bidegree .3; 4/.

5.3. Algebraizability II: building motivic vector bundles
The notion of a cellular space goes back to the work of Dror Farjoun. By a cellular

motivic space, we will mean a space that can be built out of the motivic spheres Sp;q by
formation of homotopy colimits. It is straightforward to see inductively that P n is cellular.
In the presence of cellularity assumptions, many obstructions to producing a motivic lift of
a vector bundle vanish and this motivates the following conjecture.

Conjecture 5.5. If X is a smooth cellular C-variety, then the map

ŒX;Grr �A1 ! Vecttop.X/

is surjective (resp. bijective).

Remark 5.6. The conjecture holds for P n for n � 3 (this follows, for example, from the
results of Schwarzenberger and Atiyah–Rees mentioned above); in these cases, bijectivity
holds. For P 4, the “surjective” formulation of Conjecture 5.5 is known, but the “bijective”
formulation is not.
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We now analyze Conjecture 5.5 for a class of “interesting” topological vector bun-
dles on P n introduced by E. Rees and L. Smith. We briefly recall the construction of these
topological vector bundles here. By a classical result of Serre [54, Proposition 11], we know
that if p is a prime, then the p-primary component of �4p�3.S

3/ is isomorphic to Z=p,
generated by the composite of a generator ˛1 of the p-primary component of �2p.S

3/ and
the .2p � 3/rd suspension of itself; we will write ˛2

1 for this class.
The map P n ! S2n that collapses P n�1 to a point determines a function�

S2n�1; S3
�
Š
�
S2n;BSU.2/

�
!
�
P n;BSU.2/

�
Rees established that the class ˛2

1 determines a nontrivial rank 2 vector bundle �p 2

ŒP 2p�1;BSU.2/�; we will refer to this bundle as a Rees bundle [48]. By construction, �p is a
nontrivial rank 2 bundle with trivial Chern classes.

The motivation for Rees’ construction originated from results of Grauert–Schnei-
der [32]. If the bundles �p were algebraizable, then the fact that they have trivial Chern classes
would imply they were necessarily unstable by Barth’s results on Chern classes of stable
vector bundles [21, Corollary 1 p. 127] (here, stability means slope stability in the sense of
Mumford). Grauert and Schneider analyzed unstable rank 2 vector bundles on projective
space and they aimed to prove that such vector bundles were necessarily direct sums of line
bundles; this assertion is now sometimes known as the Grauert–Schneider conjecture. In
view of the Grauert–Schneider conjecture, the bundles �p should not be algebraizable. On
the other hand, one of the motivations for Conjecture 5.5 is the following result.

Theorem 5.7 ([11, Theorem 2.2.16]). For every prime number p, the bundle �p lifts to a class
in ŒP 2p�1;Gr2�A1 .

Remark 5.8. This is established by constructing motivic homotopy classes lifting ˛1 and ˛2
1 .

In our situation, the collapse map takes the form

P n
! Sn;n

and the lift must come from an element of ŒSn�1;n; SL2�A1 . The class ˛1 can be lifted using
ideas related to those discussed in 4.1 in conjunction with a motivic version of Serre’s clas-
sical p-local splitting of compact Lie groups [9, Theorem 2], the resulting lift has the wrong
weight to lift to a group as above. Since the class ˛2

1 is torsion, we can employ a weight-
shifting mechanism to fix this issue. In this direction, there are host of other vector bundles
that are analogous to the Rees bundles that one might investigate from this point of view, e.g.,
bundles that can be built out of Toda’s unstable ˛-family [62]. Likewise, even the surjectivity
assertion in Conjecture 5.5 is unknown for P 5.

5.9 (The Wilson Space Hypothesis). To close, we briefly sketch an approach to the res-
olution of Conjecture 5.5 building on Mike Hopkins’ Wilson Space Hypothesis. The latter
asserts that the Voevodsky motive of the P 1-infinite loop spaces�1

P1†
n
P1 MGL arising from

algebraic cobordism are pure Tate (the space is “homologically even”); this hypothesis is an
algebro-geometric version of a result of Steve Wilson on the infinite loop spaces of the clas-
sical cobordism spectrum.
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The motivic version of the unstable Adams–Novikov resolution for BGLr yields a
spectral sequence that, under the cellularity assumption onX should converge to a (comple-
tion of) the set of rank r motivic vector bundles on X . The resulting spectral sequence can
be compared to its topological counterpart and Wilson Space Hypothesis combined with the
cellularity assumption on X would imply that the two spectral sequences coincide.
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