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For three decades, model predictive control (MPC) has been the flagship advanced control method in the
chemical process industries. However, most implementations still use heuristic methods for designing MPC
estimators, especially for offset-free MPC implementations. In this paper, we present a recently developed
maximum likelihood-based method for the identification of linear augmented disturbance models for use in
offset-free MPC. This method provides noise covariances that are used to derive Kalman filters and moving
horizon estimators, forgoing the need for manual design and tuning of the estimator. The method is extended

to handle closed-loop plant data. The proposed identification method and estimator design are evaluated in
industrial-scale, real-world case study of a process at Eastman Chemical’s Kingsport plant. Using this identified
model, we reduced the mean stage cost by 38% compared to the performance of the existing, hand-tuned MPC

model.

1. Introduction

Model predictive control (MPC) is widely used in the chemical
process industries as an advanced feedback control method (Qin and
Badgwell, 2003). Some important factors in the success of MPC are
its inherent robustness to disturbances and plant-model mismatch, and
the ability to track setpoints without offset (Rawlings et al., 2020,
pp. 46-59, 204-214). As is often noted by industrial practitioners,
MPC can be quite forgiving with respect to model errors, aging of the
plant, changes in environmental conditions, and changes in operating
conditions. Practitioners have long used heuristic or out-of-date models,
without rigorous methods of identifying both plant and disturbance
models (Lee and Yu, 1994; Caveness and Downs, 2005). Despite this,
the performance and lifetime of an MPC deployment is tightly con-
nected to the quality of the model over time (Canney, 2003; Darby and
Nikolaou, 2012). As stake holders continue to demand greater and more
consistent performance from their processes, they require a system of
best practices for identifying plant and disturbance models.

Traditionally, MPC implementations have relied on linear finite im-
pulse response (FIR) plant models (Qin and Badgwell, 2003; Darby and
Nikolaou, 2012) with which a dynamic matrix control (DMC) (Cutler
and Ramaker, 1980) or Identification and Command (IDCOM) (Richalet
et al., 1978) algorithm is implemented. A few products, such as the

Shell Multivariable Optimizing Controller (SMOC) (Marquis and Brous-
tail, 1988; Yousfi and Tournier, 1991) and Adersa’s predictive func-
tional control (PFC) algorithm, rely solely on a linear state-space plant
model. Darby and Nikolaou (2012) note that recent MPC products
have shifted away from FIR models and towards linear state-space
models. This shift is motivated by a number of shortcomings of the
FIR approach, most notably: (1) the inability to handle unstable and
integrating systems without modification, (2) the overparameterization
of the underlying linear system (especially for slow processes), (3) the
difficulty of formulating estimators, and (4) the fact that FIR models
are a special case of the linear state-space model (Lee et al., 1994;
Lundstrém et al., 1995).

Other plant model formulations include autoregressive models (e.g.,
ARMA and CARIMA models) (Clarke et al., 1987a,b; Clarke, 1991; Sun
et al.,, 2011) and transfer function models (Ljung, 1999). Both model
types require complicated estimator formulations and their identifica-
tion algorithms are typically formulated for single-input single-output
(SISO) systems. As such, multi-input multi-output (MIMO) models are
typically constructed from individually fit SISO models. Transfer func-
tion models must be realized as state-space models in order to formulate
controller constraints. As with FIR models, every autoregressive and
transfer function model can be realized as a state-space model (Ho and
Kalman, 1966; Akaike, 1974).
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To identify the plant model, practitioners typically fit a linear
model to step response data, although it is also possible to linearize a
physics-based plant model (Caveness and Downs, 2005; Rawlings et al.,
2020). Neither approach provides the noise covariance estimates re-
quired to design an estimator for MPC implementation. While subspace
methods—such as canonical variate analysis (CVA) (Larimore, 1983),
N4SID (Van Overschee and De Moor, 1994), or MOESP (Verhaegen,
1994)—can be used to identify estimate the process and measurement
noise covariances, these methods can only identify controllable and
observable realizations (Qin, 2006), and the disturbance model con-
tains uncontrollable integrating modes (Muske and Badgwell, 2002;
Pannocchia and Rawlings, 2003). Disturbance models may be tuned
under strong assumptions on the process and measurement noises (Lee
et al.,, 1994; Lee and Yu, 1994), but the required assumptions are not
general, producing suboptimal estimator performance. Autocovariance
least squares (ALS) can identify the complete disturbance model, but it
does not identify the plant model (Odelson et al., 2006). Additionally,
there is a trade-off between the computational complexity of ALS and
the variance of the ALS estimates because the optimal least squares
weighting matrix is a function of the covariances to be estimated (Ra-
jamani and Rawlings, 2009; Zagrobelny and Rawlings, 2015; Arnold
and Rawlings, 2022). Kuntz and Rawlings (2022) presented the first
identification algorithm that provides estimates of both the state-space
model coefficients and the disturbance noise covariance required to
implement an offset-free MPC.

Most of the MPC deployment cost is incurred during plant identifi-
cation due to the commonality of open-loop identification experiments,
where product quality is difficult if not impossible to maintain, and the
process must be perturbed from the optimal operating point in order
to acquire quality data (Canney, 2003; Zhu, 2006). As a result, closed-
loop identification experiments are an opportunity for significant safety
and profitability improvements in chemical process control. Closed-
loop identification experiments can then be conducted online, at and
around the optimal operating point, negating the cost of opening the
loop to perform the experiment. New MPCs can be implemented on
processes controlled with other methods (PID, DMC, etc.) and existing
MPCs be significantly improved with re-identified models. Closed-loop
experiments can be conducted via setpoint perturbations that are more
predictable and reliable than open-loop input perturbations. Moreover,
the control loop is never broken, so the MPC is always enforcing
constraints throughout the experiment.

Canney (2003) points out that MPC performance decays over time
after deployment, and proposes MPC upkeep be a continuous process
of algorithm improvement, where the model, MPC tuning, and orga-
nizational details are adjusted as necessary. A closed-loop disturbance
model identification method can be applied to continuous offset-free
MPC monitoring and upkeep. Previous attempts at continuous MPC
monitoring and upkeep simply attempt to detect (and sometimes di-
agnose the source of) plant-model mismatch (Harrison and Qin, 2009;
Pannocchia and De Luca, 2012; Kheradmandi and Mhaskar, 2018).
However these algorithms rely on heuristic cutoffs for the alarm thresh-
olds because they are based on LTI system order estimation. With
the full set of parameter estimates, there is a future possibility of ad-
vanced offset-free MPC monitoring schemes with rigorous performance
guarantees.

Closed-loop experimentation requires an existing controller, mean-
ing open-loop experiments for MPC design or PID tuning are still
necessary. To this end, we suggest suboptimal but safe experiments be
done using traditional step-response designs, or loops be initially closed
with PID methods. While the algorithm proposed herein and in Kuntz
and Rawlings (2022) will still handle open-loop step responses. At a
later date, a closed-loop identification experiment may be run to refine
and re-identify the model. The only advantage of open-loop methods,
such that the one in Kuntz and Rawlings (2022), are their relative
simplicity compared to closed-loop methods, such as the one proposed
in this paper.
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In this paper, we present a closed-loop extension of the algorithm
proposed in Kuntz and Rawlings (2022) and demonstrate its efficacy in
an industrial case study. Our method systematizes the identification of
new offset-free MPC models and design of new MPC estimators, allow-
ing practitioners save time and achieve optimal estimator performance.
To do this, we combine the plant modeling and disturbance modeling
steps by passing information about state estimates between identifica-
tion steps. Because state information is passed between steps, each step
can be formulated as a linear regression problem for which closed-form
solutions are readily available (Rao, 1973; Anderson, 2003). The plant
modeling step is a regularized version of the closed-loop identification
procedure outlined by Larimore (1983, 1997, 2005). To validate the
viability of our method in the wider chemical process industries, we
performed a case study on an existing process at Eastman Chemical’s
Kingsport, Tennessee location. The newly identified model shows clear
improvement from the older step-response model, and the closed-
loop performance is improved as measured by the controlled variable
tracking error. Moreover, we used a closed-loop experimental design
that is desirable to operations engineers for its simplicity, safety, and
ability to produce predictably high-quality data. The case study serves
as a template for using this new method to improve existing MPC
performance.

In Section 2 we define the plant and models, present the offset-
free MPC algorithm, and discuss some MPC properties that motivate
the identification algorithm. In Section 3 we describe the closed-loop
subspace identification procedure used in the case study. In Section 4
we describe the disturbance model identification method used in the
case study. In Section 5, we present our case study of the combined
plant and disturbance identification method as applied to a reactor at
Eastman Chemical Company’s Kingsport plant. Finally, in Section 6, we
summarize the methods and case study, and discuss future work.

Notation. The set of real numbers, real n-vectors, and real m X n
matrices are denoted R, R”, and R"™", respectively. The set of integers,
nonnegative integers, and integers from m to n > m (inclusive) are
denoted I, I, and I,,.,, respectively. We denote by I, and 0,,, the
n X n identity matrix and m X n zero matrix, respectively. Subscripts
are omitted when the dimensions are clear from context. The transpose
and pseudoinverse of A € R™" are denoted A’ and A", respectively.
The inverse of A € R™", if it exists, is denoted A~!'. The trace and
determinant of A € R"™" are denoted tr(A) and |A|, respectively. The
Krocker product of A € R™" and B € RP*? is denoted A® B. We denote
that W € R™" is positive (semi)definite by W > 0 (W > 0). We denote
the positive semidefinite square root of W > 0 as W!/2 > 0, where
W = (W1/2)2. We denote the 2-norm as || - || for both vector and matrix
arguments. For any positive (semi)definite matrix W € R™", we define
the W-(semi)norm, denoted || - ||/, as |[x]ly = VxTWx for all x € R".

For any signal (a(k))keﬂzo, we use the shorthand a* = a(k + 1) and
denote the length-n past and future horizons as

mXn

a(k — 1) a(k)
A= |, Ak =

a(k — n) a(k +.n— 1)

For any two signals (a(k))ier, and (b(k)er,» we denote the sample
covariance operator as S(a, b) = NL Dkel A, a(k)b(k)' where N, is the
ab a

number of elements in I, N1, and the index sets I, I, C I are implied
from context.

We denote that a random vector x has a distribution D by x ~ D,
and that the stochastic process x(k) is independently and identically
distributed as D by x(k) £ D or x £ D. We denote that a random
vector x has a Gaussian distribution with mean u and covariance X
by x ~ N(u,X). We denote the probability density function of x
(conditioned on y) as p(x) (p(x|y)).
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2. Problem statement

In this section, we describe the plant and linear models common
to offset-free MPC theory and practice. We also describe the offset-
free MPC algorithm that is used in the case study and discuss some
theoretical results that motivate some choices in the identification
algorithm.

2.1. Systems of interest

We are concerned with offset-free control of the following discrete-
time plant,

Xy = fp(xp,u,w),) (1a)
y=hy(x,,0,) (1b)
where x, € R is the plant state, u € R™ is the input, y € R"™

is the measurement, and w, € R",v, € R™ are the plant process
and measurement disturbances, respectively. Standard MPC relies on
a state-space model to formulate the estimator and optimal control
problem,

xT = Ax+ Bu+w (2a)
y=Cx+v (2b)

w| iid O,
HER ) @)

where x € R” is the state and w € R",v € R" are the process and
measurement noises, respectively. We assume (w, v) is uncorrelated in
time. In the presence of persistent disturbances or errors, offset-free
tracking is achieved by augmenting the standard state-space model with
uncontrollable integrating modes, called the augmented disturbance
model (Muske and Badgwell, 2002; Pannocchia and Rawlings, 2003),

xt = Ax+ Bu+ Byd +w (3a)
dt =d+wy (3b)
y=Cx+Cyd+v (30)
w
iid
wy |~ N(©,Sy) (3d)

2

where d € R" is the disturbance and w, € R" is the disturbance
driving noise. Again, we assume (w, w,, v) is uncorrelated in time. The
goal of the identification algorithm is to estimate the parameters of the
augmented disturbance model (3) from only input—output data (u, y).

Remark 1. The models (2), (3) differ from general linear time-
invariant (LTI) systems in that they both lack passthrough terms Du,
and the model (2) lacks a cross-covariance cov(w,v), i.e., they are
special cases of

xT =Ax+ Bu+w i
[“’] % N, 5)

y=Cx+Du+v

Passthrough terms are not included in our MPC formulation, so we do
not include them in the model. The restriction that cov(w, v) = 0 in the
model (2) facilitates estimation under the restriction D = 0. Estimating
a model with passthrough D # 0 is a standard generalization of the
methods discussed herein.

2.2. Offset-free model predictive control

Offset-free MPC consists of three distinct problems that are solved at
each time step: estimation, target calculation, and regulation. The goal
is firstly to remove offset in the controlled variables r(k) = Hy(k) € R"
and secondly to minimize the distance from a pair of input—output
setpoints (ugp, ysp) € R™*", This case study uses the steady-state
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Kalman filter for estimation, uses an infinite horizon optimal control
problem for regulation, includes a steady-state target problem, and
incorporates box constraints on the inputs and outputs.'

State and disturbance estimator. For stochastic LTI systems of the forms
(2), (3), the Kalman filter is the optimal state estimator. For the
augmented disturbance model (3), the steady-state Kalman filter takes

the following form,
+
51" _[4 B, %

il =[5 7] (ote cld) o
where L := [L/ L;]/ is the steady-state Kalman filter gain for the
augmented disturbance model (3). We refer the reader to Kwakernaak
and Sivan (1972) and Hespanha (2018) for a classical treatment of the
linear optimal estimation problem and to Rawlings et al. (2020, pp. 27—
46) for a derivation of the optimal filter gain L := [L] L] " from least
squares theory.

B
0

X

u+L
d

+ x
Ld

Steady-state target problem. Given the current filtered disturbance es-
timate d(k), the steady-state targets (x4(k), uy(k), ys(k)) defined as the
solutions to the following steady-state target problem (SSTP).

min 31y = (Ol + 3l =~ usp I (5a)
s.t. x = Ax + Bu + B,d(k), (5b)
y<y=Cx+Cyd(k) <7, (50)
u<u<u, (5d)
rep(k) = Hy (5¢)

where (u,u) are the input bounds, (y,y) are the output bounds, (Q,, R;)
are positive semidefinite weighting matrices. Notice that the steady-
state targets are functions of only the current disturbance estimate d(k)
and the current setpoints (ugp (K), ysp(K), rgp (K)).

Infinite horizon optimal control problem. The regulator is defined as
an infinite horizon optimal control problem that is solved about the
steady-state targets (x,(k), u (k), y,(k)). The control law is defined as

u(k) = dig (k) + us (k) (6a)

where the X} (k) and i (k) denote solutions to

Jmin 3 3 ICK I+ 11+l = 11 (6b)
dg.iiy... =0
s.t. %o = 2(k) — x,(k), (60)
%41 = AX; + Bil;, (6d)
y<Cx +y,(k) <3, (6)
u<i;+ugk)<u (6f)

where (Q, R, M) are positive semidefinite weighting matrices.?
2.3. Offset-free sufficient conditions

Muske and Badgwell (2002) first established sufficient conditions
under which the offset-free MPC (4)-(6) with a separable disturbance
model,

Bd=[§d 0], cd=[0 Ed]

! The output constraints are implemented as soft constraints in the
optimizer.

2 The infinite-horizon optimal control problem (6) is practically solved as
a finite-horizon optimal control problem, where the horizon length is taken
sufficiently large to approximate the infinite-horizon controller.
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applied to a linear plant converges to the controlled variable setpoints
Fsp- This was generalized to linear models of the form (3) by Pannocchia
and Rawlings (2003). Finally, Morari and Maeder (2012) generalized
the conditions to nonlinear plants and models. We restate the offset-free
conditions for linear models in the following theorem.

Theorem 1 (Pannocchia and Rawlings, 2003). Consider a system con-
trolled by the offset-free MPC (4)—(6). Assume that

1. the disturbance state is of the same dimension as the measurement
(ng =ny,) and
2. the augmented disturbance model (3) is detectable.

If the closed-loop system is stable and the constraints are not active at steady
state, then there is zero offset in the controlled variables at steady state,

Jim 150 =

Remark 2. Despite the fact that Theorem 1 does not explicitly mention
control of nonlinear plants, the results are widely applicable to both
linear and nonlinear plants, without disturbances and with asymp-
totically constant disturbances. This is because Theorem 1 does not
make statements about controller stability, but simply states sufficient
conditions for which a stable controller also has zero offset. Pannocchia
and Rawlings (2003) demonstrate the validity of Theorem 1 in the
control of a non-isothermal reactor model.

An immediate consequence of Theorem 1 is that, to achieve offset-
free control with offset-free MPC, it is important to have a detectable
model. To this end, we have the following result.

Lemma 2 (Pannocchia and Rawlings, 2003). The augmented disturbance
model (3) is detectable if and only if the standard model (2) is detectable
and

A-1, B,

rank [ c c,

] —ntny @)

The so-called offset-free rank condition (7) is important in formu-
lating disturbance models for the offset-free MPC algorithm. One can
replace the third condition of Theorem 1 with the rank condition (7).
It turns out that, in the same way that a state-space realization is only
unique up to a similarity transformation, any detectable disturbance
model is only unique up to a similarity transformation. In fact, the
Kalman filter behavior is equivalent under this similarity transforma-
tion, so if disturbances are “misassigned” in the model there is no effect
on the closed-loop system.

Lemma 3 (Rajamani et al., 2009). Consider the augmented system

xt = Ax+ Bu+l§dd~+w (8a)
7t = d+, 8b)
y=Cx+Cyd+v (8¢c)
i =
w, |~ N(©.5,) (8d)
v

If the standard model (2) is detectable, then the augmented disturbance
models (3), (8) are detectable if and only if both satisfy the offset-free rank
condition (7). Moreover, there exists a choice of S‘d such that the models
(3), (8) have equivalent Kalman filter innovations.

The consequence of Lemma 3 is that, given a standard model (2),
one can “design” the disturbance model to be maximally interpretable,
so long as it satisfies the rank condition (7). Typical “designs” are the
output disturbance model (B, C;) = (0, I) and the input disturbance model
(B4, Cy) = (B, 0).

Computers and Chemical Engineering 179 (2023) 108429

(Un(0), Yn(0))

1

High-order ARX model

p :=max{f — 1, p}

I

n < f, p < N ——{ Extended state-space model

i=K,27.,

h

State-space model

1

é = (A’ B’ é’ QAW’ Rv)

Fig. 1. Outline of the closed-loop subspace method, based on the work of Larimore
(1983, 1997, 2005), used in this case study.

3. Closed-loop subspace identification

In this section, we describe a modification of the CVA algorithm
of Larimore (1983, 1997, 2005). The algorithm’s goal is to estimate
the parameters 6 = (A, B,C,Q,,R,) of the model (2) from input-
output data (Uy(0),Yy(0)). The algorithm, outlined in Fig. 1, can be
viewed as a nested modeling procedure using maximum likelihood
(ML) at each step to compute parameter estimates. We refer the reader
to Gong and Samaniego (1981) for a theoretical justification of nested
ML estimation. The algorithm takes two basic steps. First, we determine
a state sequence (fc(k))kdp: y via approximations of the ML problem
corresponding to the marginal density in Yy (0),

max Ly (0) := In p(Yy (O)|Uy 0).0) ©

where 6 = (4, B,C,Q,,, R,) are the system parameters and p > n is an
integer to be defined. Then, we solve the ML problem corresponding to
the joint density in (X 4(p), Yy, (),

max L (X, 1(p).0) := Inp(Xy,_1(p). Yy, IV, (¢).0) 10)

using the previously estimated state sequence in place of Xy ,,(p),
where N; := N —p.

The core model of the algorithm is the model (2), which, under the
assumption that some approximate state sequence (X(k)) is available,
can be used to solve for parameter estimates d via multivariate or
regularized regression methods. However, we must first construct state
estimates (x(k)).

In lieu of the states, we can use the Kalman filter state estimates,
which are represented by past input-output data. There exists a steady-
state Kalman gain K and innovation error covariance R, such that
Ay = A— KC is stable and

% = Agk + Bz (11a)
e:i=y-Ccx“ N(O.R) (11b)
where By := [B K|, & € R" are the state estimates, and z :=

[ ], is the combined input-output data (Kwakernaak and Sivan,
1972; Hespanha, 2018). Given any n < p < N chosen large enough
so that A?( ~ 0, we can recursively solve the Kalman predictor (11) to
write the state as follows,

&(k) = AL 5k = p)+ K, Z_,(k) ~ K, Z_, (k)
where K, := [BK Ag By AZ_IBK]. Therefore, estimating K,

also provides state estimates % := K,Z_, for estimation of the param-
eters 6 in the model (2).
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To estimate the controllability matrix K,, we rewrite the Kalman
predictor (11) into the following extended state-space model,

Yy(k) = Op AL Rk — p) + My, Z_ (k) + G, Z 1 (k) + E (k)
N My, Z (k) + G Z (k) + E (k) (12)

where n < f < N is a user-provided integer,

C 0
._| CAx . G, 0
Of = 5 gf = 5
cal”! Gy ... G 0
G, = CA'; By are the Markov parameters of the Kalman predictor

1
(11), and H;, = O/K, is a block-Hankel matrix of the Markov
parameters. Notice that, if the model (2) is minimal,® the coefficient
matrix H,, has rank n. Assuming we have access to some Markov
parameter estimates Gi, the extended state-space model (12) takes the
form of a classic rank-reduced regression problem for which closed-
form solutions are well-known (Larimore, 1983; Anderson, 1999).*
However, we must first obtain Markov parameter estimates G,.
Jansson (2003) first proposed “pre-estimation” of the Markov pa-
rameters G; from the following ARX model,

y(k) = CAP 2(k — p) + CK5Z_5(k) + e(k)
~ CK5Z_5(k) + e(k) 13)

where p := max{f — 1, p}, and the coefficient matrix contains the first p
Markov parameters, CK; = [G; G, G| Noting that the ARX
model (13) takes the form of a classical multivariate regression prob-
lem, we can estimate G;, in closed-form, using multivariate regression
methods.

For brevity, we defer the derivation of ML estimators of the models
(2), (12), (13) to Appendix. Other classic subspace algorithms—such as
N4SID (Van Overschee and De Moor, 1994) and MOESP (Verhaegen,
1994)—can be used to supply parameters to the disturbance model
identification method of Section 4, so long as a Markov parameter
“pre-estimation” step is included. Van Overschee and De Moor (1995)
showed that the classic subspace algorithms (CVA, N4SID, and MOESP)
are equivalent up to formulation of the estimation objective for estima-
tion of the model (12).° Only the method of Larimore (1983, 1997,
2005) uses ML estimation at each step of the algorithm, making it
the logical choice for integration with the ML-based disturbance model
identification. To use the method of Section 4, one should take care
to use methods that construct state sequences, rather than those than
construct the parameters (4, B, C) directly from the matrices (O 7 Kp)-
In fact, any closed-loop state-space identification method that estimates
state sequences can be directly integrated with the method of Section 4.

Selection of the model dimensions (n, f, p) can either be tuned by
hand or with information criteria methods. While dimension selection
is outside of the scope of this paper, Bauer (2001), Chiuso (2010) and
Larimore (2005) each describe selection of the parameters n, f, and p,
respectively. In the case study, we tuned (n, f, p) by hand and validated
the chosen state order n with the singular value criterion described
by Bauer (2001).

3 A minimal realization is controllable and observable.

* Since the regressors Z, are correlated with the errors E, joint estimation
the parameters (¥, ,, G,) produces inconsistent estimates. As a result, we have
to eliminate the §,Z, term of the model (12) via a “pre-estimation” step. In
open-loop subspace methods, a slightly different extended state-space model
is used, allowing for consistent estimation of the parameters (¥, ,,G,) under
open-loop conditions.

5 N4SID and MOESP methods are weighted least squares problems, whereas
CVA is an approximate ML problem.
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4. Closed-loop disturbance model identification

In this section, we extend the subspace identification algorithm
of Section 3 to identify an augmented disturbance model (3). This is
done by first estimating a disturbance sequence that captures the most
long-term modeling error, and then re-estimating the noise covariances
based on that disturbance sequence. The shaping matrices (B,,C,)
of the noise model are inconsequential to the algorithm, except that
they must obey the offset-free rank condition (7), and that output
disturbance models turn out to be computationally advantageous.

4.1. Choosing the disturbance model

As previously discussed, the disturbance model (B,, C,) can be cho-
sen to maximize interpretability of the augmented disturbance model
(3). We propose general guidelines for choosing the disturbance model
below.

« If A does not contain integrators, use an output disturbance
model.

« If A contains integrators and n, = n,, use an input disturbance
model, (B;,C,) = (B,0).

» Otherwise, use some combination of input and output distur-
bances, i.e. (B;,C;) = (BI,,I,) where I, and I, are diagonal
matrices with zeros and ones on the diagonal and collectively n,
nonzero elements.

Models in these forms retain interpretability while ensuring that the
offset-free rank condition (7) is satisfied.

4.2. Estimating the disturbance sequence

Given a model of the form (2), a disturbance model (B,, C,), and
a state sequence (%(k)), we treat the disturbance sequence (d(k)) as
accounting for the long-range model errors. That is, the long-range
output is
k
y(k) = CA*Px(p) +
J

1
C A== Bu(j)
P

k-1
+ Y CAMITN (B, d() + w()) + Cyd (k) + v(k)
Jj=p
and the predicted long-range output is
k-1
k) := CAPx(p) + Y CAMT™! Bu(j) 14)
Jj=pr
Next, we define the long-range prediction error as z(k) := y(k) — p(k),
which gives
k-1
2(k) = Y} CAIN (B d()) + w())) + Cyd(k) + v(k)
Jj=p

Rewriting this as a linear model,

Zy,(p) = ADy (p) + BWy (p) + Vi, (p) (15a)
BWy () +Vy, (p) ~ N(0,V) (15b)
where

_ .
A= CF" Ca

CAN-2B, ¢B, ¢,

[ o
B:= B,l 0 )

B,\.,_l B.1 0
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Fig. 2. Schematic of the DMT reactor and MPC control strategy.

B, :=CA™! vj>1
V:=BUI®Q,)B +1®R,

The model (15) has the ML estimate (Rao, 1971; Magnus and
Neudecker, 2019, p. 313),
Dy (0) = (A VAT AV, Zy () 16)

where ¥, := V + AA’. This is an O(N?) computation with O(N?)
memory requirements. Notice that when B, = 0 and C,; = I, we have
A=1,V,=7V+I invertible, and

AWV ATV =yt =1
Thus the disturbance estimates (16) are equivalently written
d(k) = z(k) a”

which is an O(N) computation without additional memory require-
ments. It is clear that whenever the system is free of integrators, the
simplified solution (17) is computationally advantageous. A similarity
transformation can be used to find the desired disturbance model after
the output disturbance model is found (Rajamani et al., 2009).

4.3. Estimating the noise covariances
Given the estimated states and disturbances, one can stack the

equations of the model (3) to write a simple covariance estimation
problem,

#k+1)] [A By B][zk)]
k) =|dk+nl-lo 1 olldw|% ~yo0.s,)
y(k) ¢ ¢ 0f|ut

The ML estimate of S, is therefore .§‘d = S(é,¢é) (Anderson, 2003,
Thm. 8.2.1). Thus, we have found the complete set of parameters for
the augmented disturbance model (3), which concludes our description
of the algorithm.

5. Industrial case study

To evaluate the proposed closed-loop identification algorithm and
experimental design, a case study was conducted on a reactor at
Eastman Chemical’s plant in Kingsport, Tennessee. The chosen process
is similar to that used in Caveness and Downs (2005). The process
produces dimethyl terephthalate (DMT) by reacting terephthalic acid
(TPA) with methanol (MeOH). Water is a byproduct of the reaction.
The primary equilibrium reaction can be represented as

TPA + 2MeOH = DMT + 2H,0

TPA is a solid and enters the reactor in a slurry with methanol, and
additional methanol enters as a vapor. The reactor has two phases.
The reaction takes place in a liquid phase, and the DMT product,
water, excess methanol, and side products leave the reactor as a vapor
and move forward to a DMT purification section. Xylene is added as
reflux to minimize the carryover of an impurity that results from the
half reaction of TPA and methanol. Xylene does not participate in the
reaction. A schematic of the reactor is shown in Fig. 2.

The reactor operates under pressure, which is controlled by ma-
nipulating a valve in the vapor line. Heat is supplied to the reboiler
by circulating hot oil through the shell side of the exchanger. A tem-
perature controller manipulates the flow of hot fluid supplying the
circulation loop to control the temperature of the heating fluid entering
the reboiler. Liquid level is controlled by manipulating the xylene
reflux. Any change in the material balance that affects the composition
of methanol in the reactor has a large influence on reactor temperature.
Infinite-horizon MPC (4)-(6) is used to control the reactor temperature,
T, and the production rate (ultimately set by the slurry feed, F,)
and to maintain the methanol feed, F;, at a desired rate. The MPC
also handles constraints on two quality-control variables, r; and r,,
and on the hot oil controller valve position (used to infer a temper-
ature pinch/constraint on hot oil temperature, 7). The manipulated
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Fig. 3. Controlled variables (top three), other measured variables (middle three), and manipulated variables (bottom three) for the closed-loop identification experiment using
(left) the MPC variables (n = 15, f =5, p=50) and (right) the raw sensor data (n =15, f =5, p = 50). The dotted lines are MPC setpoints, the dot-dashed lines are the predictions
of the old MPC model, and the dashed lines are the predictions of the new model. Predictions are long-range projections based on a zero initial state (14).

MPC variables

Raw sensor data

14 14 14 1
-1 T T T -1 T T T -1 T T T -1 T T T T
1 1 14 1
dz 0 ]WWWMWMWW” W2 0 JW d} 0 -WWMMMW Wq2 0 ]W
-1 T T T T -1 T T T T -1 T T T -1 T T T T
14 14 1 1
ds o-ﬁﬂ%w, Was 0 } } } } } ds OMMWW e OJWWM
-1 T T T -1 T T T -1 T T T T -1 T T T T
1 1 1 1
-1 T T T T -1 T T T T -1 T T T T -1 T T T T
14 14 14 14
ds 0 Wm/\/ww a5 0N ds 0 L s o e
-1 T T T -1 T T T -1 T T T -1 T T T
14 14 14 14
-1 T T T -1 T T T -1 T T T -1 T T T
0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5

time (hours) time (hours)

time (hours) time (hours)

Fig. 4. Disturbance estimates (17) and driving noise estimates &, = d* — d for the unregularized models fit to (left) the MPC variables and (right) raw sensor data. To aid

readability, the disturbance estimates were rescaled to have a maximum absolute deviation of 1.
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Regularized model
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Fig. 5. Controlled variables (top three), other measured variables (middle three), and
manipulated variables (bottom three) for the closed-loop identification experiment
using the regularized model (n = 15, f = 5, p = 50, p = 107*|S(Z_,, Z_)I,
wy =10718(Z_,, Z_)I?, and p, = 107*||S(%, %)[|?). The dotted lines are MPC setpoints,
the dot-dashed lines are the predictions of the old MPC model, and the dashed lines
are the predictions of the new model. Predictions are long-range projections based on
a zero initial state (14).

variables are the PID loop setpoints for the inlet flowrate and utility
temperature controllers, denoted (F,, F,, T ).

The control objectives are to achieve offset-free setpoint tracking
and disturbance rejection and to avoid violating box constraints on the
measured and manipulated variables. For several decades the reactor
has run on an MPC designed with a step response model (to be
referred to as the “old MPC model”) and hand-tuned estimator, as
described in Caveness and Downs (2005). The inlet flowrate “mea-
surements” are actually “wrap-around” variables, that is, each flowrate
“measurement” is generated by passing the corresponding PID setpoint
(the MPC’s actuator) through a first-order filter.® We refer to these
fictitious flowrate “measurements” as the “wrap-around” variables, and

6 Given the clarity of hindsight, we would not design the MPC with these
fictitious variables. However, our objective in this paper is not to scrutinize the
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Fig. 6. Disturbance estimates (17) and driving noise estimates 1, = d* — d for the
regularized model. To aid readability, the disturbance estimates were rescaled to have
a maximum absolute deviation of 1.

the actual flowrate data, collected from the PID layer, as the raw sensor
data. We refer to the complete dataset (3 inputs, 6 outputs) formed with
the “wrap-around” variables as the “MPC variables” and the complete
dataset formed with the sensor data as the “raw sensor data”. The MPC
runs at a sample time of 5 s.

5.1. Identification

To identify the process, we used a closed-loop experimental design
based on pulses to the normal MPC setpoints. Eight setpoint pulses
were applied, each lasting about 30 min, with 30 min “rests” between
the pulses to allow the process to settle back to the normal operating
point. The setpoint pulses correspond to a full factorial design of
the three controlled variables.” The pulses were designed to keep the
manipulated and measured variables within constraints, and they were
checked against historical data to ensure production would not be
negatively affected. Throughout, models are fit with the algorithm of
Sections 3, 4 and Appendix.

“Wrap-around” variables and sensor data. Models were fit to two sets of
process data. The first dataset was constructed from the “wrap-around”
variables used on the existing MPC, and the corresponding model uses
parameters n = 20, f = 5, and p = 50.° The second dataset was
constructed from the raw sensor data, and the corresponding model
uses parameters n = 15, f =5, and p = 50. In Fig. 3, for each dataset,
we plot process data, setpoint changes, and long-range predictions (14)

MPC organizational design (that is, the variable choices) but to identify and
validate a flexible replacement model via closed-loop experiments. It is worth
pointing out that practitioners and academics alike agree that a significant
opportunity in MPC performance gains is in improving the organizational
structure of implementations (Darby and Nikolaou, 2012).

7 Because the manipulated and controlled variables form a square system,
we could perturb the setpoints without worrying about correlation in the
manipulated variables.

8 Here we violate the assumption, used in Appendix, that f > n. This
condition is only sufficient for producing a rank-n Hankel matrix H, ,. In
practice, it is not necessary, so we used the smallest values of (f,p,n) to
accurately predict system behavior.
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Fig. 7. Step responses of the (left) unregularized and (right) regularized models compared to the step responses of the old MPC model.

of the old and new models. The disturbance estimates (17) and driving
noise w,; = d+ — d for each model is plotted in Fig. 4. From Fig. 4
(left), it is clear that the model fit to the MPC variables is not driven by
white noise. This is to be expected; the MPC variables contain outputs
that are not constructed from sensor data and therefore do not include
upstream disturbances affecting, for example, the PID layer dynamics
and offset. As the assumptions of the augmented disturbance model (3)
are violated, we chose to continue with the model based on raw sensor
data, which is clearly driven by white noise (Fig. 4, right). It is worth
pointing out that, in the experiment, the temperature failed to reach the
second and fourth setpoints. This is due to plant-model mismatch in the
old MPC model, as that model incorrectly predicts that the temperature
will reach the setpoint. The newly identified models do not make such
predictions. Additionally, the first flowrate F; never reaches any of the
setpoints because it has a low regulator weight relative to that of the
temperature. Despite the significant noise present in the raw sensor
data, the model fit to this data is no worse at predicting the outputs
than the model fit to the MPC variables.

Model regularization. Regularization is a classic technique in statistics
and linear algebra used to avoid model over-fitting and ill-conditioning
(Tikhonov, 1963; Hoerl and Kennard, 1970b,a). While it is less common
in system identification, there is a history of its use for at least three
decades (Sjoberg et al., 1993; Johansen, 1997; Chen and Ljung, 2013;
Chen et al., 2014). To investigate the possibility of model over-fitting,
we also used regularized estimates to produce a model. See Appendix
for a derivation of the regularized estimates and the meaning of the
regularization parameters. A regularized model was fit to the raw
measurement data using parameters n = 15, f = 5, p = 50, p =
1074IS(Z_,, Z_ DI, 1y = 1077 1S(Z_, Z_)I1%, and pp = 1074]|S(%, D)1
Process data, setpoint changes, and long-range predictions (14), for
both old and new models, are plotted in Fig. 5. The disturbance
estimates (17) and driving noise @, = d+ — d for each model is plotted
in Fig. 6.

As a sanity check of the model fits (and to tune the regularization
parameters) we plotted the step responses of the unregularized and reg-
ularized models (Fig. 7). At a first glance, the long-range predictions in
Fig. 3 (right) appear to be representative of the true process dynamics.
However, when looking at the step responses of the model (Fig. 7, left)
it is clear that there are artifacts and spurious dynamics in the model
fit that we speculate is due to over-fitting of the plant model to the
disturbance signal in the high frequency range. Regularization takes
care of these problems, creating a smoother step response (Fig. 7, right).
As such, we chose to update the MPC on the process in Fig. 2 with the
regularized model.

5.2. Closed-loop performance

To evaluate the performance of the new MPC model, we used a
closed-loop experimental design similar to the one carried out during
identification. Again, eight setpoint pulses were applied, each lasting
about 30 min, with 30 min “rests” between the pulses to allow the
process to settle back to the normal operating point. This time, how-
ever, the experiment was carried out over two separate days, switching
the MPC model between the two days. Both experiments used the
same infinite horizon MPC (4)-(6) with the only difference being the
model and estimator gain. It is worth pointing out that, while the
new model was fit to the raw sensor data, the MPC uses the “wrap-
around” variables in both experiments. As a result, there is a risk the
MPC does not respond to disturbances affecting these measurements.
The MPC variables and raw sensor data from these experiments are
plotted in Figs. 8 and 9, respectively. From these plots, it appears that
the F, valve needed servicing. However, because feedback was done
with the “wrap-around” variables, there was no effect on the closed-
loop performance. It is also clear that the old MPC model continues
to have difficulties reaching certain temperature setpoints, whereas
the new model is confirmed to alleviate these problems. In the new
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Fig. 8. Closed-loop comparison of the (left) old and (right) new models using the MPC variables.

model, deviations from setpoints are zero mean, so they are likely
attributable to process noise and upstream disturbances. Again, both
MPC implementations fail to reach F, setpoints as this variable has a
low regulator weight relative to that of the temperature. The Kalman
filtered disturbance estimates (4) for the old and new models (using the
MPC variables as feedback) are plotted in Fig. 10. The new model has a
much quicker filter gain. This is particularly prevalent in the d, Kalman
filter estimate (which corresponds to the T}, measurement), which is
slow for the old model but virtually instantaneous for the new model.

To quantify the performance of each MPC, we computed the con-
trolled variable tracking cost,

(k) = | Hy(k) = rp(k) g,

where H = [I; 0] and Q, = diag(107,1,10?), which is approxi-
mately the squared error between T and its setpoint. Tighter control
will exhibit a smaller tracking cost Z(k), on average. It is known that
for linear plants and linear controllers without constraints, the tracking
cost Z(k) has a generalized- y2 distribution,® but if it is time-averaged,
it will approach a normal distribution (Zagrobelny et al., 2013). We

9 A generalized-y?> random variable is generated by taking the quadratic
form of a multivariate normal random variable.

10

define the T-lagged average at time k as

T-1
Y tk=))
Jj=0

We compare tracking costs #(k) and time-averaged tracking costs
(€(k)) 1000 and (Z(k)), for the old and new models in Fig. 11. It is
immediately clear that the new model performed better than the old
model; the total average tracking cost (Fig. 11, bottom left) is 38%
lower in the new model experiment compared to that of the old model
experiment. The cost #(k) (Fig. 11, top right) fits the linear control as-
sumptions on generalized- y? distribution. Moreover, the time-averaged
cost (£(k))jp00 (Fig. 11, bottom right) is approaching a normal dis-
tribution, although there is some residual density near 7 0 for
both experiments. These results suggest the applicability of a statistical
performance monitoring scheme such as the one in Zagrobelny et al.
(2013).

)y =

~I-

6. Conclusion

We present and validate a method for identifying linear augmented
disturbance models from closed-loop data, which provides all necessary
information to design the MPC estimator. The method is based on
a nested ML algorithm that first produces a disturbance-free model,
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Fig. 9. Closed-loop comparison of the (left) old and (right) new models using the raw process variables as measurements.
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Fig. 10. Kalman filtered disturbances from the closed-loop tests of the (left) old and
(right) new models using the MPC variables as measurements.

then estimates disturbance sequences, and finally estimates noise co-
variances. The method is tested on an existing reactor at Eastman
Chemical’s Kingsport, Tennessee plant. We show the method is able to
fit process models from fictitious measurements that may be present on
some legacy MPC implementations. The importance of regularization
to avoid over-fitting of high-frequency disturbances is investigated. The
ability to use closed-loop data allows practitioners to safely and cheaply
identify and re-identify their processes. The model is validated in a
closed-loop test and the tracking error recorded for the duration of
the experiment. The models produce generalized y2-distributed track-
ing errors that validate the use of statistical performance monitoring
algorithms such as that of Zagrobelny et al. (2013). Most importantly,
the new model outperforms the old model in both qualitative metrics
(reaching setpoints, speed of the estimator) and quantitative metrics
(38% reduction in tracking error).

There are many possibilities in future case studies of this technol-
ogy, including comparisons across competing methods (ALS, EM) and
computational studies. The use of a tracking metric to validate the
new model performance is limited in scope to tracking MPC, but this
work can be extended using the work of Zanon et al. (2016, 2017),
providing a practical way to implement economic MPCs in a linear—
quadratic framework. While the validity of linearized economic MPC,
with exact models, is theoretically supported, there are no case studies
or theoretical analysis on employing these linear economic MPCs with
identified models. Other considerations could be taken into account
during the identification of the standard model (2), including measured
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Fig. 11. Closed-loop performance model of the old and new models using the MPC variables as measurements. (Top left) Output tracking error #(k), (bottom left) running average
of the tracking error (#(k)),, (top right) histogram of the output tracking error Z(k), (bottom right) histogram of the output tracking error moving average (Z(k)) -

disturbances and flowsheet structure. With a complete set of parameter
estimates and uncertainties, more advanced offset-free MPC monitoring
schemes can be envisioned. Finally, future research may be directed
towards developing a theoretical understanding of the disturbance
model identification method and how it relates to competing methods
(ALS, EM).
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Appendix. Closed-loop subspace identification

In this appendix, we continue the explanation of the closed-loop
subspace method that began in Section 3. First, we derive the (regu-
larized) ML estimator for the HOARX model (13). Second, we derive a
ML estimator for the extended state-space model (12). Last, we derive
the (regularized) ML estimator for the model (2), corresponding to the
joint ML problem (10).

12

A.1. Estimating the Markov parameters

The likelihood function corresponding to the ARX model (13) is an
approximation of the likelihood function Ly (6),

Ly(0) ~ LA (CK;, R,)

N-1
i= ) Inp(y(k)| Z_5(k), CK5, R,)
k=p
— N-1
N — 1
x———Ln[R,| -3 ¥ Iyk) - CKZ 502,
k=p ¢

The approximate ML problem

ARX
max L CK-, R
CK5R,>0 N (CKpRo)
is a standard multivariate regression problem with closed-form solu-
tion,

CKy =S, Z5)S N Z5.25)

We omit the solution for R, because it is inconsequential to the rest of
the algorithm. The ARX model is an overparameterization of the model
(2), so it is beneficial to regularize the coefficients, trading a biased
estimate for reduced variance,'®

ARX P -1 ’
o LV(CRy R) = S (R, CRH(CKp)) (A1)
which results in the regularized estimates,
— -1
CK;=S(.Z5) [S(Z_5.Z5)+(p/ NI | (A2)

The estimates (A.2) are unbiased when p = 0 and consistent for all
p > 0.'' Moreover, the estimate errors &gy = C/‘IC\; -CKy = G, -
Gy, ..., GA‘—, - G;] are independent of the innovation sequence e(k) and
regression vectors Z_5(k).

A.2. Estimating the state sequence

It turns out that the likelihood of the extended state-space model
(12), even though the errors E,(k) are serially correlated, is an ap-
proximation of the likelihood in the ML problem (9) (Larimore, 1997).

10 The regularizer here is close to using the prior (CKp), N ©,p7'R,)

where (CKp), denotes the ith column of CX;, but to be equivalent, we would
also need to add (—p(n, +n,)p/2)In|R,| to the likelihood.
11 This neglects numerical errors introduced by the approximation A} ~ 0.
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Assume that N > f,p. Then, for each s € I we can use

pip+f—1>
successive conditioning to write the likelihood as

~ lnP(Y(MS—l)fH(S)|Y_S(S)» U(MS_1)/+S(S), 0)
M,—1

Y £y mf +5)
m=0

Ly (6)

where M, := |(N —s)/f] and
Cppk) i=np(Y, ()| Z_,(K),Us(k), Hy ;.G Rp)
Terms at times k € Iy, y_; \ L. pr, r45-1 can be dropped because of the

assumption that N > f, p. Taking the average over s gives

pf-1 M—1

Z Z £rpmf +5)

s=p m=0

Ly@ ~ —

szp(k) fL];:\/SS(pr’g/’Rf)

For closed-loop data, the signals Z, and E, are correlated, which
may introduce bias into the estimates if all the parameters
(H;,. G Ry) are estimated simultaneously (Qin, 2006). Noting that
the future data coefficients G, is simply a linear function of the ARX
coefficients, i.e. Gy = L(CKy), the future data term in the model (12)
can be eliminated as follows,

Y,(k) i= Y, (k) = G Z, (k) ~ Hy y Z_ () + Egss (k) (A.3)

where ¢, := L(CK}), and Eggg := L(Expy)Z, + E is zero-mean since
Earx and Z; are independent. Importantly, the signals Z_, and &ggg
are uncorrelated, so the parameters (¥ ,, R ) can be estimated without
bias. The corresponding likelihood function is

N—-f-p+1

ESS A
LN (Hyp GpRyp) < = 2

In|R |

N-y
1 -
-5 X 0=, Z 0,
k=p
and the resulting ML problem,

LESa, .6, R)) (A4)

ma
rank Hf_p =n,Rf >0
corresponds to a rank-reduced regression.'? According to Larimore
(1983) and Anderson (1999), the ML problem (A.4) has a closed-form
solution,

H; =S¥, Z_)JJ,

where J, denotes the first n rows of J = U’S~/%(Z_,,Z_,), and U are
the left singular vectors of the following singular value decomposition,

STVNZ_ . Z_)S(Z_,. Y)ST\2 (. Y,) =USV’

Given these estimates, we have the rank factorization H/ p = (DfIC
where @ = S(Yf, P)J and IC = J,. Moreover, the estimate IC is a
consistent and asymptotically normal estimator of K, (up to 51m11ar1ty
transformation) (Anderson, 1999). Therefore, we have consistent and
asymptotically normal estimates of the states,

x=J,Z, (A5)

A.3. Estimating the state-space parameters

Finally, we estimate the state-space parameters 0 by solving the ML
problem (10). We have the following likelihood function,

LSS(X 0 Ny In|R
N( NS+1(P)a )0( 2 (lew|+ nl UI)

2 The rank constraint is a consequence of (O,,C,) showing up in the
regression model as the product H,, := O,C,, where we assume (O,,C,) are
both rank-n so the states come from a m1n1mal realization.
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= Z [llx(k+1)—Ax(k)—Bu(k)||2 +lly(k) = CXWI13,,

In practice, we have found that the state estimates (A.5) may contain
spurious, unwanted dynamics, so we may regularize this objective in a
similar manner to the ARX problem (A.1),

maxLS(XN_H(p) et tr(Q (A4’ + BB') - 2 tr(R lccy  (A6)

where u;,u, > 0. According to Anderson (2003, Thm. 8.2.1), the
regularized estimates are
-1

[A  B] =SE*.0[SE.0+ (/NI (A.7a)
= S, %) [SG R + (/NI (A.7b)

0, =SGE"xH) - SEH D[S0+ (i /NS)I]_I S@t,x7) (A.7¢)

b= SO, = S X [SEX) + (ua /NI~ S, ) (A.7d)

Since X are consistent estimates and independent of the errors (w, v),
the estimates (A.7) are consistent. This completes the closed-loop iden-
tification of the model (2) from an input-output sequence.
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