

Accelerating Quantum Light-Matter Dynamics on Graphics Processing Units

Taufeq Mohammed Razakh
Collaboratory for Advanced
Computing and Simulations

University of Southern California
Los Angeles, CA, USA

razakh@usc.edu

Thomas Linker
Stanford PULSE Insitute

SLAC National Accelerator
Laboratory

Menlo Park, CA, USA
tlinker@slac.stanford.edu

Ye Luo
Computational Science Division
Argonne National Laboratory

Lemont, IL, USA
yeluo@anl.gov

Rajiv K. Kalia
Collaboratory for Advanced
Computing and Simulations

University of Southern California
Los Angeles, CA, USA

rkalia@usc.edu

Ken-ichi Nomura
Collaboratory for Advanced Computing and

Simulations
University of Southern California

Los Angeles, CA, USA
knomura@usc.edu

Priya Vashishta
Collaboratory for Advanced Computing and

Simulations
University of Southern California

Los Angeles, CA, USA
priyav@usc.edu

Aiichiro Nakano
Collaboratory for Advanced Computing and

Simulations
University of Southern California

Los Angeles, CA, USA
anakano@usc.edu

Abstract—To study light-matter interaction, we have developed a
linear-scaling DC-MESH (divide-and-conquer Maxwell-
Ehrenfest-surface hopping) simulation algorithm, where our
globally-sparse and locally-dense electronic solvers, multiple time-
scale splitting, and shadow dynamics achieve high scalability and
allow the most compute-intensive quantum dynamics kernel based
on time-dependent density functional theory to reside on GPU
with minimal CPU-GPU data transfer. GPU computation based
on OpenMP target constructs is accelerated by: (i) data and loop
reordering for better memory access patterns; (ii) hierarchical
GPU offloading using teams-distribute and parallel constructs,
respectively, for coarse and fine computations; (iii) algebraic
‘BLASification’ of the nonlocal computational bottleneck; and (iv)
GPU-resident data structures facilitated by custom C++ class
initializer and destructor based on OpenMP target data
constructs. We have thereby achieved 644-fold speedup on Nvidia
A100 GPU over AMD EPYC 7543 CPU of the Polaris computer at
Argonne Leadership Computing Facility. In addition, the DC-
MESH code exhibits a weak-scaling parallel efficiency of 96.73%
on 256 nodes (or 1,024 GPUs) of Polaris for 5,120-atom PbTiO3
material. This enables the study of light-induced topological
switching for future ultrafast and ultralow-power ferroelectric
topotronics applications.
Keywords—quantum dynamics, light-matter interaction, time-
dependent density functional theory, algebraic BLASification, GPU
acceleration

I. INTRODUCTION
How light and matter interact is one of the most

fundamental scientific questions. For example, nonlinear
interaction of high-intensity laser with matter generates
ultrashort attosecond (10-18 second) pulses. This discovery has
opened up the new era of attosecond physics, for which
Agostini, Krausz, and L’Hullier received the 2023 Nobel prize
in physics [1]. While high-end supercomputing has
successfully been applied to quantum-mechanical study of

static materials properties [2-7], its application to quantum
dynamics (QD) such as attosecond physics remains in its
infancy [8].

Nonlinear, non-steady dynamics like attosecond light-
matter interaction is theoretically described by Maxwell’s
equations for light along with time-dependent density
functional theory (TDDFT) for electrons [9, 10]. This is a
multiscale physics problem encompassing fast (10-18 second)
elementary processes of light-electron coupling and slower (10-

12 second) materials response through electron-atom coupling.
In addition to this temporal disparity, disparate length scales
need be accounted for, ranging from electronic wave functions
(10-10 m) to large topological features of quantum materials (10-

6 m) [11, 12]. For static quantum properties, the length-scale
problem has been addressed by linear-scaling density
functional theory (DFT) algorithms [13], in which the O(N3)
complexity of the DFT problem (1998 Nobel prize in chemistry
for Walter Kohn; N is the number of electrons) [14] is reduced
to O(N) based on the physical data locality principle called
quantum nearsightedness [15]. Among various O(N) DFT
approaches, the most scalable on high-end supercomputers is
the divide-and-conquer (DC) DFT algorithm, where local
electronic Kohn-Sham (KS) wave functions and global KS
potential are determined in global-local self-consistent-field
(SCF) iterations [16, 17].

To move on to the time-scale challenge in QD, the key
insight is that fundamental physics equations are all local at the
finest spatiotemporal scales, i.e., simple partial differential
equations with differential operators acting locally. On the
other hand, coarse-grained schemes to approximately describe
complex chemical interactions often come with an excessive
computational cost of nonlocal operations in space and time.
Simple data parallelism in the former—which we call Local
Field Dynamics (LFD)—fits naturally to hardware accelerators
such as graphic processing unit (GPU). On the other hand,

1057

2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

979-8-3503-6460-6/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPSW63119.2024.00176

complex chemical interaction in the latter—which we call
Quantum eXcitation Molecular Dynamics (QXMD)—can take
advantage of complex instruction sets in central processing unit
(CPU). To minimize data transfer between CPU and GPU, we
adopt a shadow dynamics approach [18], in which a GPU-
resident proxy is solved to effectively describe the action of
LFD on QXMD. In this way, LFD-QXMD handshaking is
reduced to minimal, i.e., electronic occupation numbers, which
are negligible compared to the large memory footprint of many
KS wave functions [19].

Dynamics involving excited electrons and atoms is called
nonadiabatic quantum molecular dynamics (NAQMD) [20-22],
for which there are two major approaches. The first approach
called Ehrenfest dynamics relies on TDDFT equations for
electrons, which in turn dictates interatomic interaction for
molecular dynamics (MD) at short time scales [21]. At longer

time scales, adiabatic electronic states with fixed atomic
positions are good representation of excited electronic states,
and the second approach called surface hopping describes
transitions between the excited states via nonadiabatic coupling
due to atomic motions [21]. Combined with Maxwell equations
for light, we have developed a multiscale NAQMD approach
within a DC scheme named DC-MESH (divide-and-conquer
Maxwell-Ehrenfest-surface hopping). A preliminary version of
DC-MESH with limited functionality is described in Ref. [12].
Several software packages exist for Maxwell+TDDFT
simulations on parallel computers such as Octopus [23] and
SALMON [24], where a multiscale DC approach has been
applied to the Maxwell-Ehrenfest subproblem [24], but not to
the entire Maxwell-Ehrenfest-surface hopping problem.

II. DC-MESH METHOD

DC-MESH is based on an extension of DC called divide-
conquer-recombine (DCR) [25]. In DCR, the three-dimensional
space ȳ is subdivided into spatially localized domains ȳఈ as ȳ ൌ ڂ ȳఈఈ (Fig. 1a) [5, 25]. The initial DC phase constructs
globally informed local solutions, which are used in the
subsequent recombine phase as a compact basis to synthesize
global properties. The recombine phase typically performs
range-limited n-tuple computations to account for higher-order
correlations that are not captured by the tree topology used in
the DC phase. Specifically in TDDFT, the mean electrostatic
field (or Hartree potential) is computed globally using the
scalable O(N) multigrid method, whereas higher-order
correlations represented by the exchange-correlation (XC)
kernel are treated locally within each DC domain since they are
known to be short-ranged [26]. Our DC-DFT algorithm
employs a globally scalable and locally fast (GSLF) electronic
solver that combines an O(N) tree-based multigrid method to
represent global potential and fast Fourier transform (FFT) to
represent local KS wave functions [25]. We have also designed
a lean divide-and-conquer (LDC) DFT algorithm, which
significantly reduces the prefactor of the O(N) computational

cost by applying a density-adaptive boundary condition at the
peripheries of the DC domains. Hybrid space-band
decomposition is used to implement the LDC-DFT algorithm
on parallel computers. In DC-MESH, the QXMD subprogram
on CPU solves global-local SCF iterations in the DC phase
using multiple computing nodes based on message passing
interface (MPI); see Fig. 1b. In the recombines phase, our
globally-sparse and locally-dense (GSLD) electronic solvers
allow the compute-intensive, data-parallel LFD subproblem to
reside on GPU with minimal CPU-GPU data transfer thanks to
shadow dynamics (Fig. 1b). LFD computation on GPU is based
on OpenMP target constructs, which is accelerated by several
computational innovations: (i) data and loop reordering and
blocking for better memory access patterns; (ii) hierarchical
GPU offloading using OpenMP teams-distribute and parallel
constructs, respectively, for coarse and fine computations; (iii)
algebraic ‘BLASification’ of the nonlocal computational
bottleneck; and (iv) simplified GPU resident computation
facilitated by custom C++ class initializer and destructor based
on OpenMP target data constructs. GPU computing via
OpenMP maximizes ease of programming and portability. With

Fig. 1: (a) Divide-and-conquer domains embedded in a global potential. (b) DC-MESH method consists of (i) LFD to describe light-electron
interaction on GPU and (ii) QXMD to describe electron-atom coupling on CPU, with minimal CPU-GPU data transfer via shadow dynamics.

1058

the resulting high performance demonstrated in our result
section, this paper serves as a promising GPU-offloading
pathway for many scientific and engineering codes.

Multiple time-scale splitting: Since our DCR algorithm for
the QXMD subprogram has been reported previously [5, 25],
we here focus on the LFD subprogram. In the ߙ-th domain, we
numerically integrate Maxwell-TDDFT equations: ݅԰ డడ௧ ห ௦߰ఙሺఈሻሺݐሻ඀ ൌ ෠݄ሺఈሻሺݐሻห ௦߰ఙሺఈሻሺݐሻ඀, (1)

where ห ௦߰ఙሺఈሻሺݐሻ඀ is the s-th complex-valued Kohn-Sham (KS)
wave function with spin ߪ within ȳఈ at time t, and the
Hamiltonian operator is defined as [9, 10] ෠݄ሺఈሻሺݐǡ܀ሺݐሻሻ ൌ ଵଶ௠ ቀ԰௜ ׏ ൅ ௘௖ ሻቁଶݐሺ஑ሻሺ܆ۯ ൅ ሻሻݐሺ܀ǡܚො୧୭୬ሺݒ െ݁߶ఈሺܚǡ ሻݐ ൅ ǡܚො୶ୡሾݒ Ǣݐ ǡܚఈሺߩ ሻሿ. (2)ݐ
Here, m and e are the electron mass and charge, ԰ is the Planck
constant, c is the light speed, ܆ۯሺ஑ሻ is the electromagnetic
vector potential at the spatial position of the Ƚ-th domain ܆ሺȽሻ, ݒො୧୭୬ is the ionic pseudopotential, ܀ሺݐሻ collectively denotes the
positions of all atoms, and ߶ఈ is the scalar potential. In Eq. (2), ݒො୶ୡ is the exchange-correlation (xc) potential, which is a
functional of the electron number density, ߩఈሺܚǡ ሻݐ ൌσ ௦݂ఙሺఈሻȁ ௦߰ఙሺܚǡ ሻȁଶ௦ఙݐ , with ௦݂ఙሺఈሻ�ሺא ሾͲǡͳሿሻ being the occupation
number. We solve Maxwell’s equation for ܆ۯሺ஑ሻ and an
auxiliary partial differential equation [27, 28] for ߶ఈ .

Solution of Eq. (1) should account for disparate time scales: ȟ୕ୈ̱ͳͲିଵ଼ second for electrons, ห ௦߰ఙሺఈሻሺݐሻ඀, and ȟ୑ୈ̱ͳͲିଵହ
second for atoms, ܀ሺݐሻ . By expanding the ionic
pseudopotential in terms of slow atomic velocities, ܀ሶ ൌ݀ࡾȀ݀ݐ , and retaining up to the linear term, we can time-
propagate electrons for one molecular-dynamics step ȟ୑ୈ as ห ௦߰ఙሺఈሻሺݐ ൅ ȟ୑ୈሻ඀ ൌ࣮��� ቀെ ௜԰ ׬ ݐ݀ ෠݄ሺఈሻሺݐሻ௧ା୼౉ీ௧ ቁ ෡ܷୗୌ൫܀ሶ ǡ ȟ୑ୈ൯ห ௦߰ఙሺఈሻሺݐሻ඀, (3)
where ࣮ is the time-ordering operator and ෡ܷୗୌ൫܀ሶ ǡ ȟ୑ୈ൯ is the
standard surface-hopping (SH) procedure to update the electron
occupation ௦݂ఙሺఈሻ perturbatively according to nonadiabatic
coupling (NAC) arising from slow atomic motions [21].
Subsequently, we operate ࣮���ቀെ ௜԰ ׬ ݐ݀ ෠݄ሺఈሻሺݐሻା୼౉ీ௧ ቁ in Eq.
(3) using Suzuki-Trotter expansion and space-splitting method
[28]: ࣮��� ቀെ ௜԰ ׬ ݐ݀ ෠݄ሺఈሻሺݐሻ௧ା୼౉ీ௧ ቁ ؆ς ��� ൬െ ௜ο్ీ԰ ෠݄ሺఈሻ ቀݐ ൅ ቀ݊ ൅ ଵଶቁο୕ୈቁ൰ே్ీିଵ௡ୀ଴ , (4)
where ୕ܰୈ ൌ ο୑ୈȀο୕ୈ is the number of QD time steps per
MD step. To ensure stable time propagation during each QD
time step ο୕ୈ , we employ a self-consistent, time-reversible
unitary approach that handles nonlinearity, i.e., the time-
propagation operator itself depends on the wave functions being
propagated [29, 30].

Shadow dynamics: The purpose of the electronic time-
propagator within LFD is to determine the change of electron
occupation number ௦݂ఙ due to light-matter interaction during

one MD time step, ȟ୑ୈ, so that it modifies the excited-state
energy landscape [12, 22, 25] to inform atomic motions in the
SH approach. This can be achieved in a computationally
efficient manner similar to the shadow dynamics [18]. Namely,
we refactor the Hamiltonian ෠݄ሺఈሻ in Eq. (2) as follows: ෠݄ሺఈሻ ൌ ଵଶ ቀ԰௜ ׏ ൅ ௘௖ ሻቁଶݐሺ஑ሻሺ܆ۯ ൅ ǡܚ୪୭ୡሺఈሻሺݒ ሻݐ ൅ ො୬୪ሺఈሻݒ ൌ ෠݄୪୭ୡሺఈሻሺݐሻ ൅ݒො୬୪ሺఈሻ, (5)
where the local potential ݒ୪୭ୡሺఈሻ represents the local
pseudopotential, as well as the Hartree and local exchange-
correlation potentials, which apply spatial point-by-point, while
the nonlocal operator ݒො୬୪ሺఈሻ here collectively denotes the
nonlocal ionic pseudopotential and nonlocal exchange-
correlation potential, which has much more complex
computational characteristics [31]. According to this
refactoring, the electronic time-propagator is approximated as
[32] ��� ൬െ ௜ο్ీ԰ ෠݄ሺఈሻሺݐሻ൰ ؆ଵି೔౴్ీమ԰ ௩ො౤ౢሺഀሻฯଵି೔౴్ీమ԰ ௩ො౤ౢሺഀሻฯ ���൬െ ௜ο్ీ԰ ෠݄୪୭ୡሺఈሻሺݐሻ൰ ଵି೔౴్ీమ԰ ௩ො౤ౢሺഀሻฯଵି೔౴్ీమ԰ ௩ො౤ౢሺഀሻฯ. (6)

Here, the local propagator, ���൫െ݅ο୕ୈ ෠݄୪୭ୡሺఈሻሺݐሻ ԰Τ ൯ǡ can be cast
into data-local stencil operations using the O(N) space-splitting
method [28]. To efficiently compute the nonlocal part in Eq.
(6), we project ݒො୬୪ሺఈሻ onto the vector space spanned by ቄቚ ௦߰ఙሺఈሻ඀ ൌ ቚ ௦߰ఙሺఈሻሺݐ ൌ Ͳሻ඀ቅ [33]: ቀͳ െ ௜୼్ీଶ԰ ො୬୪ሺఈሻቁݒ ቚ ௦߰ఙሺఈሻሺݐሻ඀ ؆ ቚ ௦߰ఙሺఈሻሺݐሻ඀ െ݅ ο౩ౙ౟ο్ీଶ԰ σ ቚ߰௨ఙሺఈሻ඀ ർ߰௨ఙሺఈሻห ௦߰ఙሺఈሻሺݐሻ඀௨ஹ୐୙୑୓ǡ஢ , (7)
where ۦ ȁ ۧ denotes the inner product of two wave functions
and the scissor shift is defined as οୱୡ୧ሺఈሻൌ ൫߳୐୙୑୓ǡ୬୪ሺఈሻ െ ߳ୌ୓୑୓ǡ୬୪ሺఈሻ ൯ െ ൫߳୐୙୑୓ǡ୪୭ୡሺఈሻ െ ߳ୌ୓୑୓ǡ୪୭ୡሺఈሻ ൯. (8)
Here, the lowest unoccupied molecular orbital (LUMO) and
highest occupied molecular orbital (HOMO) KS energies, ߳୐୙୑୓ሺఈሻ and ߳ୌ୓୑୓ሺఈሻ , are computed with the expensive nonlocal
computation (nl) and inexpensive local computation (loc) only
once at each MD step, which are reused for ୕ܰୈ ൌ � ͳͲଶ̱ͳͲଷ
steps to amortize the computational cost.

III. OPTIMIZED IMPLEMENTATION OF ELECTRONIC TIME-
PROPAGATION AND NONLOCAL CORRECTION:

VECTORIZATION, HIERARCHIAL PARALLELISM, AND BLAS
OPERATION

In this section, we describe optimizations applied to
improve performance of the LFD subprogram. We use the Open
Multi-Processing (OpenMP) parallel programming model to
enable minimally invasive offloading to GPUs. We also avoid
unnecessary overheads by creating a common device data
environment to reduce the overall amount spent in host-to-
device data transfer in the OpenMP target region. We first focus
on the local time-propagator, ���൫െ݅ο୕ୈ ෠݄୪୭ୡሺఈሻሺݐሻ ԰Τ ൯ in Eq. (6),
which is a sequence of stencil operations [28]. A series of
optimizations are applied before enabling offload, which

1059

include loop-interchange, memory re-use, and tiling. We then
describe computation transformation of nonlocal correction, ݒො୬୪ሺఈሻ in Eq. (7), to BLAS operations and persistent GPU kernel
transformation.

The electronic time-propagation kernel (specifically the
kinetic propagator kernel arising from the gradient operator in
the Hamiltonian in Eq. (5)) is a stencil operation [28], with
repeated applications of the time-stepping operator to
discretized KS wave functions on spatial mesh points.
Algorithm 1 shows the baseline algorithm. When carrying out
time propagation along a certain Cartesian axis, the input
consists of the wave function ௦߰ఙሺఈሻሺݐሻ , stencil direction ݀ ǡݔሼא ǡݕ ሽݖ , time step ݌ א ሼο୕ୈ ʹΤ ǡ ο୕ୈሽ , as well as diagonal,
upper-diagonal, and lower-diagonal coefficients, ߙௗ௣ǡ ௟ǡௗ௣ǡߚ .௨ǡௗ௣, defined for each mesh pointߚ

Here, a straightforward implementation stores data for the
wave function ௦߰ఙሺఈሻሺݐሻ�in array psi, such that the first index
specifies one of the N KS orbitals and subsequent indices
specifies one of the M grid points in the x, y and z Cartesian
directions. When traversing the wave function in line 3, we first
iterate over the orbitals and then iterate over the grid points in
lines 4, 5 and 6. The operations in lines 7 and 8 yield the value
for the real and imaginary parts of the complex-valued wave
function after time propagation. Once the wave function has
been time-propagated for all mesh points in each orbital, we
exit the nested loop and update the wave function in line with
the values accumulated in line 11.

Algorithm 1: Baseline implementation of time propagation of
electronic wave functions
1: void kin_prop (݅ݏ݌ǡ ݈ܽǡ ܾ݈ǡ ǡݑܾ ǡ݌ ݀ǡ ǡܾݎ݋ܰ } (ݖǡܰݕǡܰݔǡܰݎܰ
2: complex<float> wrk[Nx+2][Ny+2][Nz+2], w;
3: for (int n=0; n < Norb; n++)
4: for (int i=1; i <= Nr[0]; i++)
5: for (int j=1; j <= Nr[1]; j++)
6: for (int k=1; k <= Nr[2]; k++) {
7: w = al[d][p]*psi[n][i][j][k]
8: ...
9: wrk[i][j][k] = w;
10: }
11: #update psi[n][i][j][k] ՚ wrk[i][j][k]
12: }

A. Loop Interchange and Memory re-use

Algorithm 1 is inefficient since the range of data swept
across the wave function and coefficient arrays, which are
multiplied in the stencil operation, is very large, whereas the
update operation takes place at the orbital level. This means
larger strides of data will be out of the cache when grabbing
values to perform the update. In the current implementation
scanning the D-dimensional mesh (D = 3) of M grid points
across N orbitals creates a memory overhead in the order of ܱሺܯ஽ሻ�bytes in line 7. Keeping in mind that the wave function
itself requires allocating ܱሺܮ஽ሻ�bytes (L is the number of grid
points in one direction), where L < M, such implementation
results in the memory demand growing at the rate of ܱሺܯ஽ܮ஽ሻ�during the stencil operation.

To minimize the possibility of reaching the memory
bandwidth, we eliminate storing a copy of the propagated wave
in line 7 and instead proceed to immediately update the wave

function with the partial values computed at that grid point.
This update is achieved through a loop re-ordering such that the
fastest-changing index corresponds to the orbital, resulting in
the move of the update operation inside the loop as shown in
Algorithm 2, line 6 and line 9. We also change the data layout
of the wave function psi such that the wave function at each
grid point stores the value for all orbitals, thereby making it a
structure of arrays (SoA) over the original arrays of structures
(AoS). A combination of loop interchange and an SoA data
layout offers better memory access patterns in the available
registers for both single-instruction multiple-data (SIMD)
paradigm on CPU and single-instruction multiple-thread
(SIMT) paradigm on GPU.

Algorithm 2: Loop re-ordering in time propagation of electronic wave
functions
1: void kin_prop (݅ݏ݌ǡ ݈ܽǡ ܾ݈ǡ ǡݑܾ ǡ݌ ݀ǡ ǡܾݎ݋ܰ } (ݖǡܰݕǡܰݔǡܰݎܰ
2: complex<float> float w;
3: for (int j=1; j <= Nr[1]; j++)
4: for (int k=1; k <= Nr[2]; k++)
5: for (int i=1; i <= Nr[0]; i++)
6: for (int n=0; n < Norb; n++) {
7: w = al[d][p]*psi[i][j][k][n]
8: ...
9: # update psi[i][j][k][n] ՚ w
10: }
11: }

While the update operation changes the value of the wave
function for that orbital, there are still computations in the stencil
which rely on the value prior to the update step. For this reason,
we store a small portion of the data structure before doing each
update, to ensure computational correctness as shown in
Algorithm 3, line 6. Updating grid points remains fully
independent in the y and z directions but not in the x direction

when working on an x -direction stencil for example.
Algorithm 3: Optimized stencil in time propagation of electronic
wave functions
1: void kin_prop (݅ݏ݌ǡ ݈ܽǡ ܾ݈ǡ ǡݑܾ ǡ݌ ݀ǡ ǡܾݎ݋ܰ } (ݖǡܰݕǡܰݔǡܰݎܰ
2: complex<float> w;
3: for (int j=1; j <= Nr[1]; j++)
4: for (int k=1; k <= Nr[2]; k++) {
5: for (int n=0; n < Norb; n++) {
6: psi_old[n] = psi[0][j][k][n];
7: }
8: for (int i=1; i <= Nr[0]; i++)
9: for (int n=0; n < Norb; n++) {
10: w = al*psi[i][j][k][n];
11: w += bl[i]*psi_old[n];
12: …
13: # update psi_old ՚ psi[i][j][k][n]
14: # update psi[i][j][k][n] ՚ w
15: }
16: }
17: }

B. Blocking/Tiling

When the number of orbitals, Norb, is not small, the whole
wave function, psi_old, array may not fit in cache and add
traffic to the slower tier of memory. Blocking the loop of Norb
reduces the size of psi_old array to only the desired block size
instead of Norb, as shown in Algorithm 4. The added loop of
blocks also allows distributing the computation to more GPU
blocks when offloading is used.

1060

Algorithm 4: Cache blocking optimization in time propagation of
electronic wave functions
1: void kin_prop (݅ݏ݌ǡ ݈ܽǡ ܾ݈ǡ ǡݑܾ ǡ݌ ݀ǡ ǡܾݎ݋ܰ } (ݖǡܰݕǡܰݔǡܰݎܰ
2: complex<float> w;
3: for (int j=1; j <= Nr[1]; j++)
4: for (int k=1; k <= Nr[2]; k++) {
5: for (int ib=0; ib < (Norb+1)/block_size; ib++) {
6: complex<float> psi_old[block_size];
7: int begin = ib*block_size;
 int end = min((ib+1)*block_size, Norb);
8: for (int n=begin; n < end; n++)
9: psi_old[n-begin] = psi[0][j][k][n];
10: for (int i=1; i <= Nr[0]; i++)
11: for (int n=begin; n <end; n++) {
12: w = al*psi[i][j][k][n];
13: w += bl[i]*psi_old[n-begin];
14: …
15: # update psi_old ՚ psi[i][j][k][n]
16: # update psi[i][j][k][n] ՚ w
17: }
18: }
19: }
20: }

C. Multiple Parallel Regions

To offload the computation to the accelerator devices on the
blade we test, we use the OpenMP programming model.
Through our loop re-ordering and SoA optimization, we expose
the computation kernel to a high level of parallelism. The
propagation of grid points of the y-z plane can be concurrently
computed for an x-direction stencil. This is because the
propagation of the electronic wave function along the x-
direction requires the ith index of the wave function ߰௜ǡ௝ǡ௞ to
inter-mix with every (j,k). Hence, the first level of parallelism is
achieved as the evolution requires only knowledge of the wave
function at the current time step and the previous step within the
same plane. A second level of parallelism comes into effect from
the ability to propagate the wave function independently of the
orbital. This hierarchical parallelism applies to both SIMD and
SIMT paradigms. The parallelization over planes and orbitals
are collapsed into a larger loop. This grid geometry makes
efficient targets of Cooperative Thread Arrays (CTA) that are
available as well as the limited Streaming Multiprocessor (SM)
register file size. Algorithm 5 shows this parallelism, where the
data structures are now aligned such that all orbitals for a mesh
point are aligned in a single stride. Also, note here we flatten
structures of psi and psi_old into one-dimensional arrays of
complex numbers.�

Algorithm 5: OpenMP stencil in time propagation of electronic wave
functions
1: void kin_prop (݅ݏ݌ǡ ݈ܽǡ ܾ݈ǡ ǡݑܾ ǡ݌ ݀ǡ ǡܾݎ݋ܰ } (ݖǡܰݕǡܰݔǡܰݎܰ
2: complex<float> w;
3: #pragma omp target teams distribute collapse(3)
4: for (int j=1; j <= Nr[1]; j++)
5: for (int k=1; k <= Nr[2]; k++) {
6: for (int ib=0; ib < (Norb+1)/block_size; ib++) {
7: complex<float> psi_old[block_size];
8: int begin = ib*block_size;
 int end = min((ib+1)*block_size, norb);
11: #pragma omp parallel for simd nowait
9: for (int n=begin; n < end; n++)
10: psi_old[n-begin] = psi[0][j][k][n];
8: for (int i=1; i <= Nr[0]; i++)
9: #pragma omp parallel for simd nowait
10: for (int n=begin; n < end; n++) {

11: w = al*psi[i][j][k][n]
 w += bl[i]*psi_old[n-begin]
12: …
13: # update psi_old ՚ psi [i][j][k][n]
14: # update psi [i][j][k][n] ՚ w
15: }
16: }
 }
17: } �

D. BLASification of Nonlocal Correction

The compute-intensive nonlocal correction in Eq. (7) for
time propagation of electronic wave functions can be cast into
matrix operations. To do so, let us define a ܰ݃݀݅ݎ ൈ ܾݎ݋ܰ
wave-function matrix Ȳሺݐሻ , where ܰ݃݀݅ݎ and ܾܰݎ݋ are the
number of grid points to represent each wave function and that
of KS wave functions, respectively. Equation (7) then reads Ȳሺݐሻെൌ ܿȲሺͲሻȲறሺͲሻȲሺݐሻ, (9)
where c is a complex number and Ȳற denotes a Hermitian
transpose matrix. We implement Eq. (9) using BLAS level 3
calls. In addition to time propagation of electronic wave
functions in function nlp_prop(), BLASified nonlocal correction
appears in two other functions in LFD: energy calculation in
function calc_energy() and remapping the final wave functions
to occupation numbers in function remap_occ().
E. Persistent GPU kernel

The key computational advantage of the shadow dynamics
is that the large wave-function arrays, Ȳሺݐሻ and ȲሺͲሻ, can be
made GPU-resident, thereby eliminating massive CPU-GPU
data transfer. Such persistent GPU data structures are facilitated
by our custom C++ class constructor and destructor based on
OpenMP target data constructs; see Algorithm 6. The custom
allocator named OMPallocator is used for container classes like
std::vector, which are intended to be GPU-resident. Upon
initialization, the allocator calls #pragma omp target enter data
map(alloc), while upon destruction, it calls #pragma omp target
exit data map(delete). This significantly eases the
programmability of persistent GPU dataset, while keeping the
use-side code neat. In addition, the HostAllocator may be
replaced with a customized allocator using pinned host memory
to further improve host-device transfer rate.

Algorithm 6: OpenMP allocator
1: template<typename T, class HostAllocator =

std::allocator<T>>
2: struct OMPallocator : public HostAllocator {
3: OMPallocator() = default;
4: value_type* allocate(std::size_t n) {
5: value_type* pt = HostAllocator::allocate(n);
6: #pragma omp target enter data map(alloc:pt[0:n])
7: return pt;
8: }
 void deallocate(value_type* pt, std::size_t n) {
11: #pragma omp target exit data map(delete:pt[0:n])
9: HostAllocator::deallocate(pt, n);
10: }
8: }

IV. PERFORMANCE EVALUATION
We measure performance of DC-MESH on the Polaris

supercomputer at Argonne Leadership Computing Facility

1061

(ALCF). It is a Hewlett Packard Enterprise (HPE) Apollo 6500
Gen 10+ based system consisting of two computing nodes per
chassis, seven chassis per rack, and 40 racks that amount to a
total of 560 nodes. Each Polaris node has one 2.8 GHz AMD
EPYC Milan 7543P 32-core CPU with 512 GB of DDR4 RAM,
four Nvidia A100 GPUs, two 1.6 TB of SSDs in RAID0, and
two Slingshot network endpoints. Polaris uses the Nvidia A100
HGX platform to connect all 4 GPUs via NVLink, with a GPU
interconnect bandwidth of 600 GB/s. The GPU’s PCIe
bandwidth is 64 GB/s. HBM2 memory for GPUs is available
on both HGX and PCIe and is 60 GB and 40 GB, respectively.
Designed by Cray, the Slingshot interconnect is based on high
radix 64-port switches arranged in dragonfly topology and
offers adaptive routing, congestion control, and bandwidth
guarantees by assigning traffic classes to applications. Polaris
uses Slingshot 11 with a node interconnect bandwidth of 200
GB/s. Polaris’ peak performance is 44 Petaflop/s, with node-
level performance at 78 Teraflop/s, for double precision.

The DC-MESH code consists of the QXMD subprogram
written in Fortran with MPI and the LFD subprogram written
in C++ with OpenMP. For performance evaluation on Polaris,
DC-MESH is built using Gfortran and clang 15 compilers.
A. Weak and Strong Scalability

We first perform a weak-scaling benchmark of DC-MESH
on Polaris, in which the number of atoms per MPI rank, N/P is
kept constant, i.e., PbTiO3 material consisting of 40 atoms. For
each MPI rank, 288 KS wave functions are represented using
the plane-wave basis in QXMD, while each complex-valued
KS wave function in LFD is represented on 70ൈ70ൈ72 finite-
difference mesh points. Weak scaling test is carried out up to
256 computing nodes with 4 MPI ranks per node, where each
rank is accelerated by one GPU. The largest system on 256
nodes thus consists of 10,240 atoms.

We measure the wall-clock time per MD simulation step
with scaled workloads — 40P-atom PbTiO3 material on P MPI
ranks on Polaris. The execution time includes 3 self-consistent
field (SCF) iterations to determine the KS wave functions and
the global potential in QXMD, with 3 conjugate-gradient (CG)
iterations per SCF cycle to refine each wave function. We run

1,000 QD steps in LFD per MD step. By increasing the number
of atoms linearly with the number of MPI ranks, the wall-clock
time remains nearly constant, indicating excellent weak
scalability. To quantify the weak-scaling parallel efficiency, we
first define the speed of the DC-MESH program as a product of
the total number of atoms and the number of MD simulation
steps executed per second. The isogranular speedup is given by
the ratio between the speed on P MPI ranks and that on 4 MPI
ranks (i.e., one computing node) as a reference system. The
weak-scaling parallel efficiency is the isogranular speedup
divided by P/4. Figure 2 shows the weak-scaling parallel
efficiency as a function of the number of MPI ranks. With the
granularity of 40 atoms per MPI rank, the parallel efficiency is
0.9673 on P = 256 for a 10,240-atom PbTiO3 material. This
result demonstrates the very high scalability of the DC-MESH
program, mainly due to the globally-sparse and locally-dense
electronic solvers within the divide-conquer-recombine
algorithmic framework.

Next, we perform strong-scaling tests for two problem
sizes: 5,120- and 10,240-atom PbTiO3 materials. In this test, the
number of MPI ranks ranges from P = 64 to 256 for the 5,120
atoms and P = 128 to 512 for the 10,240 atoms, while keeping
the total problem size constant in each case. The strong-scaling
speedup is defined as the wall-clock time on the smallest
number, Pmin, of MPI ranks divided that on the largest number,
Pmax, of MPI ranks for each problem size. The strong-scaling
parallel efficiency is the strong-scaling speedup divided by
Pmax/Pmin. Figure 3 shows the strong-scaling parallel efficiency
as a function of P. The strong-scaling parallel efficiency is
0.8083 with 512 MPI ranks for 10,240 atoms, while it is 0.6634
with 256 MPI ranks for 5,120 atoms. It is more difficult to
achieve high strong-scaling parallel efficiency compared with
weak-scaling parallel efficiency. This is due to the increased
communication/computation ratio as the workload per rank
reduces. This is partly understood by analyzing the parallel
efficiency ߟ as a function of the number of MPI ranks P and
that of atoms N. For the weak-scaling parallel efficiency with
constant granularity (݊ ൌ ܰȀܲ ߟ ,(ൌ ͳȀሾͳ ൅ భయି݊ߙ ൅ି݊ߚଵ���ܲሿ, exhibiting a very weak logarithmic dependence on
P [34]. For the strong-scaling parallel efficiency with constant

Fig. 2. Weak-scaling parallel efficiency of the DC-MESH
program, with scaled workloads — 40P-atom PbTiO3 material
with P MPI ranks (P = 4, ..., 1,024) on Polaris. Black circles are
measured data, whereas blue triangles show ideal speedup.

Fig. 3. Strong-scaling parallel efficiency of the DC-MESH
program as a function of the number of MPI ranks on Polaris for
two problem sizes: 5,120- and 10,240-atom PbTiO3 materials.

5120 atoms

10240 atoms

50 100 500 1000
0.0

0.2

0.4

0.6

0.8

1.0

Number Of MPI Ranks

Ef
fic

ie
nc

y

Strong Scaling

1062

N, in contrast, ߟ ൌ ͳȀሾͳ ൅ ሺܲߙ ܰΤ ሻଵȀଷ ൅ ଵܲ���ܲሿ, whichିܰߚ
exhibits much stronger dependency on P, i.e., ܲଵȀଷ and ܲ���ܲ
in the denominator.
B. GPU Performance

To test single-node GPU performance of the DC-MESH
program, we spawn 4 MPI ranks on one computing node with
a 40-atom PbTiO3 material per MPI rank. Figure 4 compares
the throughput on CPU+GPU and that on CPU only. Here, the
throughput is defined as the number of ranks that complete
execution per unit time for a fixed problem: ܲȀݐୡ୭୫୮୪ୣ୲୧୭୬. By
offloading key computations to GPU, we obtain a 19-fold
speedup over CPU. This signifies decent utilization of GPU
resources on Polaris by the DC-MESH code.

C. Performance Improvement
We next examine GPU performance of the stencil-based

time propagation of KS wave function in the LFD subprogram
as shown in Algorithms 1-5. Table I compares runtime of the
kin_prop() function in the LFD subprogram on Polaris system
using the Clang compiler shipped as a part of LLVM 16 in
comparison with the corresponding runtime on CPU over each
successive optimization mentioned in sections III A-C. The
timing is for 1,000 QD steps involving 64 KS wave functions
each on ͹Ͳ ൈ ͹Ͳ ൈ 72 finite-difference mesh points. For
simplicity, a single GPU timing is compared with a single CPU-
core timing. We first measure incremental performance

improvement due to Algorithms 3 and 4 over that of the
baseline Algorithm 1. The results in Table I shows 3.67- and
9.22-fold speedups over the baseline for Algorithms 3 and 4,
respectively. Further with GPU offloading using Algorithm 5,
we overall achieve 338-fold speedup over the baseline. Next, as
an ablation study, we disable the asynchronous offloading
feature (i.e., the nowait keyword in Algorithm 5) in the GPU-
offloaded code to make it synchronous (fifth entry in Table I).
The results show 298-fold speedup due to GPU offloading
compared to the CPU code for the synchronous offloading. The
asynchronous offloading code thus achieves 10.35% speedup
compared to the synchronous offloading code. These results
demonstrate high GPU utilization as a result of the series of
data-structure and code restructuring outlined through
Algorithms 1-5.

Another key performance optimization is the
transformation of nonlocal correction to BLAS 3 operations
described in section III-D. Table II compares runtime of various
versions of the code for both single precision (SP) and double
precision (DP) floating-point formats of KS wave functions.
The timing is for 1,000 QD steps involving 64 KS wave
functions each on 70ൈ70ൈ72 finite-difference mesh points.
Here, we enumerate the types of builds of the LFD subprogram,
starting with a purely CPU build without invoking any linear
algebra libraries, followed by that using the AMD Optimizing
CPU Libraries (AOCL)—BLAS library. We then offload the
self-consistent equation kernels to GPU, utilizing optimization
in section III-E. In addition to AOCL-BLAS library, we
subsequently use the native cuBLAS library on A100 before we
finally harness faster data transfers between host and device

Fig. 4. Throughput of DC-MESH on a single computing node of
Polaris. We compare CPU-only throughput on AMD 7543P and
that of CPU plus Nvidia A100 GPU.

AMD 7543P NVIDIA A100
0

1

2

3

4

Architectures Tested

Th
ro

ug
hp

ut
(ra

nk
s/

tim
e)

Table II. Runtime comparison of several versions of the DC-
MESH program for SP and DP floating-point formats.
Measurement was made using a single OpenMP thread for
simplicity.

Electron propagation

(sec)
Nonlocal correction

(sec)
Total runtime

(sec)

SP DP SP DP SP DP

CPU
OpenMP
Parallel

444.44 470.73 442.84 455.75 1082 1167

CPU
OpenMP
Parallel +
BLAS

19.72 30.92 10.71 21.54 ͵ͺǤͺ͵ ͸ͷǤͻ͵

GPU
OpenMP
Offload +
BLAS

7.03 11.45 6.75 11.12 17.14 29.23

GPU
OpenMP
Offload +
cuBLAS

0.61 0.94 0.46 0.761 1.33 2.11

GPU
OpenMP
Offload +
cuBLAS
(Pinned
Memory
w/ Cuda
Streams)

0.512 0.68 0.35 0.51 1.06 1.48

Table I. Runtime of the kin_prop() function in the LFD
subprogram.

Implementation Target Runtime (s)

Speedup

Algorithm 1 CPU 8.655 1

Algorithm 3 CPU 2.356 3.67

Algorithm 4 CPU 0.939 9.22

Algorithm 5 GPU 0.026 338

Algorithm 5 (disable
nowait)

GPU 0.029 298

1063

with pinned memory. We track the runtime of some of the most
time-consuming operations: (i) time propagation of electronic
wave functions (or electron propagation) including potential
propagation, kinetic propagation, and nonlinear propagation
(cf. Eq. (6)); (ii) additional nonlocal correction operations (cf.
section III-D); as well as (iii) the total time spent in the LFD
subroutine. All runs are carried out with a single OpenMP
thread. Table II shows a 35% reduction in electron propagation
and a 42% reduction in nonlocal correction kernel completion
times using SP compared to DP.

To quantify performance gains from vectorization and
offloading the code to GPU, Fig. 5 shows DP runtime of

compute-intensive kernels: electron time-propagation (Eq. (6)),
nonlocal electron time-propagation (Eq. (7)), and energy
calculation kernels for the benchmark test by building with
available options. Here, we start with the purely CPU
implementation with OpenMP and AOCL-BLAS and show
subsequent reduction of runtime with GPU offload kernels,
cuBLAS, and pinned memory. When comparing the purely
CPU implementation with AOCL-BLAS build and the GPU
kernel offload build with cuBLAS and pinned memory, we see
45-fold speedup in electron propagation, 42-fold speedup in
nonlocal propagation and nearly 46-fold speedup in energy
calculation kernels in the latter.

Figure 6 shows the speedup of the total DC-MESH code due
to a sequence of code versions as shown in Fig. 5. The
BLASification of the nonlocal computations are highly
effective on both CPU and GPU. Accordingly, we first achieve
25.2-fold speedup with BLAS on CPU compared to the non-
BLAS baseline on CPU. The BLASified code is then offloaded

to GPU, achieving 18.6-fold speedup over the BLASified CPU
code. By the memory-pinning optimization, we achieve
additional 37.6% speedup. Overall, we achieve 644-fold
cumulative speedup.

Fig. 5. Runtime of compute-intensive kernels when building with different parallel computing interfaces. Measurement was made using a
single OpenMP thread for simplicity.

Fig. 7. Flux closure structure during ferroelectric switching in
PbTiO3.

Fig. 6. Speedup over the baseline DC-MESH code on a single
Polaris node resulting from a series of code optimizations.
Measurement was made using a single OpenMP thread for
simplicity.

1064

V. APPLICATION
Performance-optimized DC-MESH code has enabled the

study of light-induced topological switching for future ultrafast
and ultralow-power ferroelectric topotronics applications. We
have adopted a multiscale simulation approach [12], where we
first prepare a complex polar topology such as the flux closure
domain illustrated in Fig. 7, which has been investigated for
next-generation transducer and sensor applications. Our
multiscale approach utilizes molecular dynamics (MD)
simulations with a neural-network force field trained with
ground-state quantum MD simulations [35]. This allows for
quickly generating ground-state polar topologies that is then
investigated for their electronic and structural responses to
femtosecond laser fields with DC-MESH. It is currently an open
question how to control attosecond electronic excitation
dynamics initiated by laser pulses to generate longer-time
structural changes. Using our DC-MESH code, we are currently
exploring those dynamics to understand laser-induced
topological changes, such as fs laser induced ultrafast switching
of the flux closure domain in Fig 7. Such light-matter interaction
can be directly compared to/inform state-of-the-art experiments
performed using free-electron lasers such as the newly upgraded
LCLS-II at Stanford [36]. Integrated computational and
experimental studies will be essential for developing
controllable topological switching for ultralow-power
technologies arising from topological protection from thermal
noise [37].

VI. CONCLUSION
To study light-matter interaction on emerging exaflop/s

supercomputers in the new era of attosecond physics, we have
developed a linear-scaling DC-MESH (divide-and-conquer
Maxwell-Ehrenfest-surface hopping) simulation algorithm. Our
globally-sparse and locally-dense electronic solvers, multiple
time-scale splitting, and shadow dynamics have achieved high
scalability, while allowing the most compute-intensive quantum
dynamics kernel based on time-dependent density functional
theory to reside on GPU with minimal CPU-GPU data transfer.
GPU computation based on minimally invasive OpenMP target
constructs is accelerated by: (i) data and loop reordering for
better memory access patterns; (ii) hierarchical GPU offloading
using teams-distribute and parallel constructs, respectively, for
coarse and fine computations; (iii) algebraic ‘BLASification’ of
the nonlocal computational bottleneck; and (iv) GPU-resident
data structures facilitated by custom C++ class initializer and
destructor based on OpenMP target data constructs. We have
thereby achieved 644-fold speedup on Nvidia A100 GPU over
AMD EPYC 7543 CPU on the Polaris computer at Argonne
Leadership Computing Facility. In addition, the DC-MESH
code exhibited a high weak-scaling parallel efficiency of
96.73% on 256 nodes (or 1,024 GPUs) of Polaris for 5,120-atom
PbTiO3 material. This enables the study of light-induced
topological switching for future ultrafast and ultralow-power
ferroelectric topotronics applications for sustainable future.
Most recently, the DC-MESH code has been ported to the
Aurora supercomputer at Argonne, which will be presented
elsewhere.

ACKNOWLEDGMENT
This work was supported by Department of Energy (DOE),

Office of Science, Basic Energy Sciences, award DE-
SC0000267409. K.N. was supported by an NSF grant OAC-
2118061. The scalable code development was supported by the
Aurora ESP program. An award for computer time was provided
by the U.S. DOE Innovative and Novel Computational Impact
on Theory and Experiment (INCITE) Program. This research
used resources from the Argonne Leadership Computing
Facility, a U.S. DOE Office of Science user facility at Argonne
National Laboratory, which is supported by the Office of
Science of the U.S. DOE under Contract No. DE-AC02-
06CH11357.

PUBLISHER’S NOTE
The submitted manuscript has been created by UChicago

Argonne, LLC, Operator of Argonne National Laboratory
("Argonne"). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the
Government. The Department of Energy will provide public
access to these results of federally sponsored research in
accordance with the DOE Public Access Plan.
http://energy.gov/downloads/doe-public-access-plan.

REFERENCES

1 https://www.nobelprize.org/uploads/2023/10/advanced-
physicsprize2023-2.pdf.

2 Gygi, F., Draeger, E.W., Schulz, M., de Supinski, B.R., Gunnels,
J.A., Austel, V., Sexton, J.C., Franchetti, F., Kral, S., Ueberhuber,
C.W., and Lorenz, J.: ‘Large-scale electronic structure
calculations of high-Z metals on the BlueGene/L platform’,
Proceedings of Supercomputing, SC06, IEEE/ACM, 2006, pp.
45–es

3 Eisenbach, M., Zhou, C.G., Nicholson, D.M., Brown, G., Larkin,
J., and Schulthess, T.C.: ‘A scalable method for ab initio
computation of free energies in nanoscale systems’, Proceedings
of Supercomputing, SC09, ACM/IEEE, 2009, pp. 64

4 Hasegawa, Y., Iwata, J., Tsuji, M., Takahashi, D., Oshiyama, A.,
Minami, K., Boku, T., Shoji, F., Uno, A., Kurokawa, M., Inoue,
H., Miyoshi, I., and Yokokawa, M.: ‘First-principles calculations
of electron states of a silicon nanowire with 100,000 atoms on the
K computer’, Proceedings of Supercomputing, SC11,
ACM/IEEE, 2011, pp. 1

5 Nomura, K., Kalia, R.K., Nakano, A., Vashishta, P., Shimamura,
K., Shimojo, F., Kunaseth, M., Messina, P.C., and Romero, N.A.:
‘Metascalable quantum molecular dynamics simulations of
hydrogen-on-demand’, Proceedings of Supercomputing, SC14,
IEEE/ACM, 2014, pp. 661-673

6 Lass, M., Schade, R., Kuhne, T.D., and Plessl, C.: ‘A submatrix-
based method for approximate matrix function evaluation in the
quantum chemistry code CP2K’. Proc. Proceedings of
Supercomputing, SC20, Atlanta, Georgia, Nov IEEE/ACM, 2020

7 Das, S., Kanungo, B., Subramanian, V., Panigrahi, G., Motamarri,
P., Rogers, D., Zimmerman, P.M., and Gavini, V.: ‘Large-scale
materials modeling at quantum accuracy: Ab initio simulations of

1065

quasicrystals and interacting extended defects in metallic alloys’,
Proceedings of Supercomputing, SC23, ACM/IEEE, 2023, pp. 1

8 Jia, W., Wang, L.-W., and Lin, L.: ‘Parallel transport time-
dependent density functional theory calculations with hybrid
functional on Summit’. Proceedings of Supercomputing, SC19,
Denver, Colorado, Nov ACM/IEEE, 2019

9 Yabana, K., Sugiyama, T., Shinohara, Y., Otobe, T., and Bertsch,
G.F.: ‘Time-dependent density functional theory for strong
electromagnetic fields in crystalline solids’, Phys Rev B, 2012,
85, (4), pp. 045134

10 Jestadt, R., Ruggenthaler, M., Oliveira, M.J.T., Rubio, A., and
Appel, H.: ‘Light-matter interactions within the Ehrenfest–
Maxwell–Pauli–Kohn–Sham framework: fundamentals,
implementation, and nano-optical applications’, Adv Phys, 2019,
68, (4), pp. 225-333

11 Basov, D.N., Averitt, R.D., and Hsieh, D.: ‘Towards properties
on demand in quantum materials’, Nat Mater, 2017, 16, (11), pp.
1077-1088

12 Linker, T., Nomura, K., Aditya, A., Fukshima, S., Kalia, R.K.,
Krishnamoorthy, A., Nakano, A., Rajak, P., Shimmura, K.,
Shimojo, F., and Vashishta, P.: ‘Exploring far-from-equilibrium
ultrafast polarization control in ferroelectric oxides with excited-
state neural network quantum molecular dynamics’, Sci Adv,
2022, 8, (12), pp. eabk2625

13 Bowler, D.R., and Miyazaki, T.: ‘O(N) methods in electronic
structure calculations’, Rep Prog Phys, 2012, 75, (3), pp. 036503

14 https://www.nobelprize.org/prizes/chemistry/1998/summary/.
15 Kohn, W.: ‘Density functional and density matrix method scaling

linearly with the number of atoms’, Phys Rev Lett, 1996, 76, (17),
pp. 3168-3171

16 Yang, W.T.: ‘Direct calculation of electron-density in density-
functional theory’, Phys Rev Lett, 1991, 66, (11), pp. 1438-1441

17 Shimojo, F., Kalia, R.K., Nakano, A., and Vashishta, P.:
‘Embedded divide-and-conquer algorithm on hierarchical real-
space grids: parallel molecular dynamics simulation based on
linear-scaling density functional theory’, Comput Phys Commun,
2005, 167, (3), pp. 151-164

18 Niklasson, A.M.N.: ‘Extended Lagrangian Born–Oppenheimer
molecular dynamics: from density functional theory to charge
relaxation models’, Euro Phys J B, 2021, 94, (8), pp. 164

19 Lee, C.W., and Schleife, A.: ‘Hot-electron-mediated ion diffusion
in semiconductors for ion-beam nanostructuring’, Nano Lett,
2019, 19, (6), pp. 3939-3947

20 Craig, C.F., Duncan, W.R., and Prezhdo, O.V.: ‘Trajectory
surface hopping in the time-dependent Kohn-Sham approach for
electron-nuclear dynamics’, Phy Rev Lett, 2005, 95, (16), pp.
163001

21 Tully, J.C.: ‘Perspective: nonadiabatic dynamics theory’, J Chem
Phys, 2012, 137, (22), pp. 22A301

22 Shimojo, F., Ohmura, S., Mou, W., Kalia, R.K., Nakano, A., and
Vashishta, P.: ‘Large nonadiabatic quantum molecular dynamics
simulations on parallel computers’, Comput Phys Commun, 2013,
184, (1), pp. 1-8

23 Tancogne-Dejean, N., Oliveira, M.J.T., Andrade, X., Appel, H.,
Borca, C.H., Le Breton, G., Buchholz, F., Castro, A., Corni, S.,
Correa, A.A., De Giovannini, U., Delgado, A., Eich, F.G., Flick,
J., Gil, G., Gomez, A., Helbig, N., Hübener, H., Jestädt, R.,
Jornet-Somoza, J., Larsen, A.H., Lebedeva, I.V., Lüders, M.,
Marques, M.A.L., Ohlmann, S.T., Pipolo, S., Rampp, M., Rozzi,
C.A., Strubbe, D.A., Sato, S.A., Schäfer, C., Theophilou, I.,

Welden, A., and Rubio, A.: ‘Octopus, a computational framework
for exploring light-driven phenomena and quantum dynamics in
extended and finite systems’, J Chem Phys, 2020, 152, (12), pp.
124119

24 Noda, M., Sato, S.A., Hirokawa, Y., Uemoto, M., Takeuchi, T.,
Yamada, S., Yamada, A., Shinohara, Y., Yamaguchi, M., Iida, K.,
Floss, I., Otobe, T., Lee, K.-M., Ishimura, K., Boku, T., Bertsch,
G.F., Nobusada, K., and Yabana, K.: ‘SALMON: Scalable Ab-
initio light–matter simulator for optics and nanoscience’, Comput
Phys Commun, 2019, 235, pp. 356-365

25 Shimojo, F., Kalia, R.K., Kunaseth, M., Nakano, A., Nomura, K.,
Ohmura, S., Shimamura, K., and Vashishta, P.: ‘A divide-
conquer-recombine algorithmic paradigm for multiscale
materials modeling’, J Chem Phys, 2014, 140, (18), pp. 18A529

26 Nakano, A., and Ichimaru, S.: ‘Dynamic correlations in electron
liquids. 1. General formalism’, Phys Rev B, 1989, 39, (8), pp.
4930-4937

27 Car, R., and Parrinello, M.: ‘The unified approach to density
functional and molecular dynamics in real space’, Solid State
Commun, 1987, 62, (6), pp. 403-405

28 Nakano, A., Vashishta, P., and Kalia, R.K.: ‘Massively-parallel
algorithms for computational nanoelectronics based on quantum
molecular dynamics’, Comput Phys Commun, 1994, 83, (2-3), pp.
181-196

29 Sato, S.A., Taniguchi, Y., Shinohara, Y., and Yabana, K.:
‘Nonlinear electronic excitations in crystalline solids using meta-
generalized gradient approximation and hybrid functional in
time-dependent density functional theory’, J Chem Phys, 2015,
143, (22), pp. 224116

30 Lian, C., Guan, M.X., Hu, S.Q., Zhang, J.N., and Meng, S.:
‘Photoexcitation in solids: first-principles quantum simulations
by real-time TDDFT’, Adv Theory Sim, 2018, 1, (8), pp. 1800055

31 Martin, R.M.: ‘Electronic Structure: Basic Theory and Practical
Methods’ (Cambridge University Press, 2008. 2008)

32 Vlcek, V., Baer, R., and Neuhauser, D.: ‘Stochastic time-
dependent DFT with optimally tuned range-separated hybrids:
application to excitonic effects in large phosphorene sheets’, J
Chem Phys, 2019, 150, (18), pp. 184118

33 Wang, C.Y., Elliott, P., Sharma, S., and Dewhurst, J.K.: ‘Real
time scissor correction in TD-DFT’, J Phys-Condens Mat, 2019,
31, (21), pp. 214002

34 Tiwari, S.C., Sakdhnagool, P., Kalia, R.K., Krishnamoorthy, A.,
Kunaseth, M., Nakano, A., Rajak, P., Shimojo, F., Luo, Y., and
Vashishta, P.: ‘Quantum dynamics at scale: ultrafast control of
emergent functional materials’, Proceedings of International
Conference on High Performance Computing in Asia-Pacific
Region, HPCAsia2020, ACM, 2020

35 Linker, T., Nomura, K., Fukushima, S., Kalia, R.K.,
Krishnamoorthy, A., Nakano, A., Shimamura, K., Shimojo, F.,
and Vashishta, P.: ‘Induction and Ferroelectric Switching of Flux
Closure Domains in Strained PbTiO3 with Neural Network
Quantum Molecular Dynamics’, Nano Lett, 2023, 23, (16), pp.
7456-7462

36 Rini, M.: ‘First light for a next-generation light source’, Phys,
2023, 16, pp. 160

37 Tian, G., Yang, W.D., Gao, X.S., and Liu, J.M.: ‘Emerging
phenomena from exotic ferroelectric topological states’, APL
Mater, 2021, 9, (2), pp. 020907

1066

