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Abstract—To study light-matter interaction, we have developed a 
linear-scaling DC-MESH (divide-and-conquer Maxwell-
Ehrenfest-surface hopping) simulation algorithm, where our 
globally-sparse and locally-dense electronic solvers, multiple time-
scale splitting, and shadow dynamics achieve high scalability and 
allow the most compute-intensive quantum dynamics kernel based 
on time-dependent density functional theory to reside on GPU 
with minimal CPU-GPU data transfer. GPU computation based 
on OpenMP target constructs is accelerated by: (i) data and loop 
reordering for better memory access patterns; (ii) hierarchical 
GPU offloading using teams-distribute and parallel constructs, 
respectively, for coarse and fine computations; (iii) algebraic 
‘BLASification’ of the nonlocal computational bottleneck; and (iv) 
GPU-resident data structures facilitated by custom C++ class 
initializer and destructor based on OpenMP target data 
constructs. We have thereby achieved 644-fold speedup on Nvidia 
A100 GPU over AMD EPYC 7543 CPU of the Polaris computer at 
Argonne Leadership Computing Facility. In addition, the DC-
MESH code exhibits a weak-scaling parallel efficiency of 96.73% 
on 256 nodes (or 1,024 GPUs) of Polaris for 5,120-atom PbTiO3 
material. This enables the study of light-induced topological 
switching for future ultrafast and ultralow-power ferroelectric 
topotronics applications. 
Keywords—quantum dynamics, light-matter interaction, time-
dependent density functional theory, algebraic BLASification, GPU 
acceleration 

 

I. INTRODUCTION  
How light and matter interact is one of the most 

fundamental scientific questions. For example, nonlinear 
interaction of high-intensity laser with matter generates 
ultrashort attosecond (10-18 second) pulses. This discovery has 
opened up the new era of attosecond physics, for which 
Agostini, Krausz, and L’Hullier received the 2023 Nobel prize 
in physics [1]. While high-end supercomputing has 
successfully been applied to quantum-mechanical study of 

static materials properties [2-7], its application to quantum 
dynamics (QD) such as attosecond physics remains in its 
infancy [8]. 

Nonlinear, non-steady dynamics like attosecond light-
matter interaction is theoretically described by Maxwell’s 
equations for light along with time-dependent density 
functional theory (TDDFT) for electrons [9, 10]. This is a 
multiscale physics problem encompassing fast (10-18 second) 
elementary processes of light-electron coupling and slower (10-

12 second) materials response through electron-atom coupling. 
In addition to this temporal disparity, disparate length scales 
need be accounted for, ranging from electronic wave functions 
(10-10 m) to large topological features of quantum materials (10-

6 m) [11, 12]. For static quantum properties, the length-scale 
problem has been addressed by linear-scaling density 
functional theory (DFT) algorithms [13], in which the O(N3) 
complexity of the DFT problem (1998 Nobel prize in chemistry 
for Walter Kohn; N is the number of electrons) [14] is reduced 
to O(N) based on the physical data locality principle called 
quantum nearsightedness [15]. Among various O(N) DFT 
approaches, the most scalable on high-end supercomputers is 
the divide-and-conquer (DC) DFT algorithm, where local 
electronic Kohn-Sham (KS) wave functions and global KS 
potential are determined in global-local self-consistent-field 
(SCF) iterations [16, 17]. 

To move on to the time-scale challenge in QD, the key 
insight is that fundamental physics equations are all local at the 
finest spatiotemporal scales, i.e., simple partial differential 
equations with differential operators acting locally. On the 
other hand, coarse-grained schemes to approximately describe 
complex chemical interactions often come with an excessive 
computational cost of nonlocal operations in space and time. 
Simple data parallelism in the former—which we call Local 
Field Dynamics (LFD)—fits naturally to hardware accelerators 
such as graphic processing unit (GPU). On the other hand, 
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complex chemical interaction in the latter—which we call 
Quantum eXcitation Molecular Dynamics (QXMD)—can take 
advantage of complex instruction sets in central processing unit 
(CPU). To minimize data transfer between CPU and GPU, we 
adopt a shadow dynamics approach [18], in which a GPU-
resident proxy is solved to effectively describe the action of 
LFD on QXMD. In this way, LFD-QXMD handshaking is 
reduced to minimal, i.e., electronic occupation numbers, which 
are negligible compared to the large memory footprint of many 
KS wave functions [19]. 

Dynamics involving excited electrons and atoms is called 
nonadiabatic quantum molecular dynamics (NAQMD) [20-22], 
for which there are two major approaches. The first approach 
called Ehrenfest dynamics relies on TDDFT equations for 
electrons, which in turn dictates interatomic interaction for 
molecular dynamics (MD) at short time scales [21]. At longer 

time scales, adiabatic electronic states with fixed atomic 
positions are good representation of excited electronic states, 
and the second approach called surface hopping describes 
transitions between the excited states via nonadiabatic coupling 
due to atomic motions [21]. Combined with Maxwell equations 
for light, we have developed a multiscale NAQMD approach 
within a DC scheme named DC-MESH (divide-and-conquer 
Maxwell-Ehrenfest-surface hopping). A preliminary version of 
DC-MESH with limited functionality is described in Ref. [12]. 
Several software packages exist for Maxwell+TDDFT 
simulations on parallel computers such as Octopus [23] and 
SALMON [24], where a multiscale DC approach has been 
applied to the Maxwell-Ehrenfest subproblem [24], but not to 
the entire Maxwell-Ehrenfest-surface hopping problem. 

II. DC-MESH METHOD 

 
 

DC-MESH is based on an extension of DC called divide-
conquer-recombine (DCR) [25]. In DCR, the three-dimensional 
space ȳ is subdivided into spatially localized domains ȳఈ  as ȳ ൌ ڂ ȳఈఈ  (Fig. 1a) [5, 25]. The initial DC phase constructs 
globally informed local solutions, which are used in the 
subsequent recombine phase as a compact basis to synthesize 
global properties. The recombine phase typically performs 
range-limited n-tuple computations to account for higher-order 
correlations that are not captured by the tree topology used in 
the DC phase. Specifically in TDDFT, the mean electrostatic 
field (or Hartree potential) is computed globally using the 
scalable O(N) multigrid method, whereas higher-order 
correlations represented by the exchange-correlation (XC) 
kernel are treated locally within each DC domain since they are 
known to be short-ranged [26]. Our DC-DFT algorithm 
employs a globally scalable and locally fast (GSLF) electronic 
solver that combines an O(N) tree-based multigrid method to 
represent global potential and fast Fourier transform (FFT) to 
represent local KS wave functions [25]. We have also designed 
a lean divide-and-conquer (LDC) DFT algorithm, which 
significantly reduces the prefactor of the O(N) computational 

cost by applying a density-adaptive boundary condition at the 
peripheries of the DC domains. Hybrid space-band 
decomposition is used to implement the LDC-DFT algorithm 
on parallel computers. In DC-MESH, the QXMD subprogram 
on CPU solves global-local SCF iterations in the DC phase 
using multiple computing nodes based on message passing 
interface (MPI); see Fig. 1b. In the recombines phase, our 
globally-sparse and locally-dense (GSLD) electronic solvers 
allow the compute-intensive, data-parallel LFD subproblem to 
reside on GPU with minimal CPU-GPU data transfer thanks to 
shadow dynamics (Fig. 1b). LFD computation on GPU is based 
on OpenMP target constructs, which is accelerated by several 
computational innovations: (i) data and loop reordering and 
blocking for better memory access patterns; (ii) hierarchical 
GPU offloading using OpenMP teams-distribute and parallel 
constructs, respectively, for coarse and fine computations; (iii) 
algebraic ‘BLASification’ of the nonlocal computational 
bottleneck; and (iv) simplified GPU resident computation 
facilitated by custom C++ class initializer and destructor based 
on OpenMP target data constructs. GPU computing via 
OpenMP maximizes ease of programming and portability. With 

 
Fig. 1: (a) Divide-and-conquer domains embedded in a global potential.  (b) DC-MESH method consists of (i) LFD to describe light-electron 
interaction on GPU and (ii) QXMD to describe electron-atom coupling on CPU, with minimal CPU-GPU data transfer via shadow dynamics. 
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the resulting high performance demonstrated in our result 
section, this paper serves as a promising GPU-offloading 
pathway for many scientific and engineering codes. 

Multiple time-scale splitting: Since our DCR algorithm for 
the QXMD subprogram has been reported previously [5, 25], 
we here focus on the LFD subprogram. In the ߙ-th domain, we 
numerically integrate Maxwell-TDDFT equations: ݅԰ డడ௧ ห ௦߰ఙሺఈሻሺݐሻ඀ ൌ ෠݄ሺఈሻሺݐሻห ௦߰ఙሺఈሻሺݐሻ඀, (1) 

where ห ௦߰ఙሺఈሻሺݐሻ඀ is the s-th complex-valued Kohn-Sham (KS) 
wave function with spin ߪ  within ȳఈ  at time t, and the 
Hamiltonian operator is defined as [9, 10] ෠݄ሺఈሻሺݐǡ܀ሺݐሻሻ ൌ ଵଶ௠ ቀ԰௜ ׏ ൅ ௘௖ ሻቁଶݐሺ஑ሻሺ܆ۯ ൅ ሻሻݐሺ܀ǡܚො୧୭୬ሺݒ െ݁߶ఈሺܚǡ ሻݐ ൅ ǡܚො୶ୡሾݒ Ǣݐ ǡܚఈሺߩ  ሻሿ. (2)ݐ
Here, m and e are the electron mass and charge, ԰ is the Planck 
constant, c is the light speed, ܆ۯሺ஑ሻ  is the electromagnetic 
vector potential at the spatial position of the Ƚ-th domain ܆ሺȽሻ, ݒො୧୭୬ is the ionic pseudopotential, ܀ሺݐሻ collectively denotes the 
positions of all atoms, and ߶ఈ  is the scalar potential. In Eq. (2), ݒො୶ୡ  is the exchange-correlation (xc) potential, which is a 
functional of the electron number density, ߩఈሺܚǡ ሻݐ ൌσ ௦݂ఙሺఈሻȁ ௦߰ఙሺܚǡ ሻȁଶ௦ఙݐ , with ௦݂ఙሺఈሻ�ሺא ሾͲǡͳሿሻ being the occupation 
number. We solve Maxwell’s equation for ܆ۯሺ஑ሻ  and an 
auxiliary partial differential equation [27, 28] for ߶ఈ . 

Solution of Eq. (1) should account for disparate time scales: ȟ୕ୈ̱ͳͲିଵ଼ second for electrons, ห ௦߰ఙሺఈሻሺݐሻ඀, and ȟ୑ୈ̱ͳͲିଵହ 
second for atoms, ܀ሺݐሻ . By expanding the ionic 
pseudopotential in terms of slow atomic velocities, ܀ሶ ൌ݀ࡾȀ݀ݐ , and retaining up to the linear term, we can time-
propagate electrons for one molecular-dynamics step ȟ୑ୈ as ห ௦߰ఙሺఈሻሺݐ ൅ ȟ୑ୈሻ඀ ൌ࣮��� ቀെ ௜԰ ׬ ݐ݀ ෠݄ሺఈሻሺݐሻ௧ା୼౉ీ௧ ቁ ෡ܷୗୌ൫܀ሶ ǡ ȟ୑ୈ൯ห ௦߰ఙሺఈሻሺݐሻ඀, (3) 
where ࣮ is the time-ordering operator and ෡ܷୗୌ൫܀ሶ ǡ ȟ୑ୈ൯ is the 
standard surface-hopping (SH) procedure to update the electron 
occupation ௦݂ఙሺఈሻ  perturbatively according to nonadiabatic 
coupling (NAC) arising from slow atomic motions [21]. 
Subsequently, we operate ࣮���ቀെ ௜԰ ׬ ݐ݀ ෠݄ሺఈሻሺݐሻା୼౉ీ௧ ቁ in Eq. 
(3) using Suzuki-Trotter expansion and space-splitting method 
[28]:  ࣮��� ቀെ ௜԰ ׬ ݐ݀ ෠݄ሺఈሻሺݐሻ௧ା୼౉ీ௧ ቁ ؆ς ��� ൬െ ௜ο్ీ԰ ෠݄ሺఈሻ ቀݐ ൅ ቀ݊ ൅ ଵଶቁο୕ୈቁ൰ே్ీିଵ௡ୀ଴ , (4) 
where ୕ܰୈ ൌ ο୑ୈȀο୕ୈ  is the number of QD time steps per 
MD step. To ensure stable time propagation during each QD 
time step ο୕ୈ , we employ a self-consistent, time-reversible 
unitary approach that handles nonlinearity, i.e., the time-
propagation operator itself depends on the wave functions being 
propagated [29, 30]. 

Shadow dynamics: The purpose of the electronic time-
propagator within LFD is to determine the change of electron 
occupation number ௦݂ఙ  due to light-matter interaction during 

one MD time step, ȟ୑ୈ, so that it modifies the excited-state 
energy landscape [12, 22, 25] to inform atomic motions in the 
SH approach. This can be achieved in a computationally 
efficient manner similar to the shadow dynamics [18]. Namely, 
we refactor the Hamiltonian ෠݄ሺఈሻ in Eq. (2) as follows: ෠݄ሺఈሻ ൌ ଵଶ ቀ԰௜ ׏ ൅ ௘௖ ሻቁଶݐሺ஑ሻሺ܆ۯ ൅ ǡܚ୪୭ୡሺఈሻሺݒ ሻݐ ൅ ො୬୪ሺఈሻݒ ൌ ෠݄୪୭ୡሺఈሻሺݐሻ ൅ݒො୬୪ሺఈሻ, (5) 
where the local potential ݒ୪୭ୡሺఈሻ  represents the local 
pseudopotential, as well as the Hartree and local exchange-
correlation potentials, which apply spatial point-by-point, while 
the nonlocal operator ݒො୬୪ሺఈሻ  here collectively denotes the 
nonlocal ionic pseudopotential and nonlocal exchange-
correlation potential, which has much more complex 
computational characteristics [31]. According to this 
refactoring, the electronic time-propagator is approximated as 
[32] ��� ൬െ ௜ο్ీ԰ ෠݄ሺఈሻሺݐሻ൰ ؆ଵି೔౴్ీమ԰ ௩ො౤ౢሺഀሻฯଵି೔౴్ీమ԰ ௩ො౤ౢሺഀሻฯ ���൬െ ௜ο్ీ԰ ෠݄୪୭ୡሺఈሻሺݐሻ൰ ଵି೔౴్ీమ԰ ௩ො౤ౢሺഀሻฯଵି೔౴్ీమ԰ ௩ො౤ౢሺഀሻฯ. (6) 

Here, the local propagator, ���൫െ݅ο୕ୈ ෠݄୪୭ୡሺఈሻሺݐሻ ԰Τ ൯ǡ can be cast 
into data-local stencil operations using the O(N) space-splitting 
method [28]. To efficiently compute the nonlocal part in Eq. 
(6), we project ݒො୬୪ሺఈሻ  onto the vector space spanned by ቄቚ ௦߰ఙሺఈሻ඀ ൌ ቚ ௦߰ఙሺఈሻሺݐ ൌ Ͳሻ඀ቅ [33]:  ቀͳ െ ௜୼్ీଶ԰ ො୬୪ሺఈሻቁݒ ቚ ௦߰ఙሺఈሻሺݐሻ඀ ؆ ቚ ௦߰ఙሺఈሻሺݐሻ඀ െ݅ ο౩ౙ౟ο్ీଶ԰ σ ቚ߰௨ఙሺఈሻ඀ ർ߰௨ఙሺఈሻห ௦߰ఙሺఈሻሺݐሻ඀௨ஹ୐୙୑୓ǡ஢ , (7) 
where ۦ ȁ ۧ denotes the inner product of two wave functions 
and the scissor shift is defined as οୱୡ୧ሺఈሻൌ ൫߳୐୙୑୓ǡ୬୪ሺఈሻ െ ߳ୌ୓୑୓ǡ୬୪ሺఈሻ ൯ െ ൫߳୐୙୑୓ǡ୪୭ୡሺఈሻ െ ߳ୌ୓୑୓ǡ୪୭ୡሺఈሻ ൯. (8) 
Here, the lowest unoccupied molecular orbital (LUMO) and 
highest occupied molecular orbital (HOMO) KS energies, ߳୐୙୑୓ሺఈሻ  and ߳ୌ୓୑୓ሺఈሻ , are computed with the expensive nonlocal 
computation (nl) and inexpensive local computation (loc) only 
once at each MD step, which are reused for ୕ܰୈ ൌ � ͳͲଶ̱ͳͲଷ 
steps to amortize the computational cost. 

III. OPTIMIZED IMPLEMENTATION OF ELECTRONIC TIME-
PROPAGATION AND NONLOCAL CORRECTION: 

VECTORIZATION, HIERARCHIAL PARALLELISM, AND BLAS 
OPERATION 

In this section, we describe optimizations applied to 
improve performance of the LFD subprogram. We use the Open 
Multi-Processing (OpenMP) parallel programming model to 
enable minimally invasive offloading to GPUs. We also avoid 
unnecessary overheads by creating a common device data 
environment to reduce the overall amount spent in host-to-
device data transfer in the OpenMP target region. We first focus 
on the local time-propagator, ���൫െ݅ο୕ୈ ෠݄୪୭ୡሺఈሻሺݐሻ ԰Τ ൯ in Eq. (6), 
which is a sequence of stencil operations [28]. A series of 
optimizations are applied before enabling offload, which 
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include loop-interchange, memory re-use, and tiling. We then 
describe computation transformation of nonlocal correction, ݒො୬୪ሺఈሻ in Eq. (7), to BLAS operations and persistent GPU kernel 
transformation. 

The electronic time-propagation kernel (specifically the 
kinetic propagator kernel arising from the gradient operator in 
the Hamiltonian in Eq. (5)) is a stencil operation [28], with 
repeated applications of the time-stepping operator to 
discretized KS wave functions on spatial mesh points. 
Algorithm 1 shows the baseline algorithm. When carrying out 
time propagation along a certain Cartesian axis, the input 
consists of the wave function ௦߰ఙሺఈሻሺݐሻ , stencil direction ݀ ǡݔሼא ǡݕ ሽݖ , time step ݌ א ሼο୕ୈ ʹΤ ǡ ο୕ୈሽ , as well as diagonal, 
upper-diagonal, and lower-diagonal coefficients, ߙௗ௣ǡ ௟ǡௗ௣ǡߚ  .௨ǡௗ௣, defined for each mesh pointߚ

Here, a straightforward implementation stores data for the 
wave function ௦߰ఙሺఈሻሺݐሻ�in array psi, such that the first index 
specifies one of the N KS orbitals and subsequent indices 
specifies one of the M grid points in the x, y and z Cartesian 
directions. When traversing the wave function in line 3, we first 
iterate over the orbitals and then iterate over the grid points in 
lines 4, 5 and 6. The operations in lines 7 and 8 yield the value 
for the real and imaginary parts of the complex-valued wave 
function after time propagation. Once the wave function has 
been time-propagated for all mesh points in each orbital, we 
exit the nested loop and update the wave function in line with 
the values accumulated in line 11. 

Algorithm 1: Baseline implementation of time propagation of 
electronic wave functions 
1: void kin_prop (݅ݏ݌ǡ ݈ܽǡ ܾ݈ǡ ǡݑܾ ǡ݌ ݀ǡ ǡܾݎ݋ܰ  } (ݖǡܰݕǡܰݔǡܰݎܰ
2:   complex<float> wrk[Nx+2][Ny+2][Nz+2], w; 
3:   for (int n=0; n < Norb; n++) 
4:     for (int i=1; i <= Nr[0]; i++) 
5:       for (int j=1; j <= Nr[1]; j++) 
6:         for (int k=1; k <= Nr[2]; k++) { 
7:           w = al[d][p]*psi[n][i][j][k] 
8:           ... 
9:           wrk[i][j][k] = w; 
10:         }  
11:     #update psi[n][i][j][k] ՚ wrk[i][j][k] 
12: } 

 
A. Loop Interchange and Memory re-use 

Algorithm 1 is inefficient since the range of data swept 
across the wave function and coefficient arrays, which are 
multiplied in the stencil operation, is very large, whereas the 
update operation takes place at the orbital level. This means 
larger strides of data will be out of the cache when grabbing 
values to perform the update. In the current implementation 
scanning the D-dimensional mesh (D = 3) of M grid points 
across N orbitals creates a memory overhead in the order of ܱሺܯ஽ሻ�bytes in line 7. Keeping in mind that the wave function 
itself requires allocating ܱሺܮ஽ሻ�bytes (L is the number of grid 
points in one direction), where L < M, such implementation 
results in the memory demand growing at the rate of ܱሺܯ஽ܮ஽ሻ�during the stencil operation. 

To minimize the possibility of reaching the memory 
bandwidth, we eliminate storing a copy of the propagated wave 
in line 7 and instead proceed to immediately update the wave 

function with the partial values computed at that grid point. 
This update is achieved through a loop re-ordering such that the 
fastest-changing index corresponds to the orbital, resulting in 
the move of the update operation inside the loop as shown in 
Algorithm 2, line 6 and line 9. We also change the data layout 
of the wave function psi such that the wave function at each 
grid point stores the value for all orbitals, thereby making it a 
structure of arrays (SoA) over the original arrays of structures 
(AoS). A combination of loop interchange and an SoA data 
layout offers better memory access patterns in the available 
registers for both single-instruction multiple-data (SIMD) 
paradigm on CPU and single-instruction multiple-thread 
(SIMT) paradigm on GPU. 

Algorithm 2: Loop re-ordering in time propagation of electronic wave 
functions 
1: void kin_prop (݅ݏ݌ǡ ݈ܽǡ ܾ݈ǡ ǡݑܾ ǡ݌ ݀ǡ ǡܾݎ݋ܰ  } (ݖǡܰݕǡܰݔǡܰݎܰ
2:   complex<float> float w; 
3:   for (int j=1; j <= Nr[1]; j++)  
4:     for (int k=1; k <= Nr[2]; k++) 
5:       for (int i=1; i <= Nr[0]; i++) 
6:         for (int n=0; n < Norb; n++) { 
7:           w = al[d][p]*psi[i][j][k][n] 
8:           ... 
9:           # update psi[i][j][k][n] ՚ w 
10:         } 
11: } 

While the update operation changes the value of the wave 
function for that orbital, there are still computations in the stencil 
which rely on the value prior to the update step. For this reason, 
we store a small portion of the data structure before doing each 
update, to ensure computational correctness as shown in 
Algorithm 3, line 6. Updating grid points remains fully 
independent in the y and z directions but not in the x direction 

when working on an x -direction stencil for example. 
Algorithm 3: Optimized stencil in time propagation of electronic 
wave functions 
1: void kin_prop (݅ݏ݌ǡ ݈ܽǡ ܾ݈ǡ ǡݑܾ ǡ݌ ݀ǡ ǡܾݎ݋ܰ  } (ݖǡܰݕǡܰݔǡܰݎܰ
2:   complex<float> w; 
3:   for (int j=1; j <= Nr[1]; j++)  
4:     for (int k=1; k <= Nr[2]; k++) { 
5:       for (int n=0; n < Norb; n++) { 
6:         psi_old[n] = psi[0][j][k][n];  
7:       } 
8:       for (int i=1; i <= Nr[0]; i++)  
9:         for (int n=0; n < Norb; n++) { 
10:           w = al*psi[i][j][k][n]; 
11:           w += bl[i]*psi_old[n]; 
12:           … 
13:           # update psi_old ՚ psi[i][j][k][n] 
14:           # update psi[i][j][k][n] ՚ w 
15:         }  
16:      } 
17: } 

 

B. Blocking/Tiling 

When the number of orbitals, Norb, is not small, the whole 
wave function, psi_old, array may not fit in cache and add 
traffic to the slower tier of memory. Blocking the loop of Norb 
reduces the size of psi_old array to only the desired block size 
instead of Norb, as shown in Algorithm 4. The added loop of 
blocks also allows distributing the computation to more GPU 
blocks when offloading is used. 
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Algorithm 4: Cache blocking optimization in time propagation of 
electronic wave functions 
1: void kin_prop (݅ݏ݌ǡ ݈ܽǡ ܾ݈ǡ ǡݑܾ ǡ݌ ݀ǡ ǡܾݎ݋ܰ  } (ݖǡܰݕǡܰݔǡܰݎܰ
2:   complex<float> w; 
3:   for (int j=1; j <= Nr[1]; j++)  
4:     for (int k=1; k <= Nr[2]; k++) { 
5:       for (int ib=0; ib < (Norb+1)/block_size; ib++) { 
6:         complex<float> psi_old[block_size]; 
7:         int begin = ib*block_size; 
         int end = min((ib+1)*block_size, Norb); 
8:         for (int n=begin; n < end; n++) 
9:           psi_old[n-begin] = psi[0][j][k][n];  
10:         for (int i=1; i <= Nr[0]; i++)  
11:           for (int n=begin; n <end; n++) { 
12:             w = al*psi[i][j][k][n]; 
13:             w += bl[i]*psi_old[n-begin]; 
14:             … 
15:             # update psi_old ՚ psi[i][j][k][n] 
16:             # update psi[i][j][k][n] ՚ w 
17:           }  
18:       }     
19:     } 
20: } 

 
C. Multiple Parallel Regions 

To offload the computation to the accelerator devices on the 
blade we test, we use the OpenMP programming model. 
Through our loop re-ordering and SoA optimization, we expose 
the computation kernel to a high level of parallelism. The 
propagation of grid points of the y-z plane can be concurrently 
computed for an x-direction stencil. This is because the 
propagation of the electronic wave function along the x-
direction requires the ith index of the wave function ߰௜ǡ௝ǡ௞ to 
inter-mix with every (j,k). Hence, the first level of parallelism is 
achieved as the evolution requires only knowledge of the wave 
function at the current time step and the previous step within the 
same plane. A second level of parallelism comes into effect from 
the ability to propagate the wave function independently of the 
orbital. This hierarchical parallelism applies to both SIMD and 
SIMT paradigms. The parallelization over planes and orbitals 
are collapsed into a larger loop. This grid geometry makes 
efficient targets of Cooperative Thread Arrays (CTA) that are 
available as well as the limited Streaming Multiprocessor (SM) 
register file size. Algorithm 5 shows this parallelism, where the 
data structures are now aligned such that all orbitals for a mesh 
point are aligned in a single stride. Also, note here we flatten 
structures of psi and psi_old into one-dimensional arrays of 
complex numbers.�

Algorithm 5: OpenMP stencil in time propagation of electronic wave 
functions 
1: void kin_prop (݅ݏ݌ǡ ݈ܽǡ ܾ݈ǡ ǡݑܾ ǡ݌ ݀ǡ ǡܾݎ݋ܰ  } (ݖǡܰݕǡܰݔǡܰݎܰ
2:   complex<float> w; 
3:   #pragma omp target teams distribute collapse(3) 
4:   for (int j=1; j <= Nr[1]; j++)  
5:     for (int k=1; k <= Nr[2]; k++) { 
6:       for (int ib=0; ib < (Norb+1)/block_size; ib++) { 
7:         complex<float> psi_old[block_size]; 
8:         int begin = ib*block_size; 
         int end = min((ib+1)*block_size, norb); 
11:         #pragma omp parallel for simd nowait 
9:         for (int n=begin; n < end; n++) 
10:           psi_old[n-begin] = psi[0][j][k][n];  
8:         for (int i=1; i <= Nr[0]; i++)  
9:           #pragma omp parallel for simd nowait 
10:           for (int n=begin; n < end; n++) { 

11:             w = al*psi[i][j][k][n] 
             w += bl[i]*psi_old[n-begin] 
12:             … 
13:             # update psi_old ՚ psi [i][j][k][n]  
14:             # update psi [i][j][k][n] ՚ w 
15:           } 
16:       } 
     }   
17: } �

D. BLASification of Nonlocal Correction 

The compute-intensive nonlocal correction in Eq. (7) for 
time propagation of electronic wave functions can be cast into 
matrix operations. To do so, let us define a ܰ݃݀݅ݎ ൈ  ܾݎ݋ܰ
wave-function matrix Ȳሺݐሻ , where ܰ݃݀݅ݎ  and ܾܰݎ݋  are the 
number of grid points to represent each wave function and that 
of KS wave functions, respectively. Equation (7) then reads Ȳሺݐሻെൌ ܿȲሺͲሻȲறሺͲሻȲሺݐሻ, (9) 
where c is a complex number and Ȳற  denotes a Hermitian 
transpose matrix. We implement Eq. (9) using BLAS level 3 
calls. In addition to time propagation of electronic wave 
functions in function nlp_prop(), BLASified nonlocal correction 
appears in two other functions in LFD: energy calculation in 
function calc_energy() and remapping the final wave functions 
to occupation numbers in function remap_occ(). 
E. Persistent GPU kernel 

The key computational advantage of the shadow dynamics 
is that the large wave-function arrays, Ȳሺݐሻ and ȲሺͲሻ, can be 
made GPU-resident, thereby eliminating massive CPU-GPU 
data transfer. Such persistent GPU data structures are facilitated 
by our custom C++ class constructor and destructor based on 
OpenMP target data constructs; see Algorithm 6. The custom 
allocator named OMPallocator is used for container classes like 
std::vector, which are intended to be GPU-resident. Upon 
initialization, the allocator calls #pragma omp target enter data 
map(alloc), while upon destruction, it calls #pragma omp target 
exit data map(delete). This significantly eases the 
programmability of persistent GPU dataset, while keeping the 
use-side code neat. In addition, the HostAllocator may be 
replaced with a customized allocator using pinned host memory 
to further improve host-device transfer rate. 

Algorithm 6: OpenMP allocator 
1: template<typename T, class HostAllocator = 

std::allocator<T>> 
2: struct OMPallocator : public HostAllocator { 
3:   OMPallocator() = default; 
4:   value_type* allocate(std::size_t n) { 
5:     value_type* pt = HostAllocator::allocate(n); 
6:     #pragma omp target enter data map(alloc:pt[0:n]) 
7:     return pt; 
8:   } 
   void deallocate(value_type* pt, std::size_t n) { 
11:     #pragma omp target exit data map(delete:pt[0:n]) 
9:     HostAllocator::deallocate(pt, n); 
10:   } 
8: } 

IV. PERFORMANCE EVALUATION 
We measure performance of DC-MESH on the Polaris 

supercomputer at Argonne Leadership Computing Facility 
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(ALCF). It is a Hewlett Packard Enterprise (HPE) Apollo 6500 
Gen 10+ based system consisting of two computing nodes per 
chassis, seven chassis per rack, and 40 racks that amount to a 
total of 560 nodes. Each Polaris node has one 2.8 GHz AMD 
EPYC Milan 7543P 32-core CPU with 512 GB of DDR4 RAM, 
four Nvidia A100 GPUs, two 1.6 TB of SSDs in RAID0, and 
two Slingshot network endpoints. Polaris uses the Nvidia A100 
HGX platform to connect all 4 GPUs via NVLink, with a GPU 
interconnect bandwidth of 600 GB/s. The GPU’s PCIe 
bandwidth is 64 GB/s. HBM2 memory for GPUs is available 
on both HGX and PCIe and is 60 GB and 40 GB, respectively. 
Designed by Cray, the Slingshot interconnect is based on high 
radix 64-port switches arranged in dragonfly topology and 
offers adaptive routing, congestion control, and bandwidth 
guarantees by assigning traffic classes to applications. Polaris 
uses Slingshot 11 with a node interconnect bandwidth of 200 
GB/s. Polaris’ peak performance is 44 Petaflop/s, with node-
level performance at 78 Teraflop/s, for double precision. 

The DC-MESH code consists of the QXMD subprogram 
written in Fortran with MPI and the LFD subprogram written 
in C++ with OpenMP. For performance evaluation on Polaris, 
DC-MESH is built using Gfortran and clang 15 compilers. 
A. Weak and Strong Scalability 

We first perform a weak-scaling benchmark of DC-MESH 
on Polaris, in which the number of atoms per MPI rank, N/P is 
kept constant, i.e., PbTiO3 material consisting of 40 atoms. For 
each MPI rank, 288 KS wave functions are represented using 
the plane-wave basis in QXMD, while each complex-valued 
KS wave function in LFD is represented on 70ൈ70ൈ72 finite-
difference mesh points. Weak scaling test is carried out up to 
256 computing nodes with 4 MPI ranks per node, where each 
rank is accelerated by one GPU. The largest system on 256 
nodes thus consists of 10,240 atoms. 

We measure the wall-clock time per MD simulation step 
with scaled workloads — 40P-atom PbTiO3 material on P MPI 
ranks on Polaris. The execution time includes 3 self-consistent 
field (SCF) iterations to determine the KS wave functions and 
the global potential in QXMD, with 3 conjugate-gradient (CG) 
iterations per SCF cycle to refine each wave function. We run 

1,000 QD steps in LFD per MD step. By increasing the number 
of atoms linearly with the number of MPI ranks, the wall-clock 
time remains nearly constant, indicating excellent weak 
scalability. To quantify the weak-scaling parallel efficiency, we 
first define the speed of the DC-MESH program as a product of 
the total number of atoms and the number of MD simulation 
steps executed per second. The isogranular speedup is given by 
the ratio between the speed on P MPI ranks and that on 4 MPI 
ranks (i.e., one computing node) as a reference system. The 
weak-scaling parallel efficiency is the isogranular speedup 
divided by P/4. Figure 2 shows the weak-scaling parallel 
efficiency as a function of the number of MPI ranks. With the 
granularity of 40 atoms per MPI rank, the parallel efficiency is 
0.9673 on P = 256 for a 10,240-atom PbTiO3 material. This 
result demonstrates the very high scalability of the DC-MESH 
program, mainly due to the globally-sparse and locally-dense 
electronic solvers within the divide-conquer-recombine 
algorithmic framework. 

Next, we perform strong-scaling tests for two problem 
sizes: 5,120- and 10,240-atom PbTiO3 materials. In this test, the 
number of MPI ranks ranges from P = 64 to 256 for the 5,120 
atoms and P = 128 to 512 for the 10,240 atoms, while keeping 
the total problem size constant in each case. The strong-scaling 
speedup is defined as the wall-clock time on the smallest 
number, Pmin, of MPI ranks divided that on the largest number, 
Pmax, of MPI ranks for each problem size. The strong-scaling 
parallel efficiency is the strong-scaling speedup divided by 
Pmax/Pmin. Figure 3 shows the strong-scaling parallel efficiency 
as a function of P. The strong-scaling parallel efficiency is 
0.8083 with 512 MPI ranks for 10,240 atoms, while it is 0.6634 
with 256 MPI ranks for 5,120 atoms. It is more difficult to 
achieve high strong-scaling parallel efficiency compared with 
weak-scaling parallel efficiency. This is due to the increased 
communication/computation ratio as the workload per rank 
reduces. This is partly understood by analyzing the parallel 
efficiency ߟ as a function of the number of MPI ranks P and 
that of atoms N. For the weak-scaling parallel efficiency with 
constant granularity ( ݊ ൌ ܰȀܲ ߟ ,( ൌ ͳȀሾͳ ൅ భయି݊ߙ ൅ି݊ߚଵ���ܲሿ, exhibiting a very weak logarithmic dependence on 
P [34]. For the strong-scaling parallel efficiency with constant 

 
Fig. 2. Weak-scaling parallel efficiency of the DC-MESH 
program, with scaled workloads — 40P-atom PbTiO3 material 
with P MPI ranks (P = 4, ..., 1,024) on Polaris. Black circles are 
measured data, whereas blue triangles show ideal speedup. 

  
Fig. 3. Strong-scaling parallel efficiency of the DC-MESH 
program as a function of the number of MPI ranks on Polaris for 
two problem sizes: 5,120- and 10,240-atom PbTiO3 materials. 
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N, in contrast, ߟ ൌ ͳȀሾͳ ൅ ሺܲߙ ܰΤ ሻଵȀଷ ൅  ଵܲ���ܲሿ, whichିܰߚ
exhibits much stronger dependency on P, i.e., ܲଵȀଷ and ܲ���ܲ 
in the denominator. 
B. GPU Performance 

To test single-node GPU performance of the DC-MESH 
program, we spawn 4 MPI ranks on one computing node with 
a 40-atom PbTiO3 material per MPI rank. Figure 4 compares 
the throughput on CPU+GPU and that on CPU only. Here, the 
throughput is defined as the number of ranks that complete 
execution per unit time for a fixed problem: ܲȀݐୡ୭୫୮୪ୣ୲୧୭୬. By 
offloading key computations to GPU, we obtain a 19-fold 
speedup over CPU. This signifies decent utilization of GPU 
resources on Polaris by the DC-MESH code. 

 

C. Performance Improvement 
We next examine GPU performance of the stencil-based 

time propagation of KS wave function in the LFD subprogram 
as shown in Algorithms 1-5. Table I compares runtime of the 
kin_prop() function in the LFD subprogram on Polaris system 
using the Clang compiler shipped as a part of LLVM 16 in 
comparison with the corresponding runtime on CPU over each 
successive optimization mentioned in sections III A-C. The 
timing is for 1,000 QD steps involving 64 KS wave functions 
each on ͹Ͳ ൈ ͹Ͳ ൈ 72 finite-difference mesh points. For 
simplicity, a single GPU timing is compared with a single CPU-
core timing. We first measure incremental performance 

improvement due to Algorithms 3 and 4 over that of the 
baseline Algorithm 1. The results in Table I shows 3.67- and 
9.22-fold speedups over the baseline for Algorithms 3 and 4, 
respectively. Further with GPU offloading using Algorithm 5, 
we overall achieve 338-fold speedup over the baseline. Next, as 
an ablation study, we disable the asynchronous offloading 
feature (i.e., the nowait keyword in Algorithm 5) in the GPU-
offloaded code to make it synchronous (fifth entry in Table I). 
The results show 298-fold speedup due to GPU offloading 
compared to the CPU code for the synchronous offloading. The 
asynchronous offloading code thus achieves 10.35% speedup 
compared to the synchronous offloading code. These results 
demonstrate high GPU utilization as a result of the series of 
data-structure and code restructuring outlined through 
Algorithms 1-5. 

Another key performance optimization is the 
transformation of nonlocal correction to BLAS 3 operations 
described in section III-D. Table II compares runtime of various 
versions of the code for both single precision (SP) and double 
precision (DP) floating-point formats of KS wave functions. 
The timing is for 1,000 QD steps involving 64 KS wave 
functions each on 70ൈ70ൈ72 finite-difference mesh points. 
Here, we enumerate the types of builds of the LFD subprogram, 
starting with a purely CPU build without invoking any linear 
algebra libraries, followed by that using the AMD Optimizing 
CPU Libraries (AOCL)—BLAS library. We then offload the 
self-consistent equation kernels to GPU, utilizing optimization 
in section III-E. In addition to AOCL-BLAS library, we 
subsequently use the native cuBLAS library on A100 before we 
finally harness faster data transfers between host and device 

 
Fig. 4. Throughput of DC-MESH on a single computing node of 
Polaris. We compare CPU-only throughput on AMD 7543P and 
that of CPU plus Nvidia A100 GPU. 
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Table II. Runtime comparison of several versions of the DC-
MESH program for SP and DP floating-point formats. 
Measurement was made using a single OpenMP thread for 
simplicity. 

 
Electron propagation 

(sec) 
Nonlocal correction 

(sec) 
Total runtime 

(sec) 

SP DP SP DP SP DP  

CPU 
OpenMP 
Parallel 

444.44 470.73 442.84 455.75 1082 1167 

CPU 
OpenMP 
Parallel + 
BLAS 

19.72 30.92 10.71 21.54 ͵ͺǤͺ͵ ͸ͷǤͻ͵ 

GPU 
OpenMP 
Offload + 
BLAS 

7.03 11.45 6.75 11.12 17.14 29.23 

GPU 
OpenMP 
Offload + 
cuBLAS 

0.61 0.94 0.46 0.761 1.33 2.11 

GPU 
OpenMP 
Offload + 
cuBLAS  
(Pinned 
Memory 
w/ Cuda 
Streams) 

0.512 0.68 0.35 0.51 1.06 1.48 

 

Table I. Runtime of the kin_prop() function in the LFD 
subprogram. 

Implementation Target Runtime (s) 
 

Speedup 

Algorithm 1 CPU 8.655 1 

Algorithm 3 CPU 2.356 3.67 

Algorithm 4 CPU 0.939 9.22 

Algorithm 5 GPU 0.026 338 

Algorithm 5 (disable 
nowait) 

GPU 0.029 298 
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with pinned memory. We track the runtime of some of the most 
time-consuming operations: (i) time propagation of electronic 
wave functions (or electron propagation) including potential 
propagation, kinetic propagation, and nonlinear propagation 
(cf. Eq. (6)); (ii) additional nonlocal correction operations (cf. 
section III-D); as well as (iii) the total time spent in the LFD 
subroutine. All runs are carried out with a single OpenMP 
thread. Table II shows a 35% reduction in electron propagation 
and a 42% reduction in nonlocal correction kernel completion 
times using SP compared to DP. 

To quantify performance gains from vectorization and 
offloading the code to GPU, Fig. 5 shows DP runtime of 

compute-intensive kernels: electron time-propagation (Eq. (6)), 
nonlocal electron time-propagation (Eq. (7)), and energy 
calculation kernels for the benchmark test by building with 
available options. Here, we start with the purely CPU 
implementation with OpenMP and AOCL-BLAS and show 
subsequent reduction of runtime with GPU offload kernels, 
cuBLAS, and pinned memory. When comparing the purely 
CPU implementation with AOCL-BLAS build and the GPU 
kernel offload build with cuBLAS and pinned memory, we see 
45-fold speedup in electron propagation, 42-fold speedup in 
nonlocal propagation and nearly 46-fold speedup in energy 
calculation kernels in the latter.

 

 
 

Figure 6 shows the speedup of the total DC-MESH code due 
to a sequence of code versions as shown in Fig. 5. The 
BLASification of the nonlocal computations are highly 
effective on both CPU and GPU. Accordingly, we first achieve 
25.2-fold speedup with BLAS on CPU compared to the non-
BLAS baseline on CPU. The BLASified code is then offloaded 

to GPU, achieving 18.6-fold speedup over the BLASified CPU 
code. By the memory-pinning optimization, we achieve 
additional 37.6% speedup. Overall, we achieve 644-fold 
cumulative speedup. 
 

 
Fig. 5. Runtime of compute-intensive kernels when building with different parallel computing interfaces. Measurement was made using a 
single OpenMP thread for simplicity. 

Fig. 7. Flux closure structure during ferroelectric switching in 
PbTiO3. 

 
Fig. 6. Speedup over the baseline DC-MESH code on a single 
Polaris node resulting from a series of code optimizations. 
Measurement was made using a single OpenMP thread for 
simplicity. 
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V. APPLICATION 
Performance-optimized DC-MESH code has enabled the 

study of light-induced topological switching for future ultrafast 
and ultralow-power ferroelectric topotronics applications. We 
have adopted a multiscale simulation approach [12], where we 
first prepare a complex polar topology such as the flux closure 
domain illustrated in Fig. 7, which has been investigated for 
next-generation transducer and sensor applications. Our 
multiscale approach utilizes molecular dynamics (MD) 
simulations with a neural-network force field trained with 
ground-state quantum MD simulations [35]. This allows for 
quickly generating ground-state polar topologies that is then 
investigated for their electronic and structural responses to 
femtosecond laser fields with DC-MESH. It is currently an open 
question how to control attosecond electronic excitation 
dynamics initiated by laser pulses to generate longer-time 
structural changes. Using our DC-MESH code, we are currently 
exploring those dynamics to understand laser-induced 
topological changes, such as fs laser induced ultrafast switching 
of the flux closure domain in Fig 7. Such light-matter interaction 
can be directly compared to/inform state-of-the-art experiments 
performed using free-electron lasers such as the newly upgraded 
LCLS-II at Stanford [36]. Integrated computational and 
experimental studies will be essential for developing 
controllable topological switching for ultralow-power 
technologies arising from topological protection from thermal 
noise [37]. 

VI. CONCLUSION 
To study light-matter interaction on emerging exaflop/s 

supercomputers in the new era of attosecond physics, we have 
developed a linear-scaling DC-MESH (divide-and-conquer 
Maxwell-Ehrenfest-surface hopping) simulation algorithm. Our 
globally-sparse and locally-dense electronic solvers, multiple 
time-scale splitting, and shadow dynamics have achieved high 
scalability, while allowing the most compute-intensive quantum 
dynamics kernel based on time-dependent density functional 
theory to reside on GPU with minimal CPU-GPU data transfer. 
GPU computation based on minimally invasive OpenMP target 
constructs is accelerated by: (i) data and loop reordering for 
better memory access patterns; (ii) hierarchical GPU offloading 
using teams-distribute and parallel constructs, respectively, for 
coarse and fine computations; (iii) algebraic ‘BLASification’ of 
the nonlocal computational bottleneck; and (iv) GPU-resident 
data structures facilitated by custom C++ class initializer and 
destructor based on OpenMP target data constructs. We have 
thereby achieved 644-fold speedup on Nvidia A100 GPU over 
AMD EPYC 7543 CPU on the Polaris computer at Argonne 
Leadership Computing Facility. In addition, the DC-MESH 
code exhibited a high weak-scaling parallel efficiency of 
96.73% on 256 nodes (or 1,024 GPUs) of Polaris for 5,120-atom 
PbTiO3 material. This enables the study of light-induced 
topological switching for future ultrafast and ultralow-power 
ferroelectric topotronics applications for sustainable future. 
Most recently, the DC-MESH code has been ported to the 
Aurora supercomputer at Argonne, which will be presented 
elsewhere. 
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