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ABSTRACT

This article proposes a massively-parallel approach for solv-
ing the difficult problem matching high-altitude image pairs
from different domains, e.g., Synthetic Aperture Radar (SAR)
and visible light imagery (EO). The through-weather mea-
surement capability of SAR allows this technology to yield
vehicle position fixes in inclement weather and during either
night or daytime for image-aided navigation. This work fo-
cuses on developing capabilities to match across a large range
of variations in the unknown parameters of the homography
that brings these image pairs into correspondence. This is a
problem that is not well-solved by any existing approaches
and is important in practice as cross-domain imagery from
aerial platforms often exhibits large variations in scale, key-
stone, rotation and translation effects that can be different
in the x and y axes. Our approach for cross-modal image
matching uses a mutual information loss function and ap-
plies a massively-parallel search procedure in CUDA to detect
and explore the loss function to find satisfactory homogra-
phies to match the image pairs. Experiments are performed
using simulated image telemetry obtained by flying a fixed
wing aircraft in a virtual environment with image data derived
from Google Maps and RADARSAT Google Earth Engine
image databases. Results show a comparison rate of 12.79
Gpixel/sec and has a search rate of 1.8M matches/sec allow-
ing for exhaustive search solutions. Our approach is found to
yield accurate homography values according to our normal-
ized corner error metric for 68% of the image database pairs.

1. INTRODUCTION

Image matching technologies are critical for a large number
robotics, computer vision and artificial intelligence applica-
tions including odometry estimation, 3D mapping and image
based classification. This article considers aerial imagery in
the form of image pairs that originate from aerial platforms
having different modalities with a focus on Synthetic Aper-
ture Radar (SAR) and visible light imagery (EO).
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Our application for this technology is to derive vehicle
pose information from SAR-EO image match solutions as al-
ternative to existing position sensors such as an Inertial Nav-
igation System (INS) or a Global Positioning System sensor
(GPS). In this context, our algorithm matches a sensed SAR
image to a geo-referenced EO image that is already available
onboard the aerial platform. Matches between sensed SAR
imagery and the reference EO image can provide estimates for
vehicle location and pose in GPS-denied contexts. Further,
SAR’s through-weather measurement capability allows vehi-
cle position fixes to be generated in inclement weather and
during either night or daytime since SAR is an active sens-
ing modality unimpeded by rain, clouds, smoke and other at-
mospheric phenomenon consisting of particles much smaller
than the sensing radar wavelength.

While image registration is a classical image processing
and computer vision problem, the novelty of this work is:
(1) the proposed algorithm finds matches for potentially large
variations in the unknown homography parameters, (2) an ap-
proach for computing the search parameters to optimize the
computational cost is proposed, and (3) a general method for
massively-parallel grid search optimization using GPU accel-
eration is proposed capable of searching over a vast range
candidate solutions in a short period of time. For example,
our experimentally measured search velocity for an NVIDIA
A6000 GPU is 1.8M homographies/sec for a 100x100 image
pair.

2. RELATED WORK

Limitations in reception of Global Positioning System (GPS)
signals have motivated image aided navigation from remotely
sensed images. Specifically, GPS signals can be blocked by
obstructions, e.g., tall buildings, which can interrupt the sig-
nal or degrade its accuracy [1]. Image-aided navigation meth-
ods [1, 2,3, 4,5, 6, 7] provide an alternative to GPS. Image-
aided navigation systems match sensed imagery to available
georegistered imagery using an image registration algorithm
and use the correspondence from image registration to esti-
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mate absolute position using algorithms such as the Point-
and-Perspective (PnP) algorithm. In GPS-denied and GPS-
degraded environments these algorithms provide critical ab-
solute position estimates crucial for bounding navigational
error by providing noisy GPS-like updates to onboard guid-
ance, navigation and control systems when GPS is unavail-
able. Approaches to solution include image processing [8], a
large-scale image database searches [2] and many other image
registration approaches [1, 3, 5].

3. METHODOLOGY

This work considers image matches to conform to an 8-
parameter homography which is typical for high-altitude
imagery where the height of terrain features is significantly
less than that of the altitude of the vehicle. Our approach
for solution applies a purpose-built massively-parallel grid
search algorithm implemented in CUDA to accelerate the
process of finding valid image matching solutions.

The proposed approach consists of three steps: (1) choose
an image matching loss function, (2) characterize the loss
function’s geometric structure, and (3) apply a massively-
parallel search procedure to explore the loss function surface
and detect minima, i.e., solutions, to the problem by consid-
ering for a large/exhaustive set of candidate solutions.

3.1. Choose an image matching loss function

Our cross-modal application that matches EO and SAR im-
ages uses a mutual information (MI) image alignment perfor-
mance functional to measure the quality of a candidate solu-
tion as shown in equation (1)

ny(ﬂj, y|H)
Px (z[H) Py (y)

ey
where the pair (X,Y") denotes the (SAR,EO) image pair
to be matched under the correspondence given by the ho-
mography H. MI has been shown to be effective in cross
modal alignment of EO-SAR image pairs by other researchers
[9, 10] having been initially proposed for cross modal med-
ical image alignment [11]. This objective function is highly
non-linear and, if a good initial guess is not provided, meth-
ods using approach are not likely to converge to the correct
solution.
Our massively-parallel search problem seeks to consider
a sparse collection of homographies across the plausible do-
main of parameter variation to find a solution within the basin
of attraction, i.e., geometrically “close”, to the correct solu-
tion where this alignment metric will converge to the correct
solution. While this work uses mutual information, the search
procedure will allow any performance functional to be de-
fined and used as a measure of match quality.

I(X;Y|H) = Z Zny(wAH) log, {
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3.2. Characterize the loss function’s geometric structure

An 8-dimensional parameterization of an image homography
is considered. The 8 parameters of the homography are as fol-
lows: (1) which include rotation 6, (2,3) non-isomorphic (X,y)
scale (ag,ay), (4) shear v, (5,6) (x,y) translation (¢,ty),
and (7,8) (x,y) perspective (keystone) values (k., k). The
grid search associates each of these parameters to distinct grid
axes.

agzcos(0)  —ay(sin(0) —ycos(0) s
H = |a,cos(6) alphay(cos(ﬁ) +ysin(6) t, (2)
ke k 1

Computational costs for searching the 8-dimensional space
is high and GPU acceleration is leveraged to yield solutions
at unprecedented rates. Significant computational savings can
be afforded by limiting the number of samples along each di-
mension of the search. For this reason, we characterize the
structure of the chosen performance functional (mutual infor-
mation in this article) to determine appropriate grid sample
spacing for each axis of the search.

Our process for characterizing the loss function pro-
ceeds by performing image pair matches for different im-
age database pairs with differing degrees of grid resolution.
The results of this analysis provides empirical data needed to
determine the typical dimensions of the non-linear basin of
attraction for the image alignment performance functional in
8-dimensional space. In our case, the basin of attraction will
be spanned by each of the 8 dimensions of the homography
having the parameters shown in equation 2. We choose a
value for the grid sample spacing parameter AH equal to
approximately half the width of the observed shape of the
basin of attraction in each dimension.

3.3. Apply a massively-parallel search procedure

A massively parallel GPU-accelerated search is performed
over the multi-dimensional grid where each grid point is a
possible solution and the quality of each solution is evaluated
using the user-defined performance functional (mutual infor-
mation). Our implementation of MI on GPU follows that in
equation (1). One particular challenge for this performance
functional is the requirement to compute the joint distribution
of intensities for the EO and SAR image. This distribution
must be computed on GPU and can require significant mem-
ory resources to store when computing +1M image matches.
Each GPU thread will be performing the MI calculation on
their assigned grid point, leading to memory constraints at the
thread level. This requires matches to consider the trade-off
between having high resolution joint distributions and a large
number of parallel threads.

To help speed up the computation each thread performs
some pre-calculation steps to ensure the thread only consid-
ers overlapping pixels between the image pair for the given
homography. This improves efficiency, especially for large
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(a) Fixed EO image
Ground Truth

(b) Moving SAR image
Estimated

(c) Ground Truth Match

(d) Estimated Match

Fig. 1: (a,b) shows an (EO,SAR) image pair from our database, (c,d) show
the (ground truth,estimated) image matches with the SAR image overlaid (in
blue) on the geo-referenced EO image (in green).

scale values where a single pixel is interpolated an compared
with groups of pixels in the matched image. This perfor-
mance savings is provided by calculating the image of the
homography-transformed line corresponding to each pixel
raster of the moving image in the fixed image. The para-
metric equation for this line is intersected with the boundary
lines of the fixed image to provide start and stop pixel indices
for GPU thread computation. This results in computational
savings by avoiding consideration of pixels in the moving
image that do not correspond to a pixel inside the boundary
of the fixed image. This approach also reveals how much
area of each image was used to calculate the MI, allowing for
consideration of this property in downstream algorithms.

At the conclusion of the search values of performance
functional across the search grid are returned to the host and a
minimum value for the performance functional is found using
a second GPU min-search which requires little time. This
yields a final estimate for the unknown parameters.

4. RESULTS

Our experimental results analyze performance on 538 cross-
modal (EO,SAR) image pairs derived from Google Maps and
RADARSAT Google Earth Engine image databases respec-
tively where images were recorded from a simulated virtual
fixed wing vehicle navigating a spiral-shaped course at an
altitude of 500m [12]. Scale variation between Google maps
images was approximately have a resolution of 1.2 m./pixel
and RADARSAT images with a resolution of approximately

(@) (b)

Fig. 2: (a) Acceptable Average Corner Error Example, ¢ = 0.1792, (b) Not
Acceptable Average Corner Error Example, € = 0.8242

10 m./pixel of urban Charlotte (Lat,Lon.)=(-80.741692E,
35.309003N) (Urban, 538 pairs). Our search over candidate
homographies considered 32 rotations (0° to 348.75°), 256
non-isomorphic (x,y) scale pairs on a 16x16 grid (0.253 to
0.843 for x, 0.256 to 0.861 for y), 5 shear values (—0.4 to
0.2), and 961 candidate translation vectors sampled on a
31x31 grid (=50 to 50). The experiments were performed
on a system containing an Intel Xeon Silver 4110, Nvidia
RTX A6000 48 GB, and 160 GB RAM which was capable of
processing 100x100 image pair matches at a rate of approx-
imately 1.28M image matches per second (12.79 Gigapixels
per second). This rate is an approximation as the homogra-
phies searched may have 50% to 100% pixel overlap.

A new performance metric is defined to evaluate match
accuracy which we refer to as the average normalized cor-
ner error (NCE). NCE measures match quality in terms of
the average distance of the projected image corners for the
ground truth and estimated homographies in images having
(x,y) ranges scaled to lie in the (x,y) € [0, 1] as shown in
equation (3)

> (pi — Pi)? (3)

i=1

where (p;, p;) denotes the i*" point pair for the (4) (z,y)
corner locations given by the ground truth and estimated ho-
mography respectively.

Figure 1(c,d,e) shows an example (SAR, EO) image match
(c,d) and the distribution of the NCE for satisfactory esti-
mates. Figure 2 shows an illustration of the importance of the
performance metric, where there is significant overlap (yel-
low) between the ground truth transformation (green) and the
estimated transformation (red), however the estimated corners
in (b) are on the opposite side of the ground truth corners.

Using a threshold of ¢ < 0.2 the proposed approach
found satisfactory homography estimates for 68% of the
tested images pairs. The performance of this algorithm far
surpasses other cross-modal approaches explored which in-
cluded OpenCV feature matching [13] and SIFTFlow [14]
which were unable to provide homography estimation results
satisfying € < 0.2.
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(a) Distribution of Valid Matches

Fig. 3: (Shows the distribution of the normalized corner error (NCE) for our
valid matches (¢ < 0.2).

5. CONCLUSION

An new approach was described to solve the difficult prob-
lem of matching image pairs coming from different domains
capable of coping with large variations in the unknown pa-
rameters of the non-rigid transformation. A purpose-built
massively-parallel grid search algorithm is implemented in
CUDA to accelerate image matching problems. Mutual infor-
mation is chosen as the alignment performance functional to
measure the candidate solution. Average normalized corner
error (NCE) was used as the performance metric to compute
the distances of the projected image corners for the ground
truth and estimated homographies. Using these methods with
a threshold of ¢ < 0.2 for NCE, 68% of the homographies
found were satisfactory. The approach presented can be read-
ily extended and improved using adaptive stepsize approaches
or other methods for improved search space traversal such as
Al-based driven search optimizations.
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