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ABSTRACT

Synthetic Aperture Radar (SAR) systems sense electromag-
netic backscatter from scenes generated from a sequence of
excitation pulses of RF radiation emitted from the radar an-
tenna varying spatial positions. Focusing the radar returns
into coherent images requires highly accurate knowledge of
the antenna position for the duration of the pulses. In this
article a massively parallel approach is propose to solve the
NP-hard problem of focusing radar data collected in the pres-
ence of large motion errors. Little research has been dedi-
cated to the development of focusing algorithms capable of
image formation when motion error magnitudes exceed the
nominal wavelength of the radar excitation signal. This prob-
lem has been shown to be non-deterministic polynomial-time
hard (NP-hard) to solve and computational challenges are ex-
acerbated by the high computational cost of associated with
the SAR focusing algorithms needed to conduct the search.
The proposed approach seeks to address these challenges by
restricting trajectories to smooth (low-order) curve trajecto-
ries and applying an optimized massively parallel GPU imple-
mentation of the SAR focusing algorithm to search over can-
didate trajectories for the trajectory yielding a focused SAR
image.

1 Introduction
Synthetic Aperture Radar (SAR) systems typically em-

ploy a method of sensing electromagnetic backscatter by
illuminating a scene with a sequence of RF radiation pulses
emitted from various spatial positions. In the case of mono-
static SAR measurement contexts, a single high-power RF
antenna is utilized as both an emitter and a receiver of RF
signals. It transmits the RF excitation pulses and captures the
RF backscatter from the scene. The nominal RF operating
wavelength of the antenna, λ, is a determining factor in the
image resolution and whether the radar is able to penetrate
terrestrial surfaces and atmospheric phenomena, e.g., C-band
(surface/ground penetrating), L-band (canopy penetrating),
X-band (smoke/cloud/rain penetrating).

SAR image formation is very sensitive to position error,
ϵ, and when the error exceeds 10% of the nominal operating
RF wavelength, λ, SAR focusing algorithms fail to generate
coherent images [1, 2].

This article describes a massively parallel approach to
solve the NP-hard problem of focusing radar data collected in
the presence of excessively large motion errors, i.e., in con-
texts where |ϵ| ≫ λ/10. Successful deployment of such al-
gorithms promises to allow Synthetic Aperture Radar (SAR)
systems to be deployed onto low-cost INS vehicle platforms
and in the absence of highly accurate GPS information. The
(2) contributions to this article are: (1) an approach to focus
SAR images in the presence of large motion errors and (2)
a massively-parallel procedure using GPU acceleration to
search over the unknown trajectories in a short time.

2 Related Work
SAR images are constructed using focusing algorithms [3,

4, 5, 6] that serve to merge the local measurements of the
scene from each position into a single coherent image. To do
so, highly-accurate measurements of the antenna positions at
time each pulse is emitted must be known [7, 8].

Many SAR system use RF frequencies with wavelengths
on the order of λ = 3cm. or smaller. This requires the po-
sition accuracy required for coherent SAR image formation
to satisfy the inequality |ϵ| < 3mm. which is demanding
for spatially large trajectories where turbulence of INS error
can spoil image formation. This constraint on the accuracy of
the vehicle position requires SAR platforms to be constructed
with highly accurate position sensors which typically realize
as a high-resolution GPS receiver and a high-accuracy INS
(Inertial Navigation System).

Little research has been dedicated to the development of
focusing algorithms capable of image formation for large
magnitude motion error, i.e., |ϵ| ≫ λ/10. A major impedi-
ment to development of such algorithms is that the problem
of SAR focusing under these conditions is non-deterministic
polynomial-time hard (NP-hard) as it requires finding a solu-
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tion (typically a local optimal point) to a (NP-hard) optimiza-
tion problem [2]. Auto-focus algorithms have been discussed
in [1, 2, 9, 10] where such algorithms seek to correct motion
error to improve SAR image quality. However auto-focus
algorithms such as [2, 10] do not address large-scale motion
errors such as contexts where |ϵ| ≫ λ/10.

3 Methodology
This work considers the problem of SAR trajectory mo-

tion compensation by seeking to estimate the vehicle trajec-
tory that yields a coherent SAR image. A purpose-built mas-
sively parallel grid search algorithm accelerates consideration
of potential candidate trajectories by considering solution tra-
jectories in parallel and by computing SAR focusing algo-
rithm results in parallel.

The proposed approach consists of three steps: (1) choose
a model to parameterize the trajectory, (2) define a perfor-
mance functional that indicates the likelihood a given tra-
jectory model is correct, (3) define the search space limits
and find the best solution within that space using massively-
parallel grid search.

3.1 Choosing a trajectory parameterization
model

To save computational cost, positions of the vehicle over
the aperture are considered to lie along a smooth curve. We
adopt a 3D polynomial space curve model for trajectory and
investigate 1st and 2nd order, i.e., linear and quadratic. These
reduced order models are appropriate in practice since most
SAR measurements are taken with linear (stripmap) or circu-
lar (spotlight) trajectory geometry. The reduced order model
serves to minimize the dimension of the search space which is
crucial in controlling the computational cost of the approach.

Equation (1) shows the form of the parametric 3D space
curve model which represents variation along each coordinate
system axis as an algebraic polynomial function of the curve
arc length, s.

C(X(s), Y (s), Z(s)) = (ΣK
k=0αks

k,ΣK
k=0βks

k,ΣK
k=0γks

k)
(1)

Our experiments consider linear (K=1) and quadratic
(K=2) models for equation (1). SAR RF pulse emission
positions are realized as regularly spaced samples having
interval, T , along the arc-length curve as determined by the
SAR Pulse Repetition Frequency (PRF). A final parameter
allows the vehicle velocity to vary by addition of a single
parameter v that multiplies the sample interval resulting in
samples with spacing vT . The resulting space curve model
therefore includes both a vehicle velocity and vehicle trajec-
tory shape considerations which we refer to collectively as
the trajectory model.

3.2 Defining the performance functional
Values of the performance function for each candidate tra-

jectory model are obtained via a 2-step process: (1) focus

the SAR image using the candidate trajectory and the back
projection algorithm [3, 11] and (2) use the column entropy
metric as shown in equation (2) to evaluate the focused image
quality. This metric has been found to be an appropriate for
detecting correct vehicle trajectories.

H(Y |αk) =
∑
y∈Y

p(y|αk) log p(y|αk) (2)

Maxima of the column entropy are indications of poten-
tially correct trajectory models.

3.3 Performing the search for a solution
Vehicle trajectory/velocity paths are then modeled as

points in 7-dimensional space for linear trajectories and as
points in 10-dimensional space for quadratic trajectories. A
massively parallel GPU-accelerated grid search library [12]
is created that searches through the user-defined space of
candidate trajectory models seeking the trajectory minimizes
the performance function of equation (2).

Experimental work has shown that focusing algorithms are
highly sensitive to variation in the slope and curvature param-
eters. As such, these parameters are sampled at a density suf-
ficient to detect coherence. For linear linear trajectories this
leads to a solution space consisting of trajectories constrained
to lie within a 3D cone. For quadratic trajectories this leads to
a solution space having a shape corresponding to a general-
ized cylinder with quadratic space-curve axis and linearly in-
creasing circular cross section, e.g., a cone with quadratically-
bent axis.

In our application we consider a vehicle having unknown
velocities and consider using the trajectory estimate as an up-
date to the system state. In such contexts the size of the
search space would be proportional to the uncertainty asso-
ciated with the current state of the vehicle. This uncertainty
is typically provided by the guidance, navigation, and control
(GNC) filter, which integrates sensor measurements and other
data to estimate the vehicle’s position, velocity, and orienta-
tion. Solutions found via our approach could then be used
as feedback to the onboard GNS system as an independent
source of velocity and position measurements.

We found that GPU implementation of the search re-
quired significant GPU device resources to be dedicated to
each trajectory solution. For this reaons we utilized CUDA
streams to evaluate the quality of each trajectory. Using
CUDA streams, each trajectory evaluation problem will be
given the resources needed to focus the SAR image as they
become available which maximizes GPU utilization without
exceeding the compute resources of the GPU device.

CUDA streams return the value of the column entropy
given a guessed trajectory and a final very quick CUDA
kernel is required to find the minimum value of the column
entropy for all for all trajectory models in the search space
which is taken as the final solution. Our results show the
focused SAR image using the final solution.
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Ground Truth Initial Reconstructed X Trajectory Z Trajectory

Linear

Quadratic

Table 1: Linear and quadratic models are shown in rows 1 and 2 of the table. The first three columns from left to right depict the SAR images for: (a) the
ground truth trajectory, (b) an incorrect trajectory, (c) reconstructed trajectory. The final two columns plot the estimated X (left) and Z (right) position relative
to ground truth for the 30 and 117 pulses considered.

4 Results
Linear and quadratic parametric models were considered

for estimating the trajectory of the 3D space curve models.
For the linear model, the grid search space for the linear coef-
ficients were ±2.6m of the ground truth coefficients with 23
samples each for the X , Y , and Z axis and a velocity search
of 90% to 110% with 5 samples (60,835 candidate trajectories
total). For the quadratic model, the grid search space modi-
fied the linear and quadratic coefficients for ±1.3m with 5
samples each for the X , Y , and Z axis with a velocity search
of 90% to 110% with 5 samples each (78,125 candidate tra-
jectories total). The experiments were performed on a system
containing an Intel Xeon Silver 4110, NVIDIA RTX A6000
48 GB, and 160 GB RAM which was capable of process-
ing 2671.3 linear candidate trajectories per second and 1827.7
quadratic candidate trajectories per second.

Raw backscatter signals and trajectories from the GOTCHA
dataset [13] served as ground truth and phase history data.
This dataset contains X-band data spanning 360 degrees of
azimuth across 8 elevation angles and 4 polarization states.
The experiment operated on 8 azimuth degrees (0◦ to 315◦),
8 elevation angles, and the 4 polarization states. The proce-
dure followed the same steps as above with 60,835 candidate
trajectories for the linear model and 78,125 candidate trajec-
tories for the quadratic model.

Table 1 and Table 2 depict trajectory estimation results
for linear trajectory and quadratic trajectory models. The
linear trajectory considered 30 pulses for estimation and the
quadratic trajectory considered 117 pulses for estimation.
Representative trajectory X and Z positions are shown in the
leftmost columns and the focused SAR images associated
with the final trajectory estimates are shown in the column
labeled ”Reconstructed.” Table 2 contains additional exam-
ples of the algorithm results for both the linear and quadratic
models for other elements of the GOTCHA dataset.

5 Conclusion
This article describes a massively parallel approach to

solve the NP-hard problem of focusing radar data collected
in the presence of excessively large motion errors. Little
research has been dedicated to the development of focusing
algorithms capable of image formation for large magnitude
motion error and advancement mainly because it is a non-
deterministic polynomial-time hard problem. We proposed
an approach by minimizing the dimension and size of the
search space and searching for a candidate solution using a
massively parallel GPU search. By parameterizing the tra-
jectory and searching over the coefficients of the parameters
and using the total column entropy function, we were able
to focus SAR images by finding the satisfactory candidate
trajectory from the grid search space.
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Pass 1, VV, 180 Degree Pass 2, HV, 315 Degree Pass 3, HH, 1 0 Degree Pass 4, HV, 45 Degree

Linear

Linear (GT)

Quadratic

Quadratic (GT)

Table 2: Examples of the linear and quadratic models focused SAR images from the GOTCHA dataset and their respective ground truth coefficient images.
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