

2

3 **On the edge: demography across latitudinal and elevational gradients for range-expanding**
4 **whelks**

5

6 Heidi R. Waite*, Ryan A. Beshai, Cascade J. B. Sorte

7

8 Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-
9 2525, USA

10

11 *Corresponding author: hwaite@uci.edu

12 Running head: Waite et al.: Demography at range edge

13

14 ABSTRACT: Marine species worldwide are responding to ocean warming by shifting their
15 ranges to new latitudes and, for intertidal species, elevations. Demographic traits can vary across
16 populations spanning latitudinal and elevational ranges, with impacts on population growth.
17 Understanding how demography varies across gradients from range center to edge could help us
18 predict future shifts, species assemblages, and extinction risks. We investigated demographic
19 traits for 2 range-expanding whelk species: *Acanthinucella spirata* and *Mexacanthina lugubris*.
20 We measured reproductive output across environmental (latitudinal and shore elevation)
21 gradients along the coast of California, USA. We also conducted intensive measurements of
22 offspring condition (survival and thermal tolerance) across shore elevation for *M. lugubris* at one
23 site. We found no difference in reproductive output, body size, or larval survival across shore
24 heights for *M. lugubris*, suggesting that egg-laying behavior buffers developing stages from the
25 relatively high level of thermal variation experienced due to daily tidal emersion. However,
26 across latitudes, reproductive output increased toward the leading range edge for *A. spirata*, and
27 body size increased for both species. Increased vital rates at the leading range edge could

28 increase whelk population growth and expansion, allowing species to persist under climate
29 change even if contractions occur at trailing edges.

30 KEY WORDS: Range shift · Carryover effects · Climate change · Egg laying · Reproduction ·
31 Intertidal

32 1. INTRODUCTION

33 As oceans warm at unprecedented rates due to climate change, species worldwide are
34 responding by shifting their ranges to new latitudes and depths (Pecl et al. 2017). Range shifts
35 are leading to cascading changes in population dynamics and ecosystem functioning (Xue et al.
36 2019), yet processes underlying range shifts are understudied in marine compared to terrestrial
37 systems (Donelson et al. 2019). Sagarin et al. (2016) described demographics, physiology,
38 genetics, and physical factors as key data for teasing out processes determining species ranges. In
39 particular, Angert et al. (2011) showed that reproduction is a key demographic trait which
40 influences colonization and establishment rates in a range-expanding species. Additionally,
41 patterns of abundance and key demographic rates such as reproductive output underlie species
42 range limits and population dynamics (Sagarin et al. 2006), and understanding these patterns can
43 increase our ability to predict future species movement, assemblages, and extinction risks (Urban
44 et al. 2013).

45 Vital rates, particularly reproductive output, are expected to be lower at leading range
46 edges in expanding species (Buckley et al. 2021). This pattern potentially occurs because novel
47 environmental conditions lead to increased metabolic demand and resource allocation tradeoffs
48 at the range edge, causing abundances to peak at the range center and decline toward range edges
49 (Sagarin et al. 2006). At range edges with theoretically suboptimal environments for expanding
50 species, survival would be prioritized and reproductive output reduced; by contrast, toward the
51 range center, more energy would be invested in growth and reproduction (Sagarin et al. 2006).
52 Lower reproductive output at range margins could also occur because of increased investment
53 towards traits that favor dispersal, and less towards reproduction, growth, or other life history
54 traits (Chuang & Peterson 2016). Finally, range edge populations may experience Allee effects,
55 with lower population size reducing reproductive output due to limited availability of mates and
56 skewed sex ratios (Chuang & Peterson 2016).

57 Despite theory supporting an expectation of low reproductive output at range edges,
58 evidence for this pattern is mixed (e.g. Sagarin et al. 2006), and some species have increased
59 reproductive output at expanding edges. For non-native invasive species, range-shifting species
60 may experience competitive release and encounter naïve prey at expanding range edges, leading
61 to increased energy for reproduction (Lester et al. 2007). Reproductive output might also be
62 influenced by environmental (e.g. temperature; Helmuth et al. 2006) and biotic factors that vary
63 inconsistently across latitude. Mesoscale variation between sites likely influences reproductive
64 output, such as for the sea urchin *Centrostephanus rodgersii* (Ling et al. 2008) and the purple
65 urchin *Strongylocentrotus purpuratus* (Lester et al. 2007).

66 Reproductive success is measured in both output (quantity of offspring per female) and
67 offspring condition, which can carry over into later life stages and varies across environmental
68 gradients. For example, in the mussel *Mytilus californianus*, offspring from range-edge (upper
69 shore elevation) adults hatched from smaller eggs (indicating lower maternal investment per
70 individual) and were less tolerant to thermal stress (Waite & Sorte 2022). Given that younger life
71 stages are particularly vulnerable to environmental stress (Pandori & Sorte 2018), offspring
72 survival is another key response that can give us insight into the expansion potential of range-
73 shifting species. Overall, faster spread is expected when reproductive output and offspring
74 condition are higher at the range edge than in the range center (Chuang & Peterson 2016).

75 The aim of this study was to evaluate key demographic traits across environmental
76 gradients for 2 range-expanding whelks: *Acanthinucella spirata* and *Mexacanthina lugubris*.
77 These whelks inhabit the intertidal zone of eastern Pacific rocky shores and are expanding their
78 ranges northward along the west coast of North America. During the Pleistocene, *A. spirata*
79 underwent a >400 km range expansion north of Point Conception, extending to Tomales Bay,
80 California. Since 2017, this species has expanded further, now occurring from Punta Baja,
81 Mexico, to Cape Mendocino, California (Flagor & Bourdeau 2018). Similarly, over the past ~50
82 yr, *M. lugubris* has expanded its northern range boundary by ~250 km and now extends from
83 Baja California, Mexico, to Laguna Beach in southern California (Fenberg et al. 2014,
84 Wallingford & Sorte 2022). Understanding the range-shift potential of these species is especially
85 important, as both are top predators in rocky intertidal ecosystems (Fenberg et al. 2014, Zimmer
86 et al. 2016). Novel top predators can have large disruptive impacts on communities (Borer et al.
87 2006, Pecl et al. 2017).

88 To evaluate the range shift potential of these 2 whelk species, we combined a survey of
89 demographic rates and population sizes across a broad latitudinal gradient with an intensive local
90 experiment of offspring condition across a shore height gradient. We first asked: how does
91 reproductive output and adult size vary across latitude and shore height? These whelks reproduce
92 locally by depositing eggs in capsules within aggregations ('masses') attached to the substratum,
93 and often in rock crevices or among mussel beds (Flagor & Bourdeau 2018). Embryos develop
94 into larvae inside egg capsules, eventually hatching as juveniles. Reproductive output has several
95 components, including the total number of egg capsules and number of offspring per capsule.
96 Our study focuses on the former. We surveyed egg capsules of both species in the intertidal zone
97 across >1000 km of California coastline, spanning the species' range centers to northern leading
98 edges. Given the theory described above, we hypothesized that whelks lay more egg capsules at
99 their range center than at the range edge.

100 Second, to better understand how variation in demographic rates across environmental
101 gradients influences offspring condition, we asked: does elevation of whelk egg-laying affect
102 survival and thermal tolerance of offspring? As a case study, we quantified effects of laying
103 location across a shoreline elevation gradient on offspring of *M. lugubris*. We hypothesized that
104 condition (survival and thermal tolerance) is lower for larvae from eggs laid at higher shore
105 heights (more thermally stressful environments) due to tradeoffs between survival and
106 reproduction in parents.

107 **2. MATERIALS AND METHODS**

108 **2.1. Study sites**

109 We surveyed the intertidal zone at 19 sites across California to quantify demographic
110 traits of *Acanthinucella spirata* and *Mexacanthina lugubris* (Fig. 1, Table 1). Given latitudinal
111 differences in reproduction timing, sites in southern and northern California were surveyed in
112 April and June 2022, respectively (for details on the timing of egg surveys, see Text S1 in the
113 Supplement at XXXXXXXXXXXXXXXXXXXXXXX). Additionally, we conducted a field study
114 of *M. lugubris* near its range edge at Thousand Steps Beach, Laguna Beach, California, from
115 April to July 2022.

116 **2.2. Latitudinal surveys**

117 At each site, we conducted 2 timed searches (1 h each) in the intertidal zone: 1 for whelks
118 and 1 for egg capsules (see Text S2 for details of our survey approach). For adult whelks, we
119 recorded the species, size (total length in mm, using calipers), and shore height where they were
120 found (m above mean lower-low water, using a laser level and tidal predictions from
121 Willyweather.com). For egg capsules, we took photos and recorded number and species of snails
122 nearby and shore height. Measurements and photos were taken during each timed search.

123 We used the survey data to calculate total number of egg capsules and adult whelks per
124 site. Each egg mass was assigned to species based on morphology of egg capsules themselves
125 and whelk species congregated nearby. We quantified number of egg capsules per mass from
126 photos using Image J (Version 1.51, National Institute of Health, Bethesda, MD, USA), by
127 counting capsules within a subsample area of the photo and extrapolating across the total area.
128 Total egg capsules per site were calculated by counting the capsules from all masses at each site.
129 For each site, we estimated adult whelk population size as the total number of whelks counted
130 during the 1 h search and body size as the mean size of whelks found.

131 We conducted GLM analyses in R ([R Core Team 2020](#)) to test effects of latitude on (1)
132 reproductive output for each species using total number of capsules per site as our fecundity
133 metric, (2) average shore height of egg capsules per site for each species, and (3) adult whelk
134 sizes (using a Gamma distribution due to non-normality). We used Gaussian distributions for
135 GLM analyses unless otherwise specified. We also conducted a multiple regression analysis with
136 latitude and adult abundance as potential drivers of reproductive output (number of egg capsules
137 per site).

138 **2.3. Field experiment across a shoreline elevation gradient**

139 To quantify effects of shore height of eggs on offspring survival, we conducted an
140 intensive field study of *M. lugubris* near its range edge at Thousand Steps Beach, California
141 (Text S3). Briefly, we determined thermal stress experienced by egg capsules across shore
142 heights using temperature dataloggers and calculated mean daily maximum temperatures. Egg
143 capsules spanning the shoreline were allowed to develop in the field to the pre-competent larval
144 stage, when 1 capsule per egg mass was collected for thermal survival trials (as in [Waite & Sorte](#)
145 [2022](#); details in Methods S3). Capsules were collected from centers of egg masses to avoid
146 differences in temperature exposure. We placed 3 larvae from each capsule in 1.5 ml plastic

147 centrifuge tubes filled with seawater and exposed each tube to of 5 temperatures (control, 32, 35,
148 38, and 40°C) for 1 h (see Methods S3 for details). After the thermal exposure, survival was
149 evaluated by visually inspecting larvae for movement under a dissecting microscope. We
150 calculated LT₅₀ values (temperature at which 50% of individuals die) using binomial regressions
151 between assay temperatures and larval survival. A GLM analysis (Gaussian distribution) in R
152 was used to test the effect of shore height on field thermal exposure and LT₅₀ values (with larval
153 length as a covariate).

154 3. RESULTS

155 Reproductive output (total egg capsules per site) increased with latitude towards the
156 range edge for *Acanthinucella spirata* ($t = 4.01$, $df = 6$, $p = 0.0103$) but not for *Mexacanthina*
157 *lugubris* ($t = 0.78$, $df = 3$, $p = 0.515$; Fig. 2). Egg masses were primarily found sheltered in rock
158 crevices or among mussel beds, attached to hard rock substrates, with rare cases of eggs in direct
159 sunlight. Adult whelks were larger at higher latitudes for both species (*A. spirata*: $t = -14.30$, df
160 = 326, $p < 0.0001$; *M. lugubris*: $t = 4.12$, $df = 116$, $p < 0.0001$; Fig. S2). Between the southern-
161 and northern-most sites, adult whelks increased in size by 32.4 and 37.4% for *A. spirata* and *M.*
162 *lugubris*, respectively. Additionally, adult whelk abundances increased with latitude for *A.*
163 *spirata* (GLM; $t = 3.716$, $df = 10$, $p = 0.005$) but not for *M. lugubris* ($t = 0.550$, $df = 4$, $p = 0.621$;
164 Fig. S6). Latitude ($R^2 = 0.93$, $F = 12.49$, $df = 3$, $p = 0.04$), but not adult abundance ($R^2 = 0.93$, F
165 = 12.49, $df = 3$, $p = 0.09$), predicted reproductive output. Across elevations, maximum
166 temperature increased with shore height at our field experiment site (Fig. S1), yet *M. lugubris*
167 larval survival was not influenced by thermal exposure ($t = -0.232$, $df = 13$, $p = 0.821$; Fig. S3).

168 4. DISCUSSION

169 Our investigation of key demographic traits across environmental gradients unexpectedly
170 revealed that reproductive output increased with latitude toward the leading range edge for
171 *Acanthinucella spirata*, although there was no latitudinal pattern across the relatively small range
172 of *Mexacanthina lugubris* in California. Though surprising, higher reproductive output toward
173 range edges in expanding species is not unfounded (e.g. Lester et al. 2007, Ling et al. 2008).
174 Resource availability and competition, a congruence of reproductive and dispersal traits, or
175 founder effects might contribute to the pattern of increased reproductive output of *A. spirata* at

176 its range edge. It is also worth noting that we measured only 1 component of reproductive output
177 (total number of egg capsules). The number of offspring per capsule could also vary by latitude
178 and shore height (although we did not find a relationship between shore height and offspring per
179 capsule for *M. lugubris*, Fig. S5).

180 Higher food availability can increase reproductive output (e.g. [Donelson et al. 2010](#)) and
181 lead to larger body sizes (e.g. [Spight & Emlen 1976](#)). There is some evidence that for barnacles
182 (a major food source for whelks), abundance ([Blanchette et al. 2008](#)) and recruitment ([Broitman
et al. 2008](#)) are higher in northern California than locations in the southern part of the range of *A. spirata*. Lower competition may also lead to surplus energy to invest in reproduction and growth.
184 Competitors of *A. spirata* decreased with increasing latitude (R. A. Beshai et al. unpubl. data).
185 Together, lower interspecific competition and increased food availability at the range edge might
186 have contributed to the higher reproductive output we measured for *A. spirata*. Future studies
188 should investigate the role of resource availability in driving demography across species ranges.

189 Other site-specific factors, such as wave exposure, could influence reproductive output.
190 Wave splash can buffer both adults and developing larvae in capsules from temperature stress
191 and is typically higher in coastal systems north of Point Conception ([Helmuth et al. 2006](#)),
192 especially in range-shifted sites for *A. spirata*. Expansions of both species should be monitored
193 in the future to determine if the latitudinal patterns in reproductive output hold and to identify
194 potential environmental or biotic drivers. Given that these are relatively recent expansions, we
195 are somewhat limited in our number of range-shift sites.

196 While trailing edges are typically dominated by survival constraints, population
197 persistence and expansion at leading edges require a balance of reproductive output and dispersal
198 constraints ([Buckley et al. 2021](#)). These whelks lay benthic egg cases and thus, long-distance
199 dispersal of these whelks most likely occurs via drifting on wood or algae ([Flagor & Bourdeau
2018](#)). A trade-off between reproduction and dispersal is unlikely, as greater reproductive output
increases the probability of chance dispersal events. On the other hand, the higher body size and
202 reproductive output we observed at the range edge could be due to genetically determined
203 founder effects ([Chuang et al. 2015](#)). Although the relationship between body size and latitude
204 for *M. lugubris* paralleled that of *A. spirata*, reproductive output did not differ by latitude for *M.
lugubris*. However, because *M. lugubris* occurs farther south than *A. spirata*, we sampled a more

206 limited portion of its range. Future studies should incorporate data from the historic range of this
207 species in Mexico.

208 Interestingly, we did not find significant demographic variation across a shore height
209 gradient for *M. lugubris*, possibly indicating that egg-laying behaviors buffer offspring from
210 environmental variation. Rawlings (1999) suggested that intertidal snail egg cases are poorly
211 protected from stresses of aerial exposure, leaving developing embryos vulnerable to increased
212 mortality under climate change at range edges. Yet, although field temperatures increased with
213 shore height, we did not observe differences in survival under experimental thermal exposure. In
214 our study, nearly all eggs were laid in rock crevices or mussel beds. Cooler microhabitats within
215 the elevational gradient may have buffered larvae from negative effects of stress on demographic
216 rates. Additionally, average temperatures were consistent across shore height, which could also
217 help buffer the eggs from shorter periods of thermal stress (maximum temperatures).

218 As oceans warm, predicting species range expansions is essential for anticipating future
219 biodiversity patterns. Increased reproductive output at edges might facilitate further spread of *A.*
220 *spirata*, and higher body sizes at the range edge (and lack of local stress effects on offspring)
221 suggest robust range-edge populations of *M. lugubris*. Our findings highlight the need to
222 evaluate impacts of these species on communities they move into, as further expansions are
223 possible under climate change.

224

225 *Acknowledgements.* This work was supported by a Mathias Graduate Student Research Grant to
226 H.R.W. and NSF grants OCE-2124438 and ICER-1852060 to C.J.B.S. We thank Sorte Lab
227 members past and present for advice on experimental design; C. Cameron, A. Allen, R. Rangel,
228 C. Cortes, A. Gonzalez, and UCI students for help with fieldwork; J. Lamb and D. Campbell for
229 feedback; and H. Heesch, X. Li, L. Montgomery, and S.G. Koteras for support. We acknowledge
230 that this work was done on unceded original homelands of the Sinkyone, Mattole, Central Pomo,
231 Graton Rancheria, Kashaya, Miwok, Me-Wuk, Tongva, Acjachemen, Payómkawichum,
232 Kumeyaay/Kumiai, Chumash, and Schuwich.

233

234

LITERATURE CITED

235 <jrn>Angert AL, Crozier LG, Rissler L, Gilman SE, Tewksbury JJ, Chunco AJ (2011) Do
236 species' traits predict recent shifts at expanding range edges? *Ecol Lett* 14:677–689 [PubMed](#)
237 [doi:10.1111/j.1461-0248.2011.01620.x](https://doi.org/10.1111/j.1461-0248.2011.01620.x)</jrn>

238 <jrn>Blanchette CA, Miner CM, Raimondi PT, Lohse D, Heady KE, Broitman BR (2008)
239 Biogeographical patterns of rocky intertidal communities along the Pacific coast of North
240 America. *J Biogeogr* 35:1593–1607 [doi:10.1111/j.1365-2699.2008.01913.x](https://doi.org/10.1111/j.1365-2699.2008.01913.x)</jrn>

241 <jrn>Borer ET, Halpern BS, Seabloom EW (2006) Asymmetry in community regulation: effects
242 of predators and productivity. *Ecology* 87:2813–2820 [PubMed](#) [doi:10.1890/0012-9658\(2006\)87\[2813:ACREO\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2006)87[2813:ACREO]2.0.CO;2)</jrn>

244 <jrn>Broitman BR, Blanchette CA, Menge BA, Lubchenco J and others (2008) Spatial and
245 temporal patterns of invertebrate recruitment along the west coast of the United States. *Ecol*
246 *Monogr* 78:403–421 [doi:10.1890/06-1805.1](https://doi.org/10.1890/06-1805.1)</jrn>

247 <jrn>Buckley LB, Schoville SD, Williams CM (2021) Shifts in the relative fitness contributions
248 of fecundity and survival in variable and changing environments. *J Exp Biol* 224:jeb228031
249 [PubMed](#) [doi:10.1242/jeb.228031](https://doi.org/10.1242/jeb.228031)</jrn>

250 <jrn>Chuang A, Peterson CR (2016) Expanding population edges: theories, traits, and trade-offs.
251 *Glob Change Biol* 22:494–512 [PubMed](#) [doi:10.1111/gcb.13107](https://doi.org/10.1111/gcb.13107)</jrn>

252 <jrn>Donelson JM, Munday PL, McCormick MI, Pankhurst NW, Pankhurst PM (2010) Effects
253 of elevated water temperature and food availability on the reproductive performance of a
254 coral reef fish. *Mar Ecol Prog Ser* 401:233–243 [doi:10.3354/meps08366](https://doi.org/10.3354/meps08366)</jrn>

255 <unknown>Donelson JM, Sunday JM, Figueira WF, Gaitán-Espitia JD and others (2019)
256 Understanding interactions between plasticity, adaptation and range shifts in response to
257 marine environmental change. *Philos Trans R Soc B* 374:20180186</unknown>
258 <https://doi.org/10.1098/rstb.2018.0186>

259 <jrn>Fenberg PB, Posbic K, Hallberg ME (2014) Historical and recent processes shaping the
260 geographic range of a rocky intertidal gastropod: phylogeography, ecology, and habitat
261 availability. *Ecol Evol* 4:3244–3255 [PubMed](#) [doi:10.1002/ece3.1181](https://doi.org/10.1002/ece3.1181)</jrn>

262 <jrn>Flagor TE, Bourdeau PE (2018) First record of the predatory snail *Acanthinucella spirata*
263 (Blainville, 1832) north of its known range. *Mar Biodivers Rec* 11:19 [doi:10.1186/s41200-018-0156-z](https://doi.org/10.1186/s41200-018-0156-z)</jrn>

265 <jrn>Helmuth B, Broitman BR, Blanchette CA, Gilman S and others (2006) Mosaic patterns of
266 thermal stress in the rocky intertidal zone: implications for climate change. *Ecol Monogr*
267 76:461–479 [doi:10.1890/0012-9615\(2006\)076\[0461:MPOTSI\]2.0.CO;2](https://doi.org/10.1890/0012-9615(2006)076[0461:MPOTSI]2.0.CO;2)</jrn>

268 <jrn>Lester SE, Gaines SD, Kinlan BP (2007) Reproduction on the edge: large-scale patterns of
269 individual performance in a marine invertebrate. *Ecology* 88:2229–2239 [PubMed](#)
270 [doi:10.1890/06-1784.1](https://doi.org/10.1890/06-1784.1)</jrn>

271 <jrn>Ling SD, Johnson CR, Frusher S, King CK (2008) Reproductive potential of a marine
272 ecosystem engineer at the edge of a newly expanded range. *Glob Change Biol* 14:907–915
273 [doi:10.1111/j.1365-2486.2008.01543.x](https://doi.org/10.1111/j.1365-2486.2008.01543.x)</jrn>

274 <jrn>Pandori LLM, Sorte CJB (2019) The weakest link: sensitivity to climate extremes across
275 life stages of marine invertebrates. *Oikos* 128:621–629 [doi:10.1111/oik.05886](https://doi.org/10.1111/oik.05886)</jrn>

276 <jrn>Pecl GT, Araújo MB, Bell JD, Blanchard J and others (2017) Biodiversity redistribution
277 under climate change: impacts on ecosystems and human well-being. *Science* 355:eaai9214
278 [PubMed](https://doi.org/10.1126/science.aai9214) [doi:10.1126/science.aai9214](https://doi.org/10.1126/science.aai9214)</jrn>

279 <bok>R Core Team (2020) R: a language and environment for statistical computing. R
280 Foundation for Statistical Computing, Vienna</bok>

281 <jrn>Rawlings TA (1999) Adaptations to physical stresses in the intertidal zone: the egg
282 capsules of neogastropod molluscs. *Am Zool* 39:230–243 [doi:10.1093/icb/39.2.230](https://doi.org/10.1093/icb/39.2.230)</jrn>

283 <jrn>Richter-Boix A, Orizaola G, Laurila A (2014) Transgenerational phenotypic plasticity links
284 breeding phenology with offspring life-history. *Ecology* 95:2715–2722 [doi:10.1890/13-1996.1](https://doi.org/10.1890/13-1996.1)</jrn>

286 <jrn>Sagarin RD, Gaines SD, Gaylord B (2006) Moving beyond assumptions to understand
287 abundance distributions across the ranges of species. *Trends Ecol Evol* 21:524–530 [PubMed](#)
288 [doi:10.1016/j.tree.2006.06.008](https://doi.org/10.1016/j.tree.2006.06.008)</jrn>

289 <jrn>Spight TM, Emlen J (1976) Clutch sizes of two marine snails with a changing food supply.
290 Ecology 57:1162–1178 doi:10.2307/1935042</jrn>

291 <bok>Townsend CR, Harper JL, Begon M (2000) Essentials of ecology. Blackwell Science,
292 Malden, MA</bok><jrn>Urban MC, Zarnetske PL, Skelly DK (2013) Moving forward:
293 dispersal and species interactions determine biotic responses to climate change. Ann N Y
294 Acad Sci 1297:44–60 PubMed DOI:10.1111/nyas.12184</jrn>

295 <jrn>Waite HR, Sorte CJB (2022) Negative carry-over effects on larval thermal tolerances
296 across a natural thermal gradient. Ecology 103:e03565 PubMed doi:10.1002/ecy.3565</jrn>

297 <jrn>Wallingford PD, Sorte CJB (2022) Dynamic species interactions associated with the range-
298 shifting marine gastropod *Mexacanthina lugubris*. Oecologia 198:749–761 PubMed
299 doi:10.1007/s00442-022-05128-5</jrn>

300 <jrn>Xue Q, Majeed MZ, Zhang W, Ma C (2019) Adaptation of *Drosophila* species to climate
301 change – a literature review since 2003. J Integr Agric 18:805–814 doi:10.1016/S2095-
302 3119(18)62042-8</jrn>

303 <jrn>Zimmer RK, Ferrier GA, Kim SJ, Kaddis CS, Zimmer CA, Loo JA (2016) A
304 multifunctional chemical cue drives opposing demographic processes and structures
305 ecological communities. Ecology 97:2232–2239 PubMed doi:10.1002/ecy.1455</jrn>

306

307 Table 1. Sites surveyed for adult whelks and egg cases in northern and southern California, USA.
308 Dashes = no adult whelks or eggs found; italics = only adult whelks found (no eggs). At
309 Thousand Steps, *Acanthinucella spirata* adults and eggs were observed at a location adjacent to
310 our main field site but were not served (ND = no data)

Site	Code	Lat	Long	Region		
					<i>M. lugubris</i>	<i>A. spirata</i>
Cape Mendocino	CM	40.396	–124.379	Northern		Extended
Cape Mendocino South	CS	40.394	–124.379	Northern		Extended
Mussel Rock	MR	40.347	–124.364	Northern		
Moat Creek	MC	38.880	–123.679	Northern		

Sea Ranch Shell Beach	SS	38.731	-123.490	Northern		
Dillon Beach	DB	38.254	-122.970	Northern		Historic
Kenneth Norris Rancho Marino	RM	35.540	-121.092	Northern		
Coal Oil	CO	34.406	-119.878	Northern		Historic
Little Corona del Mar	LC	33.588	-117.869	Southern		Historic
Crystal Cove	CC	33.565	-117.834	Southern		Historic
Shaw's Cove	SC	33.544	-117.799	Southern		Historic
Heisler Park	HP	33.542	-117.789	Southern	Extended	
Thousand Steps	TS	33.493	-117.739	Southern	Extended	Historic (ND)
Victoria Beach	VB	33.419	-117.761	Southern	Extended	
Goff Island	GI	33.513	-117.761	Southern	Extended	
Dana Point	DP	33.460	-117.715	Southern		Historic
Swami's Beach	SB	33.034	-117.715	Southern	Extended	Historic
Cardiff State Beach	CB	33.009	-117.280	Southern	Extended	Historic
Scripps Reserve	SR	32.874	-117.252	Southern	Extended	Historic

311

312 Fig. 1. Locations (site codes in Table 1) of egg masses of the whelks *Acanthinucella spirata*
 313 (orange) and *Mexacanthina lugubris* (purple). White circles = no eggs found

314 Fig. 2. Reproductive output (egg capsules per site during 1 h timed counts) across historic
 315 (closed circles) and extended (open circles) ranges of *Acanthinucella spirata* (orange) and
 316 *Mexacanthina lugubris* (purple). Reproductive output increased from the range center to leading
 317 edge (south to north) for *A. spirata* only ($p = 0.0103$). See Table 1 for site codes