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Abstract 

Radiative cooling of electron beams interacting with counter-propagating electromagnetic waves 

is analyzed, taking into account the quantum modification of the radiation friction force. Central 

attention is paid to the evolution of the energy spectrum of electrons accelerated by the laser wake 

field acceleration mechanism. As an electron beam loses energy to radiation, the mean energy 

decreases and the form of the energy distribution also changes due to quantum-mechanical spectral 

broadening.  
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1. Introduction 

It is well known that radiation friction can impose constraints on the highest attainable energy of 

charged particles accelerated by standard accelerators [1]. Additionally, it leads to radiative 
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cooling of the accelerated electron beams and affects the electron beam emittance [2, 3]. Radiation 

losses determine the energy of cosmic rays accelerated in various objects in space [4-7], in 

particular, the energy of ultra-high energy cosmic rays. It also plays an important role in charged 

particle interactions with crystals [8]. The effects of radiative cooling on the dynamics of electrons 

interacting with strong electromagnetic waves have attracted significant attention, specifically in 

the interaction of high power laser radiation with matter [9-12]. These effects can be neglected in 

the case of relatively low radiation-intensity and small electron-energy. However, in the limit of 

extremely high wave-intensity, radiation friction effects dominate the dynamics of the charged 

particles [13-19] resulting in the radiation friction force approaching the strength of the driving 

force. As a result, the electron dynamics become highly dissipative with fast conversion of the 

electromagnetic wave energy to hard electromagnetic radiation. In the pulsar magnetosphere 

theory this regime called as “Aristotelian Electrodynamics” because due to radiation over-

damping, the velocity–rather than the acceleration–of a charge is determined by the local 

electromagnetic field [20, 21]. For more information on Aristotelian physics, e. g. see [22] and 

literature cited therein. For laser radiation with a 1 μm wavelength, the radiation friction force 

modifies the electromagnetic wave interaction with matter at intensities above 2W/cm2310RI . 

Reaching this laser intensity will bring us to regimes that are almost completely unexplored 

experimentally. This will enable high efficiency generation of gamma flares, which is considered 

as one of the primary goals for high-power laser facilities [23-34].  

Radiation friction plays a significant role in the acceleration of charged particles using 

lasers [33-36]. However, the above-mentioned intensity, 2W/cm2310 , corresponds to the 

interaction geometry where the electromagnetic wave simultaneously accelerates charged particles 

and provides the strong field for radiation reaction effects. Typical laser-target configurations for 

studies of these conditions include laser pulse irradiation of a solid foil and penetrating the 

overdense foil target [10]. The intensity of 2W/cm2310  was demonstrated recently [37]. Another 

experimental configuration that allow for the study of radiation friction force effects is the collision 

of a high energy electron beam and a high intensity laser pulse. It was recently studied at the 

Gemini laser facility, with the results reported in [38] and [39]. Already at a moderate intensity of 

approximately 2W/cm2010  significant radiation friction effects were observed. 
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 It is well known that an electron beam colliding with a strong electromagnetic pulse and 

interacting with a strong magnetic field undergoes fast cooling and fast energy depletion [40-44], 

which changes the beam energy distribution. In regard to the study of strong field quantum 

electrodynamics [10, 45-47], it raises the question of whether an electron radiating its energy away 

during the interaction with a laser can reach the region of highest intensity with sufficient energy 

to make a number of different phenomena observable [48-52]. 

 Below, we present the calculation and analysis of the electron energy distribution that 

results from an electron beam interacting with a strong counter-propagating electromagnetic wave. 

In the analysis, we take into account different initial (before interaction) energy distributions and 

quantum effects modifying the radiation friction force. We additionally address the evolution of 

the energy spectrum of electrons accelerated by the laser wakefield acceleration (LWFA) 

mechanism. 

 The article presents three aspects: being a brief overview of the previously published theory 

of the evolution of an electron beam during its interaction with a strong laser field, it also contains 

original results related to the stochastic behavior of a charged particle in the quantum limit, and 

also presents a collection of useful formulas and relationships for planning, carrying out and 

analysis of experiments on the interaction of ultrarelativistic electrons with laser radiation. 

 The paper is organized as follows. In Section 2 we retrieve the formalism used for 

description of the radiation friction force in the Landau-Lifshitz form with the quantum effects 

implemented in the form of the Gaunt factor. The equations from this Section are applied in the 

next Sections 3 and 4 for calculating the energy spectrum of the electron beam cooled in the 

interaction with strong electromagnetic pulse neglecting the stochastic broadening of electron 

distribution function. The electron spectrum evolution in this case presents momentum averaged 

energy distribution. In Section 5 electron energy spectrum broadening due to quantum mechanical 

stochasticity effects is described within the framework of the Fokker-Plank equation. In order to 

benchmark the Fokker-Planck equation approach used in Section 5 to account for quantum 

mechanical stochasticity effects, in Section 6, we present the results of a Monte Carlo simulation 

modeling electron beam collision with a laser pulse. Section 7 summarizes the conclusions. 

 

2. Radiation Friction Force 
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In order to self-consistently describe the trajectory of an emitting electron, the Minkowski 

equations should be modified by adding the radiation friction force, g :  

dp e
F u g

ds c
,     (1)  

dx
u

ds
.      (2) 

The radiation friction force in the Landau–Lifshitz form [53] is given by 
3

3 2

2

3 e e

e F e
g u u F F u F u F u u

m c x m c
.  (3) 

Here p , u , and x  are the electron momentum, velocity and coordinate; e  and em  are the 

elementary charge and the electron mass; c  is the speed of light in vacuum. The 4-tensor of the 

electromagnetic field F  is defined as  

,F A A      (4) 

where ,A A is the four-vector potential with scalar and vector A  potentials. 

Retaining the high-order terms in the limit of 1e , where e  is the electron Lorentz 

factor, the three-dimensional form of the radiation friction force can be presented in the form [53] 

c

4
2

2 4
e

2
( )( )

3LL e

e
F u F u

m c

v
g .   (5) 

where v  is the electron velocity. This expression can be rewritten via the relativistic and gauge 

invariant parameter e  given by  

2

S e

( )
e

F p

E m c
    (6) 

where 
2 3
e

S

m c
E

e
.     (7) 

is equal to critical electric field of quantum electrodynamics. This field, equal to 
181.32 10 V/cm  is also known as the Schwinger field. It produces over the distance equal to 

the Compton wavelength, 11/ 3.86 10 cmC em c , work equal to 2
em c .  
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The parameter e  can be expressed via the electric and magnetic fields and electron 

momentum as 

2

2
2 2

S

1 1 1
( )e e

e eE m c m c
E p B p E .   (8) 

For an electron counter-propagating with respect to the electromagnetic wave, this parameter is 

approximately equal to 02 /e e Sa a , where 2
S S

/ /
e e

a eE m c m c  is the normalized 

Schwinger field. For 1-m wavelength laser radiation, the normalized Schwinger field equals
5

S
4.1 10a . 

 Using the expressions written above we can cast the radiation friction force as  
2 2 3

2 2

C

2 2

3 3
e

LL e e

e m c
g ,    (9) 

where 2 / 1/137e c    is the fine structure constant and /cv  is the normalized electron 

velocity. In the ultra-relativistic limit, when the momentum of the electrons colliding head-on with 

the electromagnetic wave is well above em c , the square of the invariant parameter is 

approximately equal to 
2

2 2
2

( )
e e

SE

E B
.    (10) 

The quantum effects that lead to a reduction in the rate of energy being lost to radiation can be 

taken into account by modifying expression (5) as  

e
( )

LL
Gg g ,     (11) 

where the Gaunt factor ( )eG  is equal to the ratio of the full radiation intensity to the intensity 

emitted by a classical electron.  

Using the results published in [54], we can write the Gaunt factor ( )eG  as 

Ai
3/2 2 3

3/2 4

0

3 4 5 4
( ) ( )

4 (1 )
e e

e
e

x x
G z xdx

x
,  (12) 

where 2/3(4 / )z x  , Ai( )x  is the Airy function [55]. In the following sections, we neglect the 

effects of the discrete nature of photon emission in quantum electrodynamics [56-58], which 
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results in stochastic behavior of the radiating electron (see [59] and review articles [10,19] and 

literature cited therein). These effects will be addressed at the end of the paper. 

In the limit 1e , the form-factor ( )eG  tends to unity as  

55 3
( ) 1 1 5.9

16e e eG .   (13) 

For 1e , it tends to zero as  

5/6 4/3 4/3

32 0.56
( )

27 3 (1/3)e
e e

G .  (14) 

In what follows, we shall use the approximation [60] 

2 3 2 1/3

1
( )

(1 18 69 73 5.806 )e
e e e e

G .  (15) 

Within the interval 0 20e , the accuracy of approximation is better than 1% as it follows 

from the comparison of expressions (12) and (15). 

 Expressions (9) and (11) for the radiation friction force can be rewritten as 
2 2

2 3 2 1/3
C

2

3 (1 18 69 73 5.806 )
e

e e e e

e
g . (16) 

We note that the leading term in the Landau-Lifshitz equation with a quantum correction, 

Eq. (11), appears from the Fokker-Planck equation obtained by [48]. 

 

3. Ultrarelativistic electron beam slowing down  

Here we consider the head-on collision of an ultrarelativistic electron with a laser pulse. The laser 

ponderomotive pressure pushes the electron perpendicular to the pulse propagation direction and 

changes the longitudinal component of the electron momentum. The reduction in momentum due 

to radiation friction can be either weaker or stronger than the ponderomotive force action 

depending on the laser pulse amplitude, inhomogeneity, and the electron energy. In the case where 

the radiation friction force is negligibly weak, assuming that the electromagnetic configuration can 

be described by a 1D-plane wave laser pulse propagating along the x-axis with constant velocity, 

the electron dynamics are determined by the conservation of the integrals of motion [53]. They are 

the generalized transverse momentum  

( ) constante x ct
c   p A     (17) 
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and  
2 2 4 2 2 2 2 1/ 2

|| || ||( ) constante e em c cp m c p c p c p c       . (18) 

If the electron before interaction with the laser pulse has longitudinal and transverse 

momentum components equal to 0|| 0||| |p p   and 0, respectively, corresponding to a head-on 

collision, Eqs. (17) and (18) show that  
2

|| 0|| 2 2 2 1/ 2
0|| 0||

| |
2[( ) | |]

e
e

e

a m cp p m c
m c p p

  
 

.   (19) 

Here 2| | / ea e m c A  is the normalized vector-potential of the electromagnetic wave. As 

follows from Eq. (19), the longitudinal component of the electron momentum decreases. If 0||| |p  

is small,  
2

0|| 2 1/ 2| |
2(1 )e

ap m c
a




,   (20) 

the electron stops and is reflected back by the ponderomotive force. We note that the electron 

energy,  
2

2 2 2
0 2 2 2 1/ 2

0|| 0||2[( ) | |]
e

e e e e e
e

a m cm c m c m c
m c p p

  
 

,  (21) 

does not vanish. 

The transverse scattering of the electron is taken into account in the electron rest frame, 

where the laser pulse duration is 2
las las 0 e1 / 2a    . The electron is not significantly scattered 

aside by the laser ponderomotive force provided that its energy is large enough,  

00 / 2e lasc a w   ,     (22) 

where w  is the laser width at focus and 0a  is the laser pulse amplitude. For a 1 m wavelength, 

10 PW pulse focused into a one-lambda focal spot, the normalized laser amplitude is 3
0 10a  . 

For a 30-fs duration laser pulse this condition requires 5000e  , i.e., an electron energy above 

2.5 GeV. According to the condition (22) the electron is not reflected back provided that its 

momentum is higher than approximately 0|| 0| | ep m ca , i.e. 1000e  , Further, we assume that 

these conditions are respected.  
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The electron energy changes due to the radiation losses. In the limit 1e , where the 

form-factor ( )eG  tends to unity, one can obtain from Eq. (1) an equation for the x-component of 

the electron momentum  
2

2
04 (2 )x x

rad
e

dp pa t
dt m c

   ,     (23) 

where it is assumed the head-on relativistic electron collision with the laser pulse depending on 

time and coordinate as ( / )a t x c . Here and below we use the dimensionless parameter  

2

3

42
3 3

e
rad

e

re
m c





       (24) 

with classical electron radius 2 2 13/ 2.82 10 cme er e m c     and the laser wavelengh  . For one-

micron laser wavelength the the parameter rad  approximately equals 81.18 10 . The solution of 

Eq. (23) is given by  

2
0 0

(0)( )
4 (0) (2 ') '

x e
x t

e rad x

p m cp t
m c p a t dt 


 

.   (25) 

From this expression it is seen that the radiation time of the electron energy loss is  

,1 2
0 04 (0)

e
rad

rad x

m c
p a


 

 .    (26) 

It can be written in the form 2
,1 0 0 0 0/8rad radT a    , where 0 02 /T    is the electromagnetic 

wave period, 0 (0) /x ep m c   is the electron gamma-factor, and 0a  is the laser pulse amplitude. 

For one-micron wavelength laser pulse the radiation time is approximately equal to 
6 2

1 0 0 ,03 10 / bT a   with 0 3T  fs. The radiation loss effects are relatively weak if 2 6
0 0 3 10a    , 

e. g. if the 500 MeV electron interacts with the laser pulse with the intensit lower than 
21 24 10 W/cmI   .  

If we assume an ( )a t  dependence of the form 2 2
0( ) exp( / 2 )a t a t t   , the expression for 

( )xp t  can be rewritten as  

 2
0 0

(0)( )
(0) erf 2 /
x e

x
e rad x

p m cp t
m c p ta t t 


  

.  (27) 

Here  erf x  is the error function equal to [54] 
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  2

0

2erf exp( )
x

x t dt


  .    (28) 

Equation (25) shows that for large enough 2
0(0)xp a , the electron momentum tends to the limit of 

2
0 0

( ) e
x t

rad

m cp t
ta 




    (29) 

in accordance with the theory formulated in the book by L. D. Landau and E. M. Lifshitz [53]. For 
2

0 10a   and 0 6t   , where the frequency 0  corresponds to the wavelength 

0 02 / 1μmc    , the normalized electron momentum ( )xp   is approximately equal to 

500 em c , i.e. for a single-cycle one-micron wavelength laser with an intensity of 22 210 W/cm  

the electron energy is approximately equal to 250 MeV. 

In the limit where quantum corrections weaken radiation friction, i.e., when according to Eq. 

(15) the Gaunt factor is approximately equal to 4/3( ) 0.56/e eG , the equation of the electron 

motion with the radiation friction force given by Eq. (1) can be written in the form 
2/3

2/3 4/3
0 0 (2 )x x

rad e S
e

dp pm ca t a
dt m c

 
 

   
 

   (30) 

with the dimensionless coefficient approximately equal to 0.888  . Here, the dimensionless 

parameter 2
0 0/ /S S e ea eE m c m c    is the normalized Schwinger field. The solution to the 

equation (30) is  
3

1/3 1/3 4/3
2/30

,0 01/3
,0 0

1 (2 )
3

t
rad e S

x x
x

m c ap p a t dt
p

  
  

  
 .  (31) 

For a constant amplitude laser pulse the electron momentum formally tends to zero during the 

radiation time  
1/3

,0
,2 1/3 1/3 4/3 2/3

0 0

3 x
rad

rad e S

p
m c a a


  

 ,    (32) 

which can be written as 4/3
,2 ,14 /rad rad e    .  

 

4. Change of the electron energy spectrum.  
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Radiation losses lead to a change in the energy spectrum of the electrons interacting with a strong 

localized electromagnetic field. The evolution of the electron energy distribution can be described 

by the kinetic equation 

 ( , ) 0
xt p xf A t p f   ,     (33) 

where  

( , )x xA t p p ,      (34) 

with the radiation friction force, xp , given by either Eq. (23) in the limit 1e  or by Eq. (30) 

when 1e . The solution to Eq. (33) is the function ( , )xf t p . This function is constant on the 

characteristics (e.g., see [61]). The equations for the characteristics of Eq. (33) are  

xx p x

dp dfdt
p f p


 


.     (35) 

In the cases of the radiation friction force given by Eqs. (23) and (29), the radiation friction 

force can be represented in the form  

( ) ( )x xp t p  .     (36) 

Here, the functions ( )t  and ( )xp  are 

2
0( ) 4 (2 )rad et m ca t      and   

2

( ) x
x

e

pp
m c


 

  
 

  (37) 

in the case corresponding to Eq. (23) and  

2/3 4/3
0( ) (2 )rad e St m ca t a     and 

2/3

( ) x
x

e

pp
m c


 

  
 

  (38) 

for the radiation friction force given by Eq. (30), respectively. Introducing the function  

F f      (39) 

and changing the variables to  

 ( ') '
t

s t dt   and 
( )

xp dpw
p

  ,   (40) 

we rewrite the kinetic equation (33) as  

0s wF F   .     (41) 

The initial value problem solution of this equation is  

0( , ) ( )F s w F w s       (42) 
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with 0 ( )F w  determined by the initial conditions at 0s  . For the distribution function ( , )xf t p  

this yields the expression 

 ,0
0 ,0

( )
( , )

( )
x

x x
x

p
f t p f p

p



 ,    (43) 

where  0 ,0xf p  is the distribution function at 0t  . 

As an example, we consider the electron distribution function prior to the electron beam 

interacting with an electromagnetic field of the super-Gaussian form  

  ,0 ,0
0 ,0

0 0

1 exp
2 (1 1/ )

m
x b

x

p p
f p

m p p

  
   

      

   (44) 

with positive index m . Here ( )x  is the Gamma function [55]. This distribution function describes 

an electron beam with average momentum ,0bp  and a width in the momentum space equal to 

0p . Fig. 1 shows electron beam distribution functions for 2,4,6,8m   and ,0 3bp  , and 0 1p 

. Here, we use the momentum normalization to  

1 2
04

e

rad

m c
a

  .     (45) 

 
Fig. 1. Electron beam distribution functions (44) for 2,4,6,8m   and ,0 3bp  , and 0 1p  . Here 

we use the momentum normalization to 1  given by Eq. (45). 
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Using the relationships presented above, we obtain in the case where the radiation friction 

force xp  is given by Eqs. (36,37), that the electron distribution function depends on time as 

,0 1
1 2

0 1 1 0 1

(1 )1( , ) exp
2 (1 1/ ) (1 ) (1 )

m
x b x

x
x x

p p p s t
f t p

m p p s t p p s t

    
   

         

, (46) 

where  

0
1

1

s 



     (47) 

with 1  given by Eq. (45). According to this expression, the average electron momentum and the 

distribution width decrease as  

,0

,0 1

( )
1

b
b

b

p
p t

p s t



 and  0

,0 1

( )
1 b

pp t
p s t


 


.   (48) 

Fig. 2 shows the electron beam distribution functions given by Eq. (46) for 8m   at 

1 0.0,0.1,0.2,0.3,0.4,0.5s t  . For the sake of simplicity, here we assume that the normalized wave 

amplitude is constant and equal to 0a , thereby corresponding to circularly polarized radiation. As 

is clearly seen, the radiation friction effects result in a reduction of the average electron momentum 

and narrowing of the distribution. 
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Fig. 2. Electron beam distribution functions (46) versus time for 8m  , ,0 3bp   and 0 1p   at 

1 0.0,0.1,0.2,0.3,0.4,0.5s t  . The electron momentum is normalized to 1 . 

 

We note that in this case the characteristic time of the energy loss is approximately equal 

to the time given by Eq. (26). Fig. 2 corresponds to relatively short energy loss time, i. e. to strong 

radiation friction effects. 

 

 
Fig. 3. Electron beam distribution functions (46) versus time for 8m  , ,0 0.75bp   and 
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0 0.5p   at 1 0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7s t  . The electron momentum is normalized to 1 . 

 

In Fig. 3 we show the electron beam distribution functions given by Eq. (46) for 8m  , 

,0 0.75bp   and 0 0.5p   at 1 0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7s t  , which corresponds to 

relatively long energy loss time, i. e. to weak radiation friction effects. 

In the case where the radiation friction force is given by Eqs. (36, 38), the electron 

distribution function is  

 
32 1/3

2 ,02
2 1/3

0 2 0

1( , ) 1 exp
2 (1 1/ )

m

x b
x

x

p s t ps tf t p
m p p p

           
          

 (49) 

where the electron momentum is normalized by  

2 1/3 1/3 2/3 4/3
0

3

rad e sm c a a
  .     (50) 

and  

0
2

2

s 



     (51) 

For the sake of simplicity here we assume that the normalized wave amplitude is constant and 

equal to 0a , again corresponding to circularly polarized radiation. Fig. 4 shows the electron beam 

distribution functions, 2 2( , )xf t p  , given by Eq. (49) for 8m  , at 2 0.0,0.1,0.2,0.3,0.4,0.5s t  . 

Here, we have again assumed that the normalized wave amplitude is constant and equal to 0a . In 

this case, radiation friction effects also result in a reduction of the average electron momentum and 

narrowing of the distribution.  
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Fig. 4. Electron beam distribution function given by Eq. (49) versus time for 8m  , ,0 10bp   

and 0 1p   at 2 0.0,0.1,0.2,0.3,0.4,0.5s t  . The electron momentum is normalized on 2 . 

 

In the case of distribution function 1( , )xf t p  shown in Fig. 2, the spectral narrowing is faster 

than in the case of the function 2 ( , )xf t p  presented in Fig. 4. The characteristic time of the energy 

loss is approximately equal to the time given by Eq. (32).  

To further exemplify these effects, we consider an initial electron distribution function 

having a form typical for laser wake field accelerated electrons. As shown in [62, 63] the shape of 

the energy spectrum of electrons accelerated by wake-fields [64] can be approximated by the 

formula  

0

2 2
0

2

m m

dN N

d
,    (52) 

where m  is the electron maximal energy assuming that m . Correspondingly, the electron 

distribution function prior to interaction with the electromagnetic field is  

 0 ,0 2 2
,0 ,0

2
x

m x

f p
p p




.    (53) 

with mp  being the maximal electron momentum. This distribution has an integrable singularity at 
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mp p .  

 In the case where xp  is given by Eqs. (36, 37) the electron distribution function depends 

on time as 

 
2 2 2

1 1 ,0 1

2,
(1 ) (1 )

x

x m x x

f p t
p s t p p s t p


   

.   (54) 

It is plotted in Fig. 5 for 2 0.0,0.1,0.2,0.3,0.4,0.5s t   and ,0 2.5mp  . In this case, the radiation 

friction effects also result in decreasing maximum electron momentum as  

,0 ,0 1( ) /(1 )m m mp t p p s t  .     (55) 

 

 
Fig. 5. Electron beam distribution function given by Eq. (54) versus time for ,0 2.5mp   at

1 0.0,0.1,0.2,0.3,0.4,0.5s t  . The electron momentum is normalized on 1 . 

 

 In Fig. 6 we show the electron distribution function when radiation friction is described by 

equations (36, 38). It is given by  

 
1/3 2

2
2 1/3 6

2 ,0 2

2(1 / ),
( )

x
x

m x

s t pf p t
p p s t




  
.    (56) 

The electron beam distribution is presented for ,0 15mp   at 2 0.0,0.1,0.2,0.3,0.4,0.5,0.6s t  . 

According to expression (54), the maximum electron momentum decreases as  
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1/3 3
,0 2( ) ( )m mp t p s t  .     (57) 

 

 
Fig. 6. Electron beam distribution function given by Eq. (56) versus time for ,0 15mp   at

2 0.0,0.1,0.2,0.3,0.4,0.5,0.6s t  . The electron momentum is normalized on 2 . 

 

As we see in the case of the electron beam with an initial energy spectrum described by the 

super-Gaussian function (44), radiation cooling results in an overall reduction in the mean energy 

of the electron distribution, however, asymmetry arises in the distribution because the energy loss 

is greater for the higher energy part of the spectrum. This is clearly seen in Figs. 2 and 4. When 

the pre-collision electron energy spectrum has the form typical for a LWFA electron beam (it is 

inversely proportional to the square root of mp p  as given by Eq. (53)), radiation cooling does 

not change the type of singularity, leading to a reduction of the maximum electron momentum 

according to expressions (55-57).  

 

5. Electron energy spectrum broadening due to quantum mechanical stochasticity effects 

As we discussed above, within the framework of the approximation based on classical 

electrodynamics, the expressions for the radiation friction force, including the case when the 

quantum effects are taken into account with the Gaunt factor ( )eG , radiation losses for electrons 
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interacting with the electromagnetic wave result in a drift of the electron distribution function 

towards lower electron momentum with additional narrowing of the momentum distribution 

function. The quantum mechanical stochasticity leads to the appearance of diffusion in the 

momentum space. The Fokker-Planck equation implementing energy drift and diffusion takes the 

form [65] 

 
1( ) ( )
2x xt p x p xf A p f B p f 

     
 

.    (58) 

It is convenient to write the energy drift and diffusion coefficients as  

2 3
22( )

3
e

x e
m cA p 

   and   
3 4

355( )
8 3

e
x e

m cB p 
 .   (59) 

 Estimating characteristic energy drift and diffusion time as   

/ ( )drift x xp A p     and   22 / ( )diff x xp B p      (60) 

we find that the energy drift evolves faster than the energy diffusion, drift diff  , at relatively 

low electron energy: 5
0 08/ 55 3)( / ) 8 10 /Sa a a     (see also discussion in [59, 65]). If the 

normalized field amplitude equals 3
0 10a  , which can be reached with multi-petawatt lasers, 

electron energy 2 28 10 em c  corresponds to 400 MeV. Taking into account that the QED parameter 

equals 0( / )e Sa a   we find that the energy diffusion is faster than the energy drift for 1/ 3e  . 

 Introducing normalized time and momentum, /t    and /xp p  , with  

3/ 2

2
0

3 55
128

S

e

a
m c a

 
   

 
   and   

0

16
55 3

S
e

am c
a

 
   

 
,   (61) 

we can rewrite Eq. (58) in the form 

2 3( ) ( )p p
pf p f p f   


 
         

 
  (62) 

with  

2
2em c p

 
  

 
.     (63) 
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Fig. 7. Electron beam evolution for initial distribution function given by Eq. (44) with 

0 08, 5, 1m p p    ; a) function ( , )f p ; b) equal value contours of ( , )f p  on the plane 

( , )p . The electron momentum is normalized on   given by Eq. (61). 

 

In Fig. 7 we show the results of the electron beam evolution with an initial distribution 

function given by Eq. (44) with 0 08, 5, 1m p p    . In frame a) we present the function 

( , )f p . Frame b) shows equal value contours of ( , )f p  on the plane ( , )p . From this, we 

observe an overall drift of the energy spectrum towards lower energies. Diffusion then leads to 

asymmetric spectral broadening, which is stronger in the high-energy wing of the distribution. At 

the very late stage, radiation friction results in energy distribution narrowing. 
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Fig. 8. Electron beam evolution for initial distribution function given by Eq. (53) with 

0 0.0625p  ; a) function ( , )f p ; b) equal value contours of ( , )f p  on the plane ( , )p . The 

electron momentum is normalized on  . 

 

Fig. 8 presents the results of the electron beam evolution for the initial distribution function 

given by Eq. (53) with 0 0.0625p  . Frame a) shows the function ( , )f p . In Frame b) we plot 

constant value contours of ( , )f p  on the plane ( , )p . We again observe a systematic drift of the 

energy spectrum towards low energies due to radiation losses. Diffusion effects result in a 

smoothing of the distribution in the region of vicinity of the maximum electron momentum and 

broadening of the whole momentum distribution. 

Asymptotically at late times, the electron distribution tends to a stationary state described 

by the solution of the equation (61) i.e. of the equation  

 ( ) 2 ( ) 0p s sB p f A p f   .    (64) 

The right-hand side of this equation is assumed equal to zero which corresponds to vanishing 

momentum flux. Its solution has the form  

( ) ( )exp[ ( )]sf p U p p      (65) 

with  
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Fig. 9. Ptarmigan simulated evolution of the electron distribution used in Fig. 8, constructed 

using 104 particles. The electron beam was collided head-on with a circularly polarized 𝑎0 = 10 

plane wave. 

 

 
   

3
4 2 2 2 2
1 1 1

622 2 2 2
1 1

( )x

p p p
U p

p p p

  

 

  


  

,    (66) 

where 1 /em c   , and  

2 2
1 1
2
1 1

ArcTan( / )( )
p p pp

 

 

 
   .    (67) 

In the limit 0p   for these functions we have  

2
3

7 8 9
1 1 1

1 5 11( ) [ ]x
p pU p O p

  
    ,    (68) 

2
3

2 3
1 1 1

1 2( ) [ ]
2

p pp O p
  

      .    (69) 

When p   the functions have the order  

10

1
8

1( )
32xU p O

p p
  

   
 

,     (70) 
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3

1

3 1( )
2 2

p O
p p





 
     

 
.     (71) 

 

6. Simulation results from the Monte Carlo code 

In order to benchmark the Fokker-Planck equation approach used in the previous section to 

account for quantum mechanical stochasticity effects, we employ a Monte Carlo code Ptarmigan 

[67, 68] to model electron beam collision with a laser pulse. The Ptarmigan code is a single particle 

code, which takes into account SFQED effects (multi photon Compton and Breit-Wheeler 

processes) when charged particles propagate in strong electromagnetic fields. These effects are 

described using either a local constant field approximation (LCFA) or local monochromatic 

approximation (LMA). The photon emission and pair production are treated as point-like events, 

which modify particle 4-momentum and create new particles. Between these events, the particle 

motion is treated according to classical equations of motion in in electromagnetic field. The 

Ptarmigan code takes into account the angular distribution of secondary particles in multi-photon 

Compton and Breit-Wheeler processes, which is different from the distribution that can be 

observed in typical PIC-QED codes, where the collinear emission approximation is used (see [10] 

for details). The results of the Ptarmigan modeling of an electron beam with the same momentum 

distribution as used in Fig. 8 (using 104 particles) with a circularly polarized electromagnetic wave 

with 0 10a   are shown in Fig. 9.  

Here, we employed the local constant field approximation (LCFA), since the energy of 

electrons and electromagnetic field strength allow this. Fig. 9 shows the evolution of the electron 

distribution, which has been smoothed to reduce noise. The electron beam evolution is very similar 

to the numerical results obtained by solving the diffusion equations, which are shown in Fig. 8. 

The distribution initially broadens, followed by narrowing at late times. This indicates the validity 

of using the diffusion equation approach to analyze the evolution of electron beam distribution 

during the interaction with an intense laser pulse. 

 

7. Conclusion 

Analysis of radiation friction effects shows an overall drift of the electron momentum distribution 
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function towards lower momentum. This down-drift results in a narrowing of the momentum 

distribution accompanied by formation of an asymmetric momentum distribution. The stochastic 

nature of electron radiation in the quantum limit is demonstrated by a broadening of the electron 

distribution. The diffusion effects result in a smoothing of the distribution in the region near the 

maximum electron momentum, and broadening of the whole momentum distribution when the 

radiation losses are balanced by diffusion in the momentum space, as is the case of standard 

accelerators of charged particles [2,3]. 
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