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Abstract
Radiative cooling of electron beams interacting with counter-propagating electromagnetic waves
is analyzed, taking into account the quantum modification of the radiation friction force. Central
attention is paid to the evolution of the energy spectrum of electrons accelerated by the laser wake
field acceleration mechanism. As an electron beam loses energy to radiation, the mean energy
decreases and the form of the energy distribution also changes due to quantum-mechanical spectral

broadening.
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1. Introduction
It is well known that radiation friction can impose constraints on the highest attainable energy of

charged particles accelerated by standard accelerators [1]. Additionally, it leads to radiative
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cooling of the accelerated electron beams and affects the electron beam emittance [2, 3]. Radiation
losses determine the energy of cosmic rays accelerated in various objects in space [4-7], in
particular, the energy of ultra-high energy cosmic rays. It also plays an important role in charged
particle interactions with crystals [8]. The effects of radiative cooling on the dynamics of electrons
interacting with strong electromagnetic waves have attracted significant attention, specifically in
the interaction of high power laser radiation with matter [9-12]. These effects can be neglected in
the case of relatively low radiation-intensity and small electron-energy. However, in the limit of
extremely high wave-intensity, radiation friction effects dominate the dynamics of the charged
particles [13-19] resulting in the radiation friction force approaching the strength of the driving
force. As a result, the electron dynamics become highly dissipative with fast conversion of the
electromagnetic wave energy to hard electromagnetic radiation. In the pulsar magnetosphere
theory this regime called as “Aristotelian Electrodynamics” because due to radiation over-
damping, the velocity-rather than the acceleration—of a charge is determined by the local
electromagnetic field [20, 21]. For more information on Aristotelian physics, e. g. see [22] and

literature cited therein. For laser radiation with a 1 pm wavelength, the radiation friction force
modifies the electromagnetic wave interaction with matter at intensities above 7, = 10* W/cm® .

Reaching this laser intensity will bring us to regimes that are almost completely unexplored
experimentally. This will enable high efficiency generation of gamma flares, which is considered
as one of the primary goals for high-power laser facilities [23-34].

Radiation friction plays a significant role in the acceleration of charged particles using

lasers [33-36]. However, the above-mentioned intensity, 10 W/em?, corresponds to the
interaction geometry where the electromagnetic wave simultaneously accelerates charged particles
and provides the strong field for radiation reaction effects. Typical laser-target configurations for

studies of these conditions include laser pulse irradiation of a solid foil and penetrating the

overdense foil target [10]. The intensity of 10*W/cm® was demonstrated recently [37]. Another
experimental configuration that allow for the study of radiation friction force effects is the collision
of a high energy electron beam and a high intensity laser pulse. It was recently studied at the

Gemini laser facility, with the results reported in [38] and [39]. Already at a moderate intensity of

approximately 10’ W/cm” significant radiation friction effects were observed.



It is well known that an electron beam colliding with a strong electromagnetic pulse and
interacting with a strong magnetic field undergoes fast cooling and fast energy depletion [40-44],
which changes the beam energy distribution. In regard to the study of strong field quantum
electrodynamics [10, 45-47], it raises the question of whether an electron radiating its energy away
during the interaction with a laser can reach the region of highest intensity with sufficient energy
to make a number of different phenomena observable [48-52].

Below, we present the calculation and analysis of the electron energy distribution that
results from an electron beam interacting with a strong counter-propagating electromagnetic wave.
In the analysis, we take into account different initial (before interaction) energy distributions and
quantum effects modifying the radiation friction force. We additionally address the evolution of
the energy spectrum of electrons accelerated by the laser wakefield acceleration (LWFA)
mechanism.

The article presents three aspects: being a brief overview of the previously published theory
of the evolution of an electron beam during its interaction with a strong laser field, it also contains
original results related to the stochastic behavior of a charged particle in the quantum limit, and
also presents a collection of useful formulas and relationships for planning, carrying out and
analysis of experiments on the interaction of ultrarelativistic electrons with laser radiation.

The paper is organized as follows. In Section 2 we retrieve the formalism used for
description of the radiation friction force in the Landau-Lifshitz form with the quantum effects
implemented in the form of the Gaunt factor. The equations from this Section are applied in the
next Sections 3 and 4 for calculating the energy spectrum of the electron beam cooled in the
interaction with strong electromagnetic pulse neglecting the stochastic broadening of electron
distribution function. The electron spectrum evolution in this case presents momentum averaged
energy distribution. In Section 5 electron energy spectrum broadening due to quantum mechanical
stochasticity effects is described within the framework of the Fokker-Plank equation. In order to
benchmark the Fokker-Planck equation approach used in Section 5 to account for quantum
mechanical stochasticity effects, in Section 6, we present the results of a Monte Carlo simulation

modeling electron beam collision with a laser pulse. Section 7 summarizes the conclusions.

2. Radiation Friction Force



In order to self-consistently describe the trajectory of an emitting electron, the Minkowski

equations should be modified by adding the radiation friction force, ¢":
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The radiation friction force in the Landau—Lifshitz form [53] is given by
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Here p", u", and z" are the electron momentum, velocity and coordinate; € and m, are the
elementary charge and the electron mass; ¢ is the speed of light in vacuum. The 4-tensor of the

electromagnetic field £ is defined as

v

En/ = a/1147/ o 81/1411,7 (4)
where A" = ¢, A is the four-vector potential with scalar ¢ and vector A potentials.

Retaining the high-order terms in the limit of v, >>1, where 7, is the electron Lorentz
factor, the three-dimensional form of the radiation friction force can be presented in the form [53]
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where v is the electron velocity. This expression can be rewritten via the relativistic and gauge

invariant parameter Y, given by
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is equal to critical electric field of quantum electrodynamics. This field, equal to

1.32x 10"V /cm is also known as the Schwinger field. It produces over the distance equal to

the Compton wavelength, X, = i /m,c ~ 3.86 x 10 "' cm , work equal to m c’.



The parameter Y, can be expressed via the electric and magnetic fields and electron

_ L
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For an electron counter-propagating with respect to the electromagnetic wave, this parameter is

momentum as

2
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approximately equal to x, ~ 2v,a, / a5, where a, = eE, / m wc = m ¢’ / hw is the normalized

S

Schwinger field. For 1-um wavelength laser radiation, the normalized Schwinger field equals
ag ~ 4.1x 10,
Using the expressions written above we can cast the radiation friction force as

2
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where o =€’ /fic ~1/137 is the fine structure constant and B = w/c is the normalized electron
velocity. In the ultra-relativistic limit, when the momentum of the electrons colliding head-on with
the electromagnetic wave is well above m,, the square of the invariant parameter is

approximately equal to
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The quantum effects that lead to a reduction in the rate of energy being lost to radiation can be

taken into account by modifying expression (5) as
9=9,Gx,) (11)
where the Gaunt factor G(x,) is equal to the ratio of the full radiation intensity to the intensity

emitted by a classical electron.

Using the results published in [54], we can write the Gaunt factor G(x,) as

co=-2[
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where z=(4x/ x)*”, Ai(x) is the Airy function [55]. In the following sections, we neglect the

effects of the discrete nature of photon emission in quantum electrodynamics [56-58], which



results in stochastic behavior of the radiating electron (see [59] and review articles [10,19] and
literature cited therein). These effects will be addressed at the end of the paper.
In the limit x, << 1, the form-factor G(x,) tends to unity as

55+/3
G(Xe):l—Txe+...:1—5.9xe+.... (13)
For x, >>1, it tends to zero as
32m 0.56
G(x.) = ‘ +oo=—0m +... 14

In what follows, we shall use the approximation [60]

G(x,) = !
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(15)

Within the interval 0 < ., < 20, the accuracy of approximation is better than 1% as it follows

from the comparison of expressions (12) and (15).

Expressions (9) and (11) for the radiation friction force can be rewritten as

2
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We note that the leading term in the Landau-Lifshitz equation with a quantum correction,

Eq. (11), appears from the Fokker-Planck equation obtained by [48].

3. Ultrarelativistic electron beam slowing down

Here we consider the head-on collision of an ultrarelativistic electron with a laser pulse. The laser
ponderomotive pressure pushes the electron perpendicular to the pulse propagation direction and
changes the longitudinal component of the electron momentum. The reduction in momentum due
to radiation friction can be either weaker or stronger than the ponderomotive force action
depending on the laser pulse amplitude, inhomogeneity, and the electron energy. In the case where
the radiation friction force is negligibly weak, assuming that the electromagnetic configuration can
be described by a 1D-plane wave laser pulse propagating along the x-axis with constant velocity,
the electron dynamics are determined by the conservation of the integrals of motion [53]. They are

the generalized transverse momentum

pl—EAl(x—ct)zconstant (17)
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and
m,c’y, —cp, =(mic* + pic® + pic*)"? - p,c = constant . (18)
If the electron before interaction with the laser pulse has longitudinal and transverse

momentum components equal to p, =—| p, | and 0, respectively, corresponding to a head-on

collision, Egs. (17) and (18) show that
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Here a=e| A, |/m,c” is the normalized vector-potential of the electromagnetic wave. As
follows from Eq. (19), the longitudinal component of the electron momentum decreases. If | p,, |

is small,
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the electron stops and is reflected back by the ponderomotive force. We note that the electron
energy,
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does not vanish.

The transverse scattering of the electron is taken into account in the electron rest frame,
where the laser pulse duration is 7,,, = 7}, .y/1+ aé /2y, . The electron is not significantly scattered
aside by the laser ponderomotive force provided that its energy is large enough,

Yoo > €Ty /2w, (22)
where w, is the laser width at focus and @, is the laser pulse amplitude. For a I um wavelength,

10 PW pulse focused into a one-lambda focal spot, the normalized laser amplitude is a, = 10°.

For a 30-fs duration laser pulse this condition requires , > 5000 | i.e., an electron energy above
2.5 GeV. According to the condition (22) the electron is not reflected back provided that its
momentum is higher than approximately | p,, [~ m,cq, , i.e. ¥, >1000, Further, we assume that

these conditions are respected.



The electron energy changes due to the radiation losses. In the limit y, << 1, where the
form-factor G(,) tends to unity, one can obtain from Eq. (1) an equation for the x-component of

the electron momentum

2
P 4s wan P (23)
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where it is assumed the head-on relativistic electron collision with the laser pulse depending on

time and coordinate as a(t—x/c) . Here and below we use the dimensionless parameter

e = 2w Anr,
" 3mct 34
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with classical electron radius 7, =€’ /mc”* ~2.82x10"°cm and the laser wavelengh A . For one-

micron laser wavelength the the parameter ¢,,, approximately equals 1.18x 107 . The solution of

Eq. (23) is given by

p.(0)m,c
p.(t)= - . (25)
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From this expression it is seen that the radiation time of the electron energy loss is
m,c
T 1= < . 26
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It can be written in the form 7,,,, =T, /87¢,,,a,7,a; , where T, =2x /@, is the electromagnetic

wave period, y, = p (0)/m, is the electron gamma-factor, and a, is the laser pulse amplitude.
For one-micron wavelength laser pulse the radiation time is approximately equal to
7, #3T,10°/ ajy,, with T, ~3fs. The radiation loss effects are relatively weak if a,y, <3x10°,
e. g. if the 500 MeV electron interacts with the laser pulse with the intensit lower than
I=4x10"W/cm®.

If we assume an a(¢) dependence of the form a(¢) = a, exp(—t> / 2At*) , the expression for

p.(t) can be rewritten as

b ()= p.(O)mc
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Here erf (x) is the error function equal to [54]



erf(x) = %J.Xexp(—tz)dt . (28)
T 0

Equation (25) shows that for large enough p, (O)Tag , the electron momentum tends to the limit of

m,c
p(t) > —=——— (29)
ere, ,0,Ata,

in accordance with the theory formulated in the book by L. D. Landau and E. M. Lifshitz [53]. For

a, =10> and w,At =6, where the frequency @, corresponds to the wavelength

Ay =2rc/ @, =1pm, the normalized electron momentum p () is approximately equal to

500m,c, i.e. for a single-cycle one-micron wavelength laser with an intensity of ~ 10*W/cm®
the electron energy is approximately equal to 250 MeV.
In the limit where quantum corrections weaken radiation friction, i.e., when according to Eq.

(15) the Gaunt factor is approximately equal to G(x,) ~ 0.56 / x*/*

€

, the equation of the electron
motion with the radiation friction force given by Eq. (1) can be written in the form

2/3
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with the dimensionless coefficient approximately equal to 77 ~0.888. Here, the dimensionless
parameter a, =eE,/m,w,c =m,c’ / ho, is the normalized Schwinger field. The solution to the
equation (30) is
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For a constant amplitude laser pulse the electron momentum formally tends to zero during the

radiation time
1/3
3px,O

’Z‘ =
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(32)

. . _ -4/3
which can be written as 7,,,, =47, 1. /7.

4. Change of the electron energy spectrum.



Radiation losses lead to a change in the energy spectrum of the electrons interacting with a strong
localized electromagnetic field. The evolution of the electron energy distribution can be described

by the kinetic equation
0,f+0, (At,p,)f)=0, (33)
where
A, p.) = p,, (34)
with the radiation friction force, p_, given by either Eq. (23) in the limit y, << 1 or by Eq. (30)
when , >> 1. The solution to Eq. (33) is the function f(¢,p,). This function is constant on the
characteristics (e.g., see [61]). The equations for the characteristics of Eq. (33) are
ai=P_ U _ (35)
p. Jf0,Dp,
In the cases of the radiation friction force given by Egs. (23) and (29), the radiation friction

force can be represented in the form

p. =v(@(p,). (36)
Here, the functions v(¢) and @ (p,) are
2
v(t)=-4e, ,oymca’(2t) and @(p,)= [%J (37)
in the case corresponding to Eq. (23) and
2/3
0(t) = -1 &, oym,ca** (20)at” and @ (p,) = (%} (38)
for the radiation friction force given by Eq. (30), respectively. Introducing the function
F=of (39)
and changing the variables to
s :—ju(t')dt' and w:ljfd—p, (40)
@(p)
we rewrite the kinetic equation (33) as
o0,F-0,F=0. 41)

The initial value problem solution of this equation is
F(s,w)=F,(w-xs) (42)
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with F,(w) determined by the initial conditions at s =0. For the distribution function f(z, p,)
this yields the expression

_ ZU(px,o)
@(p,)

1t p,) fo(Pro) (43)

where f, ( px,o) is the distribution function at 7=0.

As an example, we consider the electron distribution function prior to the electron beam

interacting with an electromagnetic field of the super-Gaussian form

1 Pio = Pro "’
= e — == 0 44
o (Peo) = 3r 1, xp{ ( ™ H (44)

with positive index m . Here I'(x) is the Gamma function [55]. This distribution function describes

an electron beam with average momentum p, , and a width in the momentum space equal to
Ap, . Fig. 1 shows electron beam distribution functions for m =2,4,6,8 and p, , =3, and Ap, =1

. Here, we use the momentum normalization to

m c
11 = e . 45
: 4gradag ( )
f(px,t)
2
///468
0.5 d
0.4
0.3
0.2
0.1
1 > 3 4 5 6 Px

Fig. 1. Electron beam distribution functions (44) for m =2,4,6,8 and Poo=3> and Ap, =1. Here

we use the momentum normalization to I1, given by Eq. (45).
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Using the relationships presented above, we obtain in the case where the radiation friction

force p, is given by Eqgs. (36,37), that the electron distribution function depends on time as

1 =D, o=pst) |
fit,p.) = _expq—| L Lol ZPAT L (46
2F(1+1/m)Ap0H1 (l_pxslt) Ap, (l_pxslt)

where

s, =20 (47)

with IT, given by Eq. (45). According to this expression, the average electron momentum and the
distribution width decrease as

A
X and Ap(t)~ _ PP (48)

f)=—""0— :
Py(1) 1+pb’0slt 1+pb’0slt

Fig. 2 shows the electron beam distribution functions given by Eq. (46) for m =8 at

5,¢=0.0,0.1,0.2,0.3,0.4,0.5 . For the sake of simplicity, here we assume that the normalized wave

amplitude is constant and equal to q,, thereby corresponding to circularly polarized radiation. As

is clearly seen, the radiation friction effects result in a reduction of the average electron momentum

and narrowing of the distribution.
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f(px.t)
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Fig. 2. Electron beam distribution functions (46) versus time for m =8, p, , =3 and Ap, =1 at

5t =0.0,0.1,0.2,0.3,0.4,0.5 . The electron momentum is normalized to IT, .

We note that in this case the characteristic time of the energy loss is approximately equal
to the time given by Eq. (26). Fig. 2 corresponds to relatively short energy loss time, i. e. to strong

radiation friction effects.

flp. 1
(Px )3-5

3.0
25
2.0
19
1.0
0.5

0'8.0 02 04 06 08 10 12 14 M

Fig. 3. Electron beam distribution functions (46) versus time for m=8, p, , =0.75 and
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Ap,=0.5 at 5¢=0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7 . The electron momentum is normalized to IT, .

In Fig. 3 we show the electron beam distribution functions given by Eq. (46) for m =8,

Dyo =0.75 and Ap,=0.5 at 5¢=0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7, which corresponds to

relatively long energy loss time, i. e. to weak radiation friction effects.
In the case where the radiation friction force is given by Egs. (36, 38), the electron

distribution function is

ftp)= [l 2 ] S Y S
2I'(A+1/m)Ap,I1, 2 Ap,
where the electron momentum is normalized by
O e Y
and
5, = Do (51)

HZ
For the sake of simplicity here we assume that the normalized wave amplitude is constant and
equal to a,, again corresponding to circularly polarized radiation. Fig. 4 shows the electron beam
distribution functions, f,(¢, p,)I1,, given by Eq. (49) for m =8, at s5,¢=0.0,0.1,0.2,0.3,0.4,0.5.
Here, we have again assumed that the normalized wave amplitude is constant and equal to q,. In

this case, radiation friction effects also result in a reduction of the average electron momentum and

narrowing of the distribution.
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f(px.1)
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0.8
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0.4

0.2

2 4 6 8 10 12

Fig. 4. Electron beam distribution function given by Eq. (49) versus time for m =8, p, ;=10

and Ap, =1 ats,=0.0,0.1,0.2,0.3,0.4,0.5. The electron momentum is normalized on IT,.

In the case of distribution function f,(#, p,) shown in Fig. 2, the spectral narrowing is faster
than in the case of the function f,(z, p,) presented in Fig. 4. The characteristic time of the energy

loss is approximately equal to the time given by Eq. (32).
To further exemplify these effects, we consider an initial electron distribution function
having a form typical for laser wake field accelerated electrons. As shown in [62, 63] the shape of

the energy spectrum of electrons accelerated by wake-fields [64] can be approximated by the

formula
a2 (52)
d& E—E,—0 F«/é:s — &

where & is the electron maximal energy assuming that £ > & . Correspondingly, the electron

distribution function prior to interaction with the electromagnetic field is

2
fo(Pro) = —

with p, being the maximal electron momentum. This distribution has an integrable singularity at

(33)
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p = pm *
In the case where p_ is given by Eqgs. (36, 37) the electron distribution function depends

on time as

2
f(pot)=

= - —. (54)
ﬂHI(l—pxslf)\/pm,o(l—pxslt) —Ds

It is plotted in Fig. 5 for s,£=0.0,0.1,0.2,0.3,0.4,0.5 and p,,=2.5. In this case, the radiation

friction effects also result in decreasing maximum electron momentum as

pm(t)zpm,o /(1+pm,0slt) ° (55)
f X:t)
ég _~ 05
40 - 0.4
30 - 0.3
- 0.2
20
- 0.1
10 jjj J/ 0.0
0 1 2 3 Px

Fig. 5. Electron beam distribution function given by Eq. (54) versus time for p, , =2.5 at

5,¢=0.0,0.1,0.2,0.3,0.4,0.5 . The electron momentum is normalized on II,.

In Fig. 6 we show the electron distribution function when radiation friction is described by
equations (36, 38). It is given by
2(1+s,t/ pi°)?
VN

f(p,.t)= (56)

The electron beam distribution is presented for p,, =15 ats,t=0.0,0.1,0.2,0.3,0.4,0.5,0.6.

According to expression (54), the maximum electron momentum decreases as

16



P () =(pys—5,0) . (57)

f(Py) y

0.5

04
0.3

L_#.J_ .J__J

0 5 10 15

Px

Fig. 6. Electron beam distribution function given by Eq. (56) versus time for p, , =15 at

5,6 =0.0,0.1,0.2,0.3,0.4,0.5,0.6 . The electron momentum is normalized on I1,.

As we see in the case of the electron beam with an initial energy spectrum described by the
super-Gaussian function (44), radiation cooling results in an overall reduction in the mean energy
of the electron distribution, however, asymmetry arises in the distribution because the energy loss
is greater for the higher energy part of the spectrum. This is clearly seen in Figs. 2 and 4. When

the pre-collision electron energy spectrum has the form typical for a LWFA electron beam (it is
inversely proportional to the square root of /p, — p as given by Eq. (53)), radiation cooling does

not change the type of singularity, leading to a reduction of the maximum electron momentum

according to expressions (55-57).

5. Electron energy spectrum broadening due to quantum mechanical stochasticity effects

As we discussed above, within the framework of the approximation based on classical
electrodynamics, the expressions for the radiation friction force, including the case when the

quantum effects are taken into account with the Gaunt factor G(y, ), radiation losses for electrons

17



interacting with the electromagnetic wave result in a drift of the electron distribution function
towards lower electron momentum with additional narrowing of the momentum distribution
function. The quantum mechanical stochasticity leads to the appearance of diffusion in the
momentum space. The Fokker-Planck equation implementing energy drift and diffusion takes the

form [65]
of=0, {A(m)ﬂ%apx [B(px)f]}. (58)

It is convenient to write the energy drift and diffusion coefficients as

55 am’c*
2 and B = ¢ 3 59
Br. (p,) s h 7. (59)

2am’c’
3h

A(p,) =

Estimating characteristic energy drift and diffusion time as
Tun = o/ A(p,) and 7, =2p>/B(p,) (60)
we find that the energy drift evolves faster than the energy diffusion, 7, <<z, , at relatively
low electron energy: y < 8/55x/§)(a5 /a,)~8x10°/a, (see also discussion in [59, 65]). If the
normalized field amplitude equals @, =10°, which can be reached with multi-petawatt lasers,
electron energy 8x10°m c” corresponds to 400 MeV. Taking into account that the QED parameter

equals y, =(a,/ay)y we find that the energy diffusion is faster than the energy drift for y, >1/3.

Introducing normalized time and momentum, ¢/ T=7 and p /Il = p, with

T:33/255 h [a ag

16
= and I=—Fmc|—=|, 61)
a 55\/§ a,

128 amc’

we can rewrite Eq. (58) in the form

8.f =0, {<p+7>2 §f+a,, [7(p+7)3f]} (62)
with
V= ("I_ch +p*. (63)
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Fig. 7. Electron beam evolution for initial distribution function given by Eq. (44) with
m=38, p,=5,Ap, =1; a) function f(z,p); b) equal value contours of f(z,p) on the plane

(z, p) . The electron momentum is normalized on IT given by Eq. (61).

In Fig. 7 we show the results of the electron beam evolution with an initial distribution
function given by Eq. (44) with m=8, p, =5, Ap, =1. In frame a) we present the function
f(z, p). Frame b) shows equal value contours of f(z,p) on the plane (7, p). From this, we

observe an overall drift of the energy spectrum towards lower energies. Diffusion then leads to
asymmetric spectral broadening, which is stronger in the high-energy wing of the distribution. At

the very late stage, radiation friction results in energy distribution narrowing.
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Fig. 8. Electron beam evolution for initial distribution function given by Eq. (53) with

p, =0.0625; a) function f(z, p); b) equal value contours of f(z, p) on the plane (7, p). The

electron momentum is normalized on IT.

Fig. 8 presents the results of the electron beam evolution for the initial distribution function

given by Eq. (53) with p, =0.0625. Frame a) shows the function f(z, p).In Frame b) we plot

constant value contours of f(z, p) on the plane (z, p). We again observe a systematic drift of the

energy spectrum towards low energies due to radiation losses. Diffusion effects result in a
smoothing of the distribution in the region of vicinity of the maximum electron momentum and
broadening of the whole momentum distribution.

Asymptotically at late times, the electron distribution tends to a stationary state described

by the solution of the equation (61) i.e. of the equation
9,(B(p)f,)+24(p)f, =0. (64)

The right-hand side of this equation is assumed equal to zero which corresponds to vanishing

momentum flux. Its solution has the form

f.(p)=U(p)exp[¥(p)] (65)

with
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Fig. 9. Ptarmigan simulated evolution of the electron distribution used in Fig. 8, constructed

using 10*particles. The electron beam was collided head-on with a circularly polarized a, = 10

plane wave.
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6. Simulation results from the Monte Carlo code

In order to benchmark the Fokker-Planck equation approach used in the previous section to
account for quantum mechanical stochasticity effects, we employ a Monte Carlo code Ptarmigan
[67, 68] to model electron beam collision with a laser pulse. The Ptarmigan code is a single particle
code, which takes into account SFQED effects (multi photon Compton and Breit-Wheeler
processes) when charged particles propagate in strong electromagnetic fields. These effects are
described using either a local constant field approximation (LCFA) or local monochromatic
approximation (LMA). The photon emission and pair production are treated as point-like events,
which modify particle 4-momentum and create new particles. Between these events, the particle
motion is treated according to classical equations of motion in in electromagnetic field. The
Ptarmigan code takes into account the angular distribution of secondary particles in multi-photon
Compton and Breit-Wheeler processes, which is different from the distribution that can be
observed in typical PIC-QED codes, where the collinear emission approximation is used (see [10]
for details). The results of the Ptarmigan modeling of an electron beam with the same momentum
distribution as used in Fig. 8 (using 10* particles) with a circularly polarized electromagnetic wave

with g, =10 are shown in Fig. 9.

Here, we employed the local constant field approximation (LCFA), since the energy of
electrons and electromagnetic field strength allow this. Fig. 9 shows the evolution of the electron
distribution, which has been smoothed to reduce noise. The electron beam evolution is very similar
to the numerical results obtained by solving the diffusion equations, which are shown in Fig. 8.
The distribution initially broadens, followed by narrowing at late times. This indicates the validity
of using the diffusion equation approach to analyze the evolution of electron beam distribution

during the interaction with an intense laser pulse.

7. Conclusion

Analysis of radiation friction effects shows an overall drift of the electron momentum distribution
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function towards lower momentum. This down-drift results in a narrowing of the momentum
distribution accompanied by formation of an asymmetric momentum distribution. The stochastic
nature of electron radiation in the quantum limit is demonstrated by a broadening of the electron
distribution. The diffusion effects result in a smoothing of the distribution in the region near the
maximum electron momentum, and broadening of the whole momentum distribution when the
radiation losses are balanced by diffusion in the momentum space, as is the case of standard

accelerators of charged particles [2,3].
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