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ABSTRACT �#�

     Control of monoclonal antibody (mAb) concentrations in serum is important for maintaining �$�

the safety and efficacy of these lifesaving therapeutics. Point-of-care (POC) quantification of ���

therapeutic mAbs could ensure that patients have effective mAb levels without compromising ���

safety. This work uses mimotope-functionalized microporous alumina affinity membranes in ���

vertical flow assays for detection and quantitation of therapeutic mAbs. Selective capture of ���

bevacizumab from 1000:1 diluted serum or plasma and binding of a fluorescently labelled anti-���

human IgG secondary antibody enable fluorescence-based analysis of bevacizumab at its � �

therapeutically relevant concentration range of ~50 to 300 µg/mL. The assay results in a linear �!�

relationship between the fluorescence intensity of the antibody capture spot and the bevacizumab �"�

concentration. A simple prototype microfluidic device containing these membranes allows �#�

washing, reagent additions and visualization of signal within 15 minutes using a total of 5 mL of �$�

fluid. The prototype devices can monitor physiologically relevant bevacizumab levels in diluted ���

serum, and future refinements might lead to a POC device for therapeutic drug monitoring.   ���
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 ���

INTRODUCTION � �

     Pharmaceutical applications of monoclonal antibodies (mAbs) have grown at an astonishing �!�

rate since the introduction of the first therapeutic mAb in 1986.[1] As of April 2021, 100 �"�

therapeutic monoclonal antibodies were approved as treatments, and that number has grown �#�

since then, with mAbs accounting for almost a fifth of new approved drugs in the US.[1–4] mAb �$�

therapies are highly specific in treating inflammatory diseases, autoimmune diseases, pain, and ���

cancers, but their efficacy often depends on maintaining the proper mAb concentration in ���

blood.[5–10] For example, clinical pharmacokinetic studies showed a large patient-to-patient ���

variation in the serum concentrations of two cancer therapeutics, bevacizumab and trastuzumab, ���

at the same time point after mAb administration.[11–14] For both mAbs, the serum ���

concentration affected the outcome of the treatment. In the case of trastuzumab and ado-� �

trastuzumab (a drug conjugate), higher exposure to the drug correlated with higher drug efficacy �!�

while patients with lower exposure had shorter overall survival times.[10,15] With bevacizumab, �"�

higher survival chances correlated with higher mAb concentrations in both metastatic colon �#�

cancer and glioma, but in the case of glioma, side effects began to arise as the concentration of �$�

bevacizumab increased beyond 250 mg/L.[8,11] The inter-patient variability of ���

pharmacokinetics is an unmet problem of the current standard dosage regimens that are based on ���

body weight (mg/kg) or set dosages. Therapeutic drug monitoring could address the challenge of ���

interpatient pharmacokinetic variability and inform personalized dosage regimens to increase the ���

clinical effectiveness and potentially lower the cost of these treatments.[8,16] This approach has ���
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membranes,[38] we employ a microfluidic workflow that utilizes membranes covalently !#�

modified with a mAb-binding mimotope [39] to capture and quantify target therapeutic mAbs in "$�

patient serum. Such membranes are attractive because they may efficiently capture mAbs in "��

minutes (including rinsing steps). Importantly, quantitation of the mAbs via a fluorescently "��

labelled secondary antibody allows detection bevacizumab at clinically relevant levels between "��

~60 and 300 ng/mL in 1000-fold diluted serum.[8,11] Our microfluidic chip that exploits "��

vertical-flow capture consists of layers of plastic and pressure sensitive adhesive (PSA), making "��

it low-cost and scalable through roll-to-roll manufacturing [40] or adaptable into an injection " �

molded platform.[41] We integrate a functionalized porous alumina membrane within the "!�

adhesive and plastic layers. Thin, optically clear layers enable imaging of the membrane within ""�

the microfluidic chip, rendering the device adaptable to point-of-care smartphone-based imaging "#�

platforms.[42] #$�

EXPERIMENTAL SECTION #��

Materials #��

Alumina membranes (Whatman Anodisc inorganic filter membranes, 25 mm diameter, 0.2 #��

�m pore size) were cleaned in a UV/O3 chamber (Jelight, model 18) for 15 minutes prior to use. #��

Acetyl-WLEMHWPAHSGSGSGSK (Bev17, the mimotope that binds to bevacizumab) was #��

synthesized by Genscript with a purity greater than 95%. Polyallylamine hydrochloride (PAH, # �

Mw= 50,000), poly(acrylic acid) (PAA, average molecular weight ~100,000 Da, 35% aqueous #!�

solution), Tween-20 surfactant, N-hydroxysuccinimide (NHS), N-(3-dimethylaminopropyl)-N’-#"�

ethylcarbodiimide hydrochloride (EDC), and human serum were used as received from Sigma ##�

Aldrich. BioChemEd Services provided deidentified patient serum samples. Human blood was �$$�

received from Innovative Research in a sodium citrate anti-coagulant tube and centrifuged at �$��
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2000xg for 10 minutes before extracting plasma using a pipette. Poly(vinyl) alcohol (PVA, 99–�$��

100% hydrolyzed, approximate molecular weight 8600 Da) was obtained from Acros. �$��

Bevacizumab (Genentech) was used from its therapeutic formulations. Buffers were prepared �$��

using analytical grade chemicals from various chemical providers, and Milli-Q, 18.2 M� cm �$��

deionized water was used to prepare all aqueous solutions. Two Wash buffers used throughout �$ �

the assays were prepared. Wash Buffer 1 is a solution containing 20 mM PBS, 500 mM NaCl, �$!�

and 0.1 % (v/v) Tween 20 (pH 7.2). Wash Buffer 2 is a solution containing 20 mM PBS, 500 �$"�

mM NaCl, 0.1% Tween 20, and 0.1% PVA at (pH 7.2). PVA was added to remove non-�$#�

specifically bound proteins.   ��$�

�����

Figure 1. Alumina membrane modification and steps of a flow assay. A) Modification of a polyelectrolyte-����
coated alumina membrane with peptide mimotopes.  Polyelectrolyte deposition, mimotope spotting, and mAb ����
capture occur throughout the alumina substrate.  B) Capture and analysis of bevacizumab using mimotope-����
modified alumina membranes and binding of a fluorescently labelled secondary antibody. ����

 �� �

Modification of Bare Alumina Membranes with Peptide Mimotopes ��!�

     Layer-by-layer adsorption was employed to modify alumina membranes (Figure 1A).[43] ��"�

UV/O3-cleaned membranes were washed with water prior to immersion in a PAA solution (10 ��#�
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mM of the PAA repeating unit in 500 mM aqueous NaCl, pH 4) for 5 min. The membranes were ��$�

then immersed sequentially in deionized water for 1 min, PAH solution for 5 min (10 mM of the ����

PAH repeating unit in aqueous 500 mM NaCl, pH 4), and deionized water for 1 min. This ����

process was repeated until the membrane was modified with the desired number of ����

polyelectrolyte bilayers (1.5, 2.5, or 3.5; the extra 0.5 bilayer indicates that the film ends in ����

PAA). The membranes were then dried gently with N2 gas. After drying, the (PAA/PAH)xPAA-����

modified alumina membranes were rinsed with water for 10 seconds on both sides and immersed �� �

in a 0.1 M NHS, 0.1 M EDC aqueous solution for 30 min. The activated membranes were again ��!�

rinsed with water for 10 seconds on either side and dried with N2 gas. Next, 0.75 µL of Bev17 ��"�

mimotope peptide (1 mg/mL in 0.1 M NaHCO3, pH 9) was pipetted onto the middle of the ��#�

membrane. The membranes were then placed in covered polystyrene petri dishes saturated with ��$�

water vapor by a cotton ball swab to allow covalent immobilization of Bev17 overnight. Note ����

that the poly(acrylic acid) modification occurs over the entire membrane, so only Bev17 binding ����

and subsequent mAb capture should affect flow through the spot relative to the rest of the porous ����

alumina. Membranes used in the microfluidics assay were shipped overnight on ice and stored in ����

a 4°C refrigerator upon arrival.   ����

Capture and Analysis of Bevacizumab with Mimotope-Modified Alumina Membranes  �� �

     After letting Bev17-modified alumina membranes sit overnight at room temperature, the ��!�

membranes were used in an antibody capture assay (Figure 1B) in a custom-built Teflon vertical ��"�

flow device that holds the membrane, as detailed elsewhere.[44–46] The membranes were rinsed ��#�

for 10 seconds on each side with water. Membrane testing employed a peristaltic pump (HV-��$�

77120-62 Masterflex, Gelsenkirchen, GER) to pull fluid from an inlet reservoir through the ����

membranes. The pump is connected via tubing to the outlet of the membrane holder. After ����



7 
�

placing a membrane in a Teflon holder, it was rinsed by flowing 30 mL of Wash Buffer 1 ����

through the membrane at 1 mL/min using the peristaltic pump. Next, 1 mL of bevacizumab at ����

concentrations ranging from 0 to 500 ng/mL in 20 mM PBS, 150 mM NaCl, pH 7.4 was ����

circulated through the membrane for varying amounts of time from 1 to 10 min at 1 mL/min. The �� �

membranes were then washed with varying volumes between 5 and 30 mL of Wash Buffer 1. ��!�

After washing, 1 mL of Cy5-labelled Anti-Human IgG (10 µg/mL in 20 mM PBS, 500 mM ��"�

NaCl, pH 7.4) was circulated through the membrane at 1 mL/min for varying amounts of time ��#�

between 10 min and 50 min. The membranes were then washed again with Wash Buffer 1, ��$�

removed from the pump setup, rinsed with water for 10 seconds on each side, dried with N2 gas, ����

and analyzed using an Azure C400 Bioanalytical Imaging System in the Cy5 imaging mode ����

using a 50 ms exposure time. Quantitation of the images was carried out using the ImageJ ����

intensity measurement function by integrating the intensity over the area of a circle of 4.9 mm2 ����

that fit within the edges of the mimotope spots. The circle size was determined by finding the ����

area that fit within the spots on all the membranes analyzed in that data set. The fluorescence �� �

intensity was reasonably uniform across the spots (see Figure S4 in the supporting information).  ��!�

     After developing conditions for capture and analysis of bevacizumab in buffer, the process ��"�

was repeated using mAb spiked in human fluids. Experiments were repeated with both human ��#�

serum and human plasma. The human fluids were first diluted 1000:1 with a solution containing � $�

20 mM PBS and 500 mM NaCl at pH 7.4. These diluted samples were then spiked with a known � ��

amount of the target bevacizumab at concentrations ranging from 0 to 500 ng/mL. The Bev17-� ��

spotted membranes were pretreated with Wash Buffer 1 as described above. After pretreatment, � ��

1 mL of the bevacizumab-spiked, diluted human fluid was passed once through the membrane at � ��

1 mL/min to capture the target. After capture, the membranes were washed with varying volumes � ��
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between 5 to 30 mL of Wash Buffer 2. After washing, 1 mL of Cy5-labelled Anti-Human IgG �  �

(1-10 µg/mL in 20 mM PBS, 500 mM NaCl, pH 7.4) was circulated through the membrane at 1 � !�

mL/min for 10 minutes. Membranes were washed again with Wash Buffer 2, rinsed, dried, and � "�

analyzed as described above using fluorescence imaging. The membranes were also imaged on � #�

an inverted microscope (Zeiss Axio Observer Z1, Carl Zeiss Microscopy, Jena, Germany) in �!$�

brightfield mode using the 5X-20X objectives to inspect for cracks.  �!��

Bevacizumab capture in a microfluidic device �!��

Device fabrication �!��

��!��

Figure 2. A) Exploded view of the microfluidic device assembly. B) Photograph of an assembled chip filled �!��
with blue food coloring. COP= cyclic olefin polymer. PSA = pressure sensitive adhesive. PDMS= �! �
polydimethylsiloxane.  �!!�

     Microfluidic devices were designed in AutoCAD, and the files were transferred to Adobe �!"�

Illustrator for production. Each device contained six layers: 2 layers of 0.19 mm-thick cyclic �!#�

olefin polymer (COP) (Zeonor, Tokyo, Japan), 1 layer of 0.05 mm-thick COP, 3 layers of PSA �"$�

(93020LE, 3M, St. Paul, MN, USA), and 1 layer of polydimethylsiloxane (PDMS) (Sylgard 184, �"��

Dow Corning, Midland, MI, USA) (Figure 2). Each plastic and adhesive layer of the chip was �"��
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cut using a laser cutter (VLS3.50, Universal Laser Systems Inc., Scottsdale, AZ, USA) and �"��

assembled manually. COP was cut using a laser power of 80% and a speed of 100%, and the �"��

PSA was cut using a laser power of 90% with a speed of 90%. The membranes have an initial �"��

diameter of 25 mm prior to laser cutting and have an outer ring of plastic that provides a �" �

protective border for gripping the membrane. The 25-mm membrane with an antibody spot was �"!�

laser cut to 10 mm using a laser power of 56% and a speed of 80%. Laser cutting removes the �""�

protective plastic ring, so afterward the membrane is directly handled with tweezers. Chip �"#�

assembly could be scaled to a roll-to-roll manufacturing setup or adapted into an injection �#$�

moldable design. The PDMS layer is added to secure the PEEK tubing (Part 1569, Idex Health & �#��

Science, Oak Harbor, WA, USA)� to the inlet and outlet. PDMS was fabricated using a 10:1 �#��

base:curing agent ratio, baked in a petri dish for 2 hours at 65o C, and hole punched and diced to �#��

size after curing. The COP pieces were rinsed with 70% v/v ethanol in water and dried using a �#��

Kimwipe prior to assembly. Layer 0 to Layer 4 were assembled and stored at room temperature �#��

for up to two weeks, while Layers 5 and 6 were assembled on the day of the experiment �# �

following placement of the alumina membrane in the pre-designed slot in layer 4.  �#!�

Microfluidic device assay �#"�

    In binding studies for the microfluidic device assay, all solutions were passed over the �##�

membrane through the chip with a syringe pump (Part 788212, KD Scientific, Holliston, MA) �$$�

connected to the inlet to maintain a constant flowrate and a measurable residence time for �$��

interaction. The outlet side had a tube connected to a waste container. The binding was �$��

performed in 3 separate sets of trials evaluating the dose-dependent fluorescence in response to �$��

various concentrations of bevacizumab spiked into serum. Trial 1 and Trial 2 were tested out of �$��

the same prepared membrane batch: Trial 1 occurred within 2 days of membrane delivery and �$��
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     This study uses fluorescence-based detection from porous alumina membranes with a total ��#�

analysis time of less than 35 minutes in a membrane holder and only 15 min in a microfluidic ��$�

device. The long optical pathlength in alumina membranes provides up to two orders of ����

magnitude greater sensitivity relative to assays using flat surfaces, allowing for shortened assay ����

times.[43] Our prior work demonstrated mAb capture in modified nylon membranes, ����

quantitation based on native mAb fluorescence, and preliminary use of a fluorescent secondary ����

antibody to increase sensitivity with an analysis time of approximately 2 hrs.[47] Decreasing the ����

assay time to 35 min requires optimization of all protocol steps including target antibody capture, �� �

washing, and secondary antibody capture. Initially, we studied analysis of mAbs in buffer to ��!�

select the parameters for subsequent assays in serum and plasma. The Supporting Information ��"�

describes our choices of times for each step of the analysis (Figures S1, S2, and Table S1) in ��#�

large membrane holders. The final assay configuration includes a single pass of 1 mL of the ��$�

primary mAb Bevacizumab through the 4.9-cm2 membrane, 5 mL washing steps that occur after ����

capture of the primary and secondary antibodies, and 10 min of secondary antibody circulation. ����

These parameters represent a compromise between minimal analysis times and achieving high ����

fluorescence signals with low background. All membranes are designed for single use due to ����

their fragility and a desire to avoid contamination. ����

     After selecting parameters for bevacizumab assays in buffer, we examined bevacizumab-�� �

spiked samples in diluted human serum or plasma using the same parameters. With a 1000-fold ��!�

dilution, the serum or plasma components had minimal effect on bevacizumab binding to the ��"�

mimotope on the alumina membrane. Removal of non-specifically bound proteins occurs during ��#�

a wash step prior to capture of a secondary antibody as well as a final rinse; the PVA added to ��$�

Wash Buffer 2 aids in removing excess proteins. Figure 3A shows results from the analysis of ����
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bevacizumab in 1000-fold diluted serum. This 0-300 ng/mL assay range corresponds to the ����

therapeutically relevant bevacizumab concentrations that would be present in 1000:1 diluted ����

serum from patients.[8,11] The figure shows a linear relationship between the concentration of ����

bevacizumab flowed through the membrane and the fluorescence intensity. Equally important, ����

the background signal for 0 ng/mL of bevacizumab is low, indicating that under these conditions �� �

the 5-mL wash removes essentially all non-specifically bound secondary antibody. The low ��!�

signal with no added bevacizumab also confirms that the signals observed on the other spots ��"�

arise from the secondary antibody binding to bevacizumab and not from other proteins. The ��#�

relatively large standard deviations in Figure 3B likely stem from the challenge of exactly � $�

reproducing the membrane preparation, particularly the spotting process, which was performed � ��

by hand.  Nevertheless, the fluorescence values over the range from 100 to 300 ng/mL have a � ��

coefficient of variation (CV) less than 22%, with 80% having a CV of 20% or less. These � ��

uncertainties would likely be reduced further with standardization of membrane preparation to � ��

inform physicians about patient mAb levels in diluted serum. In particular, the spot size varies as � ��

much as 13% from the average spot size in 3 replicate measurements with the different �  �

concentrations for macroscale tests (Table S2) and 14% for the microfluidic tests described � !�

below (Table S3).   � "�
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�� #�

Figure 3. Analysis of bevacizumab in diluted human serum and diluted human plasma. A) Contrast-enhanced �!$�
fluorescence image of Bev17-spotted (PAA/PAH)3PAA-modified membranes after capture of bevacizumab �!��
from the diluted serum containing the indicated mAb concentration, rinsing, passage of a fluorescent �!��
secondary antibody, and further rinsing. B) Average intensity of spotted capture membranes as a function of �!��
bevacizumab concentration for the treatment described in A. The points on the line in panel B show the �!��
average measured intensity from 4 different membranes prepared on different days for each different �!��
concentration. C) Contrast-enhanced fluorescence image of Bev17-spotted (PAA/PAH)PAA-modified �! �
membranes after capture of Bevacizumab from diluted plasma containing the indicated mAb concentration, �!!�
rinsing, passage of a fluorescent secondary antibody, and further rinsing. D) Average intensity of spotted �!"�
capture membranes as a function of bevacizumab concentration for the treatment described in C. The points �!#�
on the line in panel B show the average measured intensities from 3 different membranes prepared on �"$�
different days at each different concentration. The error bars correspond to the standard deviations.  �"��

     The results in Figure 3A and B employed (PAA/PAH)3PAA films for membrane �"��

modification, following a literature procedure.[43] We also tested the assay with �"��

(PAA/PAH)2PAA and (PAA/PAH)PAA films to decrease the transmembrane pressure, increase �"��

porosity, and facilitate incorporation of the membranes into a microfluidics device. Preliminary �"��

testing in the microfluidic devices with a (PAA/PAH)3PAA-modified alumina resulted in �" �

cracked membranes and burst bonds between device layers due to the high pressures. Figure S3A �"!�

shows that the background points for 0 ng/mL bevacizumab for membranes modified with �""�

(PAA/PAH)2PAA and (PAA/PAH)PAA films also showed minimal signals. Moreover, as Figure �"#�

S3B-C show, the relationship between fluorescence intensity and the bevacizumab concentration �#$�
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in 1000:1 diluted serum is linear for membranes modified using (PAA/PAH)2PAA and �#��

(PAA/PAH)PAA films. Thus, we proceeded with membranes coated with (PAA/PAH)PAA �#��

films because they show a linear response, low background, and relatively low back pressure.  �#��

     Similar assays with spiked, diluted human plasma also show a linear relationship between the �#��

measured fluorescence intensity and the concentration of bevacizumab in solutions passed �#��

through the membrane (Figure 3C). There are three major differences in this assay compared to �# �

the procedure for the diluted serum. First, the assay with plasma required double the washing �#!�

volume (10 mL vs 5 mL) to sufficiently remove non-specific binding. Second, to achieve �#"�

sufficient sensitivity the assay required 10 µg/mL of the Cy5 labeled anti-human IgG, whereas �##�

the serum assay only need 1 µg/mL. The plasma has an anticoagulant and thus a different �$$�

composition than the serum including proteins, calcium, and magnesium levels that may cause �$��

higher background or interactions with the bevacizumab/Bev17 that interfere with binding.[48] �$��

Nonetheless, the assay still exhibits the needed sensitivity while taking less than 35 minutes to �$��

complete. Based on the current standard deviations, the assay affords a coefficient of variation �$��

below 23%, except the 200 ng/mL point which has a much larger standard deviation (Figure 3D).  �$��

The standard deviations are relatively large, but automated production of the membranes with �$ �

precise spot placement and calibration of fluorescence using standards can likely overcome this �$!�

challenge to reduce the errors to less than 20%.  �$"�

 As a comparison, we performed trastuzumab ELISAs in buffer using commercial kits and �$#�

the manufacturer’s protocols. With a commercial human IgG assay, the coefficient of variation ��$�

was 10-20% when using 0.5 to 10 ng/mL and an assay time of 90 min. An anti-Her2 ELISA kit ����

showed a coefficient of variation of 5% with concentrations from 10-100 ng/mL and an assay ����

time of 120 min. Figure S5 in the supporting material shows calibration curves. Detection limits ����
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were 0.2 ng/mL for the human IgG assay and 1.4 ng/mL for the anti-Her2 assay. Bevacizumab ����

ELISA kits have a limit of quantitation around 30 ng/mL.[49] The ELISAs take at least an hour ����

longer than the membrane-based method, and the human IgG assay shows similar uncertainty as �� �

the membrane-based system.  ELISA detection limits are 2 orders of magnitude lower than those ��!�

with the current membrane system.  However, typical bevacizumab therapeutic concentrations ��"�

are in the range of 50-300 µg/mL,[11] so low detection limits are not needed for this mAb. The ��#�

main advantage of the membrane-based assays is a reduction in time, which we aim to decrease ��$�

further in the future. Changes in the fluorophore on the secondary antibody should also decrease ����

detection limits in the membrane-based assays.  ����

Incorporation of Mimotope-Modified Membranes in a Microfluidic Chip ����

     After developing analyses of bevacizumab in serum and plasma, the assay was miniaturized ����

into a microfluidic workflow. The advantages of microfluidics include a decreased assay time, ����

smaller reagent volumes, further method simplification, and the potential for automation, which �� �

could be valuable for future clinical use. Importantly, in a microfluidic device format this assay ��!�

occurred in under 15 minutes and used a total of 4 mL of fluid, including the wash buffer and ��"�

rinsing water. Thus, the prototype microfluidic assay demonstrates greater than 5X reduction in ��#�

the reagent volumes compared to the standard assay.  Other refinements may further decrease the ��$�

required volumes to make this device more compatible with point of care diagnostics. ����

Techniques such as ELISA employ small volumes, but they typically require >1 h for analysis ����

and a plate reader for quantitation.    ����

     Figure 4 shows that for a given set of replicate experiments the fluorescence generally ����

increases linearly with an increasing concentration of bevacizumab. Also, the background ����

fluorescence in the membrane and the surrounding microfluidic chip is low compared to the �� �
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fluorescent spot at the center of the membrane (Figure 4A). The control without bevacizumab ��!�

confirms the specificity of binding of the secondary antibody to bevacizumab.  ��"�

 ��#�

Figure 4. Analysis of bevacizumab in diluted (1000:1) human serum using a microfluidic assay. A) Contrast-��$�
enhanced fluorescence image of Bev17-spotted membranes after capture of bevacizumab from the diluted ����
serum containing the indicated mAb concentration, rinsing, passage of a fluorescent secondary antibody, and ����
further rinsing. B) Raw data collected for each membrane tested in the microfluidic system, excluding cases ����
where membrane cracks were discovered.  Each point represents a different membrane. The image in panel ����
A corresponds to Trial 3 and was contrast-enhanced to increase visibility of the spots.  ����

The fairly large differences in fluorescence intensities between different replicate �� �

measurements at the same bevacizumab concentrations may stem from variations in membrane ��!�

preparation, or shipping conditions. For example, the alumina material is brittle and despite ��"�

careful handling with tweezers, may develop microscopic or difficult to see cracks during device ��#�

assembly. Such cracks will affect the assay by altering the flow-through properties of the ��$�

membrane. After laser cutting the membranes down to 10 mm, the protective plastic ring is ����

removed and thus the edge of the brittle membrane is directly handled with tweezers. When ����

cracks were detected on a microscope, data points were dropped for Trial 2 at 150 and 250 ����

ng/mL and Trial 1 at 300 ng/mL. Membranes used in the microfluidic assay were shipped on ice ����

from Notre Dame to Purdue, so they had different storage conditions than the membranes ����

fabricated and directly tested at Notre Dame. However, the microfluidic assay still demonstrates �� �

an approximately linear trend for each trial run with increasing bevacizumab concentration. ��!�

Further, the manual spotting process for placing the spot at the center of the membrane in ��"�

addition to different membrane storage times may add to variability in the microfluidic assay ��#�
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results. This could be ameliorated with automated membrane production including precise spot � $�

placement. However, the signal areal intensity did not show a correlation with spot size (see � ��

Figure S6). Calibration of the fluorescence using standards integrated into the assay may also � ��

help future quantification. Further work is needed to increase reproducibility. With significant � ��

refinement, the microfluidic assay could allow simple point-of-care analyses that do not require � ��

the instrumentation currently required in assays that employ 96-well plates. � ��

CONCLUSIONS �  �

          This study demonstrated fluorescence-based bevacizumab quantitation at therapeutically � !�

relevant ranges in diluted serum and plasma with porous alumina membranes. Preliminary � "�

results indicate that the process can occur in less than 15 minutes in a microfluidic device. In the � #�

macroscale and microfluidic vertical flow assays, the fluorescence signal varies approximately �!$�

linearly with the concentration of bevacizumab.  Moreover, the low signal with no added mAb �!��

confirms the high specificity of the assay. The study shows promise for a microfluidic antibody �!��

analysis platform. A scalable method to prepare the membranes should further improve �!��

reproducibility with lower errors. Additionally, calibration of the fluorescence using a standard �!��

could improve measurement consistency. Scaling the microfluidic platform through roll-to-roll �!��

manufacturing or injection molding would enable implementation of a low-cost POC device. �! �

Such a device may enable healthcare workers to rapidly measure therapeutic concentrations to �!!�

ensure patients have effective mAb levels.  �!"�
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