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Abstract. Suppose that Cn
0 ⇢ Rn+1 is a smooth strictly minimizing and

strictly stable minimal hypercone (such as the Simons cone), l � 0, and M

a complete embedded minimal hypersurface of Rn+1+l lying to one side of
C = C0 ⇥ Rl. If the density at infinity of M is less than twice the density
of C, then we show that M = H(�) ⇥ Rl, where {H(�)}� is the Hardt-
Simon foliation of C0. This extends a result of L. Simon, where an additional
smallness assumption is required for the normal vector of M .

1. Introduction

Liouville type theorems, that is the rigidity properties of entire solutions of
certain partial di↵erential equations, are ubiquitous in geometric analysis. In this
paper we prove a Liouville type theorem for minimal hypersurfaces lying on one
side of a minimal cylindrical hypercone, extending a recent result of L. Simon [10].

To state the main result, let Cn

0 ⇢ Rn+1 be a smooth strictly minimizing and
strictly stable minimal hypercone (e.g. the Simons’ cone), and let C = C0 ⇥Rl for
some l � 0. Write {H(�)}� for the Hardt-Simon foliation [5] associated to C0. See
Section 2 for more details on the notation.

Our main result is the following.

Theorem 1.1. If M is a smooth complete embedded minimal hypersurface of

Rn+l+1
lying to one side of C satisfying the density bound ✓M (1) < 2✓C(0), then

M = H(�)⇥ Rl
for some �.

Previously Simon [10] showed that the same conclusion holds under the addi-
tional assumption that the component ⌫y of the normal vector to M in the Rl

direction is su�ciently small. The l = 0 case of the Theorem is due to Hardt-
Simon [5], who proved it for smooth C which are merely minimizing. The existence
of a foliation associated to a minimizing hypercone C was first proven by [1] (for
quadratic C), [5] (for smooth C), and just recently [17] (for any C).

The Hardt-Simon foliation and Liouville theorems of [5, 10] have been of fun-
damental importance in the analysis of minimal hypersurfaces, including in results
concerning generic regularity of stable or minimizing 7-dimensional hypersurfaces
[5, 12, 2, 7], the construction of stable or minimizing singular minimal hypersurfaces
[5, 11, 15], and local regularity/tangent cone uniqueness [9, 3, 14, 4].

Cylindrical cones C = C0 ⇥ Rl model generic singularities in the top stratum,
and are also the simplest examples of tangent cones with non-isolated singular set.
Let us also remark.

Remark 1.2. All known singular minimizing hypercones are either smooth (away
from 0) and strictly stable and strictly minimizing, or cylindrical like we consider
here (see e.g. [16] and the references therein). The most famous examples of
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singular minimizing hypercones are the Simons cones, and in the lowest singular
dimension n = 7 these are in fact the only known examples.

Remark 1.3. With only cosmetic changes, Theorem 1.1 (and all the other lem-
mas/theorems in this paper) continue to hold for stationary integral varifolds in
place of smooth, complete minimal surfaces. So, if V is a non-zero stationary inte-
gral (n+ l)-varifold in Rn+l+1 with ✓V (1) < 2✓C(0) and sptV lying to one side of
C, then V = [H(�)⇥ Rl] for some �.

Using the standard decomposition of codimension-one currents into a sum of
boundaries, and the strong maximum principle [6], Theorem 1.1 and Remark 1.3
imply directly the Corollary:

Corollary 1.4. Let T be a mass-minimizing integral (n+ l)-current in Rn+l+1
with

sptT lying to one side of C and satisfying ✓T (1) < 1. Then T is a finite unionP
i
[H(�i)]. In particular, if T = @[E] is a boundary, then T = [H(�)] for some �.

Some of the basic ideas and strategies that we use originate from [14, 15], but
the explicit nature of our comparison surfaces T� := H(�)⇥Rl allows for significant
simplifications. A key technical tool is a geometric 3-annulus lemma (Lemma 5.1)
for an excess E(M,T�, R) defined for M with respect to T� at scale R. This in turn
depends on a non-concentration estimate (Theorem 4.4) to reduce the estimate to
the corresponding result for Jacobi fields.

Given the 3-annulus lemma, the argument can be summarized as follows: the
fact that M lies on one side of C implies that the excess of M with respect to
T0 = C grows at most at rate R��1+✏ as R ! 1 for any ✏ > 0. Here r� is the
growth rate of the only positive admissible Jacobi field on C0. At the same time we
show that if � is chosen appropriately then the excess of M with respect to T� at
scale R grows at least at rate R��1+✏0 for some ✏0 > 0. This uses that fact that r�

on C is generated by pushing into the T�, and is the smallest possible growth rate of
admissible Jacobi fields on C. Combining these two results we get a contradiction,
unless the excess of M with respect to T� is zero, i.e. M = T�.

Acknowledgements N.E. was supported in part by NSF grant DMS-2204301.
G. Sz. was supported in part by NSF grant DMS-2203218. We thank Otis Chodosh
for helpful conversations.

2. Preliminaries

Throughout this paper C0 will be a smooth minimal hypercone in Rn+1, l a
non-negative integer, and C = C0 ⇥ Rl

⇢ Rn+l+1
⌘ Rn+1

⇥ Rl = {(x, y) : x 2

Rn+1, y 2 Rl
}. When we write u : C ! R we mean u : regC ! R. Define B⇢(⇠) to

be the open Euclidean ball in Rn+l+1 of radius ⇢ centered at ⇠, B⇢ ⌘ B⇢(0), and
Ar,⇢ = Br \ B⇢ to be the open annulus centered at 0. Write !n for the volume of
the Euclidean n-ball. Let ⌘X,⇢(Y ) = (Y �X)/⇢ be the translation/rescaling map.

2.1. Cylindrical cones. The Jacobi operator on C0 is LC0f = �C0f + |AC0 |
2f .

In polar coordinates x = r✓ this becomes

LC0 = @2
r
+ r�1(n� 1)@r + r�2L, L = �⌃ + |A⌃|

2,

so that L⌃ = L + (n � 1) = �⌃ + |A⌃|
2 + (n � 1) is the Jacobi operator of

⌃ ⇢ Sn. Write �1 < �2  �3  . . . for the eigenvalues of L, and { j}j�1 for the
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corresponding L2(⌃)-ON basis eigenfunctions, so that L j + �j j = 0. Define

�±
j

= �(n� 2)/2±
q
((n� 2)/2)2 + �j ,

so that every linear combination u(x = r✓) = c+
j
r�

+
j  j(✓)+ c�

j
r�

�
j  j(✓) is a Jacobi

field on C0. We assume C0 is strictly stable, which means that ��
j

< �(n� 2)/2 <

�+
j
. For shorthand we shall write �j = �+

j
and � = �1 = �+1 .

Let H± be leaves of the Hardt-Simon foliation [5] of C0, lying on di↵erent sides
of C0, so that each H± is oriented compatibly with C0 (i.e. so that ⌫H± ! ⌫C0

as r ! 1). We assume C0 is strictly minimizing, which means there is a radius
R0(C0) so that (possibly after appropriately rescaling H±)

(1) H± \BR0 = graphC0
( ±),

where

(2)  ±(x = r✓) = ±r� 1(✓) + v±, |v±|  r��↵0

for some ↵0(C0) > 0 (see e.g. [5, Equation (10), p. 114]). It follows by standard
elliptic estimates (see e.g. [15, Proposition 2.2]) that

|r
iv±|  c(C, i)r��i�↵0 , i = 0, 1, 2, . . . .(3)

We remark that (3) implies that if hH± is the second fundamental form of H±, then
|x||hH± |  c(C).

Define

H(t) =

⇢
|t|1/(1��)Hsign(t) t 6= 0
C0 t = 0

,

so that

H(t) \B|t|1/(1��)R0
= graphC0

( t),  t(x) = |t|1/(1��) sign(t)(|t|
�1/(1��)x),(4)

and hence
| t(x)� tr� 1(✓)|  |t|1+↵0/(1��)r��↵0 .

Lemma 2.2. For su�ciently small ✏ (depending only on C0), we can write (1 +
✏)H+ as a graph over H+ of the function �+,✏, which we can expand as

(5) �✏,+ = ✏�+ + ✏2V+,✏,

where: �+ is a positive Jacobi field on H+ satisfying

�+(x+ +(x)⌫C0(x)) = (1� �)r� 1(✓) +O(r��↵0) for x = r✓ 2 C0 \BR0 ,(6)

and |r
i�+(x)|  c(C, i)|x|��i, i = 0, 1, 2, . . . ;(7)

and V+,✏ satisfies the estimates

(8) |@j
✏
r

iV+,✏(x)|  c(C, i, j)|x|��i.

The same statements hold with (1 � ✏)H�, ��,✏, ��, V�,✏ in place of (1 + ✏)H+,

�+,✏, �+, V+,✏.

Proof. The decomposition (5) simply follows from the definition of Jacobi field.
Positivity of  + comes from the star-shapedness of H+. For x = r✓ with r � 1,
we can write

�✏,+(x+ +(x)⌫C0(x))(1 + E1(x)) = ((1 + ✏) +(E2(x)/(1 + ✏))� +(E2(x))) .
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where E1, E2� id are smooth functions which are (at minimum) linearly controlled
by r�1 +(x),r +(x). We compute:

(1 + ✏) +(x/(1 + ✏))� +(x)

= ((1 + ✏)1��
� 1)r� 1(✓) +

Z 1+✏

1
(v+ � r@rv+)|x/�d�

= ((1� �)✏+O(✏2))r� 1(✓) +O(✏r��↵0).

The bounds for  + and r
iV+,✏ follow by the above computations and standard

elliptic estimates. ⇤

2.3. Minimal surfaces and varifolds. It will be convenient to use the language
of varifolds, see [8] for a standard reference. We shall write ||V || for the mass
measure of a varifold, and given a countably-(n+ l)-rectifiable set M ⇢ Rn+l+1 we
write [M ] for the integral (n+ l)-varifold with mass measure H

n+lxM .
Recall that the monotonicity formula for stationary (integral) (n + l)-varifolds

in Rn+l+1 says the density ratio

✓V (⇠, ⇢) :=
||V ||(B⇢(⇠))

!n+l⇢n+l

is increasing in ⇢, for any ⇠ 2 Rn+l+1, and is constant if and only if V is a cone
over ⇠. We define the density of V at a point ⇠, resp. and at 1, by

✓V (⇠) = lim
⇢!0

✓V (⇠, ⇢), resp. ✓V (1) = lim
⇢!1

✓V (0, ⇢).

If V = [M ], we understand ||M ||(U) ⌘ ||V ||(U), ✓M (⇠, ⇢) ⌘ ✓[M ](⇠, ⇢), etc.

Lemma 2.4. Let V be a non-zero stationary integral varifold cone in Rn+l+1
, such

that sptV lies to one side of C. Then V = k[C] for some integer k � 1.

Proof. Follows by the maximum principles of [13], [6], since singC has dimension
at most n+ l � 7. ⇤

2.5. �-harmonic functions and Jacobi fields. For � > 0, [10] introduced the
notion of �-harmonic functions, which are functions h(r, y) on B+

1 ⇢ R1+l

+ =
{(r, y) 2 R⇥ Rl : r > 0} solving

(9) r�1��@r(r
1+�@rh) +�yh = 0,

and satisfying the integrability hypothesis

(10)

Z

B
+
1

r�2h2r1+� < 1.

[10] showed any such h extends analytically in r2 and y to {(r, y) : r2 + |y|2 <
1, r � 0}, and in particular can be written as a sum of homogenous �-harmonic
polynomials in r2, y.

In spherical coordinates (r, y) = ⇢!, where ⇢ =
p
r2 + |y|2 and ! = (r, y)/⇢, (9)

becomes

(11) ⇢�l�1��@⇢(⇢
l+1+�@⇢h) + ⇢�2!�1��

1 divSl(!1+�

1 rSlh) = 0.

Here !1 = ! · @r ⌘ r/
p
r2 + |y|2.
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[10] showed that the �-harmonic homogenous polynomials {hq}, when restricted

to Sl

+, are L2(!1+�

1 d!)-complete. So there is an L2(!1+�

1 d!)-ON basis of func-
tions {�i}i�1, each being the restriction of a �-harmonic homogenous polynomial
hi(⇢!) = ⇢qi�i(!). From (11), we get the eigenvalue-type equation

(12) !�1��

1 div
S

l
+
(!1+�

1 rSl�i) + qi(qi + l + �)�i = 0

on Sl

+.

For each j � 1, define �j = n � 2 + 2�j = 2
p

((n� 2)/2)2 + �j . Let v be a
Jacobi field on C \B1 satisfying

Z

C\B1

|x|�2v2 < 1.

For every j, let hj(r, y) = r��j
R
⌃ v(r✓, y)�j(✓)d✓. Then a straightforward com-

putation shows each hj is �j-harmonic in C \ B1, and hence admits an analytic
expansion of the form

hj =
X

i�1

hij(r, y),

where each hij is a qij-homogenous �j-harmonic polynomial, for some integer qij �

0. Moreover, all the {hij |Sl
+
}i are L2(!

1+�j

1 Sl

+)-orthogonal.

Therefore v admits an expansion

(13) v(r✓, y) =
X

i,j�1

r�j j(✓)hij(r, y),

which holds in the following senses: in L2(⌃) for every fixed (r, y); in L2(C \ B⇢)
for every ⇢ < 1; in C1

loc
(C \B1 \ {r = 0}). For every 0 < ⇢ < 1 we have

(14)

Z

C\B⇢

v2 =
X

i,j�0

c2
ij
⇢n+l+2�j+qij =:

X

i�1

a2
i
⇢n+l+2pi ,

where �1 = p1 < p2 < . . .. Note (14) implies that the function

(15) ⇢ 7! ⇢�n�l�2�

Z

C\B⇢

v2

is increasing in ⇢.

We require a few helper lemmas about “tame” Jacobi fields.

Lemma 2.6 ([14]). Let v be a Jacobi field on C \B1 with supC\B1
||x|��v| < 1.

Then for every ✓ < 1 we have the estimate

(16) sup
C\B✓

||x|��v|2  c(C, ✓)

Z

C\B1

v2,

and

(17)

Z

C\B1

v2 

Z

C\B1

|x|�2v2  c(C) sup
C\B1

||x|��v|2.

Proof. We prove (16) for ✓ = 1/8, and the statement for general ✓ will follow
by standard elliptic estimates and an obvious covering argument. Pick (x, y) =
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(r✓, y) 2 C \ B1/8 with r > 0. By scale-invariant elliptic estimates and (15), we
compute

|v(r✓, y)|2  c(C)r�n�l

Z

C\Br/2(x,y)
v2

 c(C)r�n�l

Z

C\Br(0,y)
v2

 c(C)r2�
Z

C\B1/4(0,y)
v2

 c(C)r2�
Z

C\B1/2

v2.

To prove (17) simply use �(n� 2)/2 < � < 0. ⇤

Lemma 2.7. Let v be a non-negative Jacobi field on C, with supC\BR
||x|��v| < 1

for all R. Then v = a|x|� 1(✓), for some constant a.

Proof. We first note that if h(r, y) is �-harmonic in BR ⇢ Rl+1
+ , then by (e.g.)

integrating (11), we have the mean-value equality

(18) h(0, 0) =

 Z

B
+
⇢

r1+�drdy

!�1 Z

B
+
⇢

h(r, y)r1+�drdy

for every 0 < ⇢ < R. Since h(·, ·� y) is also �-harmonic, (18) holds with h(0, y) in
place of h(0, 0) and B+

⇢
(0, y) ⇢ B+

R
in place of B+

⇢
. Therefore if h is �-harmonic

and non-negative in Rl+1
+ , we have

h(0, y) 

R
B

+
⇢+|y�y0|(y

0) r
1+�drdy

R
B⇢(y)

r1+�drdy
h(0, y0) =

✓
⇢+ |y � y0|

⇢

◆2+�+l

h(0, y0)

for every y, y0 2 Rl and ⇢ >> 1. Taking ⇢ ! 1 and y, y0 arbitrary implies
h(0, y) ⌘ h(0, 0), and in particular for hj(r, y) as in (14) we deduce

(19) h1(0, y) = h1(0, 0) 8y 2 Rl.

Now for every (r, y), we have v(r✓, y) =
P

j
r�jhj(r, y) j(✓) in L2(⌃), and hence

in L1(⌃). Using (18) we compute for every ⇢ > 0:
Z

C\B⇢

|x|�v 1 =

Z

B
+
⇢

h1(r, y)r
n�1+2�drdy = c(C)⇢n+l+2�h1(0, 0).(20)

Since 1/c(C)   1  c(C) and v � 0, we can use (19), (20), and standard elliptic
estimates at scale r/2 to deduce

r��v(r✓, y)  cr�n�l��

Z

Br/2(r✓,y)
v(21)

 cr�n�l�2�

Z

Br/2(r✓,y)
|x|�v 1(22)

 cr�n�l�2�

Z

Br(0,y)
|x|�v 1  ch1(0, y) = c(C)h1(0, 0).(23)
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If v(r✓, y) 6= ar� 1(✓) for some constant a, then from the expansion (13), (14)
and equation (17) we must have

⇢2↵/C  ⇢�n�l�2�

Z

C\B⇢

v2  c(C) sup
C\B⇢

|r��v|2

for some ↵ > 0 and some constant C independent of ⇢. For ⇢� 1 this contradicts
(23). ⇤

Lastly, we will require the following “baby” 3-annulus-type lemma.

Lemma 2.8. Let {qi 2 R}i2Z be an increasing sequence, and {bi 2 R}i2Z be

arbitrary. Fix k 2 Z, and 3✏ 2 (0, qk+1 � qk), and T � 1/✏. Define  (t) =P
i
b2
i
e2qit. Then

 (t+ T ) � e2(qk+✏)T (t) =)  (t+ 2T ) � e2(qk+1�✏)T (t+ T ).

Proof. By replacing b2
i
with b2

i
e2qit, it su�ces to take t = 0. Observe that the first

inequality implies X

i�k+1

b2
i
e2qiT � (e2✏T � 1)

X

ik

b2
i
e2qiT .

Then we get

 (2T ) =
X

i

b2
i
e4qiT

� e2(qk+1�✏)T
X

i�k+1

b2
i
e2qiT + e2(qk+1�✏)T (e2✏T � 1)

X

i�k+1

b2
i
e2qiT

� e2(qk+1�✏)T

0

@
X

i�k+1

b2
i
e2qiT + (e2✏T � 1)2

X

ik

b2
i
e2qiT

1

A

� e2(qk+1�✏)T (T ). ⇤

3. Barriers

In this section we collate our functions and hypersurfaces we will use as barriers.
We write LH± , LH(�) for the Jacobi operator on H±, H(�).

Lemma 3.1 ([15, Proposition 2.8]). For any a > �, there are functions F±,a on

H± satisfying

F±,a(x+ ±(x)⌫C0(x)) = ra�1(✓) for x = r✓ 2 C and r � 1,(24)

|r
iF±,a|  c(C0, a, i)r

a�i, and LH±Fa,± � c(C0, a)
�1ra�2.(25)

We extend F±a to an smooth a-homogenous function Fa : Rn+1
\ {0} ! R by

setting

Fa(x) =

8
<

:

�aF+,a(��1x) x 2 �H+

ra�1 x 2 C0 \ {0}
�aF�,a(��1x) x 2 �H�

, � > 0.

Each Fa satisfies

(26) |DiFa|  c(C0, a, i)|x|
a�i, LH(�)(Fa|H(�)) � |x|a�2/c(C0, a).

Proof. See [15, Proposition 2.8] and [14, Lemma 5.7]. ⇤
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Write MT�(G) for the mean curvature of the graph of G over T�, which is well-
defined provided |x|�1G is su�ciently small. ForG,H 2 C2(T�), writeDMT�(G)[H]
for the linearization of MT� at G in the direction H, that is

DMT�(G)[H] =
d

dt

���
t=0

MT�(G+ tH).

Provided |x|�1G, rG, |x|r2G are su�ciently small then DMT�(G) is a linear
elliptic operator on C2(T�) ! C0(T�). Of course if G = 0 then DMT�(0) ⌘ LT� is
the Jacobi operator on T�.

Lemma 3.2. For �0 > �, there are constants ✏(C, �0), c(C, �0) so that if G : T1 ! R
is a C2

function satisfying |r
iG|  ✏|x|��i

for i = 0, 1, 2, then

DMT1(G)[F�0 |T1 ]|(x,y) �
1

c
|x|�

0�2 > 0,

where F�0 is from Lemma 3.1. The same result also holds for T�1 in place of T1.

Proof. Let us recall that the C3-regularity scale rC3(M,x) of a hypersurface M ⇢

RN at a point x 2 M is defined to be the supremum of those r > 0 for which the
translated and rescaled surface r�1(M � x) is the graph of a C3 function u inside
the unit ball, with |u|C3  1.

The C3 regularity scale of T1 satisfies |x|/c  rC3(T1, x, y)  c|x|, and |x| � 1/c
on T1, for c = c(C). It follows that provided ✏(C) is su�ciently small, at any point
(x, y) = (r✓, y) 2 T1 we can write

MT1(G) = LT1G+ r�1R(x, r�1G,rG, rr2G)

where R(x, z, p, q) is a smooth, uniformly bounded function which is quadratically
controlled by z, p, q. More precisely, we have the bounds

|R(x, z, p, q)|  c(|z|2 + |p|2 + |q|2), |@zR|+ |@pR|+ |@qR|  c(|z|+ |p|+ |q|).

For any H 2 C2(T1), we have

DMT1(G)[H] =
d

ds

���
s=0

MT1(G+ sH) = LT1H + aijr
2
ij
H + r�1biriH + r�2cH

with aij , bi, c continuous functions satisfying

|aij |+ |bi|+ |c|  c✏r��1.

Taking H = F�0 |T1 and using Lemma 3.1, we get

DMT1(G)[F�0 ] �

✓
1

c(C0, �0)
� c✏r��1

◆
r�

0�2
�

1

2c
r�

0�2

provided ✏(C, �0) is chosen su�ciently small. The argument for T�1 is verbatim. ⇤

We say a set A ⇢ Rn+l+1 lies above (resp. below) H(�)⇥ Rl if A ⇢ [µ��H(µ)
(resp. A ⇢ [µ�H(µ)). More generally, if U ⇢ Rn+1+l and S ⇢ U divides U into
two disjoint connected components U±, and there are �� < �+ such that

U+ \ (H(�+)⇥ Rl) 6= ; = U+ \ (H(��)⇥ Rl)(27)

U� \ (H(��)⇥ Rl) 6= ; = U� \ (H(�+)⇥ Rl),(28)

then we say A ⇢ U lies above S in U (resp. below S in U) if A ⇢ U+ (resp.
A ⇢ U�).
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If S is a smooth hypersurface of U , and S divides U into components U± as in
the previous paragraph, we say S has positive (resp. negative) mean curvature if
the mean curvature vector of S\U never vanishes and always points into U+ (resp.
into U�).

Theorem 3.3 ([15, Proposition 2.9]). There is a large odd integer p and a constant

Q > 0 depending only on C so that the following holds. Let I be an open set in Rl
,

and let f : I ! R be a C3
function satisfying |f |C3(I)  K for some K > Q. Then

for any ✏ < 1/Q there is a complete oriented hypersurface-without-boundary X✏ in

{0 < |x| < K�Q
2

, y 2 I}, satisfying:

(1) X✏ is C2
with negative mean curvature;

(2) at any point (0, y) 2 X✏ \ {|x| = 0, y 2 I}, the tangent cone of X✏ at (0, y)
is the graph of �✏|x| over C;

(3) X✏ varies continuously (in the Hausdor↵ distance) with ✏, and for every

y0 2 I the y-slice X✏ \ {y = y0} is trapped between

H(✏f(y0)p � ✏) and H(✏f(y0)p + ✏).(29)

In particular, if V is a stationary varifold in U ⇢ {y 2 I, |x| < K�Q
2

} which lies

below X✏ in U , then sptV \X✏ \ U = ;.

Proof. This is proved with l = 1 in [15, Proposition 2.9]. When l > 1, the functions
f(y), G(y), E(y) (as defined in the proof [15]) becomes functions on Rl, and so
bounds on G(i) become bounds on DiG, and the Jacobi operator LH(�)⇥Rl on
H(�) ⇥ Rl becomes �y + LH(�). Otherwise the same proof carries over with only
cosmetic changes. ⇤

We shall also need the following computation.

Lemma 3.4. Let S be a C2
hypersurface in Rn+1

, and f : Rl
! R+ a C2

function.

Define the new hypersurface S̃ ⇢ Rn+1+l
by

S̃ =
[

y2Rl

(f(y)S)⇥ {y}.

At any point z = (f(y)x, y) 2 S̃, let ⌫ be a choice of normal for S at x, and let ⌫̃ be

the normal of S̃ at z pointing in the same direction as ⌫. Then the mean curvature

M
S̃
of S̃ with respect to ⌫̃ at z can be expressed as

M
S̃
=

1
p
E


MS

f
+

|Df |2hS(xT , xT )

fE
+ (x · ⌫)

✓
��↵� +

(x · ⌫)2D↵fD�f

E

◆
D2

↵�
f

�
.

where E = 1 + |Df |2(x · ⌫)2, and MS is the mean curvature of S, and hS is the

second fundamental form of S.

Proof. Let F (x1, . . . , xn) : U ⇢ Rn
! Rn+1 be a coordinate chart for S. Let

gij = @iF · @jF be the induced metric in these coordinates, and hij = �@2
ij
F · ⌫ the

second fundamental form. WLOG let us assume gij(0) = �ij .
Define coordinate chart F̃ (x1, . . . , xn, y1, . . . , yl) : U ⇥ Rl

! Rn+l+1 for S̃ by
F̃ (x, y) = (f(y)F (x), y). We have

@iF̃ = (f@iF, 0), @↵F̃ = ((@↵f)F, e↵)
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where we abbreviate @i ⌘
@

@xi , @↵ ⌘
@

@y↵ , and write {e↵} for the standard basis

vectors of Rl. The metric g̃ in these coordinates at (x, y) = (0, 0) is therefore

g̃↵� = �↵� + (@↵f)(@�f)|F |
2, g̃↵i = f(@↵f)(F · @iF ), g̃ij = f2�ij .

One can verify directly that the metric inverse at (x, y) = (0, 0) is then

g̃↵� = �↵� �
(F · ⌫)2

E
(@↵f)(@�f), g̃↵i = �

(@↵f)(F · @iF )

fE

g̃ij = f�2�ij +
|Df |2(F · @iF )(F · @jF )

f2E

where E = 1 + |Df |2(F · ⌫)2.
We have

@i@jF̃ = (f@i@jF, 0), @i@↵F̃ = (@↵f@iF, 0), @↵@�F̃ = (@↵@�fF, 0).

Therefore, since by inspection ⌫̃ = E�1/2(⌫,�(@↵f)(F · ⌫)e↵) we can compute the
second fundamental form of S̃ to be

h̃↵� =
�(@2

↵�
f)(F · ⌫)
p
E

, h̃↵i = 0, h̃ij =
fhij
p
E

.

We deduce that, at (x, y) = (0, 0), we have

M
S̃
= g̃↵� h̃↵� + g̃ij h̃ij

=

✓
�↵� �

(F · ⌫)2D↵fD�f

E

◆ 
�D2

↵�
f(F · ⌫)
p
E

!

+ f�2

✓
�ij +

|Df |2(F · @iF )(F · @jF )

E

◆
fhij
p
E

which, recalling that gij = �ij at (0, 0) is the form required. ⇤

4. Non-concentration

For shorthand let us write T� = H(�)⇥ Rl, so we also have T0 = C. We define
the following notion of “distance from T�”. This is e↵ectively a non-linear version
of the norm sup

U
||x|��u|, see Corollary 4.5.

Definition 4.1. Given subsets M,U ⇢ B1, � 2 R, define DT�(M ;U) as the least
d � 0 such that M \ U is trapped between H(�± d)⇥ Rl.

The following follows directly from the definition:

(30) DT�(M ;U)  DT�0 (M ;U) + |�� �0|.

Note that D scales like ⇢1�� in the sense that for c > 0 we have

DcT�(cM ; cU) = c1��DT�(M ;U).

We define a scale-invariant “excess” quantity which will be our main mechanism
for measuring decay/growth.

Definition 4.2. Given R > 0, � 2 R, and subset M ⇢ BR, define the excess of M
in BR w.r.t. T� to be

E(M,T�, R) = DR�1T�
(R�1M ;B1) ⌘ R��1DT�(M ;BR).
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We remark that E(T�,C, R) = R��1
|�| and that for M that is the graph of u

over T� we can think of E(M,T�, R) as equivalent to sup
BR

R��1
��|x|��u

��.

Lemma 4.3. If d = DT�(M ;U)  �|�| for some �(C) su�ciently small, then

M \ U is trapped between the graphs graph
T�
(±c(C)d|x|�). Conversely, if M \ U

is trapped between graph
T�
(±d|x|�) and d  �|�|, then DT�(M ;U)  c(C)d.

Proof. By scale-invariance it su�ces to consider the case when � = ±1, in which
case the Lemma follows straightforwardly from Lemma 2.2. ⇤

The main Theorem of this Section is the following non-concentration result. We
emphasize that c0 in (31), (32) is independent of s.

Theorem 4.4 (Non-concentration). Given any s 2 (0, 1/4] and ✓ 2 (0, 1), there
are constants c0(C, ✓), r0(C, ✓, s), �0(C, ✓, s) so that the following holds. Let M be

a complete minimal hypersurface in B1, such that DT�(M ;B1) < �0 for |�| < �0,
and M \B1 \ {r � r0} is trapped between graph

T�
(±b|x|�) for b < �0. Then

(31) DT�(M ;B✓)  c0(b+ sDT�(M ;B1))

If B1 is replaced by A1,⇢ in our assumptions, for some ⇢ 2 (0, 1/2], then instead we

get

(32) DT�(M ;A✓,✓�1⇢)  c0(b+ sDT�(M ;A1,⇢)).

(with c0, r0, �0 depending on ⇢ also).

Proof of Theorem 4.4. For ease of notation write d = DT�(M ;B1). We need to
break the proof into two cases, depending on whether d & |�| (when M is about as
close to C as it is to T�), or whether d << |�| (when M is much closer to T� than
to C). In the first case we will use the barrier surfaces constructed in Theorem 3.3.
In the second case we will construct barrier surfaces as graphs over T�. At the end
of the proof we will explain the (very minor) changes required to get (32).

Fix � < �0 < min{� + 1/2, 0}. Throughout the proof

1/2 � �(C, ✓, �0) � r0(C, ✓,�, �0, s) � �0(C, ✓,�, �0, s, r0)

are small constants which we shall choose as we proceed, but can a posteriori be
fixed.

We first claim that DT�(M ;B1 \ {|x| � r0})  c(C,�)b. If b  �|�| this
follows from Lemma 4.3, provided �(C) is su�ciently small. Suppose now b >
�|�|. Then provided �0(C, r0) is su�ciently small, M \B1 \ {|x| � r0} is trapped
between the graphs of ±c(C)(b+ |�|)|x|� over C\{|x| � r0/2} in {|x| � r0/2}, and
hence trapped between the graphs of ±c(C)(b/�)|x|� over C \ {|x| � r0/2}. But
then provided �0(C, r0,�) is su�ciently small, graphC\{|x|�r0/2}(c(C)(b/�)|x|�) is

trapped between H(±c(C)b/�)⇥Rl in {|x| � r0/2}. Combined with the inequality
|�|  b/�, our initial claim follows.

We shall henceforth work towards proving the estimate

(33) DT�(M ; {|x|  r0} \ {|y|  ✓2})  c(C,�, ✓)(b+ sd).

Provided r0(C) is su�ciently small, (33) combined with our initial claim will imply
(31) (with ✓2 in place of ✓). For ease of notation let us define the domains

⌦1 = {|x|  r0} \ {|y|  ✓ � s}, ⌦2 = {|x|  r0} \ {|y|  ✓2}.
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We now break into two cases as outlined at the start of the proof.

Case 1: d̄ := d+ s�1b > �|�|. Here we use the barriers constructed in Theorem
3.3. Note first that d̄  2�0/s, so by ensuring �0(d̄, s) is small, we can assume d̄ is
small also.

Fix p as in Theorem 3.3, and fix � : R ! R a smooth function satisfying
|�(z)p � z|  1/10. Define

(34) f(y) = �(t�1�+ h(y)), h(y) = (✓ � |y|)�1.

Note that on ⌦1 we have h � 4 and |Dkh|  c(k, s, ✓).
Provided t � s|�|, we have |f |C3(⌦1)  c(C, s, ✓). Therefore there are t0(C),

r0(C, s, ✓) so that for every s|�|  t  t0, there are surfaces Xt defined in ⌦1 with
negative mean curvature, as constructed in Theorem 3.3. Each y-slice Xt\{y = y0}
is trapped between H(tf(y0)p ± t)⇥ {y0} in Rn+1

⇥ {y0}, and hence (recalling our
definition of �, f) is trapped between H(�+2th(y0))⇥ {y0} and H(�+ th(y0)/2)⇥
{y0}.

Provided �0(C) is su�ciently small, we have �+t0h(y0)/2 � t0/4. Therefore since
DC(M ;B1)  |�|+DT�(M ;B1)  2�0 < t0/8 (taking �0(C) smaller as necessary),
we deduce M lies below Xt0 in ⌦1. Set t1 = ��2(b + sd) = ��2sd̄, and note that
t1  2��2�0 < t0 for �0(�,C) small. We claim that M lies below Xt1 in @⌦1,
provided �(C) is chosen su�ciently small.

Let S1 = @⌦1 \ {|y| = ✓ � s}. In S1 we have h � 1/s, and so Xt1 lies above
H(�+ ��2d̄/2)⇥Rl in S1. But of course ��2d̄/2 � d, and so H(�+ ��2d̄/2)⇥Rl

lies above M in S1.
Let S2 = @⌦1 \ {|x| = r0}. In S2, Xt1 lies above H(�+ ��2d̄)⇥ Rl, and hence

aboveH(��2d̄/2)⇥Rl. On the other hand, provided d̄(�), �0(�, d̄, r0) are su�ciently
small, in S2 M lies below graph

T�
(b|x|�), which in S2 lies below graphC(c�

�1d̄|x|�),
which in S2 lies below H(c��1d̄)⇥Rl. Our claim follows by ensuring �(C) is small.

Since t 7! Xt is continuous in the Hausdor↵ distance, by Theorem 3.3 and the
previous claim we can bring t from t0 down to t1 to deduce M lies below Xt1 in ⌦1.
In particular, since on ⌦2 we have h  c(✓), we deduce that each y-slice ofM\⌦2 lies
belowH(�+c(C,�, ✓)(b+sd)). Repeating the above argument with the orientations
reversed implies that M \ ⌦2 is trapped between H(� ± c(C,�, ✓)(b + sd)). This
proves Case 1.

Case 2: d + s�1b  �|�|. Here we construct graphical barriers for M over
T�. There is no loss in generality in assuming � > 0. For ease of notation write
�(x, ✏) = �✏,+(x) for the graphing function of (1+ ✏)H+ over H+ as in Lemma 2.2,
and set µ = |�|1/(1��). Define for i = 1, 2 the domains ⌦̃i = {(x, y) : (x/2, y) 2 ⌦i}.

First note that on T� we have the inequality |x| � µ/c(C). Second, recall that
the C3 regularity scale of T� at x is comparable to |x|. Third, note that by Lemma
4.3 (ensuring �(C) is small) we know that

(35) M is trapped between the graphs graph
T�
(±c1d|x|

�) in B1,

for some constant c1(C), and hence M is trapped between graph
T�
(±c1�|�||x|�) in

B1.
For A(C, �0) a large constant to be determined later, let ⌘(t) : R ! R be a

smooth increasing function satisfying ⌘(t) = t for |t| < A�/2, ⌘(t) ⌘ sign(t)A� for
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|t| � A�, and |⌘0|  10. For t 2 [0, 1] define Gt(x, y) : T� \ {|y| < ✓} ! R by

Gt(x, y) = µ�(µ�1x, ⌘(th(y)))� ⌘(t)|�|F�0(x),(36)

where F�0 as in Lemma 3.1. The Gt will define our graphical barriers.
From Lemma 2.2, for (x, y) = (r✓, y) 2 T� \ ⌦̃1 we have

µ�(µ�1x, ⌘(th(y))) = ⌘(th(y))(µ�+(µ
�1x)± c(C)A�|�|r�),

and so, ensuring �(A,C) is small, we get

⌘(th(y))|�|r�/c  µ�(µ�1x, ⌘(th(y)))  c⌘(th(y))|�|r� .

for c = c(C). Since |F�0(x)|  c|x|�
0
and ⌘(th(y)) � ⌘(t), ensuring r0(�0,C) is

small, we deduce that

⌘(th(y))|�||x|�/c  Gt(x, y)  c⌘(th(y))|�||x|�  cA�|�||x|�(37)

on T� \ ⌦̃1, for c = c(C).
By a similar computation, recalling that �0 > � and |x| = r, we have

|rGt(x, y)|  c⌘|�|r��1 + ct|Dh||�|r� + c⌘|�|r�
0�1

 (cA� + ct|Dh|r)|�|r��1,

and

|r
2Gt(x, y)|  (cA� + c|Dh|r + c|D2h|r2)|�|r��2,

where c = c(C, �0). Ensuring r0(C, �0,�, s, ✓) is su�ciently small, and recalling the
bound |x| � µ/c(C) on T�, we get for i = 0, 1, 2 the bounds

|r
iGt(x, y)|  c(C, �0)A�|�||x|��i

 c(C, �0)A�|x|1�i on T� \ ⌦̃1.(38)

In particular, ensuring �(C, �0, A) is su�ciently small we get that graph
T�
(Gt) is

a smooth hypersurface without boundary in ⌦1.
We aim to show the graph of Gt has negative mean curvature in ⌦1. We first

compute

MT�(Gt) = MT�(µ�(µ
�1x, ⌘(th(y))))� ⌘(t)|�|

Z 1

0
DMT�(Gt,s)[F�0 ]ds =: I + II

where Gt,s(x, y) = µ�(µ�1x⌘(th(y))) � s⌘(t)|�|F�0(x). We claim that, at (x, y) 2
T� \ ⌦̃1, with |x| = r, we have

|I|  c(t2|Dh|2 + t|D2h|)|�|r� , II  �⌘(t)|�|r�
0�2/c(39)

for c = c(C, �0). Bounds (39) will imply that on T� \ ⌦̃1 and for 0 < t  A� we
have

MT�(Gt)  c(C, �0)t|�|(r|h|
C2(⌦̃1)

� 1)r�
0�2 < 0,(40)

provided we ensure r0(C, �0, ✓, s) is chosen su�ciently small.
Let us prove our claim for |I|, i.e. the first inequality in (39). By construction,

graph
T�
(µ�(µ�1x, ⌘(th(y)))) \ {|y| < ✓} coincides with S \ {|y| < ✓} where S is

the hypersurface

S =
[

|y|<✓

[(1 + ⌘(th(y)))H(�)]⇥ {y}.
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Since max{⌘(th(y))|x|, µ�(µ�1x, ⌘(th(y)))}  |x|/2 provided �(C, A) is su�ciently
small, it will su�ce to prove the bound

|MS((1 + ⌘(th(y)))x, y)|  c(t2|Dh|2 + t|D2h|)|�||x|�(41)

for any ((1 + ⌘(th(y)))x, y) 2 S \ {|y| < ✓}, where MS is the mean curvature of S.
From Lemma 3.4, for the same x, y as above we have the bound

|MS |  c(l)|x · ⌫H(�)(x)||D
2⌘(th(y))|+ c(l)|D⌘(th(y))|2|hH(�)(x

T , xT )|,(42)

where hH(�) is the second fundamental form of H(�), and ⌫H(�) the unit normal.
Trivially we have

|D⌘(th(y))|2  ct2|Dh|2, |D2⌘(th(y))|  ct|D2h|+ ct2|Dh|2,(43)

and |hH(�)(x
T , xT )|  c|xT

|
2/|x|  c|x|,(44)

for c = c(C).
If |x|  R0µ (for R0 as in (1)) then since µ/c(C)  |x| also, the bound (41)

follows from (42), (43), (44) and the inequality |x|  R0|�||x|� . If |x| > R0µ, then
near x, H(�) is graphical over C0 by the function  � as in (4). From (2), (3) we
have

|x · ⌫H(�)(x)|  c|r �||x|  c|�||x|� , |hH(�)(x
T , xT )|  c|r2 �||x|

2
 c|�||x|� ,

(45)

and the bound (41) follows from (42), (43), (45).
We consider now the bound for II. By similar computations as before, we have

|r
iGt,s(x, y)|  c(C, �0)A�|�||x|��i, (i = 0, 1, 2), on T� \ ⌦̃1,

for any s, t 2 [0, 1]. By scaling and the definition of F�0 we have

DMT�(Gt,s)[F�0 ]|(x,y) = µ�2DMT1(G
µ

t,s
)[F�0(µ·)]|(µ�1x,y)(46)

= µ�
0�2DMT1(G

µ

t,s
)[F�0 ]|(µ�1x,y),(47)

where Gµ

t,s
(⇠, ⇣) = µ�1Gt,s(µ⇠, ⇣). Using (38) we have on T1 \ µ�1⌦̃1,

|r
iGµ

t,s
|  µ�1+�cA�|�||x|��i

 cA�|x|��i (i = 0, 1, 2),

and therefore provided �(C, �0, A) is su�ciently small, we can apply Lemma 3.2 to
deduce

µ�
0�2DMT1(G

µ

t,s
)[F�0 ]|(µ�1x,y) � |x|�

0�2/c.

This proves the bound for II in (39), completing the proof of our claim and hence
the inequality (40).

We now use Gt to control DT�(M ;⌦2). First note that if 0 < t  A�, then (37)
implies

Gt(x, y) � min{th(y), A�}|�||x|�/c � min{t, A�}|�||x|�/c on T� \ ⌦̃1,(48)

for c = c(C, �0). Therefore, by ensuring A(C, �0) is su�ciently large from (35) we
know that M lies below graph

T�
(GA�) in ⌦1. Set t1 = min{��2

|�|�1(b+ sd), A�}.
We claim that, provided �(C) is chosen su�ciently small, M lies below graph

T�
(Gt)

in @⌦1 for every t1  t  A�.
We prove this claim. Of course if t1 = A� there is nothing to show, so let us

assume t1 < A�. Suppose (x, y) + Gt(x, y)⌫T�(x, y) 2 @⌦1 \ S1. Then |y| = ✓ � s
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and (by (38)) |x| < 2r0. Since h(y) � 1/s, we can use (48) and our assumption
d+ s�1b  �|�| to estimate

Gt(x, y) � min{(��2
|�|�1sd)s�1

|�||x|�/c,A�|�||x|�/c} � c1d|x|
�

provided �(C), A(C)�1 are chosen su�ciently small. Therefore graph
T�
(Gt) lies

above graph
T�
(c1d|x|�) in S1, and hence lies above M in S1.

Suppose (x, y) + Gt(x, y)⌫T�(x, y) 2 @⌦1 \ S2. Then as before (x, y) 2 ⌦̃1, and
we can estimate instead

Gt(x, y) � min{(��2
|�|�1b)|�||x|�/c,A�|�||x|�/c} � b|x|� ,

again ensuring �(C), A(C)�1 are small. We deduce graph
T�
(Gt) lies above graphT�

(b|x|�)
in S2, and hence by our assumptions lies above M in S2. This finishes the proof of
our claim.

By our last two claims and the negative mean curvature (40) we can bring t
from A� down to t1 and deduce by the maximum principle [13] that M lies below
graph

T�
(Gt) in ⌦1. In particular, since h  c(C, ✓) on ⌦̃2 from (37) we get that

M lies below graph
T�
(c(C, ✓, �0)(b+ sd)|x|�) in ⌦2. Repeating the argument with

the orientation swapped, we deduce M is trapped between graph
T�
(±c(C, ✓, �0)(b+

sd)|x|�) in ⌦2. Since b+sd  s�|�|, ensuring �(C, ✓, �0) is su�ciently small we can
apply Lemma 4.3 to finish the proof of Case 2.

With A1,⇢ in place of B1: To get (32), we only need to modify our definition
of h,⌦1,⌦2. In this case, we define

h(y) = (|y|� ✓�1⇢)�1 + (✓ � |y|)�1,

and

⌦1 = {r  r0} \ {|y| 2 [(✓�1 + s)⇢, ✓ � s]}, ⌦2 = {r  r0} \ {|y| 2 [✓�2⇢, ✓2]}.

The proof for (32) is then verbatim to the proof above for (31), of course replacing
B1 with A1,⇢ wherever it occurs, and allowing all constants to depend on ⇢ also. ⇤

The main utility of Theorem 4.4 is in the below Corollary 4.5 concerning inho-
mogeneous blow-up limits, in particular in the lower bound of Item 3.

Corollary 4.5. Let Mi be a sequence of complete minimal hypersurfaces in B1,

and �i ! 0. Suppose that

DT�i
(Mi;B1) ! 0, (1/2)||C||(B1)  ||Mi||(B1)  (3/2)||C||(B1),

and let µi be a sequence such that sup
i
µ�1
i

DT�i
(Mi;B1) < 1.

Then, first, there are ⌧i ! 0 so that

Mi \B1�⌧i \ {|x| � ⌧i} = graph
T�i

(ui),

for ui : B1�⌧i/2 \ {|x| � ⌧i/2} ! R smooth functions satisfying

|x|�1
|ui|+ |rui|+ |x||r2ui|  ⌧i.

Second, passing to a subsequence, we can find a Jacobi field v on C \ B1 so that

for any given ✓ < 1 we have:

(1) µ�1
i

ui ! v smoothly on compact subsets of C \B1 \ {|x| > 0};
(2) supC\B1

||x|��v|  c(C) lim infi µ
�1
i

DT�i
(Mi;B1);

(3) lim sup
i
µ�1
i

DT�i
(Mi;B✓2)  c(C, ✓) supC\B✓

||x|��v|.
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Third, given any ⇢ 2 (0, 1/2], the above Corollary also holds with A1,⇢, A1�⌧i,⇢+⌧i ,

A1�⌧i/2,⇢+⌧i/2, A✓,✓�1⇢, A✓2,✓�2⇢ in place of B1, B1�⌧i , B1�⌧i/2, B✓, B✓2 (resp.),

in which case all constants depend on ⇢ also.

Remark 4.6. Since 2� > �n+ 2, and by Lemma 2.6, we have for every ✓ < 1:

1

c(C, ✓)
sup
C\B✓

||x|��v|2 

Z

C\B1

|v|2 

Z

C\B1

|x|�2
|v|2  c(C) sup

C\B1

||x|��v|2.

Proof. The existence of ⌧i, ui follows from the definition of D, the constancy the-
orem, and Allard’s theorem by a standard argument. For convenience write Ui =
B1�⌧i \ {|x| > ⌧i} and di = DT�i

(Mi;B1). After passing to a subsequence we can

assume that � = limi µ
�1
i

di exists, and for all i, either di > �|�i| or di  �|�i|, for
� a small number to be determined momentarily.

By definition of D, for all i, Mi \B1 is trapped between H(�i±di)⇥Rl. If di >
�|�i|, then by ensuring ⌧i ! 0 su�ciently slowly, from equations (1), (2) we get that
Mi\B1\{|x| > ⌧i} is trapped in {|x| > ⌧i} between graphC\{|x|>⌧i/2}(±c(C)(di+
|�i|)|x|�), and hence |ui|  c(di + |�i)|x|�  c(C,�)di|x|� . If di  �|�i|, then
provided �(C) is su�ciently small Lemma 4.3 implies Mi \B1 is trapped between
graph

T�
(±c(C)di|x|�), and hence |ui|  c(C)di|x|� .

Either way, we have that

(49) sup
T�i

\Ui

||x|��ui|  c(C,�)di,

and hence by standard elliptic theory we can pass to a subsequence, find a Jacobi
field v on C \ B1, and get smooth convergence µ�1ui ! v on compact subsets of
C \B1 \ {|x| > 0}. The estimate (49) implies

sup
C\U

||x|��v|  c(C,�)� 8U ⇢⇢ C \B1 \ {|x| > 0},

which proves Items 1, 2.
To prove Item 3, we use Theorem 4.4 and our hypotheses, to deduce that for

every s > 0 there is an r0 > 0 so that for i � 1 we have

DT�i
(Mi;B✓2)  c0 sup

T�i
\B✓\{|x|>r0}

||x|��ui|+ c0sDT�i
(Mi;B1),

where c0 = c0(C, ✓) is independent of s. We can therefore take a limit as i ! 1,
and then as s ! 0, we deduce Item 3.

⇤

5. Geometric 3-annulus lemma

Lemma 5.1. Given ✏ < ✏0(C)/16, we can find an R0(C, ✏) > 1 so that for every

R � R0, there is a �0(C, ✏, R) > 0 so that the following holds.

Let |�| < �0, and let M be a complete minimal hypersurface in BR, such that

(50) E(M,C, R) < �0, ✓M (0, R)  (3/2)✓C(0).

Then:

E(M,T�, 1) � E(M,T�, 1/R)R��1+✏(51)

=) E(M,T�, R) � E(M,T�, 1)R
��1+✏0�✏.(52)
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Proof. Set ✏0 = min{p2 � p1, 1} for pi as in (14). Assume R0 � e2/✏, so that we
can write R = Rk

⇤ for some integer k � 1 and some R⇤ 2 [e2/✏, e4/✏). We will
show the Lemma holds provided k(C, ✏) (and hence R0) is su�ciently large, to be
determined below.

Suppose the Lemma failed. Then we have sequences �i ! 0, �i ! 0, and
complete minimal hypersurfaces Mi in BR so that (50) holds but

E(Mi, T�i , 1/R)  E(Mi, T�i , 1)R
��+1�✏

and E(Mi, T�i , R)  E(Mi, T�i , 1)R
��1+✏0�✏.

Since (52) vacuously holds if E(M,T�, 1) = 0, there is no loss in assuming
Mi \ B1 6= ; for all i. Then by our hypotheses (50), standard compactness of
stationary integral varifolds, and the constancy theorem, we deduce Mi ! [C] as
varifolds in BR. By Allard’s theorem we can find an exhaustion Ui of BR\{|x| = 0}
so that

Mi \ Ui = graph
T�i

(ui)

for smooth functions ui. By Corollary 4.5, after passing to a subsequence, the
rescaled functions E(Mi, T�i , 1)

�1ui converge on compact subsets of C\BR \ {r =
0} to a Jacobi field v on C \BR satisfying

sup
C\B1/R

(1/R)��1
||x|��v|  c(C)R��+1�✏,

sup
C\B2

||x|��v| � 1/c(C),

sup
C\BR

R��1
||x|��v|  c(C)R��1+✏0�✏.

Define

S(i)2 = Ri(�n�l)
⇤

Z

BRi⇤

v2.

Then from Lemma 2.6 we have

S(�k)  c(1/R)� sup
B1/R

||x|��v|  cR�k(�+✏)
⇤(53)

S(1) � c�1R�n�l

⇤ sup
B2

||x|��v| � 1/c(C, ✏)(54)

S(k)  cRk(�+✏0�✏)
⇤ .(55)

We claim that, for any ⌘ > 0, provided k(C, ✏, ⌘) 2 N is chosen su�ciently large,
then we have S(1)  ⌘, which will contradict (54) for ⌘(C, ✏) su�ciently small. We
prove this claim. First assume

(56) S(1) � R(k+1)(�+✏/2)
⇤ S(�k).

Then by Lemma 2.8 and our choice of R⇤, we have

S(k) � R(k�1)(�+✏0�✏/2)
⇤ S(1),

which implies

(57) S(1)  c(C, ✏)R�k✏/2
⇤  ⌘,

provided we ensure k(C, ✏, ⌘) is large. On the other hand, if (56) fails, then we again
have (57) (for perhaps a larger constant c(C, ✏), and hence a larger k(C, ✏, ⌘)). This
proves our claim, and finishes the proof of Lemma 5.1. ⇤
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6. Growth of entire hypersurfaces

Proposition 6.1. There are constants ✏1(C), ⇢1(C) so that for every ⇢  ⇢1, and
⌘ > 0, we can find a �1(C, ⌘, ⇢) satisfying the following. Let M be a complete

minimal hypersurface in B1 satisfying

(58) E(M,C, 1) < �1, ||M ||(B1)  (3/2)||C||(B1).

Then we can find a � 2 (�⌘, ⌘) so that

(59) E(M,T�, ⇢)  ⇢��1+✏1E(M,T�, 1),

and E(M,T�, 1)  c(C)E(M,C, 1).

Proof. Suppose the Proposition failed. Then for ✏1, ⇢1 to be determined later, we
can find sequences �i ! 0, and complete minimal hypersurfaces Mi in B1 satisfying
(58) but failing (59) for all � 2 (�⌘, ⌘). Let �0

i
minimize � 7! E(Mi, T�, 1). Trivially

�0
i
! 0 and E(Mi, T�

0
i
, 1)  E(Mi,C, 1).

By standard compactness and the constancy theorem, Mi ! [C] as varifolds
for  2 {0, 1}. Since (59) is trivially satisfied if M \ B⇢ = ;, by our contradiction
hypothesis we have Mi\B⇢ 6= ; for all i, and hence  = 1. Allard’s theorem implies
therefore Mi ! C smoothly on compact subsets of B1 \ {|x| = 0}.

For Ui an exhaustion of B1\{|x| = 0}, we can writeMi\Ui = graph
T�0

i

(u0
i
). Pass-

ing to a subsequence, by Corollary 4.5 we can get convergence E(M,T�
0
i
, 1)�1u0

i
!

v, for some Jacobi field on C \ B1 with supC\B1
||x|��v|  c(C), and hence (by

Lemma 2.6)
R
C\B1

|x|�2v2  c(C).
By (13), (14), we can write v(r✓, y) = ar� 1(✓) + z(r✓, y), for |a|  c(C) and z

satisfying the decay

⇢�n�l

Z

C\B⇢

z2  c(C)⇢2�+4✏1

for some ✏1(C) > 0 determined by the spectral decomposition of C0. Using Lemma
2.6 we deduce

(60) ⇢� sup
C\B⇢

||x|��z|  c(C)

 
⇢�n�l

Z

C\B2⇢

z2
!1/2

 c(C)⇢�+2✏1

for all ⇢  1/2.
Let �i = �0

i
+ aE(M,T�

0
i
, 1). By altering Ui as necessary, we can write Mi \

Ui = graph
T�i

(ui), and it’s straightforward to check that E(M,T�
0
i
, 1)�1ui ! v �

ar� 1 = z smoothly on compact subsets of C \B1 \ {|x| = 0}.
Using property (30) we have E(M,T�i , 1)  c(C)E(M,T�

0
i
, 1), and by definition

of �0
i
we have E(M,T�

0
i
, 1)  E(M,T�i , 1). Therefore, after passing to a subse-

quence, we can assume

E(M,T�
0
i
, 1)

E(M,T�i , 1)
! b, 1/c(C)  b  1.

In particular, we have smooth convergence E(M,T�i , 1)
�1ui ! bz.

By (60) and Corollary 4.5, we have

lim sup
i

E(M,T�i , 1)
�1E(M,T�i , ⇢)  c(C)⇢��1 sup

C\B2⇢

||x|��bz|  c(C)⇢��1+2✏1
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for all ⇢  1/4. Choose ⇢(C) su�ciently small so that c(C)⇢✏1  1, we deduce

E(M,T�i , ⇢)  ⇢��1+✏1E(M,T�i , 1)

for all i � 1. This is a contradiction, and finishes the proof of Proposition 6.1. ⇤

Proposition 6.2. There are constants ✏2(C) > 0, c2(C) > 1 so that the following

holds. Let M be a complete minimal hypersurface in Rn+l+1
, and suppose that

R�1M ! [C] as varifolds as R ! 1. Then there is a � so that

(61) E(M,T�, LR) � c2(C)�1L��1+✏2E(M,T�, R)

for all L > 1 and R su�ciently large (depending only on M). In particular, either

M = T�, or there is a constant C(M) > 0 independent of R so that

(62) E(M,T�, R) � R��1+✏2/C(M) 8R � C(M).

Remark 6.3. From (30) and the scaling of E, if (62) holds for some � then (62)
holds for any �0, with a potentially larger C(M,�0).

Proof. Fix ✏2 = ✏ = min{✏0, ✏1, 1}/16, L0 = max{R0(C, ✏), 1/⇢1(C)}, let �0(C, ✏, R =
L0) be as in Lemma 5.1, and let �1(C, ⌘ = �0, ⇢ = 1/L0) be as in Proposition 6.1.
By our hypothesis there is a radius R⇤ so that for all R � R⇤ we have

E(M,C, R) < min{�0, �1}, ✓M (0, R)  (3/2)✓C(0).

Apply Proposition 6.1 to R�1
⇤ M to obtain a T�, with R1��

⇤ |�| < �0, so that

E(M,T�, R⇤/L0)L
��1+✏

0  E(M,T�, R⇤).

By our choice of ✏, L0, R⇤, we can then apply Lemma 5.1 to R�1
⇤ M to get

E(M,T�, R⇤)L
��1+✏

0  E(M,T�, L0R⇤).

Now since (R⇤L0)�1T� = T(R⇤L0)��1�, we can apply Lemma 5.1 again to (L0R⇤)�1M
to get

E(M,T�, L0R⇤)L
��1+✏

0  E(M,T�, L
2
0R⇤).

We can iterate to obtain

E(M,T�, L
k+l

0 R⇤) � L(��1+✏)l
0 E(M,T�, L

k

0R⇤), 8k, l 2 {0, 1, 2, . . .}.

(61) then follows with c2 = Lmax{2,✏}
0 = L2

0. This completes the proof of Proposition
6.2. ⇤

7. One-sided decay and proof of main theorem

Proposition 7.1. Let M be a complete minimal hypersurface in Rn+l+1
lying to

one side of C, such that ✓M (1) < 2✓C(0). Then for any ✏ > 0, we have

(63) E(M,C, LR)  c3(C, ✏)L��1+✏E(M,C, R)

for all L > 1 and all R su�ciently large (depending only on M). In particular,

there is a constant C(M, ✏) independent of R so that

(64) E(M,C, R)  R��1+✏C(M, ✏) 8R � 1.
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Proof. We first observe that by our hypotheses, the monotonicity formula, and
Lemma 2.4 we must have R�1M ! [C] as varifolds as R ! 1, and in particular
we have E(M,C, R) ! 0 as R ! 1.

If M = C then the Proposition trivially holds, so assume M 6= C. Fix 0 < ✏ <
✏0/16 (there is no loss in assuming ✏ is as small as we like), and let L0 = R0(C, ✏)
as in Lemma 5.1. Suppose, towards a contradiction, there was a sequence Rj ! 1

such that
E(M,C, L0Rj) � L��1+✏

0 E(M,C, Rj).

Since R�1
j

M ! C, we can fix an R⇤ = Rj su�ciently large and apply Lemma 5.1

successively to R�1
⇤ M , (L0R⇤)�1M , etc. to deduce

(65) E(M,C, Lk+l

0 R⇤) � (Lk

0)
��1+✏E(M,C, Lk

0R⇤) 8k, l � 0

By iterating (65), we deduce

(66) E(M,C, LR) � c(C, ✏)�1L��1+✏E(M,C, R)

for all L > 1, and all R � R⇤.
Choose Ri ! 1 so that

(67) 2E(M,C, Ri) � sup
R�Ri

E(M,C, R),

and consider the rescaled surfaces Mi = R�1
i

M . For i � 1, by Allard’s theorem we
can find an exhaustion Ui of Rn+l+1

\ {|x| = 0} so that Mi = graphC(ui). From
(67), we have

2E(Mi,C, 1) � sup
R�1

E(M,C, R).

Therefore by Corollary 4.5, after passing to a subsequence as necessary, the rescaled
graphs E(Mi,C, 1)�1ui converge smoothly on compact subsets of C \ {|x| = 0} to
a Jacobi field v satisfying

(68) sup
C\BR

R��1
||x|��v|  c(C) 8R � 1.

Moreover, since M and hence Mi all lie to one side of C, after flipping orientation
as necessary we can assume v � 0.

Lemma 2.7 implies v(x = r✓, y) = ar� 1(✓), where by (68) |a|  c(C). From
Corollary 4.5, for any L > 1 and any i � 1 we have

E(Mi,C, L)

E(Mi,C, 1)
 c(C) sup

C\B2L

L��1
||x|��v|  c(C)|a|L��1

 c(C)L��1,

and hence

(69) E(M,C, LRi)  c(C)L��1E(M,C, Ri)

for all L > 1 and i su�ciently large, depending on L.
Combining (66), (69) we get: if L > 1, then for all i large (depending on L,M)

we have

(70) c(C, ✏)�1E(M,C, Ri)L
��1+✏

 E(M,C, LRi)  c(C)L��1E(M,C, Ri).

Since M 6= C, for all i � 1 E(M,C, Ri) 6= 0, and so if we ensure L(C, ✏) is
su�ciently large (70) will yield a contradiction. Therefore, recalling our initial
contradiction hypothesis, we must have

(71) E(M,C, L0R)  L��1+✏

0 E(M,C, R)
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for all R � 1. Iterating (71) gives (63) and (64). ⇤
Proof of Theorem 1.1. Assume that M 6= T� for any �. As in the proof of Propo-
sition 7.1, we have R�1M ! [C] as R ! 1, and E(M,C, R) ! 0 as R ! 1. We
can apply Proposition 6.2 and Remark 6.3 to find a constant C(M) so that

(72) E(M,C, R) � R��1+✏2C�1
8R � C.

On the other hand, by Proposition 7.1, we can find another constant C 0(M) so that

E(M,C, R)  R��1+✏2/2C 0
8R � 1,

which contradicts (72) when R � 1. ⇤
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