A LIOUVILLE-TYPE THEOREM FOR CYLINDRICAL CONES
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ABSTRACT. Suppose that Cf} C R™*1 is a smooth strictly minimizing and
strictly stable minimal hypercone (such as the Simons cone), I > 0, and M
a complete embedded minimal hypersurface of R?T1+! lying to one side of
C = Cp x Rl If the density at infinity of M is less than twice the density
of C, then we show that M = H()\) x R}, where {H(\)}, is the Hardt-
Simon foliation of Cp. This extends a result of L. Simon, where an additional
smallness assumption is required for the normal vector of M.

1. INTRODUCTION

Liouville type theorems, that is the rigidity properties of entire solutions of
certain partial differential equations, are ubiquitous in geometric analysis. In this
paper we prove a Liouville type theorem for minimal hypersurfaces lying on one
side of a minimal cylindrical hypercone, extending a recent result of L. Simon [10].

To state the main result, let C? C R"*! be a smooth strictly minimizing and
strictly stable minimal hypercone (e.g. the Simons’ cone), and let C = Cy x R! for
some [ > 0. Write {H(A)}» for the Hardt-Simon foliation [5] associated to Cy. See
Section 2] for more details on the notation.

Our main result is the following.

Theorem 1.1. If M is a smooth complete embedded minimal hypersurface of
R Jying to one side of C satisfying the density bound 0y;(00) < 20c(0), then
M = H(\) x R for some \.

Previously Simon [10] showed that the same conclusion holds under the addi-
tional assumption that the component v, of the normal vector to M in the R
direction is sufficiently small. The [ = 0 case of the Theorem is due to Hardt-
Simon [5], who proved it for smooth C which are merely minimizing. The ezistence
of a foliation associated to a minimizing hypercone C was first proven by [1] (for
quadratic C), [5] (for smooth C), and just recently [17] (for any C).

The Hardt-Simon foliation and Liouville theorems of [5] [10] have been of fun-
damental importance in the analysis of minimal hypersurfaces, including in results
concerning generic regularity of stable or minimizing 7-dimensional hypersurfaces
[5L 12, 2] [7], the construction of stable or minimizing singular minimal hypersurfaces
[5] [L1] [15], and local regularity /tangent cone uniqueness |9, 3] [14] 4].

Cylindrical cones C = Cy x R! model generic singularities in the top stratum,
and are also the simplest examples of tangent cones with non-isolated singular set.
Let us also remark.

Remark 1.2. All known singular minimizing hypercones are either smooth (away

from 0) and strictly stable and strictly minimizing, or cylindrical like we consider

here (see e.g. [16] and the references therein). The most famous examples of
1
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singular minimizing hypercones are the Simons cones, and in the lowest singular
dimension n = 7 these are in fact the only known examples.

Remark 1.3. With only cosmetic changes, Theorem (and all the other lem-
mas/theorems in this paper) continue to hold for stationary integral varifolds in
place of smooth, complete minimal surfaces. So, if V is a non-zero stationary inte-
gral (n + l)-varifold in R***1 with 6y (c0) < 20¢(0) and sptV lying to one side of
C, then V = [H(\) x R!] for some \.

Using the standard decomposition of codimension-one currents into a sum of
boundaries, and the strong maximum principle [6], Theorem and Remark
imply directly the Corollary:

Corollary 1.4. Let T be a mass-minimizing integral (n+1)-current in R"+1 with
sptT' lying to one side of C and satisfying Or(c0) < co. Then T is a finite union
> H(N)]. In particular, if T = O[E] is a boundary, then T = [H(X)] for some A.

Some of the basic ideas and strategies that we use originate from [14} [15], but
the explicit nature of our comparison surfaces Ty := H()\) x R! allows for significant
simplifications. A key technical tool is a geometric 3-annulus lemma (Lemma
for an excess E(M, Ty, R) defined for M with respect to T at scale R. This in turn
depends on a non-concentration estimate (Theorem to reduce the estimate to
the corresponding result for Jacobi fields.

Given the 3-annulus lemma, the argument can be summarized as follows: the
fact that M lies on one side of C implies that the excess of M with respect to
Ty = C grows at most at rate RY~1*¢ as R — oo for any € > 0. Here 77 is the
growth rate of the only positive admissible Jacobi field on Cy. At the same time we
show that if A is chosen appropriately then the excess of M with respect to T) at
scale R grows at least at rate R?Y~!1T€ for some €y > 0. This uses that fact that r”
on C is generated by pushing into the T}, and is the smallest possible growth rate of
admissible Jacobi fields on C. Combining these two results we get a contradiction,
unless the excess of M with respect to T} is zero, i.e. M = T).

Acknowledgements N.E. was supported in part by NSF grant DMS-2204301.
G. Sz. was supported in part by NSF grant DMS-2203218. We thank Otis Chodosh
for helpful conversations.

2. PRELIMINARIES

Throughout this paper Cy will be a smooth minimal hypercone in R"*!, [ a
non-negative integer, and C = Co x Rl ¢ R+l = Rt x Rl = {(z,y) : x €
R"F1 y € R}, When we write u : C — R we mean u : regC — R. Define B,(£) to
be the open Euclidean ball in R"**1 of radius p centered at &, B, = B,(0), and
A, =B, \Fp to be the open annulus centered at 0. Write w,, for the volume of
the Euclidean n-ball. Let nx ,(Y) = (Y — X)/p be the translation/rescaling map.

2.1. Cylindrical cones. The Jacobi operator on Cy is Lg, f = Ac, f + |Ac, |*f-
In polar coordinates x = rf this becomes
Lo, =0 +r ' (n—1)0,+r 2L, L=As+|As]?

so that Ly = L+ (n — 1) = Ag + |Ag]? + (n — 1) is the Jacobi operator of
¥ C 8" Write A1 < Adp < A3 < ... for the eigenvalues of L, and {¢;};>1 for the
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corresponding L?(X)-ON basis eigenfunctions, so that Ly; + Aj1p; = 0. Define
7E=—(n-2)/2%,/(n-2)/2% + ;.

so that every linear combination u(x = rf) = cjrﬁ »;(0) + c;Wi_ 1;(0) is a Jacobi
field on Co. We assume Cy is strictly stable, which means that v;” < —(n—2)/2 <
’y;'. For shorthand we shall write v; = ’y;' and v =, = .

Let Hy be leaves of the Hardt-Simon foliation [5] of Cy, lying on different sides
of Cy, so that each Hy is oriented compatibly with Cy (i.e. so that vy, — v,
as 1 — 00). We assume Cy is strictly minimizing, which means there is a radius
Ry(Cy) so that (possibly after appropriately rescaling Hy)

(1) H. \ Bg, = graphg, (¥+),
where
(2) VUy(z=70)==2r"Y:1(0) +vye, |vg] <r?™*

for some ap(Cp) > 0 (see e.g. [B) Equation (10), p. 114]). It follows by standard
elliptic estimates (see e.g. [15], Proposition 2.2]) that

(3) |Vivg| < ¢(C,i)r?~ 7% §=0,1,2,....
We remark that implies that if hp, is the second fundamental form of H, then
|z||h, | < e(C).

Define )
_ |t|1 1=y Hsign(t) t # 0
no-{ & t20

so that
(4) H(t)\ Byj/a-ng, = graphe, (),  Wy(z) = [t Vg0 (1870 a),
and hence
|Wi() =t (0)] < [t Feo/ U=y meo,
Lemma 2.2. For sufficiently small € (depending only on Cy), we can write (1 +
€)Hy as a graph over Hy of the function ®4 ., which we can expand as
(5) b, =eby + €V,
where: ® is a positive Jacobi field on Hy satisfying
(6) @4(z+ Vi(z)rg, () = (L=7)r"e1(0) + O™ ) for x =10 € Co \ Bry,
(7) and |V'®, (z)| < c(C,i)|z["™% i=0,1,2,...;
and V, . satisfies the estimates
(8) IV 'V, e(@)] < e(Cyi, )]

The same statements hold with (1 —e)H_, ®_ ., ®_, V_ . in place of (1 +¢€)Hy,
(p-‘r,e; @—0—7 V+,e-

Proof. The decomposition simply follows from the definition of Jacobi field.
Positivity of W, comes from the star-shapedness of H,. For z = rf with r > 1,
we can write

D (@ + Vo (2)ve, (2))(1+ Er(2) = (14 €)W (Ea(x)/ (1 +€)) = Vi (Ea(2))).
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where E, Fy —id are smooth functions which are (at minimum) linearly controlled
by 71, (z), V¥ (z). We compute:

(1+e)Uy(z/(14€) = Vi(x)

1+e
= (14 = D)ry(0) + /1 (vy = 7004 ) |5 /adA
= ((1 = 7)e + O(X)r791(0) + O(er?=).

The bounds for ¥y and ViV, . follow by the above computations and standard
elliptic estimates. [l

2.3. Minimal surfaces and varifolds. It will be convenient to use the language
of varifolds, see [§] for a standard reference. We shall write ||V|| for the mass
measure of a varifold, and given a countably-(n + [)-rectifiable set M C R+ we
write [M] for the integral (n + [)-varifold with mass measure H" !/ M.

Recall that the monotonicity formula for stationary (integral) (n + I)-varifolds
in R*"++1 says the density ratio
_ [IVII(Bs(£))

9\/(570) : Wn+lpn+l

is increasing in p, for any ¢ € R*™*1 and is constant if and only if V is a cone
over £. We define the density of V' at a point £, resp. and at oo, by

0y (€) = lim Oy (€, p),  resp. By (o) = lim By (0, p).
p—0 p—ro0
£V = [M], we understand [[M[[(U) = [[V]|(U), O (&, p) = Opan (&, p), ete.

Lemma 2.4. Let V be a non-zero stationary integral varifold cone in R* T+ such
that sptV' lies to one side of C. Then V = k[C] for some integer k > 1.

Proof. Follows by the maximum principles of [13], [6], since singC has dimension
at most n+1—7. |

2.5. f-harmonic functions and Jacobi fields. For 8 > 0, [10] introduced the
notion of A-harmonic functions, which are functions h(r,y) on By C Ri‘” =
{(r,y) € R x R' : v > 0} solving

(9) r 1P, (r' TP O.h) + Ayh = 0,
and satisfying the integrability hypothesis

(10) / r 2% < o
By

[10] showed any such h extends analytically in r% and y to {(r,y) : 2 + |y|* <
1,7 > 0}, and in particular can be written as a sum of homogenous S-harmonic
polynomials in 72, y.

In spherical coordinates (r,y) = pw, where p = /12 + [y|?> and w = (r,y)/p, ()

becomes
(11) p B0, (0,0 + p 2w P divg (w1 TPV k) = 0.

Here w) = w - 0, = r//r? + |y|2.
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[10] showed that the S-harmonic homogenous polynomials {h,}, when restricted
to S, are L2(wi ™ dw)-complete. So there is an L2(wi ™’ dw)-ON basis of func-
tions {¢; };>1, each being the restriction of a S-harmonic homogenous polynomial
hi(pw) = p%¢;(w). From , we get the eigenvalue-type equation

(12) Wfl_ﬂdivsg (i tPVsies) + qi(gi + 1+ B)pi = 0

1
on S5 .

For each j > 1, define 8; = n — 2+ 2y; = 2,/((n—2)/2)2+ X;. Let v be a
Jacobi field on C N Bj satisfying

/ |z|%0? < oo.
CnNnB;

For every j, let hj(r,y) = r=% [;u(r0,y)¢;(0)dd. Then a straightforward com-
putation shows each h; is B;-harmonic in C N By, and hence admits an analytic
expansion of the form

hj = hi(r,y),

i>1
where each h;; is a g;;-homogenous §;-harmonic polynomial, for some integer g;; >
0. Moreover, all the {hij|sz+}i are LQ(wFﬁj S )-orthogonal.
Therefore v admits an expansion

(13) o(rl,y) = > 9 (0)hii(r,y),

4,521

which holds in the following senses: in L?(X) for every fixed (r,y); in L*(C N B,)
for every p < 1;in Cio.(C N By \ {r =0}). For every 0 < p < 1 we have

2 _ 2 n+l+2v+qi;; . 2 n+l+2p;
(14) / vt = E CizP VT = E aip B,
CnB,

1,520 i>1

where 73 =p; < ps < .... Note implies that the function

(15) p p—n—l—Z'y/ U2
CnB,
is increasing in p.
We require a few helper lemmas about “tame” Jacobi fields.

Lemma 2.6 ([14]). Let v be a Jacobi field on CN By with supgnp, ||z] ™| < co.
Then for every 0 < 1 we have the estimate

(16) sup [lz|"v[? < ¢(C, 6) /
CNBy CNB1
and
(17) [ o< [l <o) sup ol o
CNB;1 CNB; CnB;

Proof. We prove for & = 1/8, and the statement for general 6 will follow
by standard elliptic estimates and an obvious covering argument. Pick (z,y) =



6 NICK EDELEN AND GABOR SZEKELYHIDI

(rf,y) € C N Bys with r > 0. By scale-invariant elliptic estimates and (5], we
compute

(6, y)|? < c(C)r—! / o?

CmBr/Z(m>y)

< ¢(C)r—n! / v?
CNB..(0,y)

< (Cp? / v?

CNB1,4(0,y)

< c(C)r%/ v2.
CﬂBl/g
To prove simply use —(n —2)/2 <y < 0. O

Lemma 2.7. Let v be a non-negative Jacobi field on C, with supgnp,, ||7|™7v] < oo
for all R. Then v = a|z|[Y1(0), for some constant a.

Proof. We first note that if h(r,y) is S-harmonic in Br C lel, then by (e.g.)
integrating , we have the mean-value equality

(18) h(0,0) = </ r1+6drdy> / h(r,y)r' TP drdy
Bf Bf

P

for every 0 < p < R. Since h(-,- —y) is also S-harmonic, holds with h(0,y) in
place of 1(0,0) and B (0,y) C B} in place of By . Therefore if h is #-harmonic

and non-negative in lel, we have
48 drd
n r rdy
Bp+|y7y'\(y/)

h(0,y) <
(0.9) < pr(y) r1+8drdy

248+l
+ly -y
h(07y/) = <p|p|> h(O,y/)

for every y,y’ € R! and p >> 1. Taking p — oo and ¥,y arbitrary implies
h(0,y) = h(0,0), and in particular for h;(r,y) as in we deduce

(19) h1(0,y) = h1(0,0) Vy € R.

Now for every (r,y), we have v(rf,y) = >, 777 h;(r, y)y;(0) in L?(X), and hence
in L(X). Using we compute for every p > 0:

(20) / 2|0y = / b (r, )™+ drdy = ¢(C)p" 0 (0,0).
CnB, BY

Since 1/¢(C) < 1 < ¢(C) and v > 0, we can use (L9), (20), and standard elliptic
estimates at scale /2 to deduce

(21) rYu(rl,y) < cr_"_l_7/ v
Br/z(T‘)»y)

(22) < cr7"71727/ FARRN
Br/2(7“9ay)

(23) <l / 2] oty < cha(0,) = (C)i (0,0).
B, (0,y)
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If v(rf,y) # ar’1(0) for some constant a, then from the expansion (L3)),
and equation we must have

p*/C < p_"_l_%’/ v? < ¢(C) sup |rv|?
cnB, CnB,

for some o > 0 and some constant C' independent of p. For p > 1 this contradicts

©3). 0

Lastly, we will require the following “baby” 3-annulus-type lemma.

Lemma 2.8. Let {q; € R}icz be an increasing sequence, and {b; € R};cz be
arbitrary. Fiz k € Z, and 3¢ € (0,qx+1 — qr), and T > 1/e. Define ¢(t) =
>, bZe?ait. Then

Yt +T) > 2 0HITy () = (t + 2T) > 2179t 4 T).
Proof. By replacing b? with bZe24i it suffices to take t = 0. Observe that the first

inequality implies
Z b?ezqiT > 26T sz 2q;T
i>k+1 i<k
Then we get

2T) = Y bres”

> e2(@kt1=€)T E b?eZQiT + 62(4k+1—5)T(625T —-1) E b?€2911T
i>k+1 i>k+1

262(Qk+1_5)T § b?e2qiT e2eT _ § b2 2¢;T

i>k+1 i<k
> 62(qk+1—6)T¢(T)_ O

3. BARRIERS

In this section we collate our functions and hypersurfaces we will use as barriers.
We write Ly, , L) for the Jacobi operator on Hy, H()).

Lemma 3.1 ([15 Proposition 2.8]). For any a > v, there are functions Fy , on
H_ satisfying
(24) Fyo(z+Vy(z)ve, (@) =1¢1(8) fora =rf € C and r > 1,
(25) |ViFy | < e(Co,a,i)r® ", and Ly, F,+ > ¢(Co,a) 'ro™2
We extend Fy, to an smooth a-homogenous function F, : R"*1\ {0} — R by

setting

)\aF_;,_,a()\ile) x € )\HJ,_

Fy(z) =4 r% z€Co\{0} , A>0.

NF_ ,(A\lz) zeNH_
FEach F, satisfies
(26) |D'F,| < ¢(Cy, a,i)|x|*", Loy (Falaoy) > |2|*7%/¢(Cy, a).

Proof. See |15, Proposition 2.8] and [14, Lemma 5.7]. O
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Write M, (G) for the mean curvature of the graph of G over T, which is well-
defined provided || =!G is sufficiently small. For G, H € C*(T)), write DM, (G)[H]
for the linearization of Mz, at G in the direction H, that is

d
DM, (G)[H] = pn t*OMTA (G+tH).
Provided |z|7!G, VG, |z|V2G are sufficiently small then DM, (G) is a linear
elliptic operator on C%(Ty) — C°(T)). Of course if G = 0 then DM, (0) = L, is
the Jacobi operator on T).

Lemma 3.2. For~y' > «, there are constants e(C,~'), ¢(C,v’) so that if G : Ty — R
is a C? function satisfying |V'G| < e|x|7=% fori=0,1,2, then

1 /i
DMz, (G)[Fy | ]l@y) = ~ |27 >0,
where F: is from Lemma E The same result also holds for Ty in place of T}.

Proof. Let us recall that the C3-regularity scale r¢, (M, ) of a hypersurface M C
RN at a point x € M is defined to be the supremum of those r > 0 for which the
translated and rescaled surface r~1(M — z) is the graph of a C* function u inside
the unit ball, with |u|cs < 1.

The C? regularity scale of Ty satisfies |z|/c < rc, (T1,2,y) < c|z|, and |2 > 1/c
on Ty, for ¢ = ¢(C). Tt follows that provided ¢(C) is sufficiently small, at any point
(x,y) = (r0,y) € Th we can write

Mz, (G) = L1,G +r *R(z,7 G, VG, rV*G)

where R(z, z,p, q) is a smooth, uniformly bounded function which is quadratically
controlled by z,p,q. More precisely, we have the bounds
|R(z,2,p,0)| < c(l21* +[p* + |aI*),  10:R] + |0, R| + |0, R| < c(|2] + |pl + la]).
For any H € C*(T}), we have
d
DMy, (G)[H] = = My (G+ sH) = Ly H + a;;ViH + 17 "0,V H + r~*cH
Sls=0
with a;;, bs, ¢ continuous functions satisfying
laij| + bi| + || < cer™™ 1.
Taking H = F./|p, and using Lemma we get
1 N\ e 1,
DM (@F 12 (g~ )7 2 0

provided €(C, ') is chosen sufficiently small. The argument for 7" is verbatim. O

We say a set A C R""*1 lies above (resp. below) H(A) x Rl if A C U,>,H(p)
(resp. A C U,<xH(p)). More generally, if U ¢ R**1*+! and S C U divides U into
two disjoint connected components Uy, and there are A_ < A4 such that

(27) U N(HMN) xRY#0=Uyn(HO) x RY
(28) U-NHMN)xRY#)=U_n(H;) xR,

then we say A C U lies above S in U (resp. below S in U) if A C Uy (resp.
AcCU).
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If S is a smooth hypersurface of U, and S divides U into components Uy as in
the previous paragraph, we say S has positive (resp. negative) mean curvature if
the mean curvature vector of SNU never vanishes and always points into Uy (resp.
into U_).

Theorem 3.3 ([15, Proposition 2.9]). There is a large odd integer p and a constant
Q > 0 depending only on C so that the following holds. Let I be an open set in R!,
and let f: I — R be a C? function satisfying |f|csy < K for some K > Q. Then
for any € < 1/Q there is a complete oriented hypersurface-without-boundary X, in
{0 < |z| < K=97,y € I}, satisfying:
(1) X. is C? with negative mean curvature;
(2) at any point (0,y) € X, N{|z| =0,y € I}, the tangent cone of X, at (0,y)
is the graph of —e|x| over C;
(3) X, varies continuously (in the Hausdorff distance) with €, and for every
y €1 the y-slice X.N{y =y} is trapped between

(29) H(ef(y')? —€) and H(ef(y')" + ¢).

In particular, if V is a stationary varifold in U C {y € I, |z| < K*Qz} which lies
below X, in U, then sptV N X . NU = ().

Proof. This is proved with [ = 1 in [15] Proposition 2.9]. When [ > 1, the functions
f(y), G(y), E(y) (as defined in the proof [15]) becomes functions on R!, and so
bounds on G become bounds on D'G, and the Jacobi operator Lyyxr on
H(X) x R! becomes Ay + Ly(y). Otherwise the same proof carries over with only
cosmetic changes. [

We shall also need the following computation.

Lemma 3.4. Let S be a C? hypersurface in R and f: R = Ry a C? function.
Define the new hypersurface S C R+ by

S= U rws) x {u}-

yeR!

At any point z = (f(y)z,y) € S, let v be a choice of normal for S at z, and let i be
the normal of S at z pointing in the same direction as v. Then the mean curvature
Mg of S with respect to U at z can be expressed as

1 [M Df?hg(2T, 2T v)2DofD
./\/lg:ﬁ fS+| /] ;g = )Jr(x-l/)((;ang(x I/)Ef Bf)Diﬁf].

where E = 1+ |Df|*(z - v)?, and Mg is the mean curvature of S, and hg is the
second fundamental form of S.

Proof. Let F(z',...,2") : U C R® — R""! be a coordinate chart for S. Let
9ij = 0;F - 0;F be the induced metric in these coordinates, and h;; = —62-2]-F -v the
second fundamental form. WLOG let us assume g;;(0) = d;;.

Define coordinate chart F(z',... 2", y',....4") : U x Rt — R*t+1 for § by
F(z,y) = (f(y)F(x),y). We have

OF = (fO;F,0), 0,F = ((0af)F, eq)
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where we abbreviate 9; = %, Oa and write {e,} for the standard basis

_ 0
= oy
vectors of R!. The metric § in these coordinates at (z,y) = (0,0) is therefore

gaﬂ :5aﬁ+(8ozf)(8ﬁf)|F|27 gozi :f(aaf)(FazF)7 gij :f25ij~
One can verify directly that the metric inverse at (x,y) = (0,0) is then

(F-v) (Oa f)(F - OiF)

I S
%" = Oap E fE

(aocf)(aﬂf)v gai = -

[DfP(F - 0iF)(F - 0;F)

~ij 2
g]:f 6ij+ fQE

where E =1+ |Df|*(F -v)%
We have

0;0;F = (f0;0;F,0), 0;04F = (0o f0;F,0), 0,05F = (0,05fF,0).

Therefore, since by inspection 7 = E~2(v, —(9,f)(F - v)es) we can compute the
second fundamental form of S to be

5 _<6§ﬁf)(F V) 7 fhij
hop = ———F=—, hai j
vVE
We deduce that, at (x,y) = (0,0), we have

Mg = §*hag + 57 hi;

_ (&w _(E V)QDafDﬂf) (—DimF - v))

E VE
_ IDfIQ(F'aiF)(F'ajF)) fhij
+ 726+
f ( J E \/E
which, recalling that g;; = d;; at (0,0) is the form required. |

4. NON-CONCENTRATION

For shorthand let us write Ty = H()\) x R, so we also have Ty = C. We define
the following notion of “distance from T”. This is effectively a non-linear version
of the norm supy; ||z| 7 ul|, see Corollary

Definition 4.1. Given subsets M,U C By, A € R, define Dr, (M;U) as the least
d > 0 such that M N U is trapped between H(\ + d) x R..

The following follows directly from the definition:
(30) Day (M;U) < D, (M; U) + A — X,
Note that D scales like p'~7 in the sense that for ¢ > 0 we have
Der, (cM;cU) = ¢' ™ Dy, (M;U).

We define a scale-invariant “excess” quantity which will be our main mechanism
for measuring decay/growth.

Definition 4.2. Given R > 0, A € R, and subset M C Bpg, define the excess of M
in B w.r.t. T) to be

E(M,T\,R) = Dg-11, (R™*M; By) = "' Dr, (M; Bg).
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We remark that E(Ty,C,R) = R'~!|)\| and that for M that is the graph of u
over Ty we can think of E(M, Ty, R) as equivalent to supg, RY~!||z|"7ul.

Lemma 4.3. If d = Dp, (M;U) < BIA| for some B(C) sufficiently small, then
M N U is trapped between the graphs graphy, (£c¢(C)d|z|7). Conversely, if M N U
is trapped between graphp, (£d|z|”) and d < B|M|, then Dz, (M;U) < ¢(C)d.

Proof. By scale-invariance it suffices to consider the case when A\ = 41, in which
case the Lemma follows straightforwardly from Lemma [2.2 O

The main Theorem of this Section is the following non-concentration result. We
emphasize that ¢y in , is independent of s.

Theorem 4.4 (Non-concentration). Given any s € (0,1/4] and 6 € (0,1), there
are constants co(C,0), 1o(C,0,s), 6o(C,0,s) so that the following holds. Let M be
a complete minimal hypersurface in By, such that Dy, (M; By) < §g for |A| < dg,
and M N By N{r > ro} is trapped between graphs, (£b[z[”) for b < . Then

(31) DT/\(M;BQ) < Co(b-i-S[)TA (M;Bl)

)
If By is replaced by Ay, in our assumptions, for some p € (0,1/2], then instead we
get

(32) DT/\ (M;A979—1p) < Co(b+ SDTA (M;Al’p)).
(with co, 70,00 depending on p also).

Proof of Theorem[{.]. For ease of notation write d = D, (M;By). We need to
break the proof into two cases, depending on whether d 2 |A| (when M is about as
close to C as it is to T)), or whether d << |A\| (when M is much closer to Ty than
to C). In the first case we will use the barrier surfaces constructed in Theorem
In the second case we will construct barrier surfaces as graphs over Ty. At the end
of the proof we will explain the (very minor) changes required to get .

Fix v <+’ < min{y + 1/2,0}. Throughout the proof

1/2 > 5(0,&7/) > To(C,Q,B,’Y’,S) > 50(0,9,6,’}//,8,7’0)

are small constants which we shall choose as we proceed, but can a posteriori be
fixed.

We first claim that Dy, (M; By N {|z] > ro}) < ¢(C,B)b. If b < S|A| this
follows from Lemma provided B(C) is sufficiently small. Suppose now b >
B|A]. Then provided 6¢(C,r¢) is sufficiently small, M N By N {|z| > ro} is trapped
between the graphs of +¢(C)(b+|A|)|z|” over CN{|z| > ro/2} in {|z| > ro/2}, and
hence trapped between the graphs of +¢(C)(b/8)|z|" over C N {|x| > r¢/2}. But
then provided do(C, 1o, 8) is sufficiently small, graphenjq>r, /23 (c(C)(b/8)[2|7) is
trapped between H(+c(C)b/S) x R! in {|z| > 79/2}. Combined with the inequality
|A| < /B, our initial claim follows.

We shall henceforth work towards proving the estimate

(33) Dr, (M {|z] < mo} N {ly| < 67}) < ¢(C, B,0)(b+ sd).

Provided r¢(C) is sufficiently small, combined with our initial claim will imply
(31) (with 62 in place of #). For ease of notation let us define the domains

Q= {lel <ro}n{lyl <0 s}, Qo= {lz] <ro} N {ly| < 6%}
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We now break into two cases as outlined at the start of the proof.

Case 1: d := d+ s 'b > B|\|. Here we use the barriers constructed in Theorem
Note first that d < 2d/s, so by ensuring do(d, s) is small, we can assume d is
small also.

Fix p as in Theorem [3.3] and fix ¢ : R — R a smooth function satisfying
lo(z)P — z| < 1/10. Define

(34) fly)=o(t A+ h(y), hy) =0 yh"

Note that on Q; we have h > 4 and |D*h| < c(k, s, 0).

Provided t > s|A|, we have |f|cs,) < ¢(C,s,0). Therefore there are t5(C),
ro(C, s, 0) so that for every s|A| <t < tp, there are surfaces X; defined in Q; with
negative mean curvature, as constructed in Theorem [3.3] Each y-slice X;N{y = ¢’}
is trapped between H (tf(y')? £t) x {¢'} in R**! x {¢/}, and hence (recalling our
definition of o, f) is trapped between H (A + 2th(y')) x {y’'} and H(A+th(y')/2) x
{v'}.

Provided do(C) is sufficiently small, we have A+toh(y')/2 > to/4. Therefore since
Dc(M; By) < |A + Dp, (M; By) < 200 < to/8 (taking do(C) smaller as necessary),
we deduce M lies below X;, in Q1. Set t; = 372(b+ sd) = 7 2sd, and note that
t1 < 28725y < to for §o(3,C) small. We claim that M lies below X;, in 9,
provided B(C) is chosen sufficiently small.

Let S; = 0 N{lyl =0 — s}. In Sy we have h > 1/s, and so X;, lies above
H(A+B72d/2) x R in S;. But of course 372d/2 > d, and so H(\ + 72d/2) x R!
lies above M in S;.

Let Sy = 09 N{|z| = ro}. In Sy, Xy, lies above H(A + 372d) x R!, and hence
above H(372d/2)xR!. On the other hand, provided d(3), 6o(3, d, o) are sufficiently
small, in Sy M lies below graphy, (blz|7), which in S; lies below graphg (¢S~ d|z|7),
which in Sy lies below H(c371d) x Rl. Our claim follows by ensuring 3(C) is small.

Since t — X; is continuous in the Hausdorff distance, by Theorem and the
previous claim we can bring ¢ from ¢y down to t; to deduce M lies below X, in ;.
In particular, since on 2 we have h < ¢(f), we deduce that each y-slice of M Ny lies
below H(A+c¢(C, 3,0)(b+sd)). Repeating the above argument with the orientations
reversed implies that M N Qy is trapped between H (A + ¢(C, 3,6)(b + sd)). This
proves Case 1.

Case 2: d+ s~ 'b < B|)\|. Here we construct graphical barriers for M over
T. There is no loss in generality in assuming A > 0. For ease of notation write
®(z,€) = @, 4 (x) for the graphing function of (1+¢€)Hy over H asin Lemma
and set p = |A[Y/(*=7). Define for i = 1,2 the domains Q; = {(z,y) : (z/2,y) € U}

First note that on T we have the inequality |z| > u/c(C). Second, recall that
the C? regularity scale of T at x is comparable to |z|. Third, note that by Lemma
4.3| (ensuring 8(C) is small) we know that

(35) M is trapped between the graphs graphp, (+ecid|z|?) in By,

for some constant ¢;(C), and hence M is trapped between graphy, (£c18|M[|z]7) in
B;.

For A(C,~’) a large constant to be determined later, let n(¢) : R — R be a
smooth increasing function satisfying n(t) = ¢ for |t| < AB/2, n(t) = sign(t)AB for
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|t| > AB, and || < 10. For t € [0, 1] define G¢(z,y) : Th N {|y| < 8} — R by
(36) Gi(w,y) = n®(p~"w, n(th(y))) — n()|AFy (@),
where F.,s as in Lemma The G, will define our graphical barriers.
From Lemma [2.2] for (z,y) = (r6,y) € Tx N Q; we have

p (2, (th(y))) = n(th(y)) (6 (1) + (C)ABIA),

and so, ensuring B(A, C) is small, we get
n(th(y))I\lr7 /e < p@(n~ e, n(th(y))) < en(th(y))|Alr.

for ¢ = ¢(C). Since |Fy ()| < ¢lz|’ and n(th(y)) > n(t), ensuring ro(y', C) is
small, we deduce that

(37) n(th() Az /¢ < Giz,y) < enth(y))|Ale]” < cABAlx]”

on T\ NQy, for ¢ = ¢(C).
By a similar computation, recalling that 4’ > v and |z| = r, we have
IVGi(x,y)| < en| A"t 4 ct| Dh||A|rY + c77|)\|7"7/_1
< (cAB + ct|Dh|r) | \|r7 L,
and
|V2Gy(x,y)| < (cAB + ¢|Dhlr + c|D*h|r?) | \|r7—2,
where ¢ = ¢(C,~"). Ensuring ro(C, v/, 8, s, 0) is sufficiently small, and recalling the
bound |z| > p/c(C) on Ty, we get for i =0, 1,2 the bounds
(38)  [V'Gil(w,y)| < e(C,7)ABIA2]"~" < ¢(C,7)ABlz[' ™" on Ta N Q.

In particular, ensuring 3(C,~', A) is sufficiently small we get that graphy, (G¢) is
a smooth hypersurface without boundary in €.

We aim to show the graph of G; has negative mean curvature in ;. We first
compute

MTA (Gt) = ‘MTA (M(I)(:U’_lxvn(th(y)))) - n(t)‘)‘| /O DMTA (Gt,s)[F’Y’]dS =1+1I

where Gy s(z,y) = p®(p tan(th(y))) — sn(t)|A|Fy (z). We claim that, at (z,y) €
T\ N Qq, with |z| = r, we have

(39) [I| < c(?|Dh> + t|D2R)|AIFY, 1T < —nt)|ArY "2/c

for ¢ = ¢(C,v’). Bounds will imply that on Th Ny and for 0 < t < A3 we
have

(40) Mz, (G) < e(CA VA Bl a gy — DY 2 <0,

provided we ensure 79(C,~', 0, s) is chosen sufficiently small.

Let us prove our claim for |I|, i.e. the first inequality in . By construction,
graphy, (u®(u~t2,n(th(y)))) N{ly| < 6} coincides with SN {|y| < 6} where S is
the hypersurface

s={J (@ +n(th(y))HMN)] x {y}.

ly|<o
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Since max{n(th(y))|z|, u®(n=tz,n(th(y)))} < |x|/2 provided B(C, A) is sufficiently
small, it will suffice to prove the bound

(41) (Ms((L+n(th(y)))z,y)| < c(t?|Dh|? + | D*h[)|A||z|”

for any ((1+n(th(y)))z,y) € SN {|y| < 8}, where Mg is the mean curvature of S.
From Lemma [3.4] for the same z,y as above we have the bound

(42)  [Ms] < c(Dlx - vy @)|ID*n(th(y)] + O Dn(th(y) *lhaoy (@, =),

where hg(y) is the second fundamental form of H()), and vg () the unit normal.
Trivially we have

(43) | Dn(th(y)|* < ct?|DhJ?, | D*n(th(y))| < ct|D*h] + ct?| DhJ?,
(44) and  |hyoy(a”,2")| < cla”?/|2] < cla,
for ¢ = ¢(C).

If |z| < Rop (for Ry as in (I))) then since /c(C) < |z| also, the bound
follows from (42)), (43), and the inequality |z| < Ro|A||z|Y. If |z| > Rop, then
near z, H()) is graphical over Cy by the function ¥y as in (). From (2), (3) we
have
(45)

@ vy (@)] < e[ VOAlz] < eMa]”, [hay (@, 2T)] < o V28 [a]? < e|A]f2],

and the bound follows from , , .

We consider now the bound for 1. By similar computations as before, we have
|ViGt’S(l‘,y)| < c(C,'y/)Aﬂ‘)\pr_i, (i :07172), on T/\mﬂh
for any s,t € [0,1]. By scaling and the definition of F,, we have

(46) DMz, (G, ) [Fy)| (@) = 1 2D M, (GE ) [Fyr ()] (1)
(47) = H’Fy,iZDMﬂ (Gﬁs)[FW'H(u*lm,y)v

where G ((&,¢) = p~'Gy,s(p€, ). Using we have on T} N =10y,
[VIGY,| < ™ FTeABIM 278 < eABlz[7™ (i =0,1,2),

and therefore provided B(C,~’, A) is sufficiently small, we can apply Lemma to
deduce

w _QDMT1 (Gﬁs)[F’Y’]l(uflx,y) > |.Z"7 _2/0'
This proves the bound for I7 in , completing the proof of our claim and hence
the inequality .
We now use G to control D, (M;€s). First note that if 0 < ¢ < A, then
implies

(48)  Gi(x,y) > min{th(y), ABY|A||z|7/c > min{t, AB}N|z|"/c on T\NQy,

for ¢ = ¢(C,’). Therefore, by ensuring A(C,~’) is sufficiently large from we
know that M lies below graphy, (Gag) in Q1. Set t1 = min{32?|\|~*(b+ sd), AS}.
We claim that, provided §(C) is chosen sufficiently small, M lies below graphz, (G+)
in 09 for every t; <t < ApB.

We prove this claim. Of course if t; = AS there is nothing to show, so let us
assume t; < AB. Suppose (z,y) + G¢(x,y)vr, (x,y) € 001 N S1. Then |y| =6 — s
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and (by (38)) |z| < 2ry. Since h(y) > 1/s, we can use and our assumption
d+ s7'b < B|A| to estimate

Gi(z,y) = min{ (BN~ sd)s ™ Al|z[" /¢, ABIA||z[" /c} > erd]z|”
provided 5(C), A(C)~! are chosen sufficiently small. Therefore graphy, (Gy) lies
above graph, (c1d|x|”) in Sy, and hence lies above M in S;.

Suppose (z,y) + Gi(x, y)vr, (x,y) € 001 N S3. Then as before (z,y) € Q4 and

we can estimate instead
Gi(z,y) > min{(B72[A|710)|[[2]" /e, ABIA[|2]" /c} = bla|”,
again ensuring 8(C), A(C) ™! are small. We deduce graph, (G¢) lies above graph, (bz|7)
in S, and hence by our assumptions lies above M in S5. This finishes the proof of
our claim.

By our last two claims and the negative mean curvature we can bring t
from AB down to t; and deduce by the maximum principle [13] that M lies below
graphp, (Gy) in ;. In particular, since b < ¢(C,0) on Q, from we get that
M lies below graphr, (¢(C,0,7')(b+ sd)|z|”) in Q2. Repeating the argument with
the orientation swapped, we deduce M is trapped between graphp, (+¢(C,0,7")(b+
sd)|z|7) in Qs. Since b+ sd < s8]\, ensuring 3(C, 0,~') is sufficiently small we can
apply Lemma [4.3] to finish the proof of Case 2.

With A, , in place of B;: To get , we only need to modify our definition
of h,1,Q5. In this case, we define

hy) = (Jlyl =0 p) "  + (0 = [y)) ™,
and
Y ={r<ro}n{lyl €[(07" +5)p,0 — 5]}, Qo= {r<ro}n{lyl €0 p,6°]}.

The proof for is then verbatim to the proof above for , of course replacing
B, with A, , wherever it occurs, and allowing all constants to depend on p also. [

The main utility of Theorem is in the below Corollary concerning inho-
mogeneous blow-up limits, in particular in the lower bound of Item

Corollary 4.5. Let M; be a sequence of complete minimal hypersurfaces in By,
and \; — 0. Suppose that
Dr,, (Mi; By) = 0, (1/2)[|C[(B1) < [[M;][(B1) < (3/2)[|C[|(B1),
and let p; be a sequence such that sup; u;lDTM (M;; By) < 0.
Then, first, there are 7; — 0 so that
M; N By, 0 {|z| = 7} = graphr, (),
for w; : Bi_;, ;o N {|z] > 7:/2} = R smooth functions satisfying
|lz| 7 us| + | V| + |2] | V| < 7.

Second, passing to a subsequence, we can find a Jacobi field v on CN By so that
for any given 6 < 1 we have:

(1) p; tu; — v smoothly on compact subsets of C N By N {|z| > 0};
(2) supang, Ile] 0] < o(C) liminf, 5 Dy, (My; By);
(3) limsup;, ,ui_lDTM (Mj; Bg2) < ¢(C,0) supcnp, |12 7v|.
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Third, given any p € (0,1/2], the above Corollary also holds with A1 p, A1_7, ptris
Al—n/Q,p-i—n/Q; A6’,9*1p7 A92,0*2p in place Of Bl; Bl—'r,;; Bl—Ti/Q} B9’ 392 (T@Sp.),
in which case all constants depend on p also.

Remark 4.6. Since 2y > —n + 2, and by Lemma we have for every 0 < 1:

oo el P < [ < [ jal e <€) sup lal
c(C,0) cnB, CnB; CcnB; CcnB;

Proof. The existence of 7;,u; follows from the definition of D, the constancy the-
orem, and Allard’s theorem by a standard argument. For convenience write U; =
By, N{|z| > 7} and d; = Dr,, (M;; By). After passing to a subsequence we can
assume that I' = lim, ,ui_ldi exists, and for all i, either d; > B|\;| or d; < B|A;], for
B a small number to be determined momentarily.

By definition of D, for all 4, M; N By is trapped between H()\; £d;) x R If d; >
BIAi], then by ensuring 7; — 0 sufficiently slowly, from equations , we get that
M; N By N{|z| > 7;} is trapped in {|z[ > 7;} between grapheny|z(sr, /23 (F¢(C)(di +
[A:D|z|7), and hence |u;| < e(d; + |X)|z]Y < ¢(C, B)d;|z|Y. If d; < S|\, then
provided B(C) is sufficiently small Lemma implies M; N By is trapped between
graphp, (£¢(C)d;|x|7), and hence |u;| < c(C)d;|z|".

Either way, we have that
(49) sup ||z|7"w;| < e(C, B)d;,

T, NU;
and hence by standard elliptic theory we can pass to a subsequence, find a Jacobi

field v on C N By, and get smooth convergence p~'u; — v on compact subsets of
C N By N{|z| > 0}. The estimate implies

sup ||z]77v| < ¢(C,B)T VYU cc CN By N{|z| >0},
cnu

which proves Items
To prove Item |3 we use Theorem and our hypotheses, to deduce that for
every s > 0 there is an rg > 0 so that for i > 1 we have

Dr, (M;; By2) < co sup 2] "ui| 4+ cosDry, (My; Br),
Tx;NBoN{|z|>ro}

where ¢y = ¢o(C, 0) is independent of s. We can therefore take a limit as ¢ — oo,
and then as s — 0, we deduce Item
|

5. GEOMETRIC 3-ANNULUS LEMMA

Lemma 5.1. Given € < ¢y(C)/16, we can find an Ro(C,€) > 1 so that for every
R > Ry, there is a 60(C, ¢, R) > 0 so that the following holds.
Let |\| < 6o, and let M be a complete minimal hypersurface in Br, such that

(50) E(M,C,R) <&y, 0x(0,R) < (3/2)0c(0).
Then:
(51) E(M,T\,1) > E(M,Ty,1/R)RY~'T¢

(52) = E(M,T\,R) > E(M,Ty,1)R" "1 teo¢,
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Proof. Set g = min{py — p1,1} for p; as in . Assume Ry > €?/¢, so that we
can write R = RF for some integer £ > 1 and some R, € [62/5,64/6). We will
show the Lemma holds provided k(C,¢€) (and hence Ry) is sufficiently large, to be
determined below.

Suppose the Lemma failed. Then we have sequences §; — 0, \; — 0, and
complete minimal hypersurfaces M; in Bg so that holds but

E(M;,Ty,,1/R) < B(M;, Ty,, 1)R™7T1~¢
and E(M;,Ty,,R) < E(M;,Ty,, 1) RV~ Heo~e,

Since (52)) vacuously holds if E(M,Ty,1) = 0, there is no loss in assuming
M; N By # () for all i. Then by our hypotheses 7 standard compactness of
stationary integral varifolds, and the constancy theorem, we deduce M; — [C] as
varifolds in Bgr. By Allard’s theorem we can find an exhaustion U; of Br\ {|z| = 0}
so that

M; NU; = graphy, (u;)

for smooth functions w;. By Corollary after passing to a subsequence, the
rescaled functions F(M;, Ty,, 1) 1u; converge on compact subsets of CN By \ {r =
0} to a Jacobi field v on C N B, satisfying

sup (1/R)"H|z| 70| < o(C)RTTHIT,

NB1/r

sup ||z|77v| = 1/¢(C),

2

sup Rz 7v| < ¢(C)RY 1 Heoe,
CNBgr

Define
S(i)? = Ri(‘"‘”/ 2.

Then from Lemma 2.6l we have

(53) S(—k) < ¢(1/R)” sup |||~ "v| < Ry O+
1/R

(54) S(1) > ¢ 'R sup ||| Tv| > 1/¢(C, €)
B>

(55) S(k) < RO,

We claim that, for any n > 0, provided k(C,¢,7n) € N is chosen sufficiently large,
then we have S(1) < 5, which will contradict for n(C, €) sufficiently small. We
prove this claim. First assume

(56) S(1) > RO/ g k).

Then by Lemma [2.8] and our choice of R., we have
S(k) > RIEDOFom /2 g()

which implies

(57) S(1) < e(C, R <,

provided we ensure k(C, ¢, 7) is large. On the other hand, if fails, then we again
have (57) (for perhaps a larger constant ¢(C, €), and hence a larger k(C, €,7)). This
proves our claim, and finishes the proof of Lemma [5.1 g
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6. GROWTH OF ENTIRE HYPERSURFACES

Proposition 6.1. There are constants €1(C), p1(C) so that for every p < p1, and
n > 0, we can find a 61(C,n,p) satisfying the following. Let M be a complete
minimal hypersurface in By satisfying

(58) E(M,C,1) <61, [IM][(B1) < (3/2)[[CI[(By).
Then we can find a X € (—n,n) so that

(59) E(M, Ty, p) < p" " T E(M, Ty, 1),

and E(M,Ty,1) < ¢(C)E(M,C,1).

Proof. Suppose the Proposition failed. Then for €1, p; to be determined later, we
can find sequences §; — 0, and complete minimal hypersurfaces M; in B; satisfying
but failing forall A € (—n,n). Let A, minimize A — E(M;, T, 1). Trivially
)\; — 0 and E(MZ,TA/L, 1) < E(MZ, C, ].)

By standard compactness and the constancy theorem, M; — k[C] as varifolds
for k € {0,1}. Since is trivially satisfied if M N B, = 0, by our contradiction
hypothesis we have M; N B, # () for all ¢, and hence x = 1. Allard’s theorem implies
therefore M; — C smoothly on compact subsets of B; \ {|z| = 0}.

For U; an exhaustion of By \{|z| = 0}, we can write M;NU; = graphy, (u;). Pass-
ing to a subsequence, by Corollary we can get convergence (M, Ty, D~ —
v, for some Jacobi field on C N By with supgnp, |[#|77v| < ¢(C), and hence (by
Lemma 2.6) [, [2]7?v? < ¢(C).

By (13)), (T4), we can write v(r6,y) = ar?ty () + 2(r6,y), for |a| < ¢(C) and 2
satisfying the decay

p—n—l/ 22 < C(C)p27+4el
CnB,

for some €1 (C) > 0 determined by the spectral decomposition of Cy. Using Lemma
2.6l we deduce

1/2
60) o sup |le| 2 < e(C) (o / 2| <)t
CnB CmB2p

P

for all p < 1/2.

Let \; = A{ + aE(M, Ty, 1). By altering U; as necessary, we can write M; N
U; = graphr, (u;), and it’s straightforward to check that E(M, Ty, 1)~ tu; — v —
ar¥1); = z smoothly on compact subsets of C N By \ {|z| = 0}.

Using property we have E(M,T,,1) < ¢(C)E(M, Ty, 1), and by definition
of \; we have E(M,Ty,,1) < E(M,T»,,1). Therefore, after passing to a subse-
quence, we can assume

E(M, Ty, 1)

SN 1e(C) < b < 1.
E(M, Ty, 1) " [e(C)<b<

In particular, we have smooth convergence E(M,T),, 1) u; — bz.

By and Corollary we have

limsup BE(M, Tx,, 1) *E(M,Ts,, p) < ¢(C)p"~ sup ||z| 7bz| < ¢(C)p 112
i CNBs,
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for all p < 1/4. Choose p(C) sufficiently small so that ¢(C)p < 1, we deduce
E(M,Ty,,p) < p" YT BE(M,Ty,, 1)
for all 4 > 1. This is a contradiction, and finishes the proof of Proposition O

Proposition 6.2. There are constants e2(C) > 0, c2(C) > 1 so that the following
holds. Let M be a complete minimal hypersurface in R* M1 and suppose that
R™'M — [C] as varifolds as R — 0o. Then there is a \ so that

(61) E(M,T\,LR) > co(C) 'L E(M, T\, R)

for all L > 1 and R sufficiently large (depending only on M ). In particular, either
M =T\, or there is a constant C(M) > 0 independent of R so that

(62) E(M,T\,R) > R""'*t2/C(M) VR >C(M).

Remark 6.3. From and the scaling of E, if holds for some A then
holds for any ), with a potentially larger C(M, X).

Proof. Fix ea = ¢ = min{eg, €1,1}/16, Ly = max{Ro(C,€),1/p1(C)}, let 6o(C, e, R =
L) be as in Lemma [5.1] and let 61(C,n = &y, p = 1/Lo) be as in Proposition
By our hypothesis there is a radius R. so that for all R > R, we have

E(M,C,R) < min{dg, 01}, 0 (0,R) < (3/2)0c(0).
Apply Proposition to R; 1M to obtain a Ty, with Ry~ 7|A| < &, so that
E(M, Ty, R./Lo) L]~ T¢ < E(M, Ty, R.).
By our choice of €, Ly, R., we can then apply Lemma to R7'M to get
E(M, Ty, R.)L]™'" < E(M, Ty, LoR.).

Now since (R, Lo) Ty = T(R.Lo)v—1x, We can apply Lemmaagain to (LoR.) ™M
to get

E(M, Ty, LoR.) L]~ " < E(M, T, L:R.).
We can iterate to obtain

E(M, Ty, LEV'R,) > LYW E(M, Ty, LER,), VEk,1€{0,1,2,...}.

then follows with ¢ = LBHaX{Z’E} = L3. This completes the proof of Proposition
6.2 O

7. ONE-SIDED DECAY AND PROOF OF MAIN THEOREM

Proposition 7.1. Let M be a complete minimal hypersurface in R* 1 lying to
one side of C, such that Opr(o0) < 20c(0). Then for any € > 0, we have

(63) E(M,C,LR) < ¢3(C,e)L" " T°E(M, C, R)

for all L > 1 and all R sufficiently large (depending only on M ). In particular,
there is a constant C(M,€) independent of R so that

(64) E(M,C,R) < R"™'**C(M,e) VYR>1.
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Proof. We first observe that by our hypotheses, the monotonicity formula, and
Lemma we must have R™'M — [C] as varifolds as R — oo, and in particular
we have E(M,C,R) — 0 as R — oc.

If M = C then the Proposition trivially holds, so assume M # C. Fix 0 < € <
€0/16 (there is no loss in assuming € is as small as we like), and let Ly = Ry(C,¢€)
as in Lemma Suppose, towards a contradiction, there was a sequence R; — oo
such that

E(M,C, LyR;j) > Ly ""“E(M, C, R;).
Since Rj_lM — C, we can fix an R, = R; sufficiently large and apply Lemma
successively to R;1M, (LoR.)~*M, etc. to deduce

(65) E(M,C,LET'R,) > (LEY ™" E(M,C, LER.) VE,1>0
By iterating , we deduce
(66) E(M,C,LR) > ¢(C,e) 'L " “E(M,C, R)

for all L > 1, and all R > R..
Choose R; — 0o so that
(67) 2E(M,C,R;) > sup E(M,C,R),
R>R;
and consider the rescaled surfaces M; = R; YM. For i > 1, by Allard’s theorem we
can find an exhaustion U; of R**+1\ {|z| = 0} so that M; = graphg(u;). From
, we have

2E(M;,C,1) > sup E(M, C, R).
R>1

Therefore by Corollary after passing to a subsequence as necessary, the rescaled
graphs E(M;, C,1)™ u; converge smoothly on compact subsets of C\ {|z| = 0} to
a Jacobi field v satisfying
(68) sup R Y|z|v| < ¢(C) VR > 1.

CNBgr
Moreover, since M and hence M; all lie to one side of C, after flipping orientation
as necessary we can assume v > 0.

Lemma 2.7 implies v(z = r6,y) = ar?¢1(0), where by la] < ¢(C). From
Corollary for any L > 1 and any i > 1 we have

E(M;,C,L) 1y - -1 -1
—————— > <¢(C) sup L7 H|z| | < ce(C)la|L" <e(C)L",
BTG 1) <O s L1 lal el < e(O)al 1! < e(O)
and hence
(69) E(M,C,LR;) < ¢(C)L""'E(M,C, R;)

for all L > 1 and ¢ sufficiently large, depending on L.

Combining (66, we get: if L > 1, then for all i large (depending on L, M)
we have
(70)  ¢(C,e) 'E(M,C,R;) L~ < E(M,C,LR;) < ¢(C)L" '*E(M,C, R;).

Since M # C, for all i > 1 E(M,C,R;) # 0, and so if we ensure L(C,e¢) is
sufficiently large will yield a contradiction. Therefore, recalling our initial
contradiction hypothesis, we must have

(71) E(M,C,LoR) < Lj”""*E(M,C, R)
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for all R > 1. Iterating gives and (64). O

Proof of Theorem[1.1. Assume that M # T for any A. As in the proof of Propo-
sition we have R™'M — [C] as R — oo, and E(M,C,R) — 0 as R — co. We
can apply Proposition and Remark to find a constant C'(M) so that

(72) E(M,C,R) > R"'2C~t VR>C.

On the other hand, by Proposition we can find another constant C'(M) so that
E(M,C,R) < RV~1*</2¢" YR >1,

which contradicts when R > 1. O
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