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ABSTRACT. We study singular Ké&hler-Einstein metrics that are ob-
tained as non-collapsed limits of polarized Kéhler-Einstein manifolds.
Our main result is that if the metric tangent cone at a point is locally
isomorphic to the germ of the singularity, then the metric converges to
the metric on its tangent cone at a polynomial rate on the level of K&hler
potentials. When the tangent cone at the point has a smooth cross sec-
tion, then the result implies polynomial convergence of the metric in
the usual sense, generalizing a result due to Hein-Sun. We show that a
similar result holds even in certain cases where the tangent cone is not
locally isomorphic to the germ of the singularity. Finally we prove a
rigidity result for complete 9d-exact Calabi-Yau metrics with maximal
volume growth. This generalizes a result of Conlon-Hein, which applies
to the case of asymptotically conical manifolds.

1. INTRODUCTION

Since the celebrated work of Yau [38] on the existence of Kéhler-Einstein
metrics there has been increasing interest in the understanding of singular
Kéhler-Einstein metrics. An early result in this direction is Kobayashi [27]
on orbifold Kéhler-Einstein metrics, while a definitive existence result for
a large class of singularities was obtained by Eyssidieux-Guedj-Zeriahi [21].
These works focus on the case of non-positive Ricci curvature, however re-
cently Li-Tian-Wang [28] extended Chen-Donaldson-Sun’s solution [5, 6} 7,
8] of the Yau-Tian-Donaldson conjecture to general Q-Fano varieties. As a
result we now have several sources of singular Kéhler-Einstein metrics on
normal varieties.

For applications it is desirable to have control of the geometry of these
singular metrics near the singularities, but so far little is known in general.
The main progress in this direction is due to Hein-Sun [26], who showed
that near a large class of smoothable isolated singularities that are locally
isomorphic to a Calabi-Yau cone, the singular Calabi-Yau metric must be
asymptotic in a strong sense to the Calabi-Yau cone metric. Recently an
analogous result was shown by Datar-Fu-Song [17] in the case of isolated
log canonical singularities using the bounded geometry method, and precise
asymptotics were obtained shortly after by Fu-Hein-Jiang [22]. In more gen-
eral settings the best results so far give some control of the Kéahler potential,
such as the work of Guedj-Guenancia-Zeriahi [24] showing continuity.
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Our main result in this paper extends the work of Hein-Sun [26] to a large
class of possibly non-isolated singularities. In order to state the result, let us
suppose that (Z,p) is the non-collapsed pointed Gromov-Hausdorff limit of
a sequence of complete polarized Kéhler-Einstein manifolds (M;, g;, p;), sat-
isfying Ric(g;) = Aigi with |A\;| < 1. The results of Donaldson-Sun [19] [20],
Li-Xu [30] and Li-Wang-Xu [29] imply that Z is a normal complex vari-
ety admitting a singular Kahler-Einstein metric wz, and the metric tangent
cone Zj, at p is homeomorphic to a normal affine variety uniquely determined
by the germ (Z,p). The tangent cone Z, admits a singular Ricci flat cone
metric wz,. Our first result is the following.

Theorem 1.1. Suppose that the germ (Z,,0) is biholomorphic to (Z,p),

where o denotes the vertex of the cone Z,. Then for some ro > 0 there

exists a biholomorphism ¢ : B(o,r9) — U from the unit ball in Z, to a

neighborhood of p € Z with ¢(0) = p satisfying the following. There are

constants C,a > 0 and functions u, on B(o,r) for 0 <r < rg, satisfying
P*wz = wz, + V—100u,

on the smooth locus of Z,, and

24«

sup |u,| < Cr
B(oyr)

for all 0 < r < rg.

Combining with [30]]29], Theorem implies that if the germ (Z,p) is
biholomorphic to the germ (C(Y),0) in a possibly singular Ricci flat Kéhler
cone C(Y') with vertex o, then wyz is asymptotic to the cone metric we(y)
in the sense of Theorem [L1l

Hein-Sun [26] consider the case of singular Calabi-Yau metrics where the
tangent cone Z, has an isolated singularity at the vertex, and in addition is
“strongly regular”. Most likely the approach of Hein-Sun can be extended
to the more general Kahler-Einstein setting, without the strongly regular
assumption, by appealing to the more recent works [30, 29]. On the other
hand their approach uses that the tangent cone Z,, has a smooth cross section
in an essential way, since they rely on analysis in weighted Holder spaces.
The main novelty in our approach is that by working on the level of L*°-
bounds for the Kéhler potential, we are able to treat tangent cones with
arbitrary singular sets. We can then obtain estimates for derivatives of the
metric away from the singular set, which in particular can be used to recover
Hein-Sun’s result in the setting of tangent cones with isolated singularities
(see Corollary [4.3).

For an example where Theorem 1.1 applies, see for instance the example
constructed by Cynk and van Straten [16] Theorem]. It is a smoothable
Calabi-Yau threefold with canonical singularities, whose singular set is a
double line with four pinch points. The germ at a general point of the line
is C x Ay, so our Theorem [1.1] applies there. On the other hand, it is known
that the pinch point singularity admits a Ricci flat Kéhler cone metric (see
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e.g. the discussion in |33 p.60] and the references therein). It follows that
Theorem also applies at the pinch points.

When the germ of the tangent cone (Zp, 0) is not biholomorphic to (Z, p),
then the situation is more complicated, and has not been considered be-
fore. A family of examples given in [36] (also Hein-Naber [25]), are the
hypersurfaces A,_1 C C""! defined by

Prade. 422=0,

where p > 22—:%. In [36] the second author constructed a Calabi-Yau metric
wa,_; on a neighborhood of 0 € A;_1, with tangent cone given by C x Ay,
where A; C C" is defined by 22 + ... + 22 = 0 and is equipped with the
Stenzel cone metric. Our result in this case is the following.

Theorem 1.2. Suppose that, as above, (Z,p) is the pointed Gromov-Hausdorff
limit of a non-collapsing sequence of polarized Kahler-Finstein manifolds,
with singular Kdhler-Finstein metric wy. Suppose that the germ (Z,p) is
isomorphic to the germ (Ap—1,0) at the origin. Then for some 1o > 0 there
is a biholomorphism ¢ : B(0,1m9) — U C Z, with ¢$(0) = p, and constants
A, C,a >0, such that

P*wz = Awa,_, + V—100u,
for some u, defined on B(0,r), and

sup |u,| < Cr¥te
B(0,r)

for allr < rg.

In other words the singular Kéhler-Einstein metric wyz converges to a
suitable scaling of the model metric w4, , at a polynomial rate, at the level
of potentials. Note that in contrast with Theorem [L.1] where the model
metrics were cones, here the rescalings of wa, , are not isometric to each
other. In general we expect that for more complicated singularities it is
possible to have higher dimensional families of model metrics, similarly to
how in [11] a two dimensional family of complete Ricci flat Ké&hler metrics
was constructed on C? with tangent cone C x A, at infinity.

Our last result is the following uniqueness theorem for solutions of the
Monge-Ampére equation on complete manifolds.

Theorem 1.3. Let (X,w) be a 00-exact Calabi-Yau manifold with mazimal
volume growth. Suppose that u is a smooth solution of the complex Monge-
Ampére equation

(w+V—=100u)" = w™.
In addition suppose that u has subquadratic growth in the sense that |u| <

C(1+ T)2_57f07’ some C,§ > 0, where r is the distance from a fixed point in
X. Then 00u = 0.
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This result should be compared with the uniqueness result in Conlon-
Hein [15, Theorem 3.1]. The main novelty is that in our result we do not need
to assume that the tangent cone of X at infinity has an isolated singularity,
which is implied by the asymptotically conical assumption of [15]. Note,
however, that the d0-exactness is not required in [15].

The main new technical ingredient in the proofs of these theorems is
an estimate for solutions of the complex Monge-Ampere equation on non-
collapsed balls in polarized Kahler manifolds with Ricci curvature bounds,
or their Gromov-Hausdorff limits. This extends a related estimate from
[37], where we considered balls that are Gromov-Hausdorff close to a metric
cone of the form C x C(Y), with smooth Y. Roughly speaking the result
says that if a solution u of a Monge-Ampeére equation with sufficiently small
L*>° norm concentrates near the (almost) singular set of such a ball, then
the solution must decay by a definite amount when passing to a smaller
ball. Together with the harmonic approximation for the small solution of
the Monge-Ampere equation in the generic region, this implies the decay of
the sup norm of the solution upon passing to smaller scales. We will discuss
this estimate in Section [2| and we expect it to be of independent interest.

In Section [3l we define the notion of families of model metrics as well as
a convergence result for the singular Kéhler-Einstein metric wz that can be
approximated by these model metrics near the singularities. This unifies
certain aspects of Theorems and We then prove these theorems
by showing the existence of families of model metrics and the existence of
approximations in the corresponding cases in Sections |4 and [5. Finally, in
Section [6] we prove Theorem
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he would like to thank the National Center for Theoretical Sciences for their
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2. NON-CONCENTRATION

In this section we study the complex Monge-Ampere equation on a ball in
a non-collapsed Gromov-Hausdorff limit of Kéhler-Einstein manifolds. More
precisely, let (Z,p) be the pointed Gromov-Hausdorff limit of a sequence of
complete pointed Kahler manifolds (M;, g;, p;). We assume that the (M;, g;)
are polarized, i.e. the Kéhler forms are given by the curvature of line bundles
over the M;, that the metrics are Einstein, i.e. Ric(g;) = A;g; for some
|Xil < 1, and that the non-collapsing condition vol(By,(p;,1)) > v > 0
holds for a fixed v > 0. By the results of Donaldson-Sun [19, 20], B(p,2)
is a normal algebraic variety, and the metric singular set coincides with the

algebro-geometric singular set ¥ C B(p,2). For g € B(p, 1) let us denote by
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r1(q) the harmonic radius at g, setting r,(q) = 0 for ¢ € ¥. We denote the
limit metric on the regular part of Z by w. The main result of this section is
the following estimate for solutions of the complex Monge-Ampere equation
on B(p,1).

Theorem 2.1. There is a constant C = C(n,v), such that for all v > 0
there exist k,0 > 0 depending on n, v,y with the following property. Suppose
that we have smooth functions u, f on B(p, 1)\ X, satisfying |ul,|f| < k, and

(2.1) (w4 V=100u)" = e/ ™.
Then

sup |ul SC( sup  |u[+ sup |f[+7 sup !M)-
B(p,1/2) {T‘h>6}ﬁB(p,1) B(pvl) B(pvl)

We prove this result by proving successively more general cases. We start
with the following, which follows the approach of |37, Proposition 4.5].

Lemma 2.2. There is a C1 = Ci(n,v) such that for any v € (0,1) there
are k,0,€ > 0 depending on n,v,~y satisfying the following. Suppose that
lul, |f] < K satisfy (2.1), and in addition Ric(w) > —ew and

dau(B(p, e_l), B(o, e_l)) <€,

where o is the vertex of a cone that splits an isometric factor of C* for some
k> 0. Let us write o € CF x C(Y). Then

(2.2) sup |ul < Cy ( sup |u|+ sup |f|+~y sup ]u|> ,
B(p,1/2) B(p,1)\Ns B(p,1) B(p1)

where N5 denotes the points = at distance at most § from C* x {0} under
the Gromov-Hausdorff approximation.

In this result we do not assume, as we did in [37], that Y is smooth.
In addition, note that on the right hand side of the supremum of
|u| is taken on the set B(p,1) \ Ns which is typically larger than the set
{rn >0} N B(p,1) if Y has singularities.

Proof. We claim that by |37, Proposition 4.4] there exists a constant D > 0
depending on n, v, and for any & > 0 there exists C5 > 0 depending on §, n, v
satisfying the following. If € is sufficiently small (depending on d,n,v), then
there exists a Lipschitz function v on B(p,1 — §/2) satisfying

(1) |v/=100v|, < Cs on B(p,1 —§/2) \ T.

(2) v> D162 on dB(p,1 — §) N N;.

(3) v> D"t on B(p,1—6), and v < D on B(p,1/2).

(4) On B(p,1 —46/2) \ X, v satisfies the differential inequality:

> i + fimaz < —1/10,

7
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where u; are the eigenvalues of V/—100v relative to w, and Mmaz 18
the largest eigenvalue.

To see this, recall that B(p, 1) is a ball in the pointed Gromov-Hausdorff
limit of polarized Kéhler-Einstein manifolds (M;, p;). Given € > 0 we have

der (B(p;, 6_1), B(o, 6_1)) <e€

for sufficiently large i, and so by [37, Proposition 4.4] we have functions v;
satisfying the properties (1) — (4) on B(p;,1). While in [37] the property
(4) is stated as Y p1; + fmaz < 0, from the proof the better bound —1/10
also follows (see Equation (4.3) and the inequality before it in [37]). Since
v; are constructed out of local Kéhler potentials, we see that v; and Vu;
are uniformly bounded on B(p;,1 — ¢) and on compact sets away from the
singular set of B(p,1) (under Gromov-Hausdorff approximations) the func-
tions v; have uniform higher derivative estimates as well. We can therefore
take a subsequential limit v of v; on B(p,1 — ), and conditions (1), (4) will
follow from smooth convergence on the regular set. That the constants do
not depend on the specific cone C(Y’), but only on n, v, can be seen using a
compactness argument.

Let us define

E= sup |ul+ sup [fl+7 sup [u] <3,
B(p,1)\Ns B(p,1) B(p,1)

and set 6 < 72, Define o = DEv. By (2), (3) above, on dB(p,1 — §) we
have v > u.

We claim that once & is sufficiently small, then we have

(2.3) > won B(p,1—9).

To see this, we argue as in [37], except we need to take care of the singular
set . Since X is a subvariety, there exists a plurisubharmonic function h
on B(p,1) such that ¥ = h™1(—cc0). We will show by showing that
we have 0 > u + €’h on B(p,1 — d), for all ¢ > 0, and noting that u,v are
continuous. Suppose this is not the case. Write B = B(p,1 — ¢) and for a
fixed € > 0 set

to=1inf{t >0 |9+t >u+¢h on B}.
If tg > 0, then the graph of © + tg touches the graph of u + ¢'h from above

at some point ¢ € B. If ¢ € 3, then (u + €h)(q) = —o0, so we must have
q ¢ X. At g we have

(2.4) V—=100u(q) < vV—100u(q) + €/ —100h(q) < v/—1000(q) < EDCsw

by property (1) above and the fact that h is plurisubharmonic. Let A; be the
eigenvalues of /—100u(q) relative to w. From (2.4) we have \; < CsDE.

By (2.1), and using |f| < E, we have

(2.5) e P <JJa+xn) <er
=1
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From (2.5 we have

(2.6) 14X >

—-E

Hz;éj (1 + A )
for some constant Cy s > 0, once F is sufficiently small. On the other hand,

if Appaz < 0 then (2.6) gives
(27) )\ma:c 2 —FE.
Finally, (2.5) together with the bounds for \; implies that

(1 + CsE)™ (n—1) >1—- 0275E

(2.8) 1-E<e® H1+A <1+ZA + C35E2,
=1 =1

o (2.4) and (2.8)) imply that

n n
DFE
—2F — C3,6E2 < Z)\z + Amax <DFE <Z i + Mmaz) < _TO-
i=1 =1

The first inequality above uses (2.7). We can assume that D > 30. Since F <

3k, by letting x be sufficiently small, depending on §, we get a contradiction.
For such k we have shown (2.3)).

Using (2.3) and property (3) above, on B(p,1/2) we have
uw <9< D’E,

which implies the estimate from above for u required by . For the
corresponding lower bound we can argue in a similar way, comparing u with
—0 instead, to show that u > —0+¢€'h on B for all ¢ > 0 once & is sufficiently
small. ([

Next we have the following.

Lemma 2.3. There is a Co = Co(n,v) such that for any v > 0 there are
k,0,€ > 0 depending on n,v,vy satisfying the following. Suppose |u|,|f| < K
satisfy 2.1), and dgu(B(p,e '), B(o,e71)) < € for the vertex 0 € C(Y) in
a cone. Then

(2.9) sup Ju| < Cy < sup |u| + sup |f|+~ sup u\) .
B(p,1/2) {Th>6}mB(p71) B(pvl) B(pvl)

Proof. We prove this by decreasing induction on the dimension of the Fu-
clidean factor that splits off from the cone C(Y'), starting with C(Y') = C".
In this case, by Cheeger-Colding [2, Theorem 7.3], we have r, > ro on B(p, 1)
for a fixed rg > 0. The inequality then holds if we choose § < rg, and
Cy > 1.

Suppose now that the result holds whenever B(p,e™!) is e-close to a ball
in a cone of the form C/ x C(X) for j > k + 1, and consider the case that

(2.10) dau(B(p, e 1), B(o,e™ 1)) < €,
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where 0 € C* x C(Y). By Lemma there are Cq(n,v) and K1,01,€1 > 0
depending on v,n, v, such that if |u|,|f| < k1 and € < €1, then

(2.11) sup |u] < Cy ( sup |u|+ sup |f|+ v sup |u> .
B(p,1/2) B(p,1)\Ns, B(p,1) B(p1)
We will complete the proof by estimating |u| outside of N5, using the induc-
tive hypothesis.
Given the € > 0 from the inductive hypothesis, there are r,es > 0 de-
pending on n, v, with the following property. If ¢ < e in , then for
all z € B(p,1) \ Ns, there is an r, > r such that

dep(B(z, eilrx), B(d, 6717'5,;)) < €ry,

for the origin o/ C CF! x C(Y’) in a cone that splits off an isometric
factor of C*+1. The reason for this is that if x € C* x C(Y") does not lie in
CF x {0}, then the tangent cones at z split an additional Euclidean factor by
Cheeger-Colding [1, Theorem 6.62] and Cheeger-Colding-Tian |3, Theorem
9.1].

At such a point = € B(p, 1)\ Ns, consider a ball B(z, ;) scaled up to unit
size, which we denote by B(z/,1). We can assume that 7, ! is an integer, so
the rescaled ball is also the limit of a sequence of polarized Kahler-Einstein
manifolds. On the rescaled ball B(2’,1) we have the equation

(' +V=100u')" = e!' W™,

2w, ' =r;?u and f' = f. In particular

where W' =1}

sup o] <75 * sup Jul,

B(z',1) B(p,1)
sup |f'] < sup |f],
B(z',1) B(p,1)

and
day(B(z',e 1), B(d,e 1)) < e
We can now choose k,d, € small enough, depending on n,v,v (recall that

ry > r and r depends on n,v,7) so that the inductive hypothesis applies,
and therefore

sup |u| <C sup |u'[+ sup |f'|+v sup || ].
B(x',1/2) {r},>d}NB(a’,1) B(z',1) B(z',1)

Here we are writing 7, for the harmonic radius in the scaled up metric. We
have 7}, = r; 'rj,. Scaling back down we have

\U(ﬂﬂ)\§0< sup lul + sup rI|f|+~ sup M)
{rp>rz0}NB(z,ry) B(z,rg) B(z,re)

§C< sup |u|+ sup [f|+~ sup M)-
{rp,>ré}NB(p,1) B(p,1) B(p,1)
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Since © € B(p,1) \ Ns, was arbitrary, this inequality together with (2.11)
implies the required result. O

Finally we can give the proof of Theorem

Proof of Theorem[2.1. Given e > 0, by Cheeger-Colding [1] there exists a
p > 0, depending on €, n, v, with the following property: for all z € B(p,1/2)
we have some p; > p such that

dGH(B($, 6_1,012)7 B(07 6_1[):1:)) < €0z,

for o € C(Y) in some metric cone C(Y). We can then rescale the ball
B(x, p;;) to unit size, and if €, k, 6 is chosen sufficiently small, then we can
apply Lemma to bound |u(x)| similarly to the argument in the proof of
Lemma 2.3 O

3. DECAY ESTIMATE

The goal of this section is to prove a convergence result, Proposition
below, which contains some common features of Theorem and Theo-
rem Let (Z,p) be the Gromov-Hausdorff limit of a non-collapsing se-
quence of polarized Kéahler-Einstein manifolds of complex dimension n, and
let C'(Y') be the tangent cone at p. We will define a family of model metrics
in a neighborhood U of p in Z parametrized by small quadratic harmonic
functions on C(Y') which generate automorphisms of C(Y'), and prove an
abstract decay estimate, Proposition for the family. Throughout this
section, as well as later on, we will denote by W(e) functions satisfying
lime_,o ¥(e) = 0.

We first recall some important properties of subquadratic harmonic func-
tions on C(Y). The following lemma combines results going back to Cheeger-
Tian [4, Section 7], Conlon-Hein [15, Corollary 3.6] and Hein-Sun [26, The-
orem 2.14] when C(Y') has an isolated singularity:

Lemma 3.1. Suppose C(Y) is a metric tangent cone of a non-collapsed
Gromov-Hausdorff limit of Kdhler-Einstein manifolds. Let r denote the ra-
dial coordinate so that r0, is the homothetic vector field. Let J denote the
complex structure. Suppose u is a harmonic function on C(Y). Then we
have the following:

(1) If u is s-homogeneous (V,p.u = su) with s < 2, then w is plurihar-
monic.

(2) If u is 2-homogeneous harmonic, then u = uj + uz, where uy is
pluriharmonic, and uy is J(ro,)-invariant.

(3) The space of real holomorphic vector fields that commute with r0,
can be written as p® Jp, where p is spanned by r0, and vector fields
of the form Vu, where u is a J(rd,)-invariant harmonic function
homogeneous of degree 2. Jp consists of real holomorphic Killing
vector fields.
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Proof. In our setting the singular set has Hausdorff codimension at least
4 [3]. To deal with the singular set we can use the cut-off functions for
example in |10, Lemma 2.3]. (1) is proved in [10, Corollary 2.18]. For (2)
and (3), see [9, Proposition 3.19] for more details. O

On U, we consider a family of Calabi-Yau metrics on the regular set of U
with tangent cone C'(Y') at p, satisfying properties that enable a decay esti-
mate. To proceed, let H denote the space of quadratic harmonic functions
h such that Vh generates a biholomorphism which commutes with scaling.
H as a vector space is equipped with the L* norm on B(0,1) C C(Y). For
h € H let us denote this norm simply by ||A||. In the following, we fix an
embedding F,, : B(0,1) ¢ C(Y) — C¥ whose components are given by
polynomial growth holomorphic functions.

Definition 3.2. Let U C H be an open neighborhood of 0 € H. A family
F of model Calabi-Yau metrics consists of a set of Calabi-Yau metrics wy,
on the regular set of U, whose metric completion is homeomorphic to U,
parametrized by h € U, with the following properties:

(1) For sequences h; € U and r; — 0, set B; = Br;% (p,1). Then

hg

there is a sequence of holomorphic maps F; : B; — CV, and ¥(i~1)-
Gromov-Hausdorff approximations f; : B; — B(0,1) such that |F; —
Foo fi] < W(i™h).

(2) The volume form wy is independent of h € U.

(3) For h,k € U and r > 0, we have |d,, — d,| < C(||k| + ||h]])r on
Bwh (p7 T)‘ _

(4) For h,k € U, on By, (p,2) we have wy = wp, + v/—199u, and for
every r > 0, we have |u| < C||h — k||7? on By, (p, 7).

(5) Suppose that there are r; — 0 and sequences h;, k; € U such that
|hill, kil — 0. Write wg, = wh, + v—100u; as in (4). For any
e > 0 and K a compact set in the regular set of B(0,1) C C(Y),
there exist compact sets K; C Br;%h.<p7 1) such that K; — K in
the Gromov-Hausdorff sense, and '

15 2w — fi (ki — i)l < ellki — hal

on K for all sufficiently large i, where f; is the Gromov-Hausdorff
approximation in (1).

In each of the applications below (see Sections and, the model metrics
are isometric up to small scaling and biholomorphism. In general we expect
to have higher dimensional families of model metrics, and we expect in such
cases Definition can be suitably adapted.

The following lemma shows that we have higher regularity of the solutions
to the complex Monge-Ampere equation if the L norm is sufficiently small.

Lemma 3.3. Suppose that B(p,2) is a ball in a Kdhler-Einstein manifold
of complex dimension n, with metric w satisfying Ric(w) = dw, such that
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in suitable coordinates z' the components w;; satisfy |03(5i5 —w;j)| < 5 in
terms of the Buclidean metric 0;;. If € > 0 is sufficiently small, then we
have the following.

Suppose that 1 = w + /—100u is another Kdihler-Einstein metric on
B(p,2) with Ric(n) = cn and 0" = efw™, so that

’U|7 |f|7 ’C|, |C/| < €.
There exist C, > 0 depending on the dimension n and on k, such that
[ullor.a(B(p1)) < Cke

Proof. All the operators and norms below are taken with respect to w, and
the constants C} may change from line to line. Note first that from elliptic
regularity for the equation Ric(w) = ¢/w, we obtain higher order estimates
|0%w;;| < Cy for the components of w. From the equation 7" = efw™ and
the Kihler-Einstein condition for w and 7, we have ¢n = —/—1900f + cw,
so the function v = cu + f satisfies /—100v = (¢ — ¢)w. It follows that
Av = (' = ¢)n. Using the Schauder estimates we then have ||v||ox < Cke
on the ball where {|z] < 1.9}.

We now rewrite the equation in a form so that Savin’s small perturbation
result [34] can be applied. Consider the equation

(w + V—=100ug)™ = e’ “oy™

for up, with up = 0 on the boundary of the ball {|z| < 1.9} in our coordinates.
Define

F:C3% x C** x R — C%

(ug, v, c) — logdet — v+ cug,

((w + leaauo)">
wn

where C’g’o‘, C?% denote functions on the ball {|z| < 1.9}, with zero bound-
ary values in the first case. Note that F(0,0,0) = 0, and the linearization
at (0,0,0) in the ug direction is A 4+ ¢. As long as ¢ is sufficiently small,
this operator is invertible. By the implicit function theorem, for sufficiently
small v € C?® and ¢ € R we can find ug that satisfies the equation, with
|lugl|cz.e < &, where § > 0 can be made as small as we like by choosing e
small.

To write our equation in a different form, let h = u — ug. Then h satisfies

(w + V=100ug + V=100h)" = e~ "e’~“0u",

Thanks to the bounds for v and wug, the above equation is uniformly elliptic,
and h = 0 is a solution of it. By Savin’s theorem [34], for any given § > 0 we
have [|h[|c2.a(Bp,1)) < 0 once h is sufficiently small in L. It follows that if
€ is chosen sufficiently small, then h and ug, and therefore also u will satisfy
|u|c2 < 6 on the ball {|z] < 1.8}.
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Let us now write the equation (w 4 /—100u)" = efw™ for u as
(3.1)

(nw"l + (n> WA (V=190u) + - - - + (\/Iaau)“) AV=100u = (e/ — 1)w™.

2

If § is sufficiently small, then this can be written as a uniformly elliptic linear
equation

Pu=¢el —1,

where the coefficients of P (which depend on u) are bounded in C*. Note
that if |f| < e for small ¢, then |e/ — 1| < 2¢. We can now use standard
LP and Schauder estimates, as well as bootstrapping using the estimates
that we already have for cu + f, to obtain |u|cx < Cke on the smaller ball
{l]z| < 1.7}. O

We will need the following result, which allows us to estimate the dif-
ference between the distance functions of a model metric and a Gromov-
Hausdorff limit. This will be used in the proof of Proposition below, to
ensure that along the iteration procedure the distance functions of the two
metrics that we are comparing remain close to each other at smaller and
smaller scales.

Lemma 3.4. Let A\ > 0. Then for all sufficiently small € > 0 and r > 0,
the following holds. Let w = wy, € F be a model metric with ||h| < e. Now,
suppose 1 is another Kdhler-FEinstein metric on the reqular set of B, (p,2r)
obtained as the non-collapsed Gromov-Hausdorff limit of polarized Kdhler-
Einstein manifolds, with the following properties:

e Ric(n) = cn with || < r~2¢;
0"t = elw™ with |f| < €;
w =1+ /—100u with |u| < r?e;
|d, — dy| < r/100.
Then we have |d, — dy| < Ar on B, (p,r).

Proof. We argue by contradiction, supposing that we have ¢;,r; — 0 and
corresponding n;, f; and u; such that the result fails. Let us rescale the
metrics by setting &; = r;zw,ﬁi = r;zni. Set A; = Bj(0,1) and B; =
Bg,(0,2). By the assumption on |dy, — dp,| we have the inclusions ¢; :
A; C B;. To get a contradiction, we will show that ¢; is a ¥(i~!)-Gromov-
Hausdorff approximation for sufficiently large i. Let us define ¢; = F; o ¢;,
where F; are the maps in property (1) of Deﬁnition Then 1; : A; — CV
are holomorphic maps. By property (1) of Definition we have |[¢;| < C
for some constant C' > 0 once ¢ is sufficiently large. Then by the gradient
estimate for holomorphic maps, we have |V1);|5 < C for a uniform constant
C > 0. This implies that 1; are equicontinuous.

We claim that for all € > 0, there exists § > 0 such that if z,y € B;
and |F;(z) — Fi(y)| < 6, then dg,(x,y) < e. If this is not the case, then
there exist z;,y; € B; with |Fj(z;) — Fi(y:)|] — 0 but dg,(zi,v:) > €. By
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passing to a subsequence, we may assume that z; — x and y; — y for
z,y € B(0,2) under the Gromov-Hausdorff convergence B; — B(0,2). The
maps F; converge in the Gromov-Hausdorff sense to the fixed embedding
Fy : B(0,2) C C(Y) — CN. It follows that F(x) = F(y) but do(yy(z,y) >
€, contradicting the fact that F' is an embedding. This proves the claim.

It follows from the claim that the maps ¢; = F;l o 1p; form an equicon-
tinuous family of maps from A; to B;. Thus there exists a subsequence of ¢;
converging to a map ¢, : A — B under the Gromov-Hausdorff convergence
A; = A and B; — B. Let us denote the singular Kéahler-Einstein met-
rics on A and B by w4 and wpg, respectively. The proof can be concluded
once we show that ¢ is an isometry onto its image. Since A is the metric
completion of its regular set R4, it is enough to show that for x,y € R4,
d(z,y) = d(poo(x), doo(y)). Note that by property (1) in Definition we
have B = B(0,2) Cc C(Y).

Let v be a minimal geodesic connecting x,y. By Colding-Naber [14], v
lies entirely in R 4. Let V be an open set containing v such that the com-
pact closure of V is contained in R 4, and let V; C A; be the corresponding
open sets converging to V under the Gromov-Hausdorff convergence. On V;
we have uniform bounds of the geometry of 7j;, so by Lemma [3.3] we have
bounds |V7(7}; — ¢t@;)| < Ce; on V; for j = 0,1. Letting i — oo, it follows
that ¢ : V — V' is an isomorphism onto its image, and ¢ wp = wa. So
we have da(z,y) = length,, () = length,, (¢oc ©7) = dB(doo(), Poo(¥))-
To prove the opposite inequality, let us now suppose that 4 is a minimal
geodesic connecting ¢oo(x) and ¢oo(y). Since B = B(0,2) by property (1)
Definition by Colding-Naber [14] 4 is contained in an open set W with
compact closure in the regular set of B. Let W; be open sets in B; corre-
sponding to W under the Gromov-Hausdorff convergence B; — B, and let
~v; C W; be curves converging to 4, with endpoints x; — =, y; — y. Over W;
we have smooth convergence of the metrics 7; — w4 and @W; — wp in the
Gromov-Hausdorff sense. So we have dp(doo(T), Poo(y)) = length,, (7) =
lim; o0 lengthg, (7;) = lim; o0 length;, (78) 2 lim; o0 diy, (24, i) = da(z,y).
We have shown that ¢ is an isometry onto its image, so it follows that ¢;
is a ¥(i~!)-Gromov-Hausdorff approximation. O

The main result in this section is the following abstract decay estimate.

Proposition 3.5. There exist constants C,a, A > 0 (depending on the cone
C(Y)) A < 1 such that for e,r > 0 sufficiently small, we have the following.
Fiz a model metric wy, with ||h|| < e. Let n be another metric on By, (p,2r)
obtained as the non-collapsed Gromov-Hausdorff limit of a sequence of po-
larized Kdihler-Einstein manifolds. Suppose that n = wy, + v/—100u on
B, (p,2r) satisfies n* = e/wl, and for some k < € we have Ric(n) = cn for
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lc| <772k, and
r
|d77 - dwh| < 100°

lu| < r’,
IV fly < 7 ke,
flp)=0.

Then we can find another model metric wy and a smooth function u' on
By, (p,r) satisfying

(1) wp + \/—13511 = wg + \/-185@/,

(2) Ik — bl < Cr.

(3) SupBwk (p,4Ar) |ul| < A2y,

We remark that the advantage of working with a bound for the gradient
|V f|y, rather than with the sup norm |f|, is that after scaling the gradient
bound improves. At the same time, using the estimate for the distance
function of 7, the gradient bound together with the condition f(p) = 0
implies a corresponding bound |f| < 4ke.

Proof. We argue by contradiction, so suppose there are €;,7; — 0,k; < €
and corresponding hi, mi, u;, f; with [|h|| < kg, |uil < 12k, |Vl < ki€
such that no suitable o, A exist. We will show by passing to a limit that for
large enough 4, the statement actually holds for some «a, A, thus reaching a
contradiction. The argument is similar to the proof of Proposition 4.1 in
[37]. In the following C' > 0 will denote a uniform constant, whose value
may change from line to line.

Let us scale up the metrics by defining 7; = r; 20, wi = Ty 2whi and
@; = r; 2u;. By the gradient bound for f; and the estimate for |duy,, — dy,|
we see that |fi| < 2k€; on By, (p,1.9). Note that @; satisfies

(wi + V—1001;)" = efiw?,
with |%;| < k; on By, (p,1.9). By Lemma [3.4] we have
(3.2) |dﬁi —du;| < \Ij(iil)

on By, (p,1) once i is sufficiently large. It follows from and property (1)
of Definition [3.2] that both By, (0,1) and B,,(0,1) converge to B(0,1) in the
Gromov-Hausdorff sense.

By Lemma for all sufficiently large i we have ||t;[|ck.a(a) < Ck aki
on any compact subset A of the regular set of B,, (p,1). So by passing
to a subsequence, K;I’LNLZ' converges locally smoothly to a function A on the
regular set, satisfying |h| < 1. On the other hand, writing the equation
for @; in the form of Equation , we find that away from the singular
set, h is a harmonic function on B(0,1) with respect to the cone metric
Woy) = $v/=180r?. Since |h| < 1 and the singular set has codimension at
least four, h extends as a harmonic function across the singular set as well.
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We can decompose h into a sum of homogeneous harmonic functions on
the cone C(Y'), and we write h = h=? + h>2, where h=? collects the com-
ponents with at most quadratic growth and ~A>? is the rest. By Lemma
we can further decompose h=2 = hpn + haut, where hyy, is pluriharmonic and
haut € H. Since hyy, is pluriharmonic, hyy, is the real part of a holomorphic
function, which is a restriction of a holomorphic function on CV. Using the
biholomorphisms in property (1) of Definition it follows that hy; also
defines a pluriharmonic function h,p; on the scaled-up ball By, (p,1) and
hpn,i converges uniformly in the Gromov-Hausdorff sense to hyy,.

We now write down the new potential. For this let us define k; =
hi + kihaut € H. For sufficiently large i we have k; € U. Consider the
corresponding model metric wy,. By property (4) of Definition we have

Wi, = wp, + v/ —100v; with
(3.3) |Uz| < Csz - hiHT2 < CHiT'Q
on By, (0,7). Let us define w; = r; 2wy,. By property (3) of Definition

we have
(3.4) |dg; — duw,| < Ce;

on By, (p,1).
Now we switch our reference metric from wy,; to wy,. We have

= wy, + V=190(u; — v; — 2855 hpn ;)
o, VT00M,

where we define u} = u; — v; — r2k;hppi. By the estimate (3.3) for v; and
the assumption of u; it follows that on B, (p,2r;) we have

(3.5) lul| < Cryr?
By property (3) of Definition it follows that the same estimate also
holds on By, (p,r;). Let us define @, = r;%u). Then r; '@} converges to

h>2 over compact subsets of the regular set of Bz, (p,0.8). To see this, let
A be a compact subset of the regular set of By, (p,0.8). Using the Gromov-
Hausdorff approximations as in property (5) of Definition we compute
|k; it h>2\ < w; g — b+ |h = 2 o — iy — B2
( ) + |hph - phi| + ’7‘2-_2/&;1’07; - haut|
( 1) | Ul Kihaut’
( 1) +"€ 1\II( )”{ihaut|
-1
).
The second inequality uses the fact that x; "u; converges to h, while the
second to last inequality uses property (5) of Definition We will show

1
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that @/ is much smaller than k; on a smaller ball, using that it is modeled
on a harmonic function of growth rate strictly greater than 2. Away from
the singular set this follows from the convergence H;lﬂ; — h>? as shown
above. To extend this estimate across the singular set we need to apply the
non-concentration result in the previous section.

Let us first make precise the required decay for h>2. Define the normalized
L? norm of a function f on a ball B by ||f[|% = vol(B)™! [ f2. Since h>?
has faster than quadratic growth, there is an a > 0 depending only on the
cone C(Y) such that

||h>2HB(O,16r) < C'7’2+204||h>2||3(0,1)
for any small r > 0. By the mean value inequality for harmonic functions,
sup |h7?| < CHh>2HB(O,16r) < Cr*tre,
B(0,87)

We think of r as fixed, to be chosen below.

To apply the non-concentration result in the previous section, we need to
work with respect to 7); instead of @;, since @; in general is not a Gromov-
Hausdorff limit, while 7j; is. By property (3) of Definition and the esti-
mate (3.2)), we see that for i sufficiently large, on B, (p, 1) we have

(3.6) |d, — da,| <1

Let us now scale up by (16r)~!, replacing @; by (16r)~2@; and 7; by
(16r)~%7;. Define U! = (16r)~2r; %u}. From (B.5) we have |U!| < Crr—2
on By, (p,2). So by (3.6) we have |U/| < Ck;r=2 on B, (p,1). Let 7y
denote the harmonic radius of &;, and let § > 0, whose value is to be
determined later. On {rj, > 6}, U/ converges smoothly to (16r)~2k;h>2. So
on {r, > ¢} N By, (p,2) we have

U < Cr*k;.

Let 7, be the harmonic radius of the metric 7;. By Lemma for 4 suffi-
ciently large we have {7, > 26} C {r, > 0}. It follows that

sup Ul < Cr*“k;.
By, (p,1)N{7,>246}

Note that on By, (p, 1), using property (2) of Deﬁnitionwe see that U]
satisfies the equation
(i — V—199U})" = e~ Fig?,
and we have |f;| < 2k;¢;. We are now ready to apply the non-concentration

theorem, Theorem Given v > 0, Theorem [2.1] implies that there exists
0 > 0 such that

sup |Uj| < C sup |Uj|+ sup |fi| +v sup |Uj|
B’fh(p705) Bﬁl(pvl)m{fh>26} B’F]i(p71) Bﬁi(lhl)

< C’(mr%‘ + ki€ + 7/@1-7“_2).
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242a

Choosing v = r and ¢ sufficiently large so that also € < 2%, we then

have

sup |U!| < Crir®.

Scaling back this estimate, we find that for sufficiently large i (depending
on r), we have

sup |U/| < Cryr?*t2e.
By, (p,87)

By the distance estimates (3.2)) and (3.4) it follows that
sup |Ul| < Crgr? 2>
B(Z}i (p747")
once ¢ is sufficiently large. We can now choose r = A small enough so that

sup U < mid2te,

Scaling down by r;, we get

sup  |uf] < A AFTOr2,
Bwki (pa4)‘7'1)

This gives the required contradiction. O

We can now state the abstract convergence result. To do so, we need the
following definition. Recall that Z is a non-collapsed Gromov-Hausdorff
limit of polarized Ké&hler-Einstein manifolds, wy is the singular Ké&hler-
Einstein metric on Z, p € Z, and the tangent cone at p is C(Y). Assume
that U is a neighborhood of p, and on U there is a family F of model metrics.

Definition 3.6. We say that wyz can be approximated by F if the following
holds. Fix any 0 < k < €. Then for all » > 0 sufficiently small, there
exist A > 0 and an embedding F : B, (p,2r) C U — Z from the ball with
respect to w = wy € F such that F(p) = 0 with the following properties.
Let n = AF*wyz. Then on By, (p,2r), the following hold:

(1) Ric(n) = en with || < r2e.

(2) 7™ = efw™ and n = w + /—100u, with

lu| < K, fp) =0, [Vf],< r~ke.
(3) |dy — dw| < r/100.

Proposition 3.7. Suppose that at p € Z, wyz can be approximated by a
family of F of model metrics in a neighborhood U C Z of p. Then for
some rg > 0, there is a model metric w € F and a holomorphic embedding
F : B,(p,m0) — Z, with F(p) = p, and constants A,C,a > 0, such that

AF*wy; = w + v/ —190u,
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for some u, defined on B, (p,r), and

sup |u,| < Crte
Bu(pr)

for all r < ry.

Proof. We iterate the decay estimate, Proposition[3.5], as well as the distance
estimate, Lemma Let C,a and A be the constants in Proposition
and let €, r be sufficiently small so that both Lemma |3.4| and Proposition |3.5
hold. At the initial stage we let x < C~!(1 — A*)e. Exactly how small ¢
should be will be clear later. By letting r be smaller if necessary (depending
on K, €), we have the corresponding approximation F' : By, (p,4r) — Z, where
w = wy € F, with constant A > 0. Write n = AF*wz. Then Lemma
implies that we have |d, — d,,| < Ar/200 on the ball B, (p,2r). We write
ho = 0.

Applying Proposition we have a model metric w; = wp,, with ||h1]] <
Ck < ¢, and a function u; on B, (p,r) such that n = wp,, + v/—100u;, and

sup  |ug| < A2top2,
B (p,4Xr)

By property (3) of Definition it follows that

sup  |ug| < A2k,
By (p,227)

Also by property (3) of Definition on By, (p,2\r) we have
Ar
s — ] < Ol + oll)r < 2Cehr < 2

if we choose € to be sufficiently small. Consequently, on B, (p, 2Ar) we have

Ar
|dn _dw1| < |dn _dw’ + |dw _dw1| < m
The metrics 7 and w1 now satisfy the conditions of Lemma |3.4|and Proposi-
tion with r replaced by Ar and x by A*k. We can iterate this construc-
tion and we obtain a sequence of model metrics w; = wp, with |hiv1 —hil| <
C(AY)'k such that on By, (p, 2A\'r) we have n = w; + v/ —190u; with
sup [ui] < (V)2anr?.
B(p,2Xir)

The harmonic functions h; converge to a harmonic function k satisfying

k|| <€, so k € U if € is chosen small enough. Let & = wy be the corre-

sponding model metric. By property (4) of Definition there exists v; on
B (0,1) such that

Wy — w= vV —185%‘,
with

sup  |vi| < Callk — hil|(Nir)? < C3(A)FH o2k,
Bg (p,\ir)
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So on Bg (0, A'r) we have
n=uw;+ v —185ui =w+ vV —185(1” + UZ‘) =W+ vV —1851@,
where 4; = u; + v;. Then 4; satisfies

sup ;] < (14 C3)w(A)*Tor? < O'(\ir)2He,
Bz (0,\Pr)

where C" = (14 C5)xr~®, and so @ and @; are as required. O

4. K-POLYSTABLE SINGULARITIES

Suppose, as above, that (Z,p) is the non-collapsed pointed Gromov-
Hausdorff limit of a sequence of polarized Kéhler-Einstein manifolds, with its
singular Kéhler-Einstein metric denoted by wz. Let C(Y') denote the metric
tangent cone to Z at p. In this section we assume that the germ (Z,p) is
isomorphic to the germ (C(Y'),0), where o is the vertex of the cone C(Y).
In particular this means that the affine variety C'(Y'), equipped with the ho-
mothetic vector field £ induced by the cone structure defines a K-polystable
Fano cone singularity (C(Y),&) in the terminology of Li-Wang-Xu [29].

In this section we prove our first main result, Theorem by reducing
it to Proposition For this we need to construct a family F of model
metrics on C(Y') and then show that the Gromov-Hausdorff limit wy can be
approximated by F.

The construction of F is fairly simple, since the model space C(Y) is
already a cone. Let H denote the space of quadratic harmonic functions
h such that Vh generates a biholomorphism which commutes with scaling
(see Lemma [3.1). For h € H, let ¢(t) be the one-parameter group of bi-
holomorphisms generated by %Vh. By the gradient estimate and h being
homogeneous with quadratic growth, we have
(4.1) ., sup  [Vhlugy, <C sup |hlr=t < C|\h|r

cv)(0,r) Bey)(0,2r)

for all 7 > 0. Let g = ¢(1) and define wy, = g*we(y)-

Lemma 4.1. There exists a neighborhood 0 € U C H such that F = {wy, |
h € U} is a family of model metrics.

Proof. For simplicity let us write w = wg(y). We verify the properties
in Definition Property (1) is automatic since C(Y) is a cone itself.
Property (2) is satisfied since the automorphism ¢ is generated by Vh for a
harmonic function h.

Let us consider property (3). Let z,y € B(0,r) be regular points. By
differentiating d,,(0, ¢(t)z) and using (4.1)), we see that

(4.2) dy, (0, ¢(t)x) < CIMtg, (0, z).

Similarly, by differentiating d,(x, ¢(t)z) and using (4.1) and (4.2) we see
that

(4.3) dos(z, gz) < C(eCM —1)d (0, 2) < C||h||dw(0, z).
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For z,y € B, (0,r), the triangle inequality together with (4.3) gives

|du(92, 9y) — du(z,y)| < |dw (2, 92) + du(y, gy)| < C|A][(dw (0, ) + du(0,y)).
This proves property (3).

To see property (4), recall that w as a cone metric is given by w =
V/—109(r?/2), where r is the distance to the vertex 0. Differentiating ¢(t)*r?
and using (4.2), we get
(4.4) lg*r? — 2| < C||h||r2.

Now, let g, and g; denote the automorphisms generated by h and k, respec-
tively. Define

u=gir® — gpr® = gi(r* — g*r?),
where g = gng;. ! By standard Lie theory, for sufficiently small h, k, we have

g = gj for some h € H with h = h — k + O(||h — k||||h]|). Then (£2) and
(4.4) together imply that

[ul = |gi(r* = g*r®)| < Cllh = kllgir® < Cllh — k||

once h,k are sufficiently small. Since wp = wj, + v/—100u, this proves
property (4) of Definition for a sufficiently small neighborhood U of
0e H.

Finally, let us prove (5). Fix K a compact set in the regular set of B(0,1).
Let r; — 0 and h;, k; € H such that ||h;]|, ||k;|| = 0. Let K; be compact sets
in the regular set of Br;%h. (0,1) converging to K in the Gromov-Hausdorff
sense. Since wp, is a cone metric, we may work as if r; = 1. Thus on
B, (0,1) we can simply take K; = g, K. To simplify the notations we
suppress the subscript ¢ in what follows. Let ¢(t) and ¥(t) be the flows
of Vh and Vk, respectively, and set g, = ¢(1) and gx = 1(1). Then we
have wy = wy, + —190u with u = g;(r?/2) — g (r?/2). If ||h||,||k|| are
sufficiently small (depending on K), then we can expand 1 (¢)*r? and ¢(t)*r?
as power series in t for t € [0, 1], whose coefficients depend on Vh, Vk and
the derivatives of 72. As a consequence we have an estimate of the form

(15) g7 — 1 = JVA(?)| < CIVAE, < Clhl?

on K, where the last inequality follows from (4.1). Note that since h is
homogeneous with degree two, we have Vh(r?) = 4h.

Now, if h, k are sufficiently small, we have h € H as above. Using ,
we compute

lgir? — gir® = 2(k — h)| < gi|r® — gir® + 2h| + 2|(h — k) — g;h|
< C|lh|I* + Cllh — K| |11l
< ellh — kK|
for any € > 0 once h, k are sufficiently small. This proves (5). O
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It remains to show that wz can be approximated by F. As in Donaldson-
Sun [20], we let A = 1/4/2, and let (Z;,p;) denote (Z,p) scaled up by a
factor of A%, which is still a pointed Gromov-Hausdorff limit of polarized
Kaéhler-Einstein manifolds. Let B; denote the unit ball around p;, i.e. the
ball B(p, \") scaled up to unit size. Let us denote the unit ball in C(Y) by
B, and let Fy, : B — C¥ be an embedding given by an L?-orthonormal set
of homogeneous functions. Using this embedding we will also view C(Y') C
C¥. Since C(Y) is the tangent cone at p, we have B; — B in the Gromov-
Hausdorff sense. We choose distance functions on the disjoint unions B; LI B
realizing the Gromov-Hausdorff convergence.

Proposition 4.2. For sufficiently large i we have holomorphic maps F; :
B; — CN satisfying the following properties, where ¥(i~1) denotes a func-
tion converging to zero as i — 0.
(1) Under the Gromov-Hausdorff approzimations between B; and B we
have |F; — Foo| < W(i™1), and the image F;(B;) C C(Y).
(2) Let wi = (F;1)*(\%wy) denote the metric on the image F;(B;)
induced by \"*wz. Then we have Ric(w;) = cjw; for some |c;| <
U (i~1), and the distance functions d,,,,d satisfy |duw, — duwe | <
W(i~t).
(3) We have w}* = efiwg(y) and w; = we(yy + V—100u; with f;(0) =0
and |Vfi’wi, |u2\ < \I/(i_l).
In particular wz can be approzimated by F in the sense of Definition [3.6]

wo(y)

Proof. Let O, be the ring of germs of holomorphic functions on Z at p. As
in Donaldson-Sun [20], for f € O, we can define

dKE(f) — lim SuPpB(p,r) log |f| ‘
r—0 log r
By Li-Xu [30, Theorem 1.4], dxg is the unique K-semistable valuation in
Valz ,. On the other hand, C(Y’) admits a Ricci-flat Kéhler cone metric, and
so the homothetic scaling on C(Y') gives rise to a K-polystable valuation
by Li-Wang-Xu [29, Corollary A.4], which in particular is K-semistable. It
follows that these two valuations coincide.
The coordinate ring R(C(Y)) is a sum of the homogeneous pieces

R(C(V)) = @ Ra, (C(V)),
k>0
where Ry, is the degree dj, piece under the homothetic action. Let us sup-
pose that R(C(Y)) is generated by the functions of degree less than D,
and let kg = max{k > 0|d, < D}. We have a subspace P C O, and
an adapted sequence of bases for P as in |20, Section 3.2], which for suffi-
ciently large i define holomorphic embeddings F; : B; — C~. Under the
Gromov-Hausdorff convergence B; — B C C(Y), the maps F; converge to
an embedding B — CV using an L?-orthonormal set of homogeneous func-
tions in R(C(Y")) and up to modifying our maps by unitary transformations
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we can assume that this embedding of B coincides with our embedding Fi,.
We will denote the L?-norm of functions on B; by || - ||;.
Recall that the adapted sequence of bases are bases {G}, ...,GI"} of P
satisfying the following:
e The L? norm on B; satisfies ||G¢||; = 1, and (G%, G?); — 0 as i — oc.
e We have G¢ = ;' G¢ | + p?, with |[p¢]l; — 0 as i — oco.
° Mz‘a—>/\d“ as i — 00.
For each a,i we can write
G} = gi + ki,

where gf is homogeneous of degree d, and k{ has strictly greater degree.
There exists an € > 0 such that for all a,? we have d(k{") > d, + €. Let us
also decompose p¢ = (p?)q, + (p?)>q, into the homogeneous degree d, piece,
and the remainder. We then have

G = g (951 + ki) + 1t
and so
9% = tig gty + () das
k§ = g Ky + (08) >, -
Since d(k{ 1) > dq + € and p1iq — M\la  for sufficiently large i we have

Nkl < it A2 ke iy < A RS ]ios

It follows that ||k¢|| — 0 as i — oo, and so if we define the functions Fj to
have components g, then suppg, |F; — 1*:'7,] — 0. We claim that for sufficiently
large 1, F, is also an embedding. To see this, suppose that F; is not an
injection. Since there are no compact subvarieties in B;, F; is finite. By
our assumption, for a generic regular point ¢ € C(Y'), there are at least two
preimages p1 4, p2,; under FZ Note that from the convergence Fi — F, we
also have py j,p2; — p for some p € C(Y) in the Gromov-Hausdorff sense.
F is a biholomorphism on a neighborhood of p and therefore so is F} for
large enough 1.

We claim that further modifying the F; by elements in GL(N) converging
to the identity, and commuting with the homothetic action on C(Y'), we can
assume that F5(B;) C C(Y) € CV. To see this, recall that the homothetic
action on C(Y") generates the algebraic action of a complex torus 7" on C(Y),
which we can assume is given by a linear action on CV. By our construction
each F;(B;) lies in the image g;C(Y') of the cone by a matrix g; € GL(N)”
commuting with 7. We need to show that there are elements h; € GL(N)7
converging to the identity such that h;g;C(Y) = C(Y). Since C(Y) ad-
mits a Ricci flat Kéhler cone metric, the group of linear automorphisms of
C(Y) commuting with 7" is reductive (see Donaldson-Sun [20]). Using this,
we can apply the variant of Luna’s slice theorem shown in Donaldson [18,
Proof of Proposition 1] to the multigraded Hilbert scheme. In this Hilbert
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scheme we have ¢g;C(Y) — C(Y), and therefore there are some h; — 1 in
GL(N)T such that h;g;C(Y) lie in the slice at C(Y). The orbit of C(Y)
can only meet the slice at finitely many points near C(Y"), therefore for suf-
ficiently large i we have hjg;C(Y) = C(Y). Replacing the F; by h; o F; we
now have embeddings F; of the B;, satisfying Condition (1) in the statement
of the Proposition.

Regarding Condition (2), the estimate for the Ricci curvature is imme-
diate since by construction Ric(w;) = cA%w; for some |c| < 1. The es-
timate |dw, — ducy,)| < U(i~!) follows from the estimate |F; — Fao| <
U(i~1). More precisely, for any ¢ > 0 we need to show that for suf-
ficiently large i we have |dw, — dwcy,| < € Let 2,y € Fi(B;), so that
x = Fi(z;),y = Fi(y;). We can find z,y; € B such that under the Gromov-
Hausdorff approximations we have d(wx;,2}),d(y;,y}) < ¥(i~!), and then
|z — Foo(2))], |y — Foo(y})] < (i) by Condition (1). At the same time we
also have points 2/, 3y’ € B such that © = Fo(2'),y = Fso(y'). Our goal is to
show that |dp(2',y") —dp, (zi, y;)| < € if i is sufficiently large (independent of
x,y), where we are emphasizing that we are taking the distance with respect
to the we(y) and w; metrics by writing dp, dp,. Using the metrics on B; LB
realizing the Gromov-Hausdorff convergence, we have

ldp(2',y") — d, (zi, yi)| < dp(xg,2") + dp(y, y') + d(zi, 27) + d(yi, y;)
< dp(},2') + dp(y}, ) + V(™).

Finally to see that dp(z},z) is small for large i, we can use that |Fy(2}) —
Foo(2")| < (i) and the fact that F_! is uniformly continuous. It follows
that for sufficiently large i we have dp(x},2’) < €/2, and the same holds for
dp(y.,y'). Combining these results, we get |dp(z’,y") — dp, (i, yi)| < € for
large ¢ as required.

Since we(y) is a cone metric, it admits the Kahler potential 1) = %dc(y) (0,-)%.
At the same time, using |31, Proposition 3.1], we can find Kéhler potentials
¢; for w; on F;(B;), such that

61— duslo, )] < WG,

Using the estimate for the distance functions in Condition (2) we find that
w; = wo(y) + vV —100u;, where

1 .
il = 101~ ] = 3l (0,7 — sy (0, ] < V(™).
Since w; satisfies Ric(w;) = cw; and Ric(we(yy) = 0, we have w* = efiwg(y)
for some f; satisfying c;w; = —v/—100f; on the regular part of B, i.e.
vV —186(fi + Cz(ﬁz) =0.

By Grauert-Remmert [23] the pluriharmonic function f; + ¢;¢; extends to
a pluriharmonic function across the (codimension 2) singular set of B. By
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Colding’s volume convergence theorem [12] we have

[ wt = [ wty+wa,
B B

and so since ¢; — 0 as ¢ — oo while ¢; is uniformly bounded, we have

/6fi+ci¢iwg(y) :/wg(y)—l—\ll(z_l)
B B

In particular we have a uniform bound for the L' norm of the plurisubhar-
monic function efit¢% on B, with respect to wg(y), and so by the mean
value inequality on a slightly smaller ball we have a uniform upper bound
efitei® < 1 4+ W(i~!), or in other words f; + c;¢; < ¥(i~!). Similarly, we
have a uniform upper bound for the integral of e=fi~¢®: with respect to Wi,
and so we have —f; — ¢;¢; < ¥(i~!) on a slightly smaller ball. This implies
that |f; + ci¢s| < ¥(i~1), and since ¢; — 0, we obtain |f;| < U(i~!). We can
arrange that f;(0) = 0 by composing the F; by an element of GL(N) close to
the identity, inducing a homothetic scaling on the cone C(Y"). Finally, using
the equation nc; = —A,, f; together with the gradient estimate for harmonic
functions implies |V fil,, < ¥(i~1) as required in condition (3). O

We are now ready to prove Theorem

Proof of Theorem[1.1, By Proposition wz can be approximated by F.
We can set A = 1 in Definition because the model metric wy is a cone
metric. Applying Proposition we see that there exist a model metric
wp € F, rg > 0, and a holomorphic map F': By, (0,79) — Z with F(0) =p
and constants C, « > 0, such that

(4.6) F*wz = wp, +vV—100u,
for some u, defined on B(0,r) and

sup |u,| < Cr¥te
BW}L (077‘)

for all » < rp. By construction (see Lemma , wh = g*we(y)- Thus (4.6)
becomes

(Fog wz =wery +vV—100(ur 0 g71).
Since B(0,7/2) C B,, (0,7), we have

—1 2+«
sup |upog | < Crote.
(4.7) B2

This completes the proof. ([l

In the case of tangent cones with isolated singularities we have the fol-
lowing corollary, generalizing Hein-Sun |26, Theorem 1.4].
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Corollary 4.3. Suppose that in the setting of Theorem the tangent
cone C(Y) has an isolated singularity at the origin. Then the metric ¢*wy
satisfies

sup |V (¢"wz —wor))lwey, < Cir®,
Bloy)\Bloy/2) €M) o

for all r <'rq, constants C;, and the o from Theorem [1.1]

Proof. This follows from rescaling the estimate (4.7)) by a factor of =1, and
then applying Lemma (3.3 (]

5. THE UNSTABLE CASE

In this section we prove Theorem [1.2] Suppose that Z is the Gromov-
Hausdorff limit of a non-collapsing sequence of polarized Kéahler-Einstein
manifold. Let p € Z, and suppose C(Y) is the tangent cone at p. Unlike the
previous section, we deal with an example for which the germ (Z,p) is not
isomorphic to the germ (C(Y), 0), where o is the vertex of the cone. Assume
that

CY)=Cx{f(x)=al+a}+ - +22=0}cC"
This is equipped with the Calabi-Yau cone metric

1 _
wc(y) = 5\/ —188(‘2‘2 + T2),

n—2
where 72 = |z|*»=1 is the distance squared of the Stenzel metric [35]. Recall
that the homothetic action on the coordinates x; has weights w; = Z—:l and

27
f is homogeneous with degree d = 22—:%. We assume that the germ (Z, p) is
isomorphic to the isolated singularity

X={+ari+ - +22=0}cC"

for a fixed integer p > d. The effect is that the C* action extending the
homothetic action on C(Y) degenerates X to C(Y'). By [36, Theorem 2],
there exists a Calabi-Yau metric w on a neighborhood of the singular point
0, whose tangent cone at 0 is C(Y').

As in the previous section, we will prove Theorem by showing that
there exists a family F of model metrics built from applying automorphisms
and scalings to w, and that the singular Kéhler-Einstein metric wz on Z can
be approximated by F near p. We have the following lemma, characteriz-
ing the space H of quadratic harmonic functions whose gradients generate
automorphisms of C'(Y’) that commute with scaling.

Lemma 5.1. Let H be the space of quadratic harmonic functions, whose
gradients generate automorphisms of C(Y') that commute with scaling. Then
H is spanned by

-2
(= D)[=? — J2f =
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and
2
|z T ajpa;T,
where (a;i) € vV—1o(n,R). For h € H there exist a holomorphic vector
field V- on C™*L preserving the hypersurfaces X, = {cz’ + 23 + -+ 22 =
0} € C*"*Y and a constant B such that LyQ = nBQ, where Q = (1/x1)dz A
dxo - - N dxy s the holomorphic volume form on X., and

o P(E Y (Y,

In addition we have || < C||h| and

sup [V, < C||R[|r,
B (0,7

c

i.e. V' has at most linear growth. Here B(o,1) C C(Y') is the unit ball and
we = |8|72Ffw is the rescaled metric on X. with F, : X, — X given by

= -1
F.(z,2) = (sz,s"2z), and s" 2n2 = .

Proof. The first part follows from [37, Lemma 2.2] using Fourier transform
in the C direction or [9, Subsection 3.4.1] using Lemma (3). For the
holomorphic vector fields, it is very similar to the proof of [37, Lemma 2.3].
2~

n—2
The only difference is that when h = |z ﬁm?ﬁ, we consider the real

holomorphic vector field

V =Re (1282 + 1xiﬁzi> .
p 2

Then V preserves the hypersurfaces c2? + 22 + - - x2 = 0, we have

24+np—2 2n—2—-np+2
VO = (PR (o ) = (2R,

and we have

2 -2
Ly = <+npp> Q.

2p
The estimate for |V, is analogous to |37, Proposition 2.1 (2)], using the
construction of w. O

We now construct the family of model metrics. Let h € H. Then by
Lemmathere exists a vector field V on C"*! and a constant 3 > 0 (both
depending on h) satisfying the required properties. Let ¢(t) be the one-
parameter group of biholomorphisms of X generated by V. Set gn = ¢(1)
and define wy, = e_Bg;';w.

Lemma 5.2. There exists a neighborhood 0 € U C H such that F = {wy, |
h € U} is a family of model metrics in the sense of Definition |3.2.
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Proof. This is similar to the proof of Lemma 4.1 By the construction of
w, for r; — 0, (r;+) : B,(0,1) — C"*! is a holomorphic map which is
a ¥ (i~!)-Gromov-Hausdorff approximation in the sense of property (1) of
Definition where - denotes the homothetic scaling. Let h; € H be a
bounded sequence, and consider the corresponding model metrics wy, =
e_Big;kw. Since r] = r;iePi/2 — 0 as B; are bounded (Lemma , it follows
that F; = (rj-)og; : B2, (0,1) — C"*lis also a ¥(i~1)-Gromov-Hausdorff
approximation. This establishes property (1) for any bounded neighborhood
Uof0OeH.

Property (2) follows from Lemma Property (3) is entirely similar to
the proof of Lemma For the rest, recall that w = /—190¢, where we
have

sup || < O,
which follows from the construction in 36 Section 8]. Since Ay e = n, we
can apply the gradient estimate in annuli to get
sup |Vl < Cr
B, (0,r)
for all » > 0. Differentiating ¢(¢)*¢ and using the bounds in Lemma we
have

gt — | < C||h|r?

for all 7 > 0. It follows that e Pgip — ¢| < C||h||r?. Now let k € H
be another quadratic harmonic function, and let W, ~ be the corresponding
vector field and constant given in of Lemma First we note that
the vector fields given by form a Lie subalgebra. Thus by standard
Lie theory, for sufficiently small h, k, g; = ghgk_1 for some h € H, with
h = h—k+ O(h—k||h]). Let V and § be the vector field and the
constant associated to h in (5.1). We then have

e gk — e Panl < e gkl —e P gry|
<egile —e Pgiol + e — e P|grg))
< e gi(Cllh[lr* + Cl]llg;el)
< Cllh — k||r*.
This proves property (4) for some small neighborhood U'.

Finally, let us prove (5). Let r; — 0 and h;, k; € H with || h;]|, ||ki]] — O.
Let V;, W; be the corresponding vector fields for h;, k; defined in Lemma/|5.1]
Let ¢;(t),¢i(t) be the flows of V;, W;, respectively. Set gn, = ¢(1) and
gk, = ¥(1). Then the model metrics are given by wy, = e‘ﬁig;:iw and
w, = e Vigpw, with ;| < Chs]| and |vi| < Cflk;f|. Fix a compact set
K in the regular set of B(0,1), and let K; C B,z (0,1) be compact sets

hi
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converging to K in the Gromov-Hausdorff sense. By (5.1) in Lemma
we have

Vi(r?/2) — Bi(r?/2) = b,
and the analogous equation for W;,~;, k;. Here we denote the cone metric

as wo(y) = %\/—1857’2. Since ¢; = ri_zgo on K; converges to /2 in C*° on
K, it follows that under the Gromov-Hausdorff approximation,

Vigi — Bigi — hi| < W)k

Using power series expansion as in Lemma [4.1] and the above inequality, it
follows that

e Pigi o — o — hul < O(Iall?) + () Ihal] < W) ]|

Now, let h; € H with vector field V; and constant 3; such that 9i, = 9h, g,;l
and h; = h; — ki + O(||hi — ki|||k:]|). Then we have

e gi i — e Vg pi — (ki — ha)| < e Pigp s — 0P g ot Iyl
+ e gk hi + (ki — ha)|
< W) hill + Cllhs = kil |1kl
< Wi |h = kill-
Setting u; = e‘ﬁig,’;igoi — e g} i, this conclude the proof of (5). O

Now we turn to showing that wyz can be approximated by F. As in
the previous section, let A = 1/4/2, and let (Z;,p;) denote (Z, p) scaled up
by a factor of A™%. Let B; denote the unit ball centered at p;, i.e. the ball
B(p, \!) scaled up to unit size. Let F., denote the inclusion of C'(Y') in C**1.
Note that the components of F,, consist of L? orthonormal homogeneous
functions z,z;. Let B C C(Y) be the unit ball centered at 0.

Proposition 5.3. For sufficiently large i we have holomorphic maps F; :
B; — C™ L with the following properties, where W(i~') denotes a function
converging to zero as i — 0.

(1) On the ball B; the map F; gives a ¥ (i~1)-Gromov-Hausdorff approz-
imation to the embedding Fs : B — C"T1. Moreover, the image
Fy(B;) C {aizP + 22 + -+ 22 = 0} for some a; > 0 with Fi(p;) =0

(2) There exist a subsequence Fj;y of F; and a sequence of scalings

gi: (2,%) — (miz,mgn_l)/(n_mx) with C;;1 < m; < Cy, for some di-

mensional constant Cy, > 0, such the image of the map F] = gioFj(
lies in X; = {()\i)pq%z—i—x%—i—- -Fxp =0} C C"L X is equipped
with the “unknown metric” n; = (F/')*(m; A= %0 wy) as well as
the model metric w; = \"%G¥w, where G; : (z,x) — (\iz, ()\Z)%x)

(3) We have Ric(n;) = c;m; for some |c;| < W(i~!), and the distance
functions dy,, dy, satisfy |dp, — du,| < P(i71).
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(4) We have n? = efiw? and n; = w; + v/—100u;, with f;(0) = 0 and
IV filys, il < WG
In particular wz can be approzimated by F in the sense of Definition[3.6]

Proof. Identifying the germ of (Z, p) with the germ of (X, 0), we can assume
that B; C X. Write R = Ox 9, and let v be the valuation of (X, 0) associated
to w. By the construction of w, the associated graded ring R, is isomorphic
to R(C(Y")), which is a Ricci-flat Kéhler cone. So by Li-Xu [30, Theorem 1.3]
and Li-Wang-Xu [29) Corollary A.4], we have dxp = v, where dxg is the
valuation given by wz.

For (1), we will focus on the case when n = 3. For n > 3, the argument
is the same, with the simplification that the function z? has higher degree
than z;. As in Proposition we have a subspace P C Oz, and an
adapted sequence {G¢}; of bases for P, which for sufficiently large i define
holomorphic embeddings F; : B; — CY. F; converges in the Gromov-
Hausdorff sense to Fi,, which up to a unitary rotation is given by (1, z, 2%, x),
the components of which form an orthonormal basis for the corresponding
space in R(C(Y)) (we assume n = 3). Here x = (1,2, x3). From this we
see that N = 6. Note that since we have the isomorphism of germs, Oz, is
also generated by S = {1, z,2%,x} . We can decompose G¢ as G¢ = g¢ + k¢,
where g¢f is a linear combination of elements in S with degree equal to
d, and k{ has degree > d,. As in the proof of Proposition we have
supg, |G} — gi'| = 0 as i — oc.

Define F, = (g¢). We can write F, = (¢i, zi, wi, X;), where

Z; = diz,

w; = Wz-TX + biZQ,

X; = AlX + Z2V;,'7
and b;, ¢;,d; are scalars, V;, W, are vectors and A; is a matrix. Using the
fact that supp, |G} — gf'| — 0 as i — oo, we deduce that d; — A ldi_1 — 0,
bi—>\_2bi,1 — 0, Ai—)\_QAi,1 — 0, I/Vi—)\_QWi,l — 0, and ‘/;—)\_2‘/;',1 —
0.

On the other hand, writing the equation for X in terms of z;, x; and using

the above convergence result for V;, we must have V; = 0 for all sufficiently
large ¢ and

d; I A 1A AT (1Al Ag) — Id] < W(i™).

In particular, by modifying A; by matrices of the form Id + ¥(i~!), we
may assume that ||4;]|71A4; € O(3). We now drop the first and the third
components of FZ- and obtain embeddings F; = (z;, X;) into C*, whose image
is given by d; P||A;]|?2? + xIx; = 0. Set a; = d; || A;||>. Then by the above
convergence results we have a;/a;_1 — AP~* < 1. By applying scalings
(z,x) — (cz,c%x) with some |¢| = 1, we can assume that a; > 0. So we
have proved (1).
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To prove (2), we argue as in the proof of [37, Theorem 1.1]. Since
n—1

ai/ai—1 — N~2n=2 | for sufficiently large i, we can find j(i) such that

Cilajp < ()\")17_227:é < Cpaj(; for a dimensional constant C,, > 0. We

7p+2n71 2n71

can therefore find m; € (C,” "2, Chn "=2) such that
_gn=1 . on—1
m; " aje = (V)P

This proves (2). The rest follows verbatim the proof of Proposition O

Proof Theorem[1.2. Proposition [5.3shows that wz can be approximated by
F constructed in Lemma [5.2 The rest of the proof is very similar to the
proof of Theorem [1.1}, so we omit it. O

6. UNIQUENESS OF CALABI-YAU METRICS UNDER SMALL PERTURBATION

In this section we prove Theorem [1.3] which says that polynomially sub-
quadratic perturbation of a 90-exact Calabi-Yau metric with maximal vol-
ume growth must be trivial. Recall that X is said to have maximal volume
growth if there exists v > 0 such that for all p € X and r» > 0, we have
Vol(B(p,)) > vr?™. Tt was proved in [32] that tangent cones at infinity of
a Calabi-Yau manifold with maximal volume growth is an affine variety. It
was also observed in [37), Section 3.1] that Donaldson-Sun theory extends to
the 00-exact case. In particular the tangent cone at infinity is unique. To
prove Theorem we need the following decay estimate. For the following,
let 0 € X be a fixed point, and write B(o, ) for the r-ball in X with respect
to the rescaled metric c?w, where 0 < ¢ < 1.

Lemma 6.1. For any o > 0 sufficiently small, there exists a constant A\g > 0
such that if X < Ao and € > 0 is sufficiently small (depending on \), then
we have the following. Suppose that

dar(B(o,e 1), B(0,e71)) <,

where B(0,e71) is the corresponding ball in the tangent cone C(Y'). Suppose
u is a smooth function on B(o,1) with supp, 1) [u| < € satisfying
(w4 V—=100u)™ = w".

Then we can find a smooth function u' on B(o,1/2) such that

(1) 00(u — ') =0,

(2) supp(on [u'| < A2 supp 1y ful.
Proof. The proof is very similar to the proof of [37, Proposition 4.1], so we
omit it. We note that the decay rate in (2) is slower than quadratic. Thus
for this result we only need to subtract “subquadratic” harmonic functions
from w and automorphisms of the cone do not enter the argument. The

d0-exactness is required to apply Theorem and to embed the manifold
X as an affine variety in C. This in turn is required to employ the fact
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that subquadratic harmonic functions on the cone extend to pluriharmonic
functions on the manifold. O

Proof of Theorem[1.5. We scale down the metric. Let w; = 272y, and let
u; = 272y, Denote B(o;,1) the unit ball with respect to the scaled-down
metric w;. Let ig be large enough so that
sup |u;| <27FC(1+271)2 0 < 0270 <,
B(Oi,l)
and that
dar(B(oi,e 1), Blo,e 1)) < ¢

for ¢ > ig, where € is given in Lemma Let a > 0 be sufficiently small
as in Lemma In particular we also want o < §. Then we can apply
Lemma We may set A = 27, where m > 0 an sufficiently large integer.
Let ¢ = ig + km, where &k > 0 is an integer. Then by Lemma there
exists a smooth function u' on B(o0;,1/2) such that d(u; — v') = 0 and
SUP (o, ) [U/] < \2—e SUPp(o1) [uil. Set uj_; = A2y, Note that

B(Oi, )\) = B(Oi_m, 1) = B(OiOJr(k,l)m, 1).
So we have

sup lul | S AT sup |uy| < 2meTkmicigTiol ¢
B(0ig 4 (k—1)m>1) B(o;,1)

We can then iterate this process k times. In the end, we have a function uéo
on B(0;,,1) with

sup |U;0| S 2km(a—6)cl2—i05
B(Oiovl)

Rescaling back, we now have a smooth function v, = 22i0u;0 satisfying
(w+V—=100v;)" = "
on B(o,2%) such that 99(u — vj) = 0 and

sup |ug| < 2Fmle=9
B(0,2%)
By Lemma up to passing to a subsequence vy, converges uniformly in
C* to 0 as k — oco. It follows that d0u = 0 on B(0,2). We can then
increase ig and conclude that d0u = 0 on X. O

We remark that the 00-exactness condition is not required when the tan-
gent cone at infinity has a smooth link (and hence is unique by Colding-
Minicozzi [13]). In this case one can show Lemma [6.1| using the existence of
adapted sequences of bases for harmonic functions with polynomial growth
(see for example [9, 4.2.2]) and the maximum principle for the complex
Monge-Ampere equation. While the setup in this case is closer to the asymp-
totically conical case considered in Conlon-Hein [15], this approach has the
advantage that the polynomial convergence to the tangent cone at infinity
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is not required. It would be interesting to know if a version of the 99 lemma
holds in the setting of maximal volume growth, which would enable us to
prove results on the level of metrics similar to [15, Theorem 3.1] as opposed
to potentials.
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