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Abstract. We study singular Kähler-Einstein metrics that are ob-
tained as non-collapsed limits of polarized Kähler-Einstein manifolds.
Our main result is that if the metric tangent cone at a point is locally
isomorphic to the germ of the singularity, then the metric converges to
the metric on its tangent cone at a polynomial rate on the level of Kähler
potentials. When the tangent cone at the point has a smooth cross sec-
tion, then the result implies polynomial convergence of the metric in
the usual sense, generalizing a result due to Hein-Sun. We show that a
similar result holds even in certain cases where the tangent cone is not
locally isomorphic to the germ of the singularity. Finally we prove a
rigidity result for complete @@̄-exact Calabi-Yau metrics with maximal
volume growth. This generalizes a result of Conlon-Hein, which applies
to the case of asymptotically conical manifolds.

1. Introduction

Since the celebrated work of Yau [38] on the existence of Kähler-Einstein
metrics there has been increasing interest in the understanding of singular
Kähler-Einstein metrics. An early result in this direction is Kobayashi [27]
on orbifold Kähler-Einstein metrics, while a definitive existence result for
a large class of singularities was obtained by Eyssidieux-Guedj-Zeriahi [21].
These works focus on the case of non-positive Ricci curvature, however re-
cently Li-Tian-Wang [28] extended Chen-Donaldson-Sun’s solution [5, 6, 7,
8] of the Yau-Tian-Donaldson conjecture to general Q-Fano varieties. As a
result we now have several sources of singular Kähler-Einstein metrics on
normal varieties.

For applications it is desirable to have control of the geometry of these
singular metrics near the singularities, but so far little is known in general.
The main progress in this direction is due to Hein-Sun [26], who showed
that near a large class of smoothable isolated singularities that are locally
isomorphic to a Calabi-Yau cone, the singular Calabi-Yau metric must be
asymptotic in a strong sense to the Calabi-Yau cone metric. Recently an
analogous result was shown by Datar-Fu-Song [17] in the case of isolated
log canonical singularities using the bounded geometry method, and precise
asymptotics were obtained shortly after by Fu-Hein-Jiang [22]. In more gen-
eral settings the best results so far give some control of the Kähler potential,
such as the work of Guedj-Guenancia-Zeriahi [24] showing continuity.
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Our main result in this paper extends the work of Hein-Sun [26] to a large
class of possibly non-isolated singularities. In order to state the result, let us
suppose that (Z, p) is the non-collapsed pointed Gromov-Hausdor↵ limit of
a sequence of complete polarized Kähler-Einstein manifolds (Mi, gi, pi), sat-
isfying Ric(gi) = �igi with |�i|  1. The results of Donaldson-Sun [19, 20],
Li-Xu [30] and Li-Wang-Xu [29] imply that Z is a normal complex vari-
ety admitting a singular Kähler-Einstein metric !Z , and the metric tangent
cone Zp at p is homeomorphic to a normal a�ne variety uniquely determined
by the germ (Z, p). The tangent cone Zp admits a singular Ricci flat cone
metric !Zp . Our first result is the following.

Theorem 1.1. Suppose that the germ (Zp, o) is biholomorphic to (Z, p),
where o denotes the vertex of the cone Zp. Then for some r0 > 0 there
exists a biholomorphism � : B(o, r0) ! U from the unit ball in Zp to a
neighborhood of p 2 Z with �(o) = p satisfying the following. There are
constants C,↵ > 0 and functions ur on B(o, r) for 0 < r < r0, satisfying

�⇤!Z = !Zp +
p
�1@@̄ur

on the smooth locus of Zp, and

sup
B(o,r)

|ur|  Cr2+↵

for all 0 < r < r0.

Combining with [30][29], Theorem 1.1 implies that if the germ (Z, p) is
biholomorphic to the germ (C(Y ), o) in a possibly singular Ricci flat Kähler
cone C(Y ) with vertex o, then !Z is asymptotic to the cone metric !C(Y )

in the sense of Theorem 1.1.
Hein-Sun [26] consider the case of singular Calabi-Yau metrics where the

tangent cone Zp has an isolated singularity at the vertex, and in addition is
“strongly regular”. Most likely the approach of Hein-Sun can be extended
to the more general Kähler-Einstein setting, without the strongly regular
assumption, by appealing to the more recent works [30, 29]. On the other
hand their approach uses that the tangent cone Zp has a smooth cross section
in an essential way, since they rely on analysis in weighted Hölder spaces.
The main novelty in our approach is that by working on the level of L1-
bounds for the Kähler potential, we are able to treat tangent cones with
arbitrary singular sets. We can then obtain estimates for derivatives of the
metric away from the singular set, which in particular can be used to recover
Hein-Sun’s result in the setting of tangent cones with isolated singularities
(see Corollary 4.3).

For an example where Theorem 1.1 applies, see for instance the example
constructed by Cynk and van Straten [16, Theorem]. It is a smoothable
Calabi-Yau threefold with canonical singularities, whose singular set is a
double line with four pinch points. The germ at a general point of the line
is C⇥A1, so our Theorem 1.1 applies there. On the other hand, it is known
that the pinch point singularity admits a Ricci flat Kähler cone metric (see
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e.g. the discussion in [33, p.60] and the references therein). It follows that
Theorem 1.1 also applies at the pinch points.

When the germ of the tangent cone (Zp, o) is not biholomorphic to (Z, p),
then the situation is more complicated, and has not been considered be-
fore. A family of examples given in [36] (also Hein-Naber [25]), are the
hypersurfaces Ap�1 ⇢ Cn+1 defined by

zp + x21 + . . .+ x2n = 0,

where p > 2n�1
n�2 . In [36] the second author constructed a Calabi-Yau metric

!Ap�1 on a neighborhood of 0 2 Ap�1, with tangent cone given by C⇥ A1,
where A1 ⇢ Cn is defined by x21 + . . . + x2n = 0 and is equipped with the
Stenzel cone metric. Our result in this case is the following.

Theorem 1.2. Suppose that, as above, (Z, p) is the pointed Gromov-Hausdor↵
limit of a non-collapsing sequence of polarized Kähler-Einstein manifolds,
with singular Kähler-Einstein metric !Z . Suppose that the germ (Z, p) is
isomorphic to the germ (Ap�1, 0) at the origin. Then for some r0 > 0 there
is a biholomorphism � : B(0, r0) ! U ⇢ Z, with �(0) = p, and constants
⇤, C,↵ > 0, such that

�⇤!Z = ⇤!Ap�1 +
p
�1@@̄ur

for some ur defined on B(0, r), and

sup
B(0,r)

|ur|  Cr2+↵

for all r < r0.

In other words the singular Kähler-Einstein metric !Z converges to a
suitable scaling of the model metric !Ap�1 at a polynomial rate, at the level
of potentials. Note that in contrast with Theorem 1.1, where the model
metrics were cones, here the rescalings of !Ap�1 are not isometric to each
other. In general we expect that for more complicated singularities it is
possible to have higher dimensional families of model metrics, similarly to
how in [11] a two dimensional family of complete Ricci flat Kähler metrics
was constructed on C3 with tangent cone C⇥A2 at infinity.

Our last result is the following uniqueness theorem for solutions of the
Monge-Ampère equation on complete manifolds.

Theorem 1.3. Let (X,!) be a @@̄-exact Calabi-Yau manifold with maximal
volume growth. Suppose that u is a smooth solution of the complex Monge-
Ampère equation

(! +
p
�1@@̄u)n = !n.

In addition suppose that u has subquadratic growth in the sense that |u| 
C(1 + r)2�� for some C, � > 0, where r is the distance from a fixed point in
X. Then @@̄u = 0.
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This result should be compared with the uniqueness result in Conlon-
Hein [15, Theorem 3.1]. The main novelty is that in our result we do not need
to assume that the tangent cone of X at infinity has an isolated singularity,
which is implied by the asymptotically conical assumption of [15]. Note,
however, that the @@̄-exactness is not required in [15].

The main new technical ingredient in the proofs of these theorems is
an estimate for solutions of the complex Monge-Ampère equation on non-
collapsed balls in polarized Kähler manifolds with Ricci curvature bounds,
or their Gromov-Hausdor↵ limits. This extends a related estimate from
[37], where we considered balls that are Gromov-Hausdor↵ close to a metric
cone of the form C ⇥ C(Y ), with smooth Y . Roughly speaking the result
says that if a solution u of a Monge-Ampère equation with su�ciently small
L1 norm concentrates near the (almost) singular set of such a ball, then
the solution must decay by a definite amount when passing to a smaller
ball. Together with the harmonic approximation for the small solution of
the Monge-Ampère equation in the generic region, this implies the decay of
the sup norm of the solution upon passing to smaller scales. We will discuss
this estimate in Section 2 and we expect it to be of independent interest.

In Section 3 we define the notion of families of model metrics as well as
a convergence result for the singular Kähler-Einstein metric !Z that can be
approximated by these model metrics near the singularities. This unifies
certain aspects of Theorems 1.1 and 1.2. We then prove these theorems
by showing the existence of families of model metrics and the existence of
approximations in the corresponding cases in Sections 4 and 5. Finally, in
Section 6 we prove Theorem 1.3.

Acknowledgments. We would like to thank Hans-Joachim Hein for helpful
discussions. SC was supported by the Simons Collaboration on Special
Holonomy in Geometry, Analysis, and Physics (#724071 Jason Lotay), and
he would like to thank the National Center for Theoretical Sciences for their
hospitality during Summer 2021. GSz was supported in part by NSF grant
DMS-1906216.

2. Non-concentration

In this section we study the complex Monge-Ampère equation on a ball in
a non-collapsed Gromov-Hausdor↵ limit of Kähler-Einstein manifolds. More
precisely, let (Z, p) be the pointed Gromov-Hausdor↵ limit of a sequence of
complete pointed Kähler manifolds (Mi, gi, pi). We assume that the (Mi, gi)
are polarized, i.e. the Kähler forms are given by the curvature of line bundles
over the Mi, that the metrics are Einstein, i.e. Ric(gi) = �igi for some
|�i|  1, and that the non-collapsing condition vol(Bgi(pi, 1)) > ⌫ > 0
holds for a fixed v > 0. By the results of Donaldson-Sun [19, 20], B(p, 2)
is a normal algebraic variety, and the metric singular set coincides with the
algebro-geometric singular set ⌃ ⇢ B(p, 2). For q 2 B(p, 1) let us denote by
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rh(q) the harmonic radius at q, setting rh(q) = 0 for q 2 ⌃. We denote the
limit metric on the regular part of Z by !. The main result of this section is
the following estimate for solutions of the complex Monge-Ampère equation
on B(p, 1).

Theorem 2.1. There is a constant C = C(n, ⌫), such that for all � > 0
there exist , � > 0 depending on n, ⌫, � with the following property. Suppose
that we have smooth functions u, f on B(p, 1)\⌃, satisfying |u|, |f | < , and

(2.1) (! +
p
�1@@̄u)n = ef!n.

Then

sup
B(p,1/2)

|u|  C

 
sup

{rh>�}\B(p,1)
|u|+ sup

B(p,1)
|f |+ � sup

B(p,1)
|u|

!
.

We prove this result by proving successively more general cases. We start
with the following, which follows the approach of [37, Proposition 4.5].

Lemma 2.2. There is a C1 = C1(n, ⌫) such that for any � 2 (0, 1) there
are , �, ✏ > 0 depending on n, ⌫, � satisfying the following. Suppose that
|u|, |f | <  satisfy (2.1), and in addition Ric(!) > �✏! and

dGH(B(p, ✏�1), B(o, ✏�1)) < ✏,

where o is the vertex of a cone that splits an isometric factor of Ck for some
k � 0. Let us write o 2 Ck

⇥ C(Y ). Then

(2.2) sup
B(p,1/2)

|u|  C1

 
sup

B(p,1)\N�

|u|+ sup
B(p,1)

|f |+ � sup
B(p,1)

|u|

!
,

where N� denotes the points x at distance at most � from Ck
⇥ {0} under

the Gromov-Hausdor↵ approximation.

In this result we do not assume, as we did in [37], that Y is smooth.
In addition, note that on the right hand side of (2.2) the supremum of
|u| is taken on the set B(p, 1) \ N� which is typically larger than the set
{rh > �} \B(p, 1) if Y has singularities.

Proof. We claim that by [37, Proposition 4.4] there exists a constant D > 0
depending on n, ⌫, and for any � > 0 there exists C� > 0 depending on �, n, ⌫
satisfying the following. If ✏ is su�ciently small (depending on �, n, ⌫), then
there exists a Lipschitz function v on B(p, 1� �/2) satisfying

(1) |
p
�1@@̄v|! < C� on B(p, 1� �/2) \ ⌃.

(2) v > D�1��1/2 on @B(p, 1� �) \N�.
(3) v > D�1 on B(p, 1� �), and v < D on B(p, 1/2).
(4) On B(p, 1� �/2) \ ⌃, v satisfies the di↵erential inequality:

X

i

µi + µmax < �1/10,
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where µi are the eigenvalues of
p
�1@@̄v relative to !, and µmax is

the largest eigenvalue.

To see this, recall that B(p, 1) is a ball in the pointed Gromov-Hausdor↵
limit of polarized Kähler-Einstein manifolds (Mi, pi). Given ✏ > 0 we have

dGH(B(pi, ✏
�1), B(o, ✏�1)) < ✏

for su�ciently large i, and so by [37, Proposition 4.4] we have functions vi
satisfying the properties (1) – (4) on B(pi, 1). While in [37] the property
(4) is stated as

P
µi + µmax < 0, from the proof the better bound �1/10

also follows (see Equation (4.3) and the inequality before it in [37]). Since
vi are constructed out of local Kähler potentials, we see that vi and rvi
are uniformly bounded on B(pi, 1 � �) and on compact sets away from the
singular set of B(p, 1) (under Gromov-Hausdor↵ approximations) the func-
tions vi have uniform higher derivative estimates as well. We can therefore
take a subsequential limit v of vi on B(p, 1� �), and conditions (1), (4) will
follow from smooth convergence on the regular set. That the constants do
not depend on the specific cone C(Y ), but only on n, ⌫, can be seen using a
compactness argument.

Let us define

E = sup
B(p,1)\N�

|u|+ sup
B(p,1)

|f |+ � sup
B(p,1)

|u|  3,

and set �  �2. Define ṽ = DEv. By (2), (3) above, on @B(p, 1 � �) we
have ṽ > u.

We claim that once  is su�ciently small, then we have

(2.3) ṽ � u on B(p, 1� �).

To see this, we argue as in [37], except we need to take care of the singular
set ⌃. Since ⌃ is a subvariety, there exists a plurisubharmonic function h
on B(p, 1) such that ⌃ = h�1(�1). We will show (2.3) by showing that
we have ṽ > u + ✏0h on B(p, 1 � �), for all ✏0 > 0, and noting that u, ṽ are
continuous. Suppose this is not the case. Write B = B(p, 1 � �) and for a
fixed ✏0 > 0 set

t0 = inf{t > 0 | ṽ + t > u+ ✏0h on B}.

If t0 > 0, then the graph of ṽ + t0 touches the graph of u+ ✏0h from above
at some point q 2 B. If q 2 ⌃, then (u + ✏0h)(q) = �1, so we must have
q /2 ⌃. At q we have

(2.4)
p
�1@@̄u(q) 

p
�1@@̄u(q) + ✏0

p
�1@@̄h(q) 

p
�1@@̄ṽ(q)  EDC�!

by property (1) above and the fact that h is plurisubharmonic. Let �i be the
eigenvalues of

p
�1@@̄u(q) relative to !. From (2.4) we have �i  C�DE.

By (2.1), and using |f |  E, we have

(2.5) e�E


nY

i=1

(1 + �i)  eE .
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From (2.5) we have

(2.6) 1 + �j �
e�E

Q
i 6=j

(1 + �i)
� e�E(1 + C�E)�(n�1)

� 1� C2,�E

for some constant C2,� > 0, once E is su�ciently small. On the other hand,
if �max < 0 then (2.6) gives

(2.7) �max � �E.

Finally, (2.5) together with the bounds for �i implies that

(2.8) 1� E  e�E


nY

i=1

(1 + �i)  1 +
nX

i=1

�i + C3,�E
2,

so (2.4) and (2.8) imply that

�2E � C3,�E
2


nX

i=1

�i + �max  DE

 
nX

i=1

µi + µmax

!
 �

DE

10
.

The first inequality above uses (2.7). We can assume thatD > 30. Since E 

3, by letting  be su�ciently small, depending on �, we get a contradiction.
For such  we have shown (2.3).

Using (2.3) and property (3) above, on B(p, 1/2) we have

u  ṽ  D2E,

which implies the estimate from above for u required by (2.2). For the
corresponding lower bound we can argue in a similar way, comparing u with
�ṽ instead, to show that u > �ṽ+✏0h on B for all ✏0 > 0 once  is su�ciently
small. ⇤

Next we have the following.

Lemma 2.3. There is a C2 = C2(n, ⌫) such that for any � > 0 there are
, �, ✏ > 0 depending on n, ⌫, � satisfying the following. Suppose |u|, |f | < 
satisfy (2.1), and dGH(B(p, ✏�1), B(o, ✏�1)) < ✏ for the vertex o 2 C(Y ) in
a cone. Then

(2.9) sup
B(p,1/2)

|u|  C2

 
sup

{rh>�}\B(p,1)
|u|+ sup

B(p,1)
|f |+ � sup

B(p,1)
|u|

!
.

Proof. We prove this by decreasing induction on the dimension of the Eu-
clidean factor that splits o↵ from the cone C(Y ), starting with C(Y ) = Cn.
In this case, by Cheeger-Colding [2, Theorem 7.3], we have rh > r0 on B(p, 1)
for a fixed r0 > 0. The inequality (2.9) then holds if we choose � < r0, and
C2 > 1.

Suppose now that the result holds whenever B(p, ✏�1) is ✏-close to a ball
in a cone of the form Cj

⇥ C(X) for j � k + 1, and consider the case that

(2.10) dGH(B(p, ✏0�1), B(o, ✏0�1)) < ✏0,
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where o 2 Ck
⇥ C(Y ). By Lemma 2.2 there are C1(n, ⌫) and 1, �1, ✏1 > 0

depending on �, n, ⌫, such that if |u|, |f | < 1 and ✏0 < ✏1, then

(2.11) sup
B(p,1/2)

|u|  C1

 
sup

B(p,1)\N�1

|u|+ sup
B(p,1)

|f |+ � sup
B(p,1)

|u|

!
.

We will complete the proof by estimating |u| outside of N�1 using the induc-
tive hypothesis.

Given the ✏ > 0 from the inductive hypothesis, there are r, ✏2 > 0 de-
pending on n, ⌫, � with the following property. If ✏0 < ✏2 in (2.10), then for
all x 2 B(p, 1) \N�1 there is an rx > r such that

dGH(B(x, ✏�1rx), B(o0, ✏�1rx)) < ✏rx,

for the origin o0 ⇢ Ck+1
⇥ C(Y 0) in a cone that splits o↵ an isometric

factor of Ck+1. The reason for this is that if x 2 Ck
⇥C(Y ) does not lie in

Ck
⇥{0}, then the tangent cones at x split an additional Euclidean factor by

Cheeger-Colding [1, Theorem 6.62] and Cheeger-Colding-Tian [3, Theorem
9.1].

At such a point x 2 B(p, 1)\N�1 consider a ball B(x, rx) scaled up to unit
size, which we denote by B(x0, 1). We can assume that r�1

x is an integer, so
the rescaled ball is also the limit of a sequence of polarized Kähler-Einstein
manifolds. On the rescaled ball B(x0, 1) we have the equation

(!0 +
p
�1@@̄u0)n = ef

0
!0n,

where !0 = r�2
x !, u0 = r�2

x u and f 0 = f . In particular

sup
B(x0,1)

|u0|  r�2
x sup

B(p,1)
|u|,

sup
B(x0,1)

|f 0
|  sup

B(p,1)
|f |,

and

dGH(B(x0, ✏�1), B(o0, ✏�1)) < ✏.

We can now choose , �, ✏ small enough, depending on n, ⌫, � (recall that
rx > r and r depends on n, ⌫, �) so that the inductive hypothesis applies,
and therefore

sup
B(x0,1/2)

|u0|  C

 
sup

{r0h>�}\B(x0,1)
|u0|+ sup

B(x0,1)
|f 0

|+ � sup
B(x0,1)

|u0|

!
.

Here we are writing r0
h
for the harmonic radius in the scaled up metric. We

have r0
h
= r�1

x rh. Scaling back down we have

|u(x)|  C

 
sup

{rh>rx�}\B(x,rx)
|u|+ sup

B(x,rx)
r2x|f |+ � sup

B(x,rx)
|u|

!

 C

 
sup

{rh>r�}\B(p,1)
|u|+ sup

B(p,1)
|f |+ � sup

B(p,1)
|u|

!
.
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Since x 2 B(p, 1) \ N�1 was arbitrary, this inequality together with (2.11)
implies the required result. ⇤

Finally we can give the proof of Theorem 2.1.

Proof of Theorem 2.1. Given ✏ > 0, by Cheeger-Colding [1] there exists a
⇢ > 0, depending on ✏, n, ⌫, with the following property: for all x 2 B(p, 1/2)
we have some ⇢x > ⇢ such that

dGH(B(x, ✏�1⇢x), B(o, ✏�1⇢x)) < ✏⇢x,

for o 2 C(Y ) in some metric cone C(Y ). We can then rescale the ball
B(x, ⇢x) to unit size, and if ✏,, � is chosen su�ciently small, then we can
apply Lemma 2.3 to bound |u(x)| similarly to the argument in the proof of
Lemma 2.3. ⇤

3. Decay estimate

The goal of this section is to prove a convergence result, Proposition 3.7
below, which contains some common features of Theorem 1.1 and Theo-
rem 1.2. Let (Z, p) be the Gromov-Hausdor↵ limit of a non-collapsing se-
quence of polarized Kähler-Einstein manifolds of complex dimension n, and
let C(Y ) be the tangent cone at p. We will define a family of model metrics
in a neighborhood U of p in Z parametrized by small quadratic harmonic
functions on C(Y ) which generate automorphisms of C(Y ), and prove an
abstract decay estimate, Proposition 3.5 for the family. Throughout this
section, as well as later on, we will denote by  (✏) functions satisfying
lim✏!0 (✏) = 0.

We first recall some important properties of subquadratic harmonic func-
tions on C(Y ). The following lemma combines results going back to Cheeger-
Tian [4, Section 7], Conlon-Hein [15, Corollary 3.6] and Hein-Sun [26, The-
orem 2.14] when C(Y ) has an isolated singularity:

Lemma 3.1. Suppose C(Y ) is a metric tangent cone of a non-collapsed
Gromov-Hausdor↵ limit of Kähler-Einstein manifolds. Let r denote the ra-
dial coordinate so that r@r is the homothetic vector field. Let J denote the
complex structure. Suppose u is a harmonic function on C(Y ). Then we
have the following:

(1) If u is s-homogeneous (rr@ru = su) with s < 2, then u is plurihar-
monic.

(2) If u is 2-homogeneous harmonic, then u = u1 + u2, where u1 is
pluriharmonic, and u2 is J(r@r)-invariant.

(3) The space of real holomorphic vector fields that commute with r@r
can be written as p�Jp, where p is spanned by r@r and vector fields
of the form ru, where u is a J(r@r)-invariant harmonic function
homogeneous of degree 2. Jp consists of real holomorphic Killing
vector fields.
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Proof. In our setting the singular set has Hausdor↵ codimension at least
4 [3]. To deal with the singular set we can use the cut-o↵ functions for
example in [10, Lemma 2.3]. (1) is proved in [10, Corollary 2.18]. For (2)
and (3), see [9, Proposition 3.19] for more details. ⇤

On U , we consider a family of Calabi-Yau metrics on the regular set of U
with tangent cone C(Y ) at p, satisfying properties that enable a decay esti-
mate. To proceed, let H denote the space of quadratic harmonic functions
h such that rh generates a biholomorphism which commutes with scaling.
H as a vector space is equipped with the L1 norm on B(0, 1) ⇢ C(Y ). For
h 2 H let us denote this norm simply by khk. In the following, we fix an
embedding F1 : B(0, 1) ⇢ C(Y ) ! CN whose components are given by
polynomial growth holomorphic functions.

Definition 3.2. Let U ⇢ H be an open neighborhood of 0 2 H. A family
F of model Calabi-Yau metrics consists of a set of Calabi-Yau metrics !h

on the regular set of U , whose metric completion is homeomorphic to U ,
parametrized by h 2 U , with the following properties:

(1) For sequences hi 2 U and ri ! 0, set Bi = B
r
�2
i !hi

(p, 1). Then

there is a sequence of holomorphic maps Fi : Bi ! CN , and  (i�1)-
Gromov-Hausdor↵ approximations fi : Bi ! B(0, 1) such that |Fi�

F1 � fi| <  (i�1).
(2) The volume form !n

h
is independent of h 2 U .

(3) For h, k 2 U and r > 0, we have |d!h � d!k |  C(kkk + khk)r on
B!h(p, r).

(4) For h, k 2 U , on B!h(p, 2) we have !k = !h +
p
�1@@̄u, and for

every r > 0, we have |u|  Ckh� kkr2 on B!h(p, r).
(5) Suppose that there are ri ! 0 and sequences hi, ki 2 U such that

khik, kkik ! 0. Write !ki = !hi +
p
�1@@̄ui as in (4). For any

✏ > 0 and K a compact set in the regular set of B(0, 1) ⇢ C(Y ),
there exist compact sets Ki ⇢ B

r
�2
i !hi

(p, 1) such that Ki ! K in

the Gromov-Hausdor↵ sense, and

|r�2
i

ui � f⇤
i (ki � hi)|  ✏kki � hik

on K for all su�ciently large i, where fi is the Gromov-Hausdor↵
approximation in (1).

In each of the applications below (see Sections 4 and 5), the model metrics
are isometric up to small scaling and biholomorphism. In general we expect
to have higher dimensional families of model metrics, and we expect in such
cases Definition 3.2 can be suitably adapted.

The following lemma shows that we have higher regularity of the solutions
to the complex Monge-Ampère equation if the L1 norm is su�ciently small.

Lemma 3.3. Suppose that B(p, 2) is a ball in a Kähler-Einstein manifold
of complex dimension n, with metric ! satisfying Ric(!) = c0!, such that
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in suitable coordinates zi the components !ij̄ satisfy |@3(�ij̄ � !ij̄)| <
1

100 in
terms of the Euclidean metric �ij̄. If ✏ > 0 is su�ciently small, then we
have the following.

Suppose that ⌘ = ! +
p
�1@@̄u is another Kähler-Einstein metric on

B(p, 2) with Ric(⌘) = c⌘ and ⌘n = ef!n, so that

|u|, |f |, |c|, |c0| < ✏.

There exist Ck > 0 depending on the dimension n and on k, such that

kukCk,↵(B(p,1)) < Ck✏.

Proof. All the operators and norms below are taken with respect to !, and
the constants Ck may change from line to line. Note first that from elliptic
regularity for the equation Ric(!) = c0!, we obtain higher order estimates
|@k!ij̄ | < Ck for the components of !. From the equation ⌘n = ef!n and

the Kähler-Einstein condition for ! and ⌘, we have c⌘ = �
p
�1@@̄f + c0!,

so the function v = cu + f satisfies
p
�1@@̄v = (c0 � c)!. It follows that

�v = (c0 � c)n. Using the Schauder estimates we then have kvkCk < Ck✏
on the ball where {|z| < 1.9}.

We now rewrite the equation in a form so that Savin’s small perturbation
result [34] can be applied. Consider the equation

(! +
p
�1@@̄u0)

n = ev�cu0!n

for u0, with u0 = 0 on the boundary of the ball {|z| < 1.9} in our coordinates.
Define

F : C2,↵
0 ⇥ C2,↵

⇥R ! C0,↵

(u0, v, c) 7! log det

✓
(! +

p
�1@@̄u0)n

!n

◆
� v + cu0,

where C2,↵
0 , C2,↵ denote functions on the ball {|z| < 1.9}, with zero bound-

ary values in the first case. Note that F (0, 0, 0) = 0, and the linearization
at (0, 0, 0) in the u0 direction is � + c. As long as c is su�ciently small,
this operator is invertible. By the implicit function theorem, for su�ciently
small v 2 C2,↵ and c 2 R we can find u0 that satisfies the equation, with
ku0kC2,↵ < �, where � > 0 can be made as small as we like by choosing ✏
small.

To write our equation in a di↵erent form, let h = u�u0. Then h satisfies

(! +
p
�1@@̄u0 +

p
�1@@̄h)n = e�chev�cu0!n.

Thanks to the bounds for v and u0, the above equation is uniformly elliptic,
and h = 0 is a solution of it. By Savin’s theorem [34], for any given � > 0 we
have khkC2,↵(B(p,1)) < � once h is su�ciently small in L1. It follows that if
✏ is chosen su�ciently small, then h and u0, and therefore also u will satisfy
|u|C2 < � on the ball {|z| < 1.8}.
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Let us now write the equation (! +
p
�1@@̄u)n = ef!n for u as

(3.1)✓
n!n�1 +

✓
n

2

◆
!n�2

^ (
p
�1@@̄u) + · · ·+ (

p
�1@@̄u)n�1

◆
^
p
�1@@̄u = (ef � 1)!n.

If � is su�ciently small, then this can be written as a uniformly elliptic linear
equation

Pu = ef � 1,

where the coe�cients of P (which depend on u) are bounded in Ck. Note
that if |f | < ✏ for small ✏, then |ef � 1| < 2✏. We can now use standard
Lp and Schauder estimates, as well as bootstrapping using the estimates
that we already have for cu + f , to obtain |u|Ck < Ck✏ on the smaller ball
{|z| < 1.7}. ⇤

We will need the following result, which allows us to estimate the dif-
ference between the distance functions of a model metric and a Gromov-
Hausdor↵ limit. This will be used in the proof of Proposition 3.7 below, to
ensure that along the iteration procedure the distance functions of the two
metrics that we are comparing remain close to each other at smaller and
smaller scales.

Lemma 3.4. Let � > 0. Then for all su�ciently small ✏ > 0 and r > 0,
the following holds. Let ! = !h 2 F be a model metric with khk  ✏. Now,
suppose ⌘ is another Kähler-Einstein metric on the regular set of B!(p, 2r)
obtained as the non-collapsed Gromov-Hausdor↵ limit of polarized Kähler-
Einstein manifolds, with the following properties:

• Ric(⌘) = c⌘ with |c| < r�2✏;
• ⌘n = ef!n with |f | < ✏;
• ! = ⌘ +

p
�1@@̄u with |u| < r2✏;

• |d! � d⌘| < r/100.

Then we have |d! � d⌘| < �r on B!(p, r).

Proof. We argue by contradiction, supposing that we have ✏i, ri ! 0 and
corresponding ⌘i, fi and ui such that the result fails. Let us rescale the
metrics by setting !̃i = r�2

i
!, ⌘̃i = r�2

i
⌘i. Set Ai = B⌘̃i(0, 1) and Bi =

B!̃i(0, 2). By the assumption on |d!i � d⌘i | we have the inclusions �i :
Ai ⇢ Bi. To get a contradiction, we will show that �i is a  (i�1)-Gromov-
Hausdor↵ approximation for su�ciently large i. Let us define  i = Fi � �i,
where Fi are the maps in property (1) of Definition 3.2. Then  i : Ai ! CN

are holomorphic maps. By property (1) of Definition 3.2, we have | i|  C
for some constant C > 0 once i is su�ciently large. Then by the gradient
estimate for holomorphic maps, we have |r i|⌘̃i  C for a uniform constant
C > 0. This implies that  i are equicontinuous.

We claim that for all ✏ > 0, there exists � > 0 such that if x, y 2 Bi

and |Fi(x) � Fi(y)| < �, then d!̃i(x, y) < ✏. If this is not the case, then
there exist xi, yi 2 Bi with |Fi(xi) � Fi(yi)| ! 0 but d!̃i(xi, yi) � ✏. By
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passing to a subsequence, we may assume that xi ! x and yi ! y for
x, y 2 B(0, 2) under the Gromov-Hausdor↵ convergence Bi ! B(0, 2). The
maps Fi converge in the Gromov-Hausdor↵ sense to the fixed embedding
F1 : B(0, 2) ⇢ C(Y ) ! CN . It follows that F (x) = F (y) but dC(Y )(x, y) �
✏, contradicting the fact that F is an embedding. This proves the claim.

It follows from the claim that the maps �i = F�1
i

�  i form an equicon-
tinuous family of maps from Ai to Bi. Thus there exists a subsequence of �i
converging to a map �1 : A ! B under the Gromov-Hausdor↵ convergence
Ai ! A and Bi ! B. Let us denote the singular Kähler-Einstein met-
rics on A and B by !A and !B, respectively. The proof can be concluded
once we show that �1 is an isometry onto its image. Since A is the metric
completion of its regular set RA, it is enough to show that for x, y 2 RA,
d(x, y) = d(�1(x),�1(y)). Note that by property (1) in Definition 3.2 we
have B = B(0, 2) ⇢ C(Y ).

Let � be a minimal geodesic connecting x, y. By Colding-Naber [14], �
lies entirely in RA. Let V be an open set containing � such that the com-
pact closure of V is contained in RA, and let Vi ⇢ Ai be the corresponding
open sets converging to V under the Gromov-Hausdor↵ convergence. On Vi

we have uniform bounds of the geometry of ⌘̃i, so by Lemma 3.3, we have
bounds |r

j(⌘̃i � �⇤
i
!̃i)| < C✏i on Vi for j = 0, 1. Letting i ! 1, it follows

that �1 : V ! V 0 is an isomorphism onto its image, and �⇤1!B = !A. So
we have dA(x, y) = length!A

(�) = length!B
(�1 � �) � dB(�1(x),�1(y)).

To prove the opposite inequality, let us now suppose that �̃ is a minimal
geodesic connecting �1(x) and �1(y). Since B = B(0, 2) by property (1)
Definition 3.2, by Colding-Naber [14] �̃ is contained in an open set W with
compact closure in the regular set of B. Let Wi be open sets in Bi corre-
sponding to W under the Gromov-Hausdor↵ convergence Bi ! B, and let
�i ⇢ Wi be curves converging to �̃, with endpoints xi ! x, yi ! y. Over Wi

we have smooth convergence of the metrics ⌘̃i ! !A and !̃i ! !B in the
Gromov-Hausdor↵ sense. So we have dB(�1(x),�1(y)) = length!B

(�̃) =
limi!1 length!̃i

(�i) = limi!1 length⌘̃i(�i) � limi!1 d⌘̃i(xi, yi) = dA(x, y).
We have shown that �1 is an isometry onto its image, so it follows that �i
is a  (i�1)-Gromov-Hausdor↵ approximation. ⇤

The main result in this section is the following abstract decay estimate.

Proposition 3.5. There exist constants C,↵,� > 0 (depending on the cone
C(Y )) � < 1 such that for ✏, r > 0 su�ciently small, we have the following.
Fix a model metric !h with khk  ✏. Let ⌘ be another metric on B!h(p, 2r)
obtained as the non-collapsed Gromov-Hausdor↵ limit of a sequence of po-
larized Kähler-Einstein manifolds. Suppose that ⌘ = !h +

p
�1@@̄u on

B!h(p, 2r) satisfies ⌘
n = ef!n

h
, and for some  < ✏ we have Ric(⌘) = c⌘ for
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|c|  r�2, and

|d⌘ � d!h | <
r

100
,

|u| < r2,

|rf |⌘ < r�1✏,

f(p) = 0.

Then we can find another model metric !k and a smooth function u0 on
B!h(p, r) satisfying

(1) !h +
p
�1@@̄u = !k +

p
�1@@̄u0,

(2) kk � hk  C.
(3) supB!k (p,4�r)

|u0|  �2+↵r2.

We remark that the advantage of working with a bound for the gradient
|rf |⌘, rather than with the sup norm |f |, is that after scaling the gradient
bound improves. At the same time, using the estimate for the distance
function of ⌘, the gradient bound together with the condition f(p) = 0
implies a corresponding bound |f | < 4✏.

Proof. We argue by contradiction, so suppose there are ✏i, ri ! 0,i < ✏i
and corresponding hi, ⌘i, ui, fi with khik  i, |ui| < r2

i
i, |rf |⌘i < i✏i

such that no suitable ↵,� exist. We will show by passing to a limit that for
large enough i, the statement actually holds for some ↵,�, thus reaching a
contradiction. The argument is similar to the proof of Proposition 4.1 in
[37]. In the following C > 0 will denote a uniform constant, whose value
may change from line to line.

Let us scale up the metrics by defining ⌘̃i = r�2
i
⌘i, !i = r�2

i
!hi and

ũi = r�2
i

ui. By the gradient bound for fi and the estimate for |d!hi
� d⌘i |

we see that |fi| < 2i✏i on B!i(p, 1.9). Note that ũi satisfies

(!i +
p
�1@@̄ũi)

n = efi!n

i ,

with |ũi|  i on B!i(p, 1.9). By Lemma 3.4, we have

(3.2) |d⌘̃i � d!i | <  (i
�1)

on B!i(p, 1) once i is su�ciently large. It follows from (3.2) and property (1)
of Definition 3.2 that both B⌘i(0, 1) and B!i(0, 1) converge to B(0, 1) in the
Gromov-Hausdor↵ sense.

By Lemma 3.3, for all su�ciently large i we have kũikCk,↵(A)  Ck,Ai
on any compact subset A of the regular set of B!i(p, 1). So by passing
to a subsequence, �1

i
ũi converges locally smoothly to a function h on the

regular set, satisfying |h|  1. On the other hand, writing the equation
for ũi in the form of Equation (3.1), we find that away from the singular
set, h is a harmonic function on B(0, 1) with respect to the cone metric
!C(Y ) =

1
2

p
�1@@̄r2. Since |h|  1 and the singular set has codimension at

least four, h extends as a harmonic function across the singular set as well.
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We can decompose h into a sum of homogeneous harmonic functions on
the cone C(Y ), and we write h = h2 + h>2, where h2 collects the com-
ponents with at most quadratic growth and h>2 is the rest. By Lemma 3.1
we can further decompose h2 = hph+haut, where hph is pluriharmonic and
haut 2 H. Since hph is pluriharmonic, hph is the real part of a holomorphic
function, which is a restriction of a holomorphic function on CN . Using the
biholomorphisms in property (1) of Definition 3.2, it follows that hph also
defines a pluriharmonic function hph,i on the scaled-up ball B!i(p, 1) and
hph,i converges uniformly in the Gromov-Hausdor↵ sense to hph.

We now write down the new potential. For this let us define ki =
hi + ihaut 2 H. For su�ciently large i we have ki 2 U . Consider the
corresponding model metric !ki . By property (4) of Definition 3.2 we have
!ki = !hi +

p
�1@@̄vi with

(3.3) |vi|  Ckki � hikr
2
 Cir

2

on B!ki
(0, r). Let us define !̃i = r�2

i
!ki . By property (3) of Definition 3.2,

we have

(3.4) |d!̃i � d!i |  C✏i

on B!̃i(p, 1).
Now we switch our reference metric from !hi to !ki . We have

⌘i = !hi +
p
�1@@̄ui

= !ki +
p
�1@@̄(ui � vi � r2i ihph,i)

= !ki +
p
�1@@̄u0i,

where we define u0
i
= ui � vi � r2

i
ihph,i. By the estimate (3.3) for vi and

the assumption of ui it follows that on B!hi
(p, 2ri) we have

(3.5) |u0i|  Cir
2
i .

By property (3) of Definition 3.2 it follows that the same estimate also
holds on B!ki

(p, ri). Let us define ũ0
i
= r�2

i
u0
i
. Then �1

i
ũ0
i
converges to

h>2 over compact subsets of the regular set of B!̃i(p, 0.8). To see this, let
A be a compact subset of the regular set of B!̃i(p, 0.8). Using the Gromov-
Hausdor↵ approximations as in property (5) of Definition 3.2, we compute

|�1
i

ũ0i � h>2
|  |�1

i
ũi � h|+ |h� r�2

i
�1
i

vi � hpi,i � h>2
|

  (i�1) + |hph � hph,i|+ |r�2
i
�1
i

vi � haut|

  (i�1) + �1
i

|r�2
i

vi � ihaut|

  (i�1) + �1
i
 (i�1)|ihaut|

  (i�1).

The second inequality uses the fact that �1
i

ũi converges to h, while the
second to last inequality uses property (5) of Definition 3.2. We will show
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that ũ0
i
is much smaller than i on a smaller ball, using that it is modeled

on a harmonic function of growth rate strictly greater than 2. Away from
the singular set this follows from the convergence �1

i
ũ0
i
! h>2 as shown

above. To extend this estimate across the singular set we need to apply the
non-concentration result in the previous section.

Let us first make precise the required decay for h>2. Define the normalized
L2 norm of a function f on a ball B by kfk2

B
= vol(B)�1

R
B
f2. Since h>2

has faster than quadratic growth, there is an ↵ > 0 depending only on the
cone C(Y ) such that

kh>2
kB(0,16r)  Cr2+2↵

kh>2
kB(0,1)

for any small r > 0. By the mean value inequality for harmonic functions,

sup
B(0,8r)

|h>2
|  Ckh>2

kB(0,16r)  Cr2+2↵.

We think of r as fixed, to be chosen below.
To apply the non-concentration result in the previous section, we need to

work with respect to ⌘̃i instead of !̃i, since !̃i in general is not a Gromov-
Hausdor↵ limit, while ⌘̃i is. By property (3) of Definition 3.2 and the esti-
mate (3.2), we see that for i su�ciently large, on B⌘̃i(p, 1) we have

(3.6) |d⌘̃i � d!̃i | < r.

Let us now scale up by (16r)�1, replacing !̃i by (16r)�2!̃i and ⌘̃i by
(16r)�2⌘̃i. Define U 0

i
= (16r)�2r�2

i
u0
i
. From (3.5) we have |U 0

i
|  Cir�2

on B!̃i(p, 2). So by (3.6) we have |U 0
i
|  Cir�2 on B⌘̃i(p, 1). Let rh

denote the harmonic radius of !̃i, and let � > 0, whose value is to be
determined later. On {rh > �}, U 0

i
converges smoothly to (16r)�2ih>2. So

on {rh > �} \B!̃i(p, 2) we have

|U 0
i | < Cr2↵i.

Let r̃h be the harmonic radius of the metric ⌘̃i. By Lemma 3.3, for i su�-
ciently large we have {r̃h > 2�} ⇢ {rh > �}. It follows that

sup
B⌘̃i

(p,1)\{r̃h>2�}
|U 0

i |  Cr2↵i.

Note that on B⌘̃i(p, 1), using property (2) of Definition 3.2 we see that U 0
i

satisfies the equation

(⌘̃i �
p
�1@@̄U 0

i)
n = e�fi ⌘̃ni ,

and we have |fi| < 2i✏i. We are now ready to apply the non-concentration
theorem, Theorem 2.1. Given � > 0, Theorem 2.1 implies that there exists
� > 0 such that

sup
B⌘̃i

(p,0.5)
|U 0

i |  C

 
sup

B⌘̃i
(p,1)\{r̃h>2�}

|U 0
i |+ sup

B⌘̃i
(p,1)

|fi|+ � sup
B⌘̃i

(p,1)
|U 0

i |

!

 C(ir
2↵ + i✏i + �ir

�2).
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Choosing � = r2+2↵ and i su�ciently large so that also ✏i  r2↵, we then
have

sup
B⌘̃i

(p,0.5)
|U 0

i |  Cir
2↵.

Scaling back this estimate, we find that for su�ciently large i (depending
on r), we have

sup
B⌘̃i

(p,8r)
|U 0

i |  Cir
2+2↵.

By the distance estimates (3.2) and (3.4) it follows that

sup
B!̃i

(p,4r)
|U 0

i |  Cir
2+2↵

once i is su�ciently large. We can now choose r = � small enough so that

sup
B!̃i

(p,4�)
|U 0

i |  i�
2+↵.

Scaling down by ri, we get

sup
B!ki

(p,4�ri)
|u0i|  i�

2+↵r2i .

This gives the required contradiction. ⇤

We can now state the abstract convergence result. To do so, we need the
following definition. Recall that Z is a non-collapsed Gromov-Hausdor↵
limit of polarized Kähler-Einstein manifolds, !Z is the singular Kähler-
Einstein metric on Z, p 2 Z, and the tangent cone at p is C(Y ). Assume
that U is a neighborhood of p, and on U there is a family F of model metrics.

Definition 3.6. We say that !Z can be approximated by F if the following
holds. Fix any 0 <  < ✏. Then for all r > 0 su�ciently small, there
exist ⇤ > 0 and an embedding F : B!(p, 2r) ⇢ U ! Z from the ball with
respect to ! = !0 2 F such that F (p) = 0 with the following properties.
Let ⌘ = ⇤F ⇤!Z . Then on B!(p, 2r), the following hold:

(1) Ric(⌘) = c⌘ with |c| < r�2✏.
(2) ⌘n = ef!n and ⌘ = ! +

p
�1@@̄u, with

|u| < r2, f(p) = 0, |rf |⌘ < r�1✏.

(3) |d⌘ � d!| < r/100.

Proposition 3.7. Suppose that at p 2 Z, !Z can be approximated by a
family of F of model metrics in a neighborhood U ⇢ Z of p. Then for
some r0 > 0, there is a model metric ! 2 F and a holomorphic embedding
F : B!(p, r0) ! Z, with F (p) = p, and constants ⇤, C,↵ > 0, such that

⇤F ⇤!Z = ! +
p
�1@@̄ur
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for some ur defined on B!(p, r), and

sup
B!(p,r)

|ur|  Cr2+↵

for all r < r0.

Proof. We iterate the decay estimate, Proposition 3.5, as well as the distance
estimate, Lemma 3.4. Let C,↵ and � be the constants in Proposition 3.5,
and let ✏, r be su�ciently small so that both Lemma 3.4 and Proposition 3.5
hold. At the initial stage we let  < C�1(1 � �↵)✏. Exactly how small ✏
should be will be clear later. By letting r be smaller if necessary (depending
on , ✏), we have the corresponding approximation F : B!(p, 4r) ! Z, where
! = !0 2 F , with constant ⇤ > 0. Write ⌘ = ⇤F ⇤!Z . Then Lemma 3.4
implies that we have |d⌘ � d!| < �r/200 on the ball B!(p, 2r). We write
h0 = 0.

Applying Proposition 3.5 we have a model metric !1 = !h1 , with kh1k 

C  ✏, and a function u1 on B!(p, r) such that ⌘ = !h1 +
p
�1@@̄u1, and

sup
B!(p,4�r)

|u1|  �2+↵r2.

By property (3) of Definition 3.2, it follows that

sup
B!1 (p,2�r)

|u1|  �2+↵r2.

Also by property (3) of Definition 3.2, on B!1(p, 2�r) we have

|d!0 � d!1 |  C1(kh1k+ kh0k)�r  2C1✏�r 
�r

200

if we choose ✏ to be su�ciently small. Consequently, on B!1(p, 2�r) we have

|d⌘ � d!1 |  |d⌘ � d!|+ |d! � d!1 | 
�r

100
.

The metrics ⌘ and !1 now satisfy the conditions of Lemma 3.4 and Proposi-
tion 3.5, with r replaced by �r and  by �↵. We can iterate this construc-
tion and we obtain a sequence of model metrics !i = !hi with khi+1�hik 

C(�↵)i such that on B!i(p, 2�
ir) we have ⌘ = !i +

p
�1@@̄ui with

sup
B(p,2�ir)

|ui|  (�i)2+↵r2.

The harmonic functions hi converge to a harmonic function k satisfying
kkk  ✏, so k 2 U if ✏ is chosen small enough. Let !̃ = !k be the corre-
sponding model metric. By property (4) of Definition 3.2, there exists vi on
B!̃(0, 1) such that

!i � !̃ =
p
�1@@̄vi,

with

sup
B!̃(p,�ir)

|vi|  C2kk � hik(�
ir)2  C3(�

i)2+↵r2.
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So on B!̃(0,�ir) we have

⌘ = !i +
p
�1@@̄ui = !̃ +

p
�1@@̄(ui + vi) = !̃ +

p
�1@@̄ũi,

where ũi = ui + vi. Then ũi satisfies

sup
B!̃(0,�ir)

|ũi|  (1 + C3)(�
i)2+↵r2  C 0(�ir)2+↵,

where C 0 = (1 + C3)r�↵, and so !̃ and ũi are as required. ⇤

4. K-polystable singularities

Suppose, as above, that (Z, p) is the non-collapsed pointed Gromov-
Hausdor↵ limit of a sequence of polarized Kähler-Einstein manifolds, with its
singular Kähler-Einstein metric denoted by !Z . Let C(Y ) denote the metric
tangent cone to Z at p. In this section we assume that the germ (Z, p) is
isomorphic to the germ (C(Y ), o), where o is the vertex of the cone C(Y ).
In particular this means that the a�ne variety C(Y ), equipped with the ho-
mothetic vector field ⇠ induced by the cone structure defines a K-polystable
Fano cone singularity (C(Y ), ⇠) in the terminology of Li-Wang-Xu [29].

In this section we prove our first main result, Theorem 1.1, by reducing
it to Proposition 3.7. For this we need to construct a family F of model
metrics on C(Y ) and then show that the Gromov-Hausdor↵ limit !Z can be
approximated by F .

The construction of F is fairly simple, since the model space C(Y ) is
already a cone. Let H denote the space of quadratic harmonic functions
h such that rh generates a biholomorphism which commutes with scaling
(see Lemma 3.1). For h 2 H, let �(t) be the one-parameter group of bi-
holomorphisms generated by 1

2rh. By the gradient estimate and h being
homogeneous with quadratic growth, we have

(4.1) sup
BC(Y )(0,r)

|rh|!C(Y )
 C sup

BC(Y )(0,2r)
|h|r�1

 Ckhkr

for all r > 0. Let g = �(1) and define !h = g⇤!C(Y ).

Lemma 4.1. There exists a neighborhood 0 2 U ⇢ H such that F = {!h |

h 2 U} is a family of model metrics.

Proof. For simplicity let us write ! = !C(Y ). We verify the properties
in Definition 3.2. Property (1) is automatic since C(Y ) is a cone itself.
Property (2) is satisfied since the automorphism g is generated by rh for a
harmonic function h.

Let us consider property (3). Let x, y 2 B(0, r) be regular points. By
di↵erentiating d!(0,�(t)x) and using (4.1), we see that

(4.2) d!(0,�(t)x)  eCkhktd!(0, x).

Similarly, by di↵erentiating d!(x,�(t)x) and using (4.1) and (4.2) we see
that

(4.3) d!(x, gx)  C(eCkhk
� 1)d!(0, x)  Ckhkd!(0, x).
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For x, y 2 B!(0, r), the triangle inequality together with (4.3) gives

|d!(gx, gy)� d!(x, y)|  |d!(x, gx) + d!(y, gy)|  Ckhk(d!(0, x) + d!(0, y)).

This proves property (3).
To see property (4), recall that ! as a cone metric is given by ! =

p
�1@@̄(r2/2), where r is the distance to the vertex 0. Di↵erentiating �(t)⇤r2

and using (4.2), we get

(4.4) |g⇤r2 � r2|  Ckhkr2.

Now, let gh and gk denote the automorphisms generated by h and k, respec-
tively. Define

u = g⇤
k
r2 � g⇤

h
r2 = g⇤

k
(r2 � g⇤r2),

where g = ghg
�1
k

. By standard Lie theory, for su�ciently small h, k, we have

g = g
h̃
for some h̃ 2 H with h̃ = h � k + O(kh � kkkhk). Then (4.2) and

(4.4) together imply that

|u| = |g⇤
k
(r2 � g⇤r2)|  Ckh� kkg⇤

k
r2  Ckh� kkr2

once h, k are su�ciently small. Since !k = !h +
p
�1@@̄u, this proves

property (4) of Definition 3.2 for a su�ciently small neighborhood U of
0 2 H.

Finally, let us prove (5). Fix K a compact set in the regular set of B(0, 1).
Let ri ! 0 and hi, ki 2 H such that khik, kkik ! 0. Let Ki be compact sets
in the regular set of B

r
�2
i !hi

(0, 1) converging to K in the Gromov-Hausdor↵

sense. Since !hi is a cone metric, we may work as if ri = 1. Thus on
B!hi

(0, 1) we can simply take Ki = g�1
i

K. To simplify the notations we
suppress the subscript i in what follows. Let �(t) and  (t) be the flows
of rh and rk, respectively, and set gh = �(1) and gk =  (1). Then we
have !k = !h +

p
�1@@̄u with u = g⇤

k
(r2/2) � g⇤

h
(r2/2). If khk, kkk are

su�ciently small (depending on K), then we can expand  (t)⇤r2 and �(t)⇤r2

as power series in t for t 2 [0, 1], whose coe�cients depend on rh,rk and
the derivatives of r2. As a consequence we have an estimate of the form

(4.5) |g⇤
h
r2 � r2 �

1

2
rh(r2)|  C|rh|2!h

 Ckhk2

on K, where the last inequality follows from (4.1). Note that since h is
homogeneous with degree two, we have rh(r2) = 4h.

Now, if h, k are su�ciently small, we have h̃ 2 H as above. Using (4.5),
we compute

|g⇤
k
r2 � g⇤

h
r2 � 2(k � h)|  g⇤

k
|r2 � g⇤

h̃
r2 + 2h̃|+ 2|(h� k)� g⇤

k
h̃|

 Ckh̃k2 + Ckh� kkkhk

 ✏kh� kk

for any ✏ > 0 once h, k are su�ciently small. This proves (5). ⇤
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It remains to show that !Z can be approximated by F . As in Donaldson-
Sun [20], we let � = 1/

p
2, and let (Zi, pi) denote (Z, p) scaled up by a

factor of ��i, which is still a pointed Gromov-Hausdor↵ limit of polarized
Kähler-Einstein manifolds. Let Bi denote the unit ball around pi, i.e. the
ball B(p,�i) scaled up to unit size. Let us denote the unit ball in C(Y ) by
B, and let F1 : B ! CN be an embedding given by an L2-orthonormal set
of homogeneous functions. Using this embedding we will also view C(Y ) ⇢
CN . Since C(Y ) is the tangent cone at p, we have Bi ! B in the Gromov-
Hausdor↵ sense. We choose distance functions on the disjoint unions BitB
realizing the Gromov-Hausdor↵ convergence.

Proposition 4.2. For su�ciently large i we have holomorphic maps Fi :
Bi ! CN satisfying the following properties, where  (i�1) denotes a func-
tion converging to zero as i ! 1.

(1) Under the Gromov-Hausdor↵ approximations between Bi and B we
have |Fi � F1| <  (i�1), and the image Fi(Bi) ⇢ C(Y ).

(2) Let !i = (F�1
i

)⇤(��2i!Z) denote the metric on the image Fi(Bi)
induced by ��2i!Z . Then we have Ric(!i) = ci!i for some |ci| <
 (i�1), and the distance functions d!i , d!C(Y )

satisfy |d!i�d!C(Y )
| <

 (i�1).
(3) We have !n

i
= efi!n

C(Y ) and !i = !C(Y ) +
p
�1@@̄ui with fi(0) = 0

and |rfi|!i , |ui| <  (i
�1).

In particular !Z can be approximated by F in the sense of Definition 3.6.

Proof. Let Op be the ring of germs of holomorphic functions on Z at p. As
in Donaldson-Sun [20], for f 2 Op we can define

dKE(f) = lim
r!0

supB(p,r) log |f |

log r
.

By Li-Xu [30, Theorem 1.4], dKE is the unique K-semistable valuation in
ValZ,p. On the other hand, C(Y ) admits a Ricci-flat Kähler cone metric, and
so the homothetic scaling on C(Y ) gives rise to a K-polystable valuation
by Li-Wang-Xu [29, Corollary A.4], which in particular is K-semistable. It
follows that these two valuations coincide.

The coordinate ring R(C(Y )) is a sum of the homogeneous pieces

R(C(Y )) =
M

k�0

Rdk
(C(Y )),

where Rdk
is the degree dk piece under the homothetic action. Let us sup-

pose that R(C(Y )) is generated by the functions of degree less than D,
and let k0 = max{k � 0 | dk < D}. We have a subspace P ⇢ Op, and
an adapted sequence of bases for P as in [20, Section 3.2], which for su�-
ciently large i define holomorphic embeddings Fi : Bi ! CN . Under the
Gromov-Hausdor↵ convergence Bi ! B ⇢ C(Y ), the maps Fi converge to
an embedding B ! CN using an L2-orthonormal set of homogeneous func-
tions in R(C(Y )) and up to modifying our maps by unitary transformations
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we can assume that this embedding of B coincides with our embedding F1.
We will denote the L2-norm of functions on Bi by k · ki.

Recall that the adapted sequence of bases are bases {G1
i
, . . . , Gm

i
} of P

satisfying the following:

• The L2 norm on Bi satisfies kGa

i
ki = 1, and hGa

i
, Gb

i
ii ! 0 as i ! 1.

• We have Ga

i
= µ�1

ia
Ga

i�1 + pa
i
, with kpa

i
ki ! 0 as i ! 1.

• µia ! �da as i ! 1.

For each a, i we can write

Ga

i = gai + kai ,

where ga
i
is homogeneous of degree da and ka

i
has strictly greater degree.

There exists an ✏ > 0 such that for all a, i we have d(ka
i
) > da + ✏. Let us

also decompose pa
i
= (pa

i
)da +(pa

i
)>da into the homogeneous degree da piece,

and the remainder. We then have

Ga

i = µ�1
ia

(gai�1 + kai�1) + pai ,

and so

gai = µ�1
ia

gai�1 + (pai )da ,

kai = µ�1
ia

kai�1 + (pai )>da .

Since d(ka
i�1) > da + ✏ and µia ! �da , for su�ciently large i we have

kµ�1
ia

kai�1ki  µ�1
ia
�da+✏/2

kkai�1ki�1  �✏/4kkai�1ki�1.

It follows that kka
i
k ! 0 as i ! 1, and so if we define the functions F̃i to

have components ga
i
, then supBi

|Fi� F̃i| ! 0. We claim that for su�ciently

large i, F̃i is also an embedding. To see this, suppose that F̃i is not an
injection. Since there are no compact subvarieties in Bi, F̃i is finite. By
our assumption, for a generic regular point q 2 C(Y ), there are at least two
preimages p1,i, p2,i under F̃i. Note that from the convergence F̃i ! F1, we
also have p1,i, p2,i ! p for some p 2 C(Y ) in the Gromov-Hausdor↵ sense.
F1 is a biholomorphism on a neighborhood of p and therefore so is F̃i for
large enough i.

We claim that further modifying the F̃i by elements in GL(N) converging
to the identity, and commuting with the homothetic action on C(Y ), we can
assume that F̃i(Bi) ⇢ C(Y ) ⇢ CN . To see this, recall that the homothetic
action on C(Y ) generates the algebraic action of a complex torus T on C(Y ),
which we can assume is given by a linear action on CN . By our construction
each Fi(Bi) lies in the image giC(Y ) of the cone by a matrix gi 2 GL(N)T

commuting with T . We need to show that there are elements hi 2 GL(N)T

converging to the identity such that higiC(Y ) = C(Y ). Since C(Y ) ad-
mits a Ricci flat Kähler cone metric, the group of linear automorphisms of
C(Y ) commuting with T is reductive (see Donaldson-Sun [20]). Using this,
we can apply the variant of Luna’s slice theorem shown in Donaldson [18,
Proof of Proposition 1] to the multigraded Hilbert scheme. In this Hilbert
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scheme we have giC(Y ) ! C(Y ), and therefore there are some hi ! 1 in
GL(N)T such that higiC(Y ) lie in the slice at C(Y ). The orbit of C(Y )
can only meet the slice at finitely many points near C(Y ), therefore for suf-
ficiently large i we have higiC(Y ) = C(Y ). Replacing the Fi by hi � F̃i we
now have embeddings Fi of the Bi, satisfying Condition (1) in the statement
of the Proposition.

Regarding Condition (2), the estimate for the Ricci curvature is imme-
diate since by construction Ric(!i) = c�2i!i for some |c|  1. The es-
timate |d!i � d!C(Y )

| <  (i�1) follows from the estimate |Fi � F1| <

 (i�1). More precisely, for any ✏ > 0 we need to show that for suf-
ficiently large i we have |d!i � d!C(Y )

| < ✏. Let x, y 2 Fi(Bi), so that
x = Fi(xi), y = Fi(yi). We can find x0

i
, y0

i
2 B such that under the Gromov-

Hausdor↵ approximations we have d(xi, x0i), d(yi, y
0
i
) <  (i�1), and then

|x� F1(x0
i
)|, |y � F1(y0

i
)| <  (i�1) by Condition (1). At the same time we

also have points x0, y0 2 B such that x = F1(x0), y = F1(y0). Our goal is to
show that |dB(x0, y0)�dBi(xi, yi)| < ✏ if i is su�ciently large (independent of
x, y), where we are emphasizing that we are taking the distance with respect
to the !C(Y ) and !i metrics by writing dB, dBi . Using the metrics on BitB
realizing the Gromov-Hausdor↵ convergence, we have

|dB(x
0, y0)� dBi(xi, yi)|  dB(x

0
i, x

0) + dB(y
0
i, y

0) + d(xi, x
0
i) + d(yi, y

0
i)

 dB(x
0
i, x

0) + dB(y
0
i, y

0) + (i�1).

Finally to see that dB(x0i, x
0) is small for large i, we can use that |F1(x0

i
)�

F1(x0)| <  (i�1) and the fact that F�1
1 is uniformly continuous. It follows

that for su�ciently large i we have dB(x0i, x
0) < ✏/2, and the same holds for

dB(y0i, y
0). Combining these results, we get |dB(x0, y0) � dBi(xi, yi)| < ✏ for

large i as required.
Since !C(Y ) is a cone metric, it admits the Kähler potential  = 1

2dC(Y )(o, ·)
2.

At the same time, using [31, Proposition 3.1], we can find Kähler potentials
�i for !i on Fi(Bi), such that

|�i �
1

2
d!i(o, ·)

2
| <  (i�1).

Using the estimate for the distance functions in Condition (2) we find that
!i = !C(Y ) +

p
�1@@̄ui, where

|ui| = |�i �  | =
1

2
|d!i(o, ·)

2
� d!C(Y )

(o, ·)2| <  (i�1).

Since !i satisfies Ric(!i) = ci!i and Ric(!C(Y )) = 0, we have !n

i
= efi!n

C(Y )

for some fi satisfying ci!i = �
p
�1@@̄fi on the regular part of B, i.e.

p
�1@@̄(fi + ci�i) = 0.

By Grauert-Remmert [23] the pluriharmonic function fi + ci�i extends to
a pluriharmonic function across the (codimension 2) singular set of B. By
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Colding’s volume convergence theorem [12] we have
Z

B

!n

i =

Z

B

!n

C(Y ) + (i
�1),

and so since ci ! 0 as i ! 1 while �i is uniformly bounded, we have
Z

B

efi+ci�i!n

C(Y ) =

Z

B

!n

C(Y ) + (i
�1).

In particular we have a uniform bound for the L1 norm of the plurisubhar-
monic function efi+ci�i on B, with respect to !n

C(Y ), and so by the mean
value inequality on a slightly smaller ball we have a uniform upper bound
efi+ci�i < 1 +  (i�1), or in other words fi + ci�i <  (i�1). Similarly, we
have a uniform upper bound for the integral of e�fi�ci�i with respect to !n

i
,

and so we have �fi � ci�i <  (i�1) on a slightly smaller ball. This implies
that |fi+ ci�i| <  (i�1), and since ci ! 0, we obtain |fi| <  (i�1). We can
arrange that fi(0) = 0 by composing the Fi by an element of GL(N) close to
the identity, inducing a homothetic scaling on the cone C(Y ). Finally, using
the equation nci = ��!ifi together with the gradient estimate for harmonic
functions implies |rfi|!i <  (i

�1) as required in condition (3). ⇤

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 4.2, !Z can be approximated by F .
We can set ⇤ = 1 in Definition 3.6 because the model metric !0 is a cone
metric. Applying Proposition 3.7, we see that there exist a model metric
!h 2 F , r0 > 0, and a holomorphic map F : B!h(0, r0) ! Z with F (0) = p
and constants C,↵ > 0, such that

(4.6) F ⇤!Z = !h +
p
�1@@̄ur

for some ur defined on B(0, r) and

sup
B!h (0,r)

|ur|  Cr2+↵

for all r < r0. By construction (see Lemma 4.1), !h = g⇤!C(Y ). Thus (4.6)
becomes

(F � g�1)⇤!Z = !C(Y ) +
p
�1@@̄(ur � g

�1).

Since B(0, r/2) ⇢ B!h(0, r), we have

(4.7) sup
B(0,r/2)

|ur � g
�1

|  Cr2+↵.

This completes the proof. ⇤

In the case of tangent cones with isolated singularities we have the fol-
lowing corollary, generalizing Hein-Sun [26, Theorem 1.4].
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Corollary 4.3. Suppose that in the setting of Theorem 1.1 the tangent
cone C(Y ) has an isolated singularity at the origin. Then the metric �⇤!Z

satisfies

sup
B(o,r)\B(o,r/2)

|r
j

!C(Y )
(�⇤!Z � !C(Y ))|!C(Y )

 Cjr
↵�j ,

for all r < r0, constants Cj, and the ↵ from Theorem 1.1.

Proof. This follows from rescaling the estimate (4.7) by a factor of r�1, and
then applying Lemma 3.3. ⇤

5. The unstable case

In this section we prove Theorem 1.2. Suppose that Z is the Gromov-
Hausdor↵ limit of a non-collapsing sequence of polarized Kähler-Einstein
manifold. Let p 2 Z, and suppose C(Y ) is the tangent cone at p. Unlike the
previous section, we deal with an example for which the germ (Z, p) is not
isomorphic to the germ (C(Y ), o), where o is the vertex of the cone. Assume
that

C(Y ) = C⇥ {f(x) = x21 + x22 + · · ·+ x2n = 0} ⇢ Cn+1.

This is equipped with the Calabi-Yau cone metric

!C(Y ) =
1

2

p
�1@@̄(|z|2 + r2),

where r2 = |x|2
n�2
n�1 is the distance squared of the Stenzel metric [35]. Recall

that the homothetic action on the coordinates xi has weights wi =
n�1
n�2 , and

f is homogeneous with degree d = 2n�1
n�2 . We assume that the germ (Z, p) is

isomorphic to the isolated singularity

X = {zp + x21 + · · ·+ x2n = 0} ⇢ Cn+1

for a fixed integer p > d. The e↵ect is that the C⇤ action extending the
homothetic action on C(Y ) degenerates X to C(Y ). By [36, Theorem 2],
there exists a Calabi-Yau metric ! on a neighborhood of the singular point
0, whose tangent cone at 0 is C(Y ).

As in the previous section, we will prove Theorem 1.2 by showing that
there exists a family F of model metrics built from applying automorphisms
and scalings to !, and that the singular Kähler-Einstein metric !Z on Z can
be approximated by F near p. We have the following lemma, characteriz-
ing the space H of quadratic harmonic functions whose gradients generate
automorphisms of C(Y ) that commute with scaling.

Lemma 5.1. Let H be the space of quadratic harmonic functions, whose
gradients generate automorphisms of C(Y ) that commute with scaling. Then
H is spanned by

(n� 1)|z|2 � |x|2
n�2
n�1
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and

|x|�
2

n�1ajkxj x̄k,

where (ajk) 2
p
�1o(n,R). For h 2 H there exist a holomorphic vector

field V on Cn+1 preserving the hypersurfaces Xc = {czp + x21 + · · ·x2n =
0} ⇢ Cn+1, and a constant � such that LV ⌦ = n�⌦, where ⌦ = (1/x1)dz ^
dx2 · · · ^ dxn is the holomorphic volume form on Xc, and

(5.1) V

✓
|z|2 + r2

2

◆
� �

✓
|z|2 + r2

2

◆
= h.

In addition we have |�|  Ckhk and

sup
B!c (0,r)

|V |!c  Ckhkr,

i.e. V has at most linear growth. Here B(o, 1) ⇢ C(Y ) is the unit ball and
!c = |s|�2F ⇤

c ! is the rescaled metric on Xc with Fc : Xc ! X given by

Fc(z, x) = (sz, s
n�1
n�2x), and sp�2n�1

n�2 = c.

Proof. The first part follows from [37, Lemma 2.2] using Fourier transform
in the C direction or [9, Subsection 3.4.1] using Lemma 3.1 (3). For the
holomorphic vector fields, it is very similar to the proof of [37, Lemma 2.3].

The only di↵erence is that when h = |z|2 � 1
n�1 |x|

2n�2
n�1 , we consider the real

holomorphic vector field

V = Re

✓
1

p
z@z +

1

2
xi@xi

◆
.

Then V preserves the hypersurfaces czp + x21 + · · ·x2n = 0, we have

V (|z|2 + r2)�

✓
2 + np� 2p

2np

◆
(|z|2 + r2) =

✓
2n� 2� np+ 2p

2np

◆
haut,

and we have

LV ⌦ =

✓
2 + np� 2p

2p

◆
⌦.

The estimate for |V |!c is analogous to [37, Proposition 2.1 (2)], using the
construction of !. ⇤

We now construct the family of model metrics. Let h 2 H. Then by
Lemma 5.1 there exists a vector field V on Cn+1 and a constant � > 0 (both
depending on h) satisfying the required properties. Let �(t) be the one-
parameter group of biholomorphisms of X generated by V . Set gh = �(1)
and define !h = e��g⇤

h
!.

Lemma 5.2. There exists a neighborhood 0 2 U ⇢ H such that F = {!h |

h 2 U} is a family of model metrics in the sense of Definition 3.2.
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Proof. This is similar to the proof of Lemma 4.1. By the construction of
!, for ri ! 0, (ri·) : B!(0, 1) ! Cn+1 is a holomorphic map which is
a  (i�1)-Gromov-Hausdor↵ approximation in the sense of property (1) of
Definition 3.2, where · denotes the homothetic scaling. Let hi 2 H be a
bounded sequence, and consider the corresponding model metrics !hi =
e��ig⇤

i
!. Since r0

i
= rie�i/2 ! 0 as �i are bounded (Lemma 5.1), it follows

that Fi = (r0
i
·)�gi : Br

�2
i !hi

(0, 1) ! Cn+1 is also a  (i�1)-Gromov-Hausdor↵

approximation. This establishes property (1) for any bounded neighborhood
U of 0 2 H.

Property (2) follows from Lemma 5.1. Property (3) is entirely similar to
the proof of Lemma 4.1. For the rest, recall that ! =

p
�1@@̄', where we

have

sup
B!(0,r)

|'|  Cr2,

which follows from the construction in [36, Section 8]. Since �!' = n, we
can apply the gradient estimate in annuli to get

sup
B!(0,r)

|r'|  Cr

for all r > 0. Di↵erentiating �(t)⇤' and using the bounds in Lemma 5.1, we
have

|g⇤
h
'� '|  Ckhkr2

for all r > 0. It follows that |e��g⇤
h
' � '|  Ckhkr2. Now let k 2 H

be another quadratic harmonic function, and let W, � be the corresponding
vector field and constant given in (5.1) of Lemma 5.1. First we note that
the vector fields given by (5.1) form a Lie subalgebra. Thus by standard
Lie theory, for su�ciently small h, k, g

h̃
= ghg

�1
k

for some h̃ 2 H, with

h̃ = h � k + O(kh � kkkhk). Let Ṽ and �̃ be the vector field and the
constant associated to h̃ in (5.1). We then have

|e��g⇤
k
'� e��gh|  e��g⇤

k
|'� e�(���)g⇤

h̃
'|

 e��g⇤
k
(|'� e��̃g⇤

h̃
'|+ |e��̃

� e�(���)
||g⇤

h̃
'|)

 e��g⇤
k
(Ckh̃kr2 + Ckh̃k|g⇤

h̃
'|)

 Ckh� kkr2.

This proves property (4) for some small neighborhood U .
Finally, let us prove (5). Let ri ! 0 and hi, ki 2 H with khik, kkik ! 0.

Let Vi,Wi be the corresponding vector fields for hi, ki defined in Lemma 5.1.
Let �i(t), i(t) be the flows of Vi,Wi, respectively. Set ghi = �(1) and
gki =  (1). Then the model metrics are given by !hi = e��ig⇤

hi
! and

!ki = e��ig⇤
ki
!, with |�i|  Ckhik and |�i|  Ckkik. Fix a compact set

K in the regular set of B(0, 1), and let Ki ⇢ B
r
�2
i !hi

(0, 1) be compact sets
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converging to K in the Gromov-Hausdor↵ sense. By (5.1) in Lemma 5.1,
we have

Vi(r
2/2)� �i(r

2/2) = hi

and the analogous equation for Wi, �i, ki. Here we denote the cone metric
as !C(Y ) =

1
2

p
�1@@̄r2. Since 'i = r�2

i
' on Ki converges to r2/2 in C1 on

K, it follows that under the Gromov-Hausdor↵ approximation,

|Vi'i � �i'i � hi|   (i
�1)khik.

Using power series expansion as in Lemma 4.1 and the above inequality, it
follows that

|e��ig⇤
hi
'i � 'i � hi|  O(khik

2) + (i�1)khik   (i�1)khik.

Now, let h̃i 2 H with vector field Ṽi and constant �̃i such that g
h̃i

= ghig
�1
ki

and h̃i = hi � ki +O(khi � kikkkik). Then we have

|e��ig⇤
ki
'i � e��ig⇤

hi
'i � (ki � hi)|  e��ig⇤

ki
|'i � e�(�i��i)g⇤

h̃i
'i + h̃i|

+ |e��ig⇤
ki
h̃i + (ki � hi)|

  (i�1)kh̃ik+ Ckhi � kikkkik

  (i�1)khi � kik.

Setting ui = e��ig⇤
ki
'i � e��ig⇤

hi
'i, this conclude the proof of (5). ⇤

Now we turn to showing that !Z can be approximated by F . As in
the previous section, let � = 1/

p
2, and let (Zi, pi) denote (Z, p) scaled up

by a factor of ��i. Let Bi denote the unit ball centered at pi, i.e. the ball
B(p,�i) scaled up to unit size. Let F1 denote the inclusion of C(Y ) inCn+1.
Note that the components of F1 consist of L2 orthonormal homogeneous
functions z, xi. Let B ⇢ C(Y ) be the unit ball centered at 0.

Proposition 5.3. For su�ciently large i we have holomorphic maps Fi :
Bi ! Cn+1 with the following properties, where  (i�1) denotes a function
converging to zero as i ! 1.

(1) On the ball Bi the map Fi gives a  (i�1)-Gromov-Hausdor↵ approx-
imation to the embedding F1 : B ! Cn+1. Moreover, the image
Fi(Bi) ⇢ {aizp + x21 + · · ·+ x2n = 0} for some ai > 0 with Fi(pi) = 0

(2) There exist a subsequence Fj(i) of Fi and a sequence of scalings

gi : (z,x) 7! (miz,m
(n�1)/(n�2)
i

x) with C�1
n < mi < Cn for some di-

mensional constant Cn > 0, such the image of the map F 0
i
= gi�Fj(i)

lies in Xi = {(�i)p�2n�1
n�2 z+x21+· · ·+x2n = 0} ⇢ Cn+1. Xi is equipped

with the “unknown metric” ⌘i = (F 0�1
i

)⇤(m�2i
i
��2j(i)!Z) as well as

the model metric !i = ��2iG⇤
i
!, where Gi : (z,x) 7! (�iz, (�i)

n�1
n�2x).

(3) We have Ric(⌘i) = ci⌘i for some |ci| <  (i�1), and the distance
functions d⌘i , d!i satisfy |d⌘i � d!i | <  (i

�1).
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(4) We have ⌘n
i
= efi!n

i
and ⌘i = !i +

p
�1@@̄ui, with fi(0) = 0 and

|rfi|⌘i , |ui| <  (i
�1).

In particular !Z can be approximated by F in the sense of Definition 3.6.

Proof. Identifying the germ of (Z, p) with the germ of (X, 0), we can assume
that Bi ⇢ X. Write R = OX,0, and let v be the valuation of (X, 0) associated
to !. By the construction of !, the associated graded ring Rv is isomorphic
to R(C(Y )), which is a Ricci-flat Kähler cone. So by Li-Xu [30, Theorem 1.3]
and Li-Wang-Xu [29, Corollary A.4], we have dKE = v, where dKE is the
valuation given by !Z .

For (1), we will focus on the case when n = 3. For n > 3, the argument
is the same, with the simplification that the function z2 has higher degree
than xi. As in Proposition 4.2, we have a subspace P ⇢ OZ,p and an
adapted sequence {Ga

i
}i of bases for P , which for su�ciently large i define

holomorphic embeddings Fi : Bi ! CN . Fi converges in the Gromov-
Hausdor↵ sense to F1, which up to a unitary rotation is given by (1, z, z2,x),
the components of which form an orthonormal basis for the corresponding
space in R(C(Y )) (we assume n = 3). Here x = (x1, x2, x3). From this we
see that N = 6. Note that since we have the isomorphism of germs, OZ,p is
also generated by S = {1, z, z2,x} . We can decompose Ga

i
as Ga

i
= ga

i
+ka

i
,

where ga
i
is a linear combination of elements in S with degree equal to

da and ka
i
has degree > da. As in the proof of Proposition 4.2 we have

supBi
|Ga

i
� ga

i
| ! 0 as i ! 1.

Define F̃i = (ga
i
). We can write F̃i = (ci, zi, wi,xi), where

zi = diz,

wi = W T

i x+ biz
2,

xi = Aix+ z2Vi,

and bi, ci, di are scalars, Vi,Wi are vectors and Ai is a matrix. Using the
fact that supBi

|Ga

i
� ga

i
| ! 0 as i ! 1, we deduce that di � ��1di�1 ! 0,

bi���2bi�1 ! 0, Ai���2Ai�1 ! 0, Wi���2Wi�1 ! 0, and Vi���2Vi�1 !

0.
On the other hand, writing the equation for X in terms of zi,xi and using

the above convergence result for Vi, we must have Vi = 0 for all su�ciently
large i and

d�p

i
kAik

2, |(kAik
�1Ai)

T (kAik
�1Ai)� Id|   (i�1).

In particular, by modifying Ai by matrices of the form Id +  (i�1), we
may assume that kAik

�1Ai 2 O(3). We now drop the first and the third
components of F̃i and obtain embeddings Fi = (zi,xi) into C4, whose image
is given by d�p

i
kAik

2zp + xT

i
xi = 0. Set ai = d�p

i
kAik

2. Then by the above
convergence results we have ai/ai�1 ! �p�4 < 1. By applying scalings

(z,x) ! (cz, c
n�1
n�2x) with some |c| = 1, we can assume that ai > 0. So we

have proved (1).
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To prove (2), we argue as in the proof of [37, Theorem 1.1]. Since

ai/ai�1 ! �p�2n�1
n�2 , for su�ciently large i, we can find j(i) such that

C�1
n aj(i) < (�i)p�2n�1

n�2 < Cnaj(i) for a dimensional constant Cn > 0. We

can therefore find mi 2 (C
�p+2n�1

n�2
n , C

p�2n�1
n�2

n ) such that

m
p�2n�1

n�2
i

aj(i) = (�i)p�2n�1
n�2 .

This proves (2). The rest follows verbatim the proof of Proposition 4.2. ⇤
Proof Theorem 1.2. Proposition 5.3 shows that !Z can be approximated by
F constructed in Lemma 5.2. The rest of the proof is very similar to the
proof of Theorem 1.1, so we omit it. ⇤

6. Uniqueness of Calabi-Yau metrics under small perturbation

In this section we prove Theorem 1.3, which says that polynomially sub-
quadratic perturbation of a @@̄-exact Calabi-Yau metric with maximal vol-
ume growth must be trivial. Recall that X is said to have maximal volume
growth if there exists v > 0 such that for all p 2 X and r > 0, we have
Vol(B(p, r)) � vr2n. It was proved in [32] that tangent cones at infinity of
a Calabi-Yau manifold with maximal volume growth is an a�ne variety. It
was also observed in [37, Section 3.1] that Donaldson-Sun theory extends to
the @@̄-exact case. In particular the tangent cone at infinity is unique. To
prove Theorem 1.3, we need the following decay estimate. For the following,
let o 2 X be a fixed point, and write B(o, r) for the r-ball in X with respect
to the rescaled metric c2!, where 0 < c ⌧ 1.

Lemma 6.1. For any ↵ > 0 su�ciently small, there exists a constant �0 > 0
such that if � < �0 and ✏ > 0 is su�ciently small (depending on �), then
we have the following. Suppose that

dGH(B(o, ✏�1), B(0, ✏�1)) < ✏,

where B(0, ✏�1) is the corresponding ball in the tangent cone C(Y ). Suppose
u is a smooth function on B(o, 1) with supB(o,1) |u| < ✏ satisfying

(! +
p
�1@@̄u)n = !n.

Then we can find a smooth function u0 on B(o, 1/2) such that

(1) @@̄(u� u0) = 0,
(2) supB(o,�) |u

0
|  �2�↵ supB(o,1) |u|.

Proof. The proof is very similar to the proof of [37, Proposition 4.1], so we
omit it. We note that the decay rate in (2) is slower than quadratic. Thus
for this result we only need to subtract “subquadratic” harmonic functions
from u and automorphisms of the cone do not enter the argument. The
@@̄-exactness is required to apply Theorem 2.1, and to embed the manifold
X as an a�ne variety in CN . This in turn is required to employ the fact
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that subquadratic harmonic functions on the cone extend to pluriharmonic
functions on the manifold. ⇤
Proof of Theorem 1.3. We scale down the metric. Let !i = 2�2i!, and let
ui = 2�2iu. Denote B(oi, 1) the unit ball with respect to the scaled-down
metric !i. Let i0 be large enough so that

sup
B(oi,1)

|ui|  2�2iC(1 + 2�i)2��
 C 02�i� < ✏,

and that

dGH(B(oi, ✏
�1), B(o, ✏�1)) < ✏

for i > i0, where ✏ is given in Lemma 6.1. Let ↵ > 0 be su�ciently small
as in Lemma 6.1. In particular we also want ↵ < �. Then we can apply
Lemma 6.1. We may set � = 2�m, where m > 0 an su�ciently large integer.
Let i = i0 + km, where k > 0 is an integer. Then by Lemma 6.1, there
exists a smooth function u0 on B(oi, 1/2) such that @@̄(ui � u0) = 0 and
supB(oi,�) |u

0
|  �2�↵ supB(o,1) |ui|. Set u

0
i�1 = ��2u0. Note that

B(oi,�) = B(oi�m, 1) = B(oi0+(k�1)m, 1).

So we have

sup
B(oi0+(k�1)m,1)

|u0i�1|  ��↵ sup
B(oi,1)

|ui|  2m↵�km�C 02�i0� < ✏.

We can then iterate this process k times. In the end, we have a function u0
i0

on B(oi0 , 1) with

sup
B(oi0 ,1)

|u0i0 |  2km(↵��)C 02�i0�

Rescaling back, we now have a smooth function vk = 22i0u0
i0

satisfying

(! +
p
�1@@̄vk)

n = !n

on B(o, 2i0) such that @@̄(u� vk) = 0 and

sup
B(o,2i0 )

|vk|  2km(↵��)C 0.

By Lemma 3.3, up to passing to a subsequence vk converges uniformly in
C1 to 0 as k ! 1. It follows that @@̄u = 0 on B(o, 2i0). We can then
increase i0 and conclude that @@̄u = 0 on X. ⇤

We remark that the @@̄-exactness condition is not required when the tan-
gent cone at infinity has a smooth link (and hence is unique by Colding-
Minicozzi [13]). In this case one can show Lemma 6.1 using the existence of
adapted sequences of bases for harmonic functions with polynomial growth
(see for example [9, 4.2.2]) and the maximum principle for the complex
Monge-Ampère equation. While the setup in this case is closer to the asymp-
totically conical case considered in Conlon-Hein [15], this approach has the
advantage that the polynomial convergence to the tangent cone at infinity
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is not required. It would be interesting to know if a version of the @@̄ lemma
holds in the setting of maximal volume growth, which would enable us to
prove results on the level of metrics similar to [15, Theorem 3.1] as opposed
to potentials.
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[14] Colding, T. H., Naber, A. Sharp Hölder continuity of tangent cones for spaces with
a lower Ricci curvature bound and applications, Ann. of Math. (2) 176 (2012), no. 2,
1173–1229. (Page 13.)

[15] Conlon, R. J., Hein, H.-J. Asymptotically conical Calabi-Yau manifolds, I, Duke
Math. J. 162 (2013), no. 15, 2855–2902. (Pages 4, 9, 31, and 32.)

[16] Cynk, S, van Straten, D. A special Calabi–Yau degeneration with trivial monodromy,
Comm. Contemp. Math. 24 (2022), no. 08, p.2150055. (Page 2.)

[17] Datar, V., Fu, X., Song, J. Kähler-Einstein metrics near an isolated log-canonical
singularity, arXiv:2106.05486. (Page 1.)

[18] Donaldson, S. K. Stability, birational transformations and the Kahler-Einstein prob-
lem, Surv. Di↵er. Geom., 17, 203–228. (Page 22.)

[19] Donaldson, S. and Sun, S. Gromov-Hausdor↵ limits of Kähler manifolds and algebraic
geometry, Acta Math. 213 (2014), no. 1, 63–106. (Pages 2 and 4.)

[20] Donaldson, S. and Sun, S. Gromov-Hausdor↵ limits of Kähler manifolds and algebraic
geometry. II, J. Di↵erential Geom. 107 (2017), no. 2, 327–371. (Pages 2, 4, 21, and 22.)



HIGHER REGULARITY FOR SINGULAR KÄHLER-EINSTEIN METRICS 33
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[32] Liu, G., Székelyhidi, G. Gromov-Hausdor↵ limits of Kähler manifolds with Ricci
curvature bounded below II, Comm. Pure Appl. Math. 74 (2021), no. 5, 909–931.
(Page 30.)

[33] Martelli, D., Sparks, J., Yau, S.-T. The geometric dual of a-maximisation for toric
Sasaki-Einstein manifolds, Comm. Math. Phys. 268 (2006), no. 1, 39–65. (Page 3.)

[34] Savin, O. Small perturbation solutions for elliptic equations, Comm. Partial Di↵eren-
tial Equations 32 (2007), no. 4-6, 557–578. (Page 11.)

[35] Stenzel, M. B. Ricci-flat metrics on the complexification of a compact rank one sym-
metric space, Manuscripta Math. 80 (1993), no. 2, 151–163. (Page 25.)
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