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Abstract. We survey some recent results on minimal hypersurfaces in R”?*! with cylindrical
tangent cones. We discuss the question of the uniqueness of tangent cones, the behavior of
certain minimal hypersurfaces with cylindrical tangent cones, and a Liouville type theorem
for entire minimal hypersurfaces.
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1. Introduction

Let M C R™*! be a minimal hypersurface, that is a stationary point of the
area functional under compactly supported variations. At any smooth point
M is locally given by a graph of a real analytic function, and an important
problem is to understand the behavior of M near its singular points.

For simplicity let us suppose that 0 € M is a singular point. A first step
is to consider the infinitesimal behavior of M at 0, described by its tangent
cones. These are defined to be subsequential limits of sequences of rescalings
oM with o), — oo. There are several basic questions that one can ask:

Q1 Is the tangent cone unique? Or does it depend on the subsequence used
to define it?

Q2 To what extend does the tangent cone describe the behavior of M
nearby?

The study of singularities of minimal hypersurfaces and their tangent cones
has a global counterpart, namely the study of entire minimal hypersurfaces
M C R™™! and their tangent cones at infinity. Similarly to the tangent cones
at singularities, tangent cones at infinity are given by subsequential limits of
oM as o — 0. Uniqueness is again an important question, and in addition
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one expects rigidity/classification results for entire hypersurfaces with given
tangent cones:

Q3 Can we classify entire minimial hypersurfaces M C R"*! with a given
tangent cone at infinity?

The most completely understood situation regarding Q1 and Q2 is when
M has a multiplicity one tangent cone C' at 0, which is smooth away from the
origin. In this case Allard—-Almgren [1] and Simon [14] showed that the tangent
cone C' is unique, and M can be written as a graph over C near the origin.
In particular it follows that M itself has an isolated singularity at 0 just like
its tangent cone, and moreover many examples of such minimal hypersurfaces
were constructed by Caffarelli-Hardt—Simon [4]. The classification question Q3
is more difficult already in this case. Simon—Solomon [20] showed that when C
is a quadratic cone, i.e. a cone over a product of spheres, then up to translations
the only minimal hypersurfaces with tangent cone C' at infinity are C' itself,
and the leaves of the Hardt—Simon foliation [8] (see below for more details).
For more general strictly minimizing cones C', Chan [5] showed that there is a
family of minimal hypersurfaces with tangent cone C' at infinity, parametrized
by a space of “slowly decaying” Jacobi fields on C. It is not known if this
construction gives rise to all such minimal hypersurfaces.

In this survey we will focus on what is perhaps the next simplest situation,
namely when M has a multiplicity one cylindrical tangent cone C' x R at
the origin, or at infinity. We will assume that C' is smooth away from the
origin and in addition is strictly stable and strictly minimizing in the sense
of Hardt—Simon [8]—see Sect. 2 for more details. For such cylindrical tangent
cones much less is known about the questions Q1-Q3.

Regarding Q1, for a large class of cones C' Simon [18] showed that the cor-
responding cylindrical tangent cones C' X R are unique. In particular his result
holds for the quadratic cones C' = C(S? x S9) when p + ¢ > 6. Uniqueness of
the tangent cone C'(S® x S%) x R was shown in [23]. Note that Simon’s unique-
ness result in [18] applies for tangent cones C' x R* with higher dimensional
Euclidean factors, but this is still open for the Simons cone C' = C(S3 x S3).
Similarly, the uniqueness of cylindrical tangent cones involving the last re-
maining minimizing quadratic cone C'(S? x S%) is still open. We will discuss
these results in more detail in Sect. 4.

To address Question Q2 a first natural step is to construct (non-product)
examples with cylindrical tangent cones, in analogy with Caffarelli-Hardt—
Simon’s work [4] on the case of tangent cones with isolated singularities.
One class of examples was obtained by Smale [21], where the singular sets
are orbits of certain group actions on Euclidean space. More recently Simon
[12] constructed stable minimal hypersurfaces with cylindrical tangent cones
C(SP x S9) x R*, which moreover can have essentially arbitrary singular sets,
however for this one must allow for a perturbation of the Euclidean metric
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on R™"1 In [22] we constructed area minimizing hypersurfaces in R"*! with
isolated singularities, but with cylindrical tangent cones. See Sect.5 for more
details.

The other aspect of Q2 is to what extent we can understand a general
minimal surface in a neighborhood of a singularity with a given cylindrical
tangent cone. In particular one would like to address what the singular set can
look like. General rectifiability results for the singular set have been obtained
by Simon [17,19] and Naber—Valtorta [10], but we are far from understanding
its finer structure. It is unknown if the singular set can be a closed interval for
instance unless we are allowed to perturb the ambient Euclidean metric, as in
Simon’s result cited above. For the Euclidean ambient metric we showed that
under a strong symmetry assumption, if the tangent cone is C(S? x S?) x R,
then either the minimal hypersurface equals its tangent cone, or it has an
isolated singularity at the origin. We will discuss these results further in Sect. 6.

So far question Q3 has been explored the least in the context of cylindrical
tangent cones, and for instance we do not have a classification of all minimal
hypersurfaces even for the simplest tangent cones C(S? x S?) x R at infinity.
To obtain a classification we can make additional assumptions. A very natural
question is to classify entire minimal hypersurfaces M which lie on one side
of an area minimizing cone V. Indeed by a recent result of Wang [25] there
always exists a smooth minimizing hypersurface My on one side of V' and in
analogy with Hardt—Simon’s result [8], in the case where V has an isolated
singularity, it is natural to expect that the scalings AMy for A > 0 exhaust all
minimal hypersurfaces with tangent cone V' at infinity, lying on the same side.
Simon [11] showed that this is indeed the case for cylindrical tangent cones
V = C x R* under an additional assumption on the normal vector. In work in
progress with Edelen [6] we remove this additional assumption. These results,
along with some further questions will be presented in Sect. 7.

Typically, the study of minimal surfaces with a given tangent cone V re-
quires some understanding of minimal surfaces M that are “close” to V on an
annulus A. When V' is smooth away from the origin, then on an annulus A
one can write M as a graph over V, and reduce many questions to studying
the corresponding linearized problem. When V' has a non-isolated singular set
3> C V, as in the cylindrical case V = C x R, the linearized problem may
no longer accurately model the behavior of the minimal surface M near .
For this reason we need a non-concentration estimate, which roughly speaking
says that the behavior of M near the singular set ¥ is negligible, and so the
linearized problem over the smooth part of V still governs the behavior of M
on the annulus A. In Sect.3 we will discuss such a non-concentration result
introduced in [23], which is at the heart of many of the results described above.
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2. Preliminaries

For background on minimal hypersurfaces and varifolds we refer to Simon [13].
Throughout the paper, on R™ x R we use coordinates x € R™ and y € R. We
write r = |z| and p = (12 + y?)V/2.

We let C' C R" be a strictly minimizing and strictly stable cone in the sense
of Hardt—Simon [8], which is smooth away from 0. Recall that by [8] there are
minimal hypersurfaces H_, H; contained in the two connected components of
R"™\C, such that the scalings AH_, A\H for A > 0 together with C' foliate R".
This foliation has important applications in barrier arguments. For instance
the existence of the foliation implies that all leaves AH1 are area minimizing
(not just minimal) hypersurfaces. At the end of this section we describe how
leaves of this foliation can be used to construct useful barrier surfaces related
to cylindrical tangent cones.

Let us first recall some more details from the work of Hardt—Simon [8]. For
an oriented hypersurface S in a Riemannian manifold N we denote by Lg the
Jacobi operator on S, i.e. the linearization of the mean curvature operator on
graphs over S. When S is a minimal hypersurface, then we have

Lsf = Agf + (|As]* + Rien (v, v)) f,

where Ag is the second fundamental form of S, v is the unit normal vector
field to S and Ricy is the Ricci tensor of N. We will have either N = R* with
Ricy =0, or N = S¥~1 with Ricy(v,v) = (k — 2).

We denote by ¢; the it" eigenfunction of —Ly; on the link ¥ = C N 0B,
with eigenvalue \;. Corresponding to these there are homogeneous Jacobi fields
r~Yig; on C', where

73—(n—3)’yi—(n—2+)\i):0.
3—n

The strict stability condition implies that we can take —y; > 25", and that
there are no homogeneous Jacobi fields on C with degrees in the interval
(3—n+4v1,—71). We set v = 1, and assume that ¢; > 0.

The assumptions that C' is strictly minimizing and strictly stable imply
that outside of a large ball, the surfaces Hi are graphs of functions

Uy =4r"7¢; + v+

over C. Here vy = O(r~77°) for some ¢ > 0, and we will assume that ¢ is small.
We will use the following conventions for the orientations of H_,C, Hy: on H_
the normal points towards C, on C' it points towards H, and on H it points
away from C. This naturally extends to orientations of all the scalings AH_.
Note that these orientations are consistent with our convention that outside
of a large ball Hy are the graphs of U, where U, > 0 and ¥_ < 0. It will be
convenient to combine the foliation of R™ into a single family of hypersurfaces
H(t) for t € R.
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Definition 2.1. For t € R we will write
|t\ﬁH+, for t > 0,
H(t)=<C, for t =0,
|t\ﬁH_, fort < 0.

Note that the scaling ensures that for a constant C7 > 0 depending on the
cone C, and for any t € R, the hypersurface H(t) is the graph of the function

ful@) = 1175 0 (7 77a)

over C on the region r > C’1|t|1/(7+1), where the + sign depends on the sign
of t. The function f; satisfies

|ft — tT‘_’y(ﬁl‘ < 01|t|1+ﬁ‘r1’r_7_c.

Thus, roughly speaking we can think of H(t) as being the graph of tr=7¢;
over C, at least on the region where [t| < 7T,

The link of C' xR is singular, with two singularities modeled on the cone C'.
We will only be interested in Jacobi fields u for which r7*4 is locally bounded
away from the origin for a small x > 0. Since there are no homogeneous Jacobi
fields on C' with growth rate in (3 —n +~, —v), such u automatically satisfies
that r7u is locally bounded away from the origin, if x is sufficiently small.
Equivalently the Jacobi fields that we are interested in can be characterized as
those that are in Wﬁ)f away from the origin. This implies that the restrictions
of u to the cross sections of the cone are in L? and can be decomposed according
to the spectrum of the Jacobi operator on the (singular) link.

There are two basic results about such Jacobi fields that we will need. The
first is an L? to L> estimate.

Lemma 2.2. (Sece [23]) Let u be a Jacobi field on C x R, such that r7u is in
L on B1(0). Then we have the estimate

sup [r7u| < Cllullz2(B,)-
B1,2(0)

The second is the following L? three annulus lemma, due to Simon [14,
Lemma 2] (see also Lemma 3.3 in [15]). For a given pg > 0 let us use |||, i
to denote the following L?-norm on an annulus:

JulFs = [ P,
(CxR)N(B,; \Bp8+1 )
in terms of n = dim C' x R. Note that for a homogeneous degree zero function
u the norm ||u||,,,; is independent of .

Lemma 2.3. Given d € R, there are small afy > ag > 0 and py > 0 satisfying
the following. Let u be a Jacobi field on the cone C' x R, defined in the annulus
Bl\Bpg, such that ru € L*°. Then we have:
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. — d—oy
@ I el po.x = oo~ N1l oo, then [lullpg2 > p~ "l po.1-
. —d— —d—
(if) IF llllpor = pg "= ullpo.20 then |lullp0 = pg ™ llullo.1-

If in addition u has no degree d component then the conclusion of either (i) or
(i) must hold.

We now turn to the main existence result for barrier surfaces. These are the
key ingredients in proving non-concentration estimates that we will discuss in
the next section.

Proposition 2.4. There is a large odd integer p and a constant Q > 0 depending
on the cone C, with the following property. Let f : (a,b) — R be a C? function,
satisfying |flcs < K, for some K > Q. Then for any ¢ < Q= there is an
oriented hypersurface X, defined in the region where r < K9 and y € (a,b),
satisfying:
(i) X, is C?, with negative mean curvature and no boundary in the region
0<r< K9 yc(ab).
(ii) At points of X, where r = 0, the tangent cone of X, is the graph of —er
over C' x R.
(ill) The X. wvary continuously, and in each y-slice for y € (a,b), X, lies
between the hypersurfaces

H(ef(y)" —€) and H(ef(y)" + ).

In particular if V is a stationary varifold in the region r < K9 and the
support of V intersects X¢, then near the intersection point V' cannot lie on
the negative side of Xe.

For the proof see [22]. The basic idea is to first consider the hypersurface X,
whose cross sections are given by H (ef(y)P) in R™ x {y}. The mean curvature
of X will not have the right sign, however we can take a graph over it to
construct the required surface.

3. Non-concentration

In this section we discuss a basic non-concentration result for minimal hy-
persurfaces close to a cylinder C' x R. To motivate the result, consider the
following simple linear version for harmonic functions first.

Proposition 3.1. Let s € (0,1/2). There is an ro = r9(s,n) > 0 and a dimen-
sional constant C = C(n) with the following property. Let u : B — R be a
harmonic function on the unit ball B C R"™. We write R"*! = R” x R and
r = |z| as before. Then

sup |u| < C  sup |u|+ s sup|ul.
0.5B Bn{r>ro} B
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The result says that a harmonic function on the unit ball B cannot con-
centrate in the cylindrical region %B N{r < ro}, unless it has fast growth from
iBto B
5B to B.

Proof. A straightforward proof follows from bounding supg 55 |u| in terms of
the L? norm of u on B. Indeed, the L? to L™ estimate can itself be thought of as
a non-concentration estimate, showing that the L? norm cannot concentrate
on sets of small measure for instance. Instead we use a maximum principle
argument that is closer to the arguments used for minimal hypersurfaces below.

Let us write D = supp |u| and Dy, = Sup g,y [ul- Write 21 = (0, —1),
z1 = (0,1) € R" x R, and define

V(z) =z — 21| "+ |z — |,

so that V' is harmonic on B, but blows up at z4;.
Let us define

to = inf{t > 0: ¢V > u on B}.

By the maximum principle, the graphs of ¢4V and u must touch somewhere
on the boundary 0B. We consider two pieces of the boundary separately for
some fixed small rg > 0:

e On {r > 79} NOB we have V > 21" while at the same time u < D,,.
So on this piece of the boundary we have u < 2"~ 1D, V

e On {r < rg} NIB, if ry is small enough, we have either |z — z_1| < 2rg
or |z — 21| < 2rp, and therefore V > (2r¢)!~". At the same time u < D,
and so here we have u < (2r)""1DV.

In sum we have that u < C(D,, +rg_1D)V on OB, for a dimensional constant
C. Tt follows that to < C(D,, +r§ D), and note that u < ¢,V on B.

On the half ball 0.5B we have |z — 241| > 1/2,s0 V < 2-2"71 and as a
consequence

u < tg2" < C'(Dyy +75'D) on0.5B,

for a different dimensional constant C’. We can bound u from below by arguing
with —u instead. Then we can choose rq sufficiently small depending on s, so
that the required estimate holds for sup 5 |u|. O

To derive an analogous non-concentration estimate for minimal hypersur-
faces, we need to define a notion of distance analogous to the supremum norm
of |u|. Since our barrier surfaces are defined in terms of the leaves H(t) of the
Hardt-Simon foliation, we define the distance in terms of them as well.

Definition 3.2. For any subsets M,U C R""! we define Doxr(M;U) to be
the infimum of all d > 0 such that M N U is contained in the region bounded
between H(+d) x R.
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In practice M will be a minimal hypersurface and U an open set, like a
ball. We think of Dowr(M;U) as the distance of M from C x R on the region
U. By the discussion after Definition 2.1, if M is the graph of u over C' x R on
the region U, then Deoyxr(M;U) is comparable to the sup norm supg; [r7ul.

In terms of this distance we have the following non-concentration estimate
for minimal hypersurfaces close to a cylindrical cone C' x R, analogous to
Proposition 3.1.

Proposition 3.3. Let s € (0,1/2). There is anro = ro(s,C) > 0 and a constant
A > 0 depending on the cone C with the following property. Suppose that
M C R"™ x R is a codimension one stationary integral varifold defined in the
region {|y| < 1}. Then

Deoxr(M;{lyl <1/2}) < ADcxr(M;{r >ro} N{ly| < 1})
+ sDoxr(M; {|y] < 1}).

For the proof see [22]. The basic idea is similar to the proof of Proposi-
tion 3.1 above. The main difference is that instead of the comparison functions
tV in that proof, here we use the barrier surfaces X, given in Proposition 2.4,
using the function f(y) = 4(1 +y)~! +4(1 —y)~t, which blows up at y = +1.

In applications it is important to have similar non-concentration estimates
for a distance function D7, from minimal surfaces T that are perturbations
of C' x R on an annular region, depending on a parameter \. In different
applications below different families will be required, the common feature being
that in each cross section R™ x {y} the surface T is well approximated by a leaf
of the Hardt—Simon foliation (depending on y). In these settings the definition
of the distance D, is more complicated, based on a dichotomy: when M is
sufficiently close to T to be the graph of a function u over it, then we can
define a sup-type norm in terms of u, while when M is relatively far from T)
then we can define a distance in terms of the leaves H(t) of the Hardt-Simon
foliation as in Definition 3.2. For the detailed definition see for instance [22,
Definition 11.7].

4. Uniqueness of tangent cones

In this section we will discuss Question Q1 from the Introduction, on the
uniqueness of cylindrical tangent cones. The first such uniqueness result was
shown by Simon [18]. Although his result holds for more general cones, for
simplicity we will focus on the case of quadratic cones C' = C(SP x S9).
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4.1. Simon’s uniqueness theorem

Theorem 4.1. [18] Suppose that a minimal hypersurface has a multiplicity one
cylindrical tangent cone C(SP x S9) x R, where p+ q > 6. Then this tangent
cone 1s unique.

We briefly sketch a proof of this result based on the non-concentration esti-
mate Proposition 3.3. Simon’s proof is based on a different non-concentration
estimate for an L? distance (see [18, Corollary 2.3]).

Let us denote by V the cone C(SP x S9) x R and all of its rotations in
R™!. It can be shown that all minimal cones sufficiently close to C' x R are
in V. In addition the minimal cones C'(S? x S7) x R are integrable in a strong
sense for p+ ¢ > 6, namely all degree one Jacobi fields correspond to rotations
(see Simon [18, Equation (17)]).

We can define the distance Dy (M;U) for any V' € V analogously to Defini-
tion 3.2, and to simplify notation below, we write Dy (M) = Dy (M; B1\B,,)-
Here pg is the constant appearing in Lemma 2.3 with d = 1. We have the
following geometric 3-annulus lemma.

Proposition 4.2. There is an L > 0 such that for sufficiently small d > 0 we
have the following. Suppose that M € M is a minimal hypersurface in Bj.
Suppose that Dy (M) < d and o € (a1, a2), for V€ V. Then

(i) If Dy (LM) > LDy (M), then Dy (L*> M) > L*Dy (LM).

(i) If Dy (LM) > L*Dy (L? M), then Dy (M) > LDy (LM).

The proof is by contradiction, similar to Simon [14, Lemma 2] for instance,
with the non-concentration estimate, Proposition 3.3 playing an important
role. For the proof see [23, Proposition 5.12].

For any B > 0 let us define the quantity

Ep(M) = inf{Dy (M) + Dy (LPM) : V € V},
for the value of L in the 3-annulus lemma above. Note that Ep(M) can be
used to control the distance between M and LZM on the annulus B;\B,, in
the flat norm for instance (see [23, Lemma 6.2]). Le. we have dr(M, LP M) <
CEp(M).
Uniqueness of the tangent cone follows from the following.

Proposition 4.3. There is a B > 0 with the following property. Suppose that M
s a stationary integral varifold in By, such that the density of M at the origin
equals that of C'(SP x S7) x R, and the area of M in By is sufficiently close
to that of C(SP x S7) x R. Suppose p+ q > 6 as above. Then if the Hausdor(f
distance between M and C(SP x S?) x R is sufficiently small on the unit ball,
we have

Ep(LPM) < %EB(M).



G. SZEKELYHIDI AEM

Proof. We give a sketch of the proof. For the details see the proof of [23,
Proposition 6.6], which applies in the more difficult non-integrable setting that
we discuss below.

The proof is by contradiction. We suppose that we have a sequence M;
converging to C'(SP x S7) x R on the unit ball By, satisfying the assumption
on the density at the origin. We will show that the required conclusion holds
for sufficiently large i, if B is chosen sufficiently large.

Let of < a4 such that o} € (a1, az) for the constants in Proposition 4.2.
First we claim that for large ¢ there are V; € V such that one of the following
two conditions holds:

(a) Dy, (L*PM;) > L*B Dy, (LB M;),

(b) Dy, (M;) > L% Dy, (LEM,).
This follows essentially by choosing V; to be the “best fit” cone to LZM; on
the annulus By \B,, and then using the last claim in Lemma 2.3, together with
the non-concentration estimate. The integrability of the cone C' x R is crucial
here, since it allows us to eliminate the degree 1 component of the Jacobi field
that models the behavior of M; relative to V; by choosing V; appropriately.

Next we suppose that condition (a) holds for sufficiently large i. Proposi-
tion 4.2 implies that for large i, we will have

DV; (L(k+l)BMZ) 2 LallBDVi (LkBMi)y

for k > 0 as long as L*EM; is still sufficiently close to V;. Letting k; be the
largest value of k£ for which this still holds, we end up with a contradiction
using the following: on the one hand the monotonicity formula for minimal
surfaces implies that L¥ZM; has to converge to a minimal cone as i — oo,
but on the other hand the growth condition above (note that the rate of growth
is independent of 7) implies that this is not possible.

Finally, we can assume that condition (b) holds for all large ¢, while condi-
tion (a) fails. Let d; = Dy, (L® M;). We have

Dy, (M;) > LB Dy, (LPM;) = L*2Bd,,
Dy, (L*’ M;) < LB Dy, (LP M;) = L1 Bd,.
Using the second inequality we can estimate Eg(L”M;) from above in terms

of d;: we have Eg(LPM;) < CL*Bg,. Using the first inequality we can then
argue that Eg(M;) > 2Eg(LP M;) once i is large enough. O

Uniqueness of the tangent cone follows by iterating this Proposition. For
any N > 0, as long as L*Z M stays sufficiently close to C'(SP x S7) x R on the
annulus B1\B,, for all & < N, we have the bound

dy:(M,L(NJrl)BM) < d]:(M, LBM) 4ot d]:(LNBM,L(NJrl)BM)
< C(Ep(M)+---+ Eg(LN"M))
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< 2CEp(M).

In particular if Eg(M) is sufficiently small, then we can let N be arbitrarily
large, and it follows that L*BM remains close to M on the annulus for all
k > 0. This implies uniqueness of the tangent cone.

4.2. The tangent cone C(S3 x S®) x R

The assumption that p + ¢ > 6 in Simon’s Theorem 4.1 implies that the
corresponding cones C(SP x S7) x R are integrable, in the sense that all Jacobi
fields that are homogeneous of degree one, and are locally in W2, correspond
to rotations in R™"*!. There are two remaining minimizing cones of this type,
C(5* x §%) x R and C(S3 x S§%) x R. Neither of these is integrable, because
they admit the degree one Jacobi field ¢ = y>r—2 — y, where as above y is the
coordinate on the R factor, while r = |z| on the remaining R"™ factor.
In this section we will discuss the following result.

Theorem 4.4. [23, Theorem 1.1] Let M be an area-minimizing hypersurface in
a neighborhood of 0 € R, that admits C x R as a multiplicity one tangent
cone at the origin, where C' = C(S3 x S3) is the Simons cone. Then C x R is
the unique tangent cone at 0.

Note that uniqueness of the remaining quadratic cone C(S? x S*) x R is
still open.

For tangent cones with isolated singularities, uniqueness in the non-integr-
able case was shown by Simon [14] using his very influential infinite dimen-
sional Lojasiewicz inequality. It seems to be difficult to extend this approach
to cylindrical tangent cones, since in that case the cross section is singular and
it is not clear whether a general Lojasiewicz inequality can still be expected to
hold. Instead, the approach in [23] is based on constructing minimal surfaces
Ts modeled on the Jacobi field d¢, and proving a Lojasiewicz type inequality
only for this one-dimensional family.

4.2.1. The construction of Ts. The first step in constructing the minimal sur-
faces T is to focus on the link ¥y = S7 N (C(S? x $3) x R). The minimal
surface Xy has two singular points, modeled on the Simons cone C(S3 x S3).
The Jacobi field ¢ restricts to a Jacobi field, also denoted by ¢, on %, which
blows up at the rate of =2 near the two singular points. Up to scaling this is
the only Jacobi field that is also O(4) x O(4)-invariant and has at worst O(r~2)
singularities. This Jacobi field spans the cokernel of the O(4) x O(4)-invariant
linearized operator, and so we can hope to find perturbations X5 modeled on
d¢, which are minimal modulo the function ¢.

It is convenient to choose a function {, compactly supported away from the
singularities, such that ¢ is also O(4) x O(4)-invariant, it is an odd function
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of y, and [(¢ = [¢? on . The following result shows that we can find
smoothings of ¥y that are minimal modulo the function (.

Proposition 4.5. There exist smooth hypersurfaces %5 for sufficiently small 6 #
0 such that their mean curvature is given by m(Xs) = h(§)¢ and

h(8) = 0%/ + O(|6]/3+7),
4
n'(8) = §c51/3 + O(|8]M/3+%). (4.1)
Here ¢ <0 and k > 0.

To construct X5 we first construct an approximate solution X5 by gluing
together the graph of §¢ with scaled down copies +6'/2 H of the Hardt-Simon
smoothing of C'(S% x C?). The reason why this works is that to leading order
+6'/3H is the graph of +6r=2 over C(S® x $%), which matches the leading
order behavior of d¢ at the singular points. We then construct X5 as a graph
over Ys.

Remark 4.6. Note that if Xy were smooth, then it would follow from real
analyticity of the mean curvature operator that we could solve the equation
m(Xs) = h(6)¢, and the resulting h(d) would be real analytic. In particular
either h(d) would have finite order of vanishing, or it would vanish identically.
This kind of statement is at the heart of Simon’s Lojasiewicz inequality.

In our singular setting we need to work with specific features of our problem
to derive the estimate (4.1) with a nonzero coefficient ¢. In particular a key
ingredient is a refined asymptotic expansion of H as a graph over C(S% x C?).
It turns out (see [23, Proposition 3.3]) that H is asymptotically the graph of

r 24 00

over C(S? x S3), where b < 0.

An expansion of this type is the main missing ingredient in proving the
uniqueness result for the cylindrical cone C'(S? x S%) x R. In principle it is
possible that in the case of C(S? x S§*) x R, or another cylindrical cone, the
analogous function h(d) vanishes to infinite order, but is not identically zero.
This would be somewhat analogous to the situation exploited by White [26]
to construct examples of harmonic maps with non-unique tangent maps.

Given the smoothings Y5 of the link, we construct minimal perturbations
Ts of the cone Vy = C(S? x S3) x R, modeled on the Jacobi field §¢. Let us
denote by Vs = C(Xs) the cone over 35. We try to construct a minimal graph
Ts over Vs. Note that the mean curvature of Vs satisfies m(Vs) = h(8)(p~2,
where € is extended as a degree one homogeneous function, and p = (r24y?)'/?
as before.

To first order we need to take the graph of u over Vs such that Ly, (u) =
—h(8)¢p~2. This in turn is closely related to solving the equation Ly, (v) =
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—h(8)¢p=2 on the cone Vp. Using that ¢ is in the kernel of the linearized
operator Ly, on the link, we have

LVO (Co¢1n p) = ¢p_2

for a suitable constant cy. It follows from these considerations that to leading
order we need to consider the graph of us = —coh(d)ps In p over Vs, where ¢
generates the family Y5 and is extended as a degree one function to Vj. It is
shown in [23, Proposition 4.5] that indeed there is a minimal hypersurface T
for small §, which to leading order is the graph of us over V5. Because of the
In p term, this T}y is only defined on an annular region where |In p| < |§|~" for
some small k > 0.

4.2.2. Proving Theorem 4.4. The proof of Theorem 4.4 follows from a decay
estimate similar to Proposition 4.3. First, we define

Ep(M) =inf{Dw (M) + Dy (LBM) : W € W},

as before. Here W consists of all rotations of the cone V| as before, and in
addition it contains rotations of cones W5 modeled on the Jacobi fields d¢
(see [23, Remark 4.6] for the definition). The cones W;s are perturbations of
the Vy defined above, but to leading order their mean curvature is given by
m(Ws) = h(6)psp~2. The idea is that we would like to use ¢ instead of ¢ in the
contructions above, and ¢; is the natural extension of the singular function ¢
to the smoothings 5. Geometrically the Ws can be viewed as interchangeable
with V.

The definition of the distance Dy is much more subtle than before, since
the cross sections of the hypersurfaces W € W are not leaves of the Hardt—
Simon foliation. We define the distance Dy, (M) analogously. The correspond-
ing non-concentration estimate, relative to the surfaces Ty, has the same form
as Proposition 3.3, although the proof is substantially more complicated (see
[23, Proposition 5.6]).

A final complication in trying to mimic the proof of Proposition 4.3 is
that the minimal surfaces Ts are only defined on annular regions of the form
|Inp| < |6]7", rather than on the entire unit ball. This is an issue when we try
to iterate the three annulus lemma, as in case (a) of the proof of Proposition 4.3
for instance, since the quantity Dresr, (L¥B M) only makes sense if LFBT;,
is still defined over the annulus B;\B,,. This in turn is only true as long as
|In LFB| < |5;|7", i.e. kB < [6;|7" for a small x > 0. Using this one can
show that in case (a) we get a contradiction for large 7 as in the proof of
Proposition 4.3, as long as Dpep, (LPM;) > €|h(8;)|, and € can be chosen as
small as we like if 7 is chosen largér.

On the other hand, if Dysr, (LB M;) < €|h(8;)], then we can show that

ALBM;)? — A2QLBM;)? > C7L|Rn(5;)]
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for large i, and a suitable § > 0. Here A is the excess
A(M) = Area(M N By 3) — Area(Vo N By /2).

This estimate can be viewed as a Lojasiewicz type inequality, and it relies on
the fact that k() has a finite order of vanishing in (4.1). Using this it follows
that
Eg(LPM;) < CB(A(LPM;)? — A(2LP M;)?).
In conclusion we obtain the following decay estimate, analogous to Propo-
sition 4.3.

Proposition 4.7. (See [23]) There are 0,C, B > 0 with the following property.
Let M be an area minimizing hypersurface in By, with density equal to that
of the cone C' x R at the origin. If the Hausdorff distance from M to C x R
on By is sufficiently small, then one of the following holds for the quantity Ep
defined above:

(i) BEp(LPM) < 3E5(M).

<
< C(A(LBM)9 - A(QLBM)").

The uniqueness result, Theorem 4.4 follows from this decay estimate in a
similar way as in the previous section.

5. Local construction of minimal hypersurfaces

In this section we discuss the construction of minimal hypersurfaces in a neigh-
borhood of 0 € R™ x R with an isolated singularity at the origin, and tangent
cone C' x R. In the context of Question Q2 in the introduction, this result
says that when the tangent cone is a cylindrical cone, then the singular set
of the minimal surface can look very different from that of its tangent cone.
The construction itself is analogous to the construction of singular Calabi—Yau
metrics with isolated singularities in [24] (see also Hein—Naber [9]).

The starting point of the construction is to find a suitable Jacobi field on
C xR, which will describe the leading order deviation of our surfaces from their
tangent cone at the origin. Suppose that ¢ is an integer such that £ —~ > 1.
Here v is as in Sect.2. Then C' x R admits a homogeneous Jacobi field of
degree £ — ~ of the form

Up = (yer_7 +ary T 4+ aje/2] 22212 N, (5.1)

where, as before, ¢; is the first eigenfunction of —Lyx on the link ¥ of C', and
r~ V¢ is the corresponding Jacobi field on C. The a; are suitable constants
uniquely determined by the condition that Loxrue = 0.

We can consider the graph of uy over C'x R on a region where |us| < 7, i.e.
where |y|* < r7*1. At the same time, on the region where r is much smaller,
we can glue in suitable scaled copies of the Hardt—Simon smoothings Hy in
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the slices of the form R™ x {y}. This uses that to leading order H is the graph
of r=7¢; over C. Interpolating between the two regions using cutoff functions
we obtain a hypersurface X whose mean curvature will be almost zero in a
suitable weighted space. We then show that in a possibly smaller neighborhood
of 0 we can find a minimal graph over X. The fact that many of these minimal
hypersurfaces are area minimizing in a neighborhood of the origin follows by
using barrier surfaces constructed in Proposition 2.4. For the details see [22].

Theorem 5.1. There exist minimal hypersurfaces in a neighborhood of 0 €
R"™ xR, modeled on the Jacobi field ug, that are smooth away from the origin,
and have tangent cone C' x R as their unique (multiplicity one) tangent cone
at the origin. If the integer £ in the construction is sufficiently large, then the
minimal hypersurface that we construct is area minimizing in a neighborhood
of the origin.

The first step is to write down suitable approximate solutions. Let us define
the number a = %, and let 3 € (1,a). We define X in the ball {p < A71}
for a sufficiently large A, in the following three pieces:

e On the region where r > 2|y|® we let X be the graph of u, over C x R.

It is convenient to deal separately with the region where r > |y|, where
we have |r~tuy| = O(r*=7~1) as r — 0. Since £ —~ > 1, it makes sense to
consider the graph of u; on a sufficiently small neighborhood of 0. At the
same time, on the region 2|y|? < r < |y| we have [r~tu,| = O(Jy|/'r=771)
as r — 0. Since £ > (v + 1), it makes sense to consider the graph of u,
on this region too, once r is sufficiently small.

e On the region where r < |y|?, we define X to be the surface H(y) in the

slice R x {y}. Note that by Definition 2.1 we have H(y*) = |y|*Hx.

e On the intermediate region |y|® < r < 2|y|® we interpolate between

the two definitions above, using a cutoff function. More precisely, let
X : R — [0,1] be a standard cutoff function, with x(¢) =1 for t < 1 and
x(t) = 0 for t > 2. In addition recall that H is the graph of +r V¢ +v4
over C, outside of a large ball. On the region |y|® < r < 2|y|? we let X
be the graph of

|z - -
et () 700 = e s (ol —0)]
over C' x R, where the choice of v4 depends on the sign of y*. Note that
this definition matches up with the definitions of X in the two regions
above.

The following result shows that the mean curvature of X is small in a
suitable weighted space.

Proposition 5.2. Let 8 € (1,a). Suppose that § > £ — ~ is sufficiently close to
{—~, and T < —~. Then there exists a k > 0 such that on the punctured ball
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{0 < p < A1} for sufficiently large A, we have the estimates

Imx| +7|Vmx| < A" p° Ty 2,

Here mx denotes the mean curvature of X, and Vmyx is the derivative of mx
on X.

For the proof of this result, see [22]. The basic idea is that every point
(z,y) € X has a neighborhood U of radius comparable to R = |z|, such that
when we rescale by R™!, the resulting surface R~*U can be viewed as a graph
over either H x R or C' x R. We then estimate the mean curvatures of these
graphs and scale back to obtain the required estimate.

Next we define suitable weighted spaces, in which we can analyze the lin-
earized operator Lx of the mean curvature of graphs over X. We consider
locally C*“-functions on X Np~1(0, Ay*") for a fixed large Ao, and define their
weighted C(I;f‘—norm by

”ch(’;TCX = RS,ISIEOR TSt 5||f”c;~f2gx (Qr.s)"
Here Qr s C XNp~ (0,4, ") is the region where p € (S,25) and r € (R,2R).
The metric gx denotes the induced metric on X, and the subscript R™2gx
indicates that we measure the usual Holder norm using this rescaled metric.
The metric R~2gx has bounded geometry on €2 R,s, with bounds independent
of R, S, which implies that the Jacobi operator of X defines a bounded linear
map
Lx : C57 — O3 .
At the same time the estimate in Proposition 5.2 implies that
||mXHC§:7‘_1(p71(07A71]) <CA™"

for A > 2A.
Given the approximate solution X, the main ingredient for constructing a
minimal graph over X is the following result on inverting the Jacobi operator.

Proposition 5.3. Let 7 € (3 —n+~,—7), and suppose that 6 avoids a discrete
set of indicial roots. Then for sufficiently large A > 0, the Jacobi operator

Lx : Cir(X np (0, A7) = €% (X np~(0,471))
s surjective, with a right inverse P bounded independently of A.

The proof of this result is based on first constructing an approximate right
inverse P. Given a function uwon XNp~1(0, Ag'), we first use cutoff functions to
decompose u into pieces supported on regions of X that are well approximated
by either C' x R or H x R. We then analyze the linearized operator on these
model pieces, and patch together local inverses using further cutoff functions.
For the details, see [22], as well as [24] for the analogous result in the context
of Calabi—Yau metrics.
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Let us write mx (u) for the mean curvature of the graph of u over X, and
define the non-linear part @) x of the mean curvature operator by

mX(u) =mx +Lx(u) —|—Qx(u)

Given the right inverse P constructed above, the problem of finding a minimal
graph over X, i.e. solving mx (u) = 0, can be written as

u=P(-mx — Qx(u)).
The solution u is then given by the contraction mapping theorem, once the

parameter A is sufficiently large. For the details see [22]. We remark that the
construction of the surfaces T in the proof of Theorem 4.4 involves very similar

6. Highly symmetric hypersurfaces

In the previous section we showed that there are minimal hypersurfaces with
isolated singularities, but with cylindrical tangent cones. In this section we
show a converse of this, for highly symmetric minimal surfaces, addressing
another aspect of Question Q2 from the Introduction. We restrict ourselves
to minimizing cones C' = C(SP x S?) for p + ¢ > 6, and to codimension one
stationary integral varifolds M in a neighborhood of the origin 0 € R" x R
that are invariant under the action of the group O(p+1) x O(g+1) on R" =
RPHL x Rat+L,

In Sect. 5, given any integer ¢ such that £ —~ > 1, we constructed a minimal
hypersurface modeled on a Jacobi field uy, defined in (5.1). The construction
can be performed in an O(p+ 1) x O(g + 1)-invariant way. Our goal is to show
that in fact all such highly symmetric minimal surfaces with tangent cone
C x R at the origin are graphs over the hypersurfaces that we constructed
previously. More precisely we have the following.

Theorem 6.1. Let M be a stationary integral varifold in a neighborhood of the
origin in R™ x R, with tangent cone C x R at the origin (with multiplicity
one), where C' = C(SP x S9), with p + q > 6. Suppose that M is invariant
under the action of G =O(p+1) x O(q+ 1) on R™. Then either M = C xR
in a neighborhood of the origin, or M is a graph over one of the surfaces
constructed in Sect.5 near the origin and so it has an isolated singularity at
the origin.

Note that in this result it is essential that we use the Euclidean ambient
metric on R"™1. Indeed, Simon’s construction [12] can be done in an invariant
way, and leads to minimal hypersurfaces with tangent cone C'x R at the origin,
and essentially arbitrary singular set nearby, as long as we allow the ambient
metric to be a perturbation of the Euclidean one.

The idea of the proof of Theorem 6.1 is to show that under the assumptions
the minimal surface M is modeled to leading order on one of the Jacobi fields
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ug on C' X R from before, unless M = C' x R. At the same time we have already
constructed minimal surfaces T that are modeled on the u, to leading order.
We then show that M must approach one of these models T" at a sufficiently
fast rate as p — 0 to ensure that M is actually graphical over T near the
origin.

The first step in this approach is to show that indeed M is modeled on a
non-zero Jacobi field over C' x R, unless M = C x R. For this we need the
following strong unique continuation result.

Theorem 6.2. Suppose that M is an n-dimensional stationary integral varifold
in a neighborhood of the origin 0 € R™ x R, which admits C x R as a (mul-
tiplicity one) tangent cone at the origin. Suppose that for all k > 0 there is a
constant C, such that for all p <1 we have

/ d? < Cyp",
MNB,(0)

i.e. the L?-distance from M to C x R on the ball B,(0) vanishes to infinite
order as p — 0. Then M = C x R.

Sketch of proof. The proof relies on a similar idea as the monotonicity of fre-
quency used by Almgren [2] and Garofalo-Lin [7], although the details are
quite different, since we are not able to define a suitable frequency function in
our setting. To explain the basic idea, let us denote by d(M, p) some measure
of the distance between M and C' x R on the ball B,(0). Suppose that d(M, p)
is defined in a scale invariant way, so that d(M,p) = d(p~'M,1). In practice
d(M, p) is a scaled L?-distance, “regularized” by adding a small multiple of an
L*-type distance. It is possible that one could also use the L2-distance itself
by relying on the non-concentration result due to Simon [18, Corollary 2.3] in
the arguments below.

Suppose that A > 0. Let us say that the three-annulus property holds for
the pair (M,\), if d(M,e™*) > 1d(M,1) implies d(M,e2*) > Ld(M,e™?).
Note that if for some A > 0 the three-annulus property holds for (e**M, \)
for all k > 0, and in addition d(M,e~*) > 1d(M, 1), then iterating the three-
annulus property we find that d(M,e= %) > 27%d(M,1). This should imply
that M cannot approach its tangent cone at infinite order for any reasonable
definition of the distance d.

From a quantitative version of the three-annulus lemma, Proposition 3.3
(see [22, Proposition 4.3]), together with a contradiction argument, one expects
that perturbing A slightly if necessary, the three-annulus property holds for
(M, ), whenever M is sufficiently close to C' x R, say whenever d(M,1) <
E()), for a function E converging to zero as A — 0. A precise version of this
statement, [22, Proposition 4.4], says that for a suitable definition of d, we can
choose E()\) = A\¥ for some Q > 0.
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Given this, we can conclude as follows. Assuming that p~'M is sufficiently
close to C' for all p < 1, the three-annulus property will hold for the pairs
(p~1M, Xg), for some Ao > 0. If for a given py € (0,1) we had d(M,e 0 pg) >
%d(M ,00), then M would not approach its tangent cone at infinite order.
Therefore for all p < 1 we must have

1
d(Mv eiAOp) < id(M7 p)

Then for all p < e~ the three-annulus property holds for (p~'M,\;) for
some A1 < s\g, with s < 1 depending only on the number @) above. Iterating
this, it follows that if M approaches its tangent cone at infinite order, then we
have d(M, po) = 0 for pg = e~Mo(+s+5*+..) Jeading to Theorem 6.2. O

Let M be as in the statement of Theorem 6.1, and suppose that M is not
equal to C'x R in a neighborhood of the origin. The strong unique continuation
result implies that by a rescaling process we can extract a non-zero Jacobi field
U on C' x R, corresponding to the leading order behavior of M at the origin.
We define the degree of M to be d, if

U=Uy+O(pr™7)

for some ¢ > d as p — 0, and Uy is a non-zero degree d homogeneous Jacobi
field.

Since we are considering M that are O(p 4+ 1) x O(g + 1)-invariant, the
Jacobi field U is of the form

U= > a7y,
k,£>0
ie.
U= Aug+ O(p“r™7)
for some A # 0 and ¢ > ¢ — ~, where u, is the function in (5.1). We have
Uq = Ay, so that the degree of M is d =¢ — .

We denote by Ty1 the minimal surfaces constructed in Theorem 5.1, mod-
eled on the Jacobi fields £uy, and define

Ty = A= = AT for A > 0.

We let Ty = C' x R. For sufficiently small ||, the surface T} is defined in By(0)
and to leading order we can think of T as the graph of Au, over C' x R, at
least away from the singular ray.

To prove Theorem 6.1 the strategy is to show that under the assumptions
in the theorem M will decay towards T for a suitable A # 0 at a rate faster
than the degree £ — «. In a sufficiently small neighborhood of the origin this
will imply that M is actually a graph over T, and in particular it has an
isolated singularity at the origin. The proof has similarities with the proof
of Theorem 4.1, the difference being that instead of proving decay towards
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the tangent cone, we now need to prove decay towards one of the surfaces
Ty, determining the next leading order behavior M beyond the tangent cone.
Here the fact that u, spans the space of O(p + 1) x O(q + 1)-invariant Jacobi
fields on C x R plays the role of integrability of the tangent cone. In order to
use this approach to prove a result similar to Theorem 6.1 without symmetry
assumptions, we would need to construct hypersurfaces like 7' modeled on more
general Jacobi fields. This leads to significant new difficulties if T" is expected
to still have a non-isolated singular set.

7. Liouville type theorems

Finally, we consider Question Q3 from the introduction, i.e. the question of
classifying entire minimal surfaces in R™*! with a given tangent cone at in-
finity. The simplest result of this kind follows directly from the monotonicity
formula: if the tangent cone C of M at infinity is a (multiplicity one) hyper-
plane, then M is a translate of C'. This is a Liouville type rigidity result, which
is closely related to the regularity of minimal surfaces that are sufficiently close
to a hyperplane in a ball.
The first classification result beyond this is the following.

Theorem 7.1. (Simon-Solomon [20]) Let M be a minimal hypersurface in R
with tangent cone at infinity given by a quadratic cone C = C(SP x S?). Then
up to translations and scalings M 1is either equal to one of the Hardt—Simon
smoothings of C, or to C itself.

The basic input in this classification result is that for such quadratic cones
C we have a good understanding of the space J<; of Jacobi fields on C' with
degree at most 1. As shown in [20] this space is spanned by the following:
(i) r=7, for a certain 0 < y < 252 as in Sect. 2.
(ii) The functions x — z - v(z), where z € R"™ z € C and v is the unit
normal vector to C. These Jacobi fields are homogeneous of degree 0.
(iii) The functions © — Ax - v(z) for A € so(n + 1). These are homogeneous
of degree 1.

In addition, these Jacobi fields each have geometric meaning in terms of de-
formations of the cone C' through minimal surfaces: (i) corresponds to the
Hardt—Simon foliation; (ii) to translations; (iii) to rotations.

Given this, we can give a rough sketch of Simon—Solomon’s result.

Sketch of proof of Theorem 7.1. Suppose that M is a minimal hypersurface
with tangent cone C' = C'(SP x S?) at infinity. The fact that the degree one
Jacobi fields all correspond to rotations means that C is integrable. It follows
from Allard-Almgren [1] that M converges to C' at a polynomial rate. In
particular, near infinity M is modeled on the graph of a Jacobi field u over C'
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with degree less than 1. Replacing C' by a translate C'+ z, we can write M as a
graph over C'+ z near infinity, modeled on a Jacobi field u over C' that has no
degree 0 component. Similarly, replacing C' by a leaf cH of the Hardt—Simon
foliation (possibly ¢ = 0), we can write M as a graph over cH + z near infinity,
modeled on a Jacobi field v on C' with no degree 0 or degree —y components.
It follows that M converges to cH + z at a rate faster than r~7. Replacing M
with M — z we can assume that z = 0.

The fact that M approaches cH at a rate faster than »—” implies that for
any t > 0, M is contained between the surfaces (¢ & ¢)H near infinity. We
can now argue using the maximum principle together with the Hardt-Simon
foliation to show that M must equal one of the foliates, which is then cH. [

The generalization of Simon—Salamon’s result to general minimizing cones
C' with isolated singularities was taken up by Chan [5]. She showed that there
are minimal hypersurfaces asymptotic to C' corresponding to the space of Ja-
cobi fields of degree less than one on C, however it is not known whether her
construction exhausts all such minimal hypersurfaces. The missing ingredient
is to understand whether the minimal hypersurfaces constructed by Chan vary
continuously—this statement in the case of quadratic cones is clear since we
have an explicit understanding of the corresponding hypersurfaces.

Let us now consider the case of cylindrical tangent cones C' x R at infinity.
In analogy with the cases discussed above, one expects that minimal hyper-
surfaces asymptotic to C' x R can be understood in terms of Jacobi fields on
C x R of degree at most 1. A difficulty is that already in the simplest case
where C' is a quadratic cone, there will be many more Jacobi fields than before.
For example for C(S® x §3) x R, the Jacobi fields of degree less than 1 include
2_1

3 b

as well as the Jacobi fields corresponding to translations. As above, it is impor-
tant to understand what minimal surfaces would correspond to these Jacobi
fields and their linear combinations. The fastest decaying Jacobi field 7~2 cor-
responds to the Hardt-Simon smoothings cH x R as before. The next, yr—2
corresponds to the minimal graphs constructed by Bombieri-De Giorgi—Giusti
[3]. We do not know, however, what minimal surfaces correspond to y?y =2 — %
and combinations of this with faster decaying Jacobi fields.

It is natural to impose additional conditions on M to obtain results. One
important question is to classify minimal surfaces M that lie on one side of
a minizing cone. For cylindrical tangent cones we have the following result,
proved under additional hypotheses by Simon [11].

-2 -2 2 —
roLyr L yr

Theorem 7.2. [6] Let C C R"™ be a strictly minimizing and strictly stable cone
in the sense of Hardt-Simon [8]. Let M C R"* be a minimal surface with
tangent cone C x RF at infinity, which lies on one side of C x R¥. Then M
coincides with a foliate cH x R of the Hardt-Simon foliation.
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The proof is roughly along the lines of the sketch above for Theorem 7.1,
crucially using a non-concentration estimate like Proposition 3.3 to relate the
behavior of minimal surfaces to Jacobi fields. The point of the additional hy-
pothesis of lying on one side of C' x RF is that in this case M must be modeled
on a Jacobi field v on C' x RF near infinity that has a sign. But there is
only a one-dimensional space of such Jacobi fields, corresponding to the first
eigenfunction of the Jacobi operator on the link of C', and we understand
the corresponding minimal surfaces well: they are precisely the Hardt—Simon
smoothings cH x RF.

In the case of quadratic cones C'(S? x S7) x R we also understand a slightly
larger space of Jacobi fields: the ones with degree at most —y + 1, where =y is
as in (i) above. Namely these are the Jacobi fields spanned by =7 and yr—7.
Using this, we expect that techniques similar to the proof of Theorem 7.2 can
be used to show the following.

Conjecture 7.3. Let M C R be a minimal graph, whose tangent cone at
infinity is C(S? x S%) x R. Then up to translation and scaling, M is the
minimal graph constructed by Bombier—De Giorgi-Giusti [3] in the case of
p=q =3 and by Simon [16] more generally.
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