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Abstract. We survey some recent results on minimal hypersurfaces in Rn+1 with cylindrical
tangent cones. We discuss the question of the uniqueness of tangent cones, the behavior of
certain minimal hypersurfaces with cylindrical tangent cones, and a Liouville type theorem
for entire minimal hypersurfaces.
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1. Introduction

Let M ⊂ Rn+1 be a minimal hypersurface, that is a stationary point of the
area functional under compactly supported variations. At any smooth point
M is locally given by a graph of a real analytic function, and an important
problem is to understand the behavior of M near its singular points.

For simplicity let us suppose that 0 ∈ M is a singular point. A first step
is to consider the infinitesimal behavior of M at 0, described by its tangent
cones. These are defined to be subsequential limits of sequences of rescalings
σkM with σk → ∞. There are several basic questions that one can ask:

Q1 Is the tangent cone unique? Or does it depend on the subsequence used
to define it?

Q2 To what extend does the tangent cone describe the behavior of M
nearby?

The study of singularities of minimal hypersurfaces and their tangent cones
has a global counterpart, namely the study of entire minimal hypersurfaces
M ⊂ Rn+1 and their tangent cones at infinity. Similarly to the tangent cones
at singularities, tangent cones at infinity are given by subsequential limits of
σkM as σk → 0. Uniqueness is again an important question, and in addition
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one expects rigidity/classification results for entire hypersurfaces with given
tangent cones:

Q3 Can we classify entire minimial hypersurfaces M ⊂ Rn+1 with a given
tangent cone at infinity?

The most completely understood situation regarding Q1 and Q2 is when
M has a multiplicity one tangent cone C at 0, which is smooth away from the
origin. In this case Allard–Almgren [1] and Simon [14] showed that the tangent
cone C is unique, and M can be written as a graph over C near the origin.
In particular it follows that M itself has an isolated singularity at 0 just like
its tangent cone, and moreover many examples of such minimal hypersurfaces
were constructed by Caffarelli–Hardt–Simon [4]. The classification question Q3
is more difficult already in this case. Simon–Solomon [20] showed that when C
is a quadratic cone, i.e. a cone over a product of spheres, then up to translations
the only minimal hypersurfaces with tangent cone C at infinity are C itself,
and the leaves of the Hardt–Simon foliation [8] (see below for more details).
For more general strictly minimizing cones C, Chan [5] showed that there is a
family of minimal hypersurfaces with tangent cone C at infinity, parametrized
by a space of “slowly decaying” Jacobi fields on C. It is not known if this
construction gives rise to all such minimal hypersurfaces.

In this survey we will focus on what is perhaps the next simplest situation,
namely when M has a multiplicity one cylindrical tangent cone C × R at
the origin, or at infinity. We will assume that C is smooth away from the
origin and in addition is strictly stable and strictly minimizing in the sense
of Hardt–Simon [8]—see Sect. 2 for more details. For such cylindrical tangent
cones much less is known about the questions Q1–Q3.

Regarding Q1, for a large class of cones C Simon [18] showed that the cor-
responding cylindrical tangent cones C×R are unique. In particular his result
holds for the quadratic cones C = C(Sp × Sq) when p+ q > 6. Uniqueness of
the tangent cone C(S3×S3)×R was shown in [23]. Note that Simon’s unique-
ness result in [18] applies for tangent cones C × Rk with higher dimensional
Euclidean factors, but this is still open for the Simons cone C = C(S3 × S3).
Similarly, the uniqueness of cylindrical tangent cones involving the last re-
maining minimizing quadratic cone C(S2 × S4) is still open. We will discuss
these results in more detail in Sect. 4.

To address Question Q2 a first natural step is to construct (non-product)
examples with cylindrical tangent cones, in analogy with Caffarelli–Hardt–
Simon’s work [4] on the case of tangent cones with isolated singularities.
One class of examples was obtained by Smale [21], where the singular sets
are orbits of certain group actions on Euclidean space. More recently Simon
[12] constructed stable minimal hypersurfaces with cylindrical tangent cones
C(Sp ×Sq)×Rk, which moreover can have essentially arbitrary singular sets,
however for this one must allow for a perturbation of the Euclidean metric



Recent progress on minimal hypersurfaces

on Rn+1. In [22] we constructed area minimizing hypersurfaces in Rn+1 with
isolated singularities, but with cylindrical tangent cones. See Sect. 5 for more
details.

The other aspect of Q2 is to what extent we can understand a general
minimal surface in a neighborhood of a singularity with a given cylindrical
tangent cone. In particular one would like to address what the singular set can
look like. General rectifiability results for the singular set have been obtained
by Simon [17,19] and Naber–Valtorta [10], but we are far from understanding
its finer structure. It is unknown if the singular set can be a closed interval for
instance unless we are allowed to perturb the ambient Euclidean metric, as in
Simon’s result cited above. For the Euclidean ambient metric we showed that
under a strong symmetry assumption, if the tangent cone is C(Sp × Sq) × R,
then either the minimal hypersurface equals its tangent cone, or it has an
isolated singularity at the origin. We will discuss these results further in Sect. 6.

So far question Q3 has been explored the least in the context of cylindrical
tangent cones, and for instance we do not have a classification of all minimal
hypersurfaces even for the simplest tangent cones C(Sp × Sq) × R at infinity.
To obtain a classification we can make additional assumptions. A very natural
question is to classify entire minimal hypersurfaces M which lie on one side
of an area minimizing cone V . Indeed by a recent result of Wang [25] there
always exists a smooth minimizing hypersurface M0 on one side of V and in
analogy with Hardt–Simon’s result [8], in the case where V has an isolated
singularity, it is natural to expect that the scalings λM0 for λ > 0 exhaust all
minimal hypersurfaces with tangent cone V at infinity, lying on the same side.
Simon [11] showed that this is indeed the case for cylindrical tangent cones
V = C ×Rk under an additional assumption on the normal vector. In work in
progress with Edelen [6] we remove this additional assumption. These results,
along with some further questions will be presented in Sect. 7.

Typically, the study of minimal surfaces with a given tangent cone V re-
quires some understanding of minimal surfaces M that are “close” to V on an
annulus A. When V is smooth away from the origin, then on an annulus A
one can write M as a graph over V , and reduce many questions to studying
the corresponding linearized problem. When V has a non-isolated singular set
Σ ⊂ V , as in the cylindrical case V = C × R, the linearized problem may
no longer accurately model the behavior of the minimal surface M near Σ.
For this reason we need a non-concentration estimate, which roughly speaking
says that the behavior of M near the singular set Σ is negligible, and so the
linearized problem over the smooth part of V still governs the behavior of M
on the annulus A. In Sect. 3 we will discuss such a non-concentration result
introduced in [23], which is at the heart of many of the results described above.



G. Székelyhidi AEM

2. Preliminaries

For background on minimal hypersurfaces and varifolds we refer to Simon [13].
Throughout the paper, on Rn ×R we use coordinates x ∈ Rn and y ∈ R. We
write r = |x| and ρ = (r2 + y2)1/2.

We let C ⊂ Rn be a strictly minimizing and strictly stable cone in the sense
of Hardt–Simon [8], which is smooth away from 0. Recall that by [8] there are
minimal hypersurfaces H−,H+ contained in the two connected components of
Rn\C, such that the scalings λH−,λH+ for λ > 0 together with C foliate Rn.
This foliation has important applications in barrier arguments. For instance
the existence of the foliation implies that all leaves λH± are area minimizing
(not just minimal) hypersurfaces. At the end of this section we describe how
leaves of this foliation can be used to construct useful barrier surfaces related
to cylindrical tangent cones.

Let us first recall some more details from the work of Hardt–Simon [8]. For
an oriented hypersurface S in a Riemannian manifold N we denote by LS the
Jacobi operator on S, i.e. the linearization of the mean curvature operator on
graphs over S. When S is a minimal hypersurface, then we have

LSf = ∆Sf + (|AS |2 +RicN (ν, ν))f,

where AS is the second fundamental form of S, ν is the unit normal vector
field to S and RicN is the Ricci tensor of N . We will have either N = Rk with
RicN = 0, or N = Sk−1 with RicN (ν, ν) = (k − 2).

We denote by φi the ith eigenfunction of −LΣ on the link Σ = C ∩ ∂B1,
with eigenvalue λi. Corresponding to these there are homogeneous Jacobi fields
r−γiφi on C, where

γ2
i − (n − 3)γi − (n − 2 + λi) = 0.

The strict stability condition implies that we can take −γi >
3−n
2 , and that

there are no homogeneous Jacobi fields on C with degrees in the interval
(3 − n+ γ1,−γ1). We set γ = γ1, and assume that φ1 > 0.

The assumptions that C is strictly minimizing and strictly stable imply
that outside of a large ball, the surfaces H± are graphs of functions

Ψ± = ±r−γφ1 + v±

over C. Here v± = O(r−γ−c) for some c > 0, and we will assume that c is small.
We will use the following conventions for the orientations of H−, C,H+: on H−
the normal points towards C, on C it points towards H+, and on H+ it points
away from C. This naturally extends to orientations of all the scalings λH±.
Note that these orientations are consistent with our convention that outside
of a large ball H± are the graphs of Ψ±, where Ψ+ > 0 and Ψ− < 0. It will be
convenient to combine the foliation of Rn into a single family of hypersurfaces
H(t) for t ∈ R.
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Definition 2.1. For t ∈ R we will write

H(t) =

⎧
⎪⎨

⎪⎩

|t|
1

γ+1H+, for t > 0,
C, for t = 0,
|t|

1
γ+1H−, for t < 0.

Note that the scaling ensures that for a constant C1 > 0 depending on the
cone C, and for any t ∈ R, the hypersurface H(t) is the graph of the function

ft(x) = |t|
1

γ+1 Ψ±

(
|t|−

1
γ+1x

)

over C on the region r > C1|t|1/(γ+1), where the ± sign depends on the sign
of t. The function ft satisfies

|ft − tr−γφ1| ≤ C1|t|1+
c

γ+1 r−γ−c.

Thus, roughly speaking we can think of H(t) as being the graph of tr−γφ1

over C, at least on the region where |t| ≪ rγ+1.
The link of C×R is singular, with two singularities modeled on the cone C.

We will only be interested in Jacobi fields u for which rγ+κu is locally bounded
away from the origin for a small κ > 0. Since there are no homogeneous Jacobi
fields on C with growth rate in (3− n+ γ,−γ), such u automatically satisfies
that rγu is locally bounded away from the origin, if κ is sufficiently small.
Equivalently the Jacobi fields that we are interested in can be characterized as
those that are in W 1,2

loc away from the origin. This implies that the restrictions
of u to the cross sections of the cone are in L2 and can be decomposed according
to the spectrum of the Jacobi operator on the (singular) link.

There are two basic results about such Jacobi fields that we will need. The
first is an L2 to L∞ estimate.

Lemma 2.2. (See [23]) Let u be a Jacobi field on C × R, such that rγu is in
L∞ on B1(0). Then we have the estimate

sup
B1/2(0)

|rγu| ≤ C∥u∥L2(B1).

The second is the following L2 three annulus lemma, due to Simon [14,
Lemma 2] (see also Lemma 3.3 in [15]). For a given ρ0 > 0 let us use ∥u∥ρ0,i

to denote the following L2-norm on an annulus:

∥u∥2ρ0,i =
∫

(C×R)∩(Bρi
0
\B

ρi+1
0

)
|u|2ρ−n,

in terms of n = dimC ×R. Note that for a homogeneous degree zero function
u the norm ∥u∥ρ0,i is independent of i.

Lemma 2.3. Given d ∈ R, there are small α′
0 > α0 > 0 and ρ0 > 0 satisfying

the following. Let u be a Jacobi field on the cone C×R, defined in the annulus
B1\Bρ3

0
, such that rγu ∈ L∞. Then we have:
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(i) If ∥u∥ρ0,1 ≥ ρd−α0
0 ∥u∥ρ0,0, then ∥u∥ρ0,2 ≥ ρ

d−α′
0

0 ∥u∥ρ0,1.
(ii) If ∥u∥ρ0,1 ≥ ρ−d−α0

0 ∥u∥ρ0,2, then ∥u∥ρ0,0 ≥ ρ
−d−α′

0
0 ∥u∥ρ0,1.

If in addition u has no degree d component then the conclusion of either (i) or
(ii) must hold.

We now turn to the main existence result for barrier surfaces. These are the
key ingredients in proving non-concentration estimates that we will discuss in
the next section.

Proposition 2.4. There is a large odd integer p and a constant Q > 0 depending
on the cone C, with the following property. Let f : (a, b) → R be a C3 function,
satisfying |f |C3 ≤ K, for some K > Q. Then for any ϵ < Q−1 there is an
oriented hypersurface Xϵ defined in the region where r < K−Q2

and y ∈ (a, b),
satisfying:

(i) Xϵ is C2, with negative mean curvature and no boundary in the region
0 < r < K−Q, y ∈ (a, b).

(ii) At points of Xϵ where r = 0, the tangent cone of Xϵ is the graph of −ϵr
over C × R.

(iii) The Xϵ vary continuously, and in each y-slice for y ∈ (a, b), Xϵ lies
between the hypersurfaces

H(ϵf(y)p − ϵ) and H(ϵf(y)p + ϵ).

In particular if V is a stationary varifold in the region r < K−Q2
and the

support of V intersects Xϵ, then near the intersection point V cannot lie on
the negative side of Xϵ.

For the proof see [22]. The basic idea is to first consider the hypersurface X̃,
whose cross sections are given by H(ϵf(y)p) in Rn ×{y}. The mean curvature
of X̃ will not have the right sign, however we can take a graph over it to
construct the required surface.

3. Non-concentration

In this section we discuss a basic non-concentration result for minimal hy-
persurfaces close to a cylinder C × R. To motivate the result, consider the
following simple linear version for harmonic functions first.

Proposition 3.1. Let s ∈ (0, 1/2). There is an r0 = r0(s, n) > 0 and a dimen-
sional constant C = C(n) with the following property. Let u : B → R be a
harmonic function on the unit ball B ⊂ Rn+1. We write Rn+1 = Rn

x ×R and
r = |x| as before. Then

sup
0.5B

|u| ≤ C sup
B∩{r>r0}

|u|+ s sup
B

|u|.
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The result says that a harmonic function on the unit ball B cannot con-
centrate in the cylindrical region 1

2B∩{r < r0}, unless it has fast growth from
1
2B to B.

Proof. A straightforward proof follows from bounding sup0.5B |u| in terms of
the L2 norm of u onB. Indeed, the L2 to L∞ estimate can itself be thought of as
a non-concentration estimate, showing that the L2 norm cannot concentrate
on sets of small measure for instance. Instead we use a maximum principle
argument that is closer to the arguments used for minimal hypersurfaces below.

Let us write D = supB |u| and Dr0 = supB∩{r>r0} |u|. Write z−1 = (0,−1),
z1 = (0, 1) ∈ Rn × R, and define

V (z) = |z − z−1|1−n + |z − z1|1−n,

so that V is harmonic on B, but blows up at z±1.
Let us define

t0 = inf{t > 0 : tV ≥ u on B}.

By the maximum principle, the graphs of t0V and u must touch somewhere
on the boundary ∂B. We consider two pieces of the boundary separately for
some fixed small r0 > 0:

• On {r > r0} ∩ ∂B we have V ≥ 21−n, while at the same time u ≤ Dr0 .
So on this piece of the boundary we have u ≤ 2n−1Dr0V

• On {r < r0} ∩ ∂B, if r0 is small enough, we have either |z − z−1| ≤ 2r0
or |z − z1| ≤ 2r0, and therefore V ≥ (2r0)1−n. At the same time u ≤ D,
and so here we have u ≤ (2r0)n−1DV .

In sum we have that u ≤ C(Dr0 +rn−1
0 D)V on ∂B, for a dimensional constant

C. It follows that t0 ≤ C(Dr0 + rn−1
0 D), and note that u ≤ t0V on B.

On the half ball 0.5B we have |z − z±1| ≥ 1/2, so V ≤ 2 · 2n−1, and as a
consequence

u ≤ t02n ≤ C ′(Dr0 + rn−1
0 D) on 0.5B,

for a different dimensional constant C ′. We can bound u from below by arguing
with −u instead. Then we can choose r0 sufficiently small depending on s, so
that the required estimate holds for sup0.5B |u|. !

To derive an analogous non-concentration estimate for minimal hypersur-
faces, we need to define a notion of distance analogous to the supremum norm
of |u|. Since our barrier surfaces are defined in terms of the leaves H(t) of the
Hardt-Simon foliation, we define the distance in terms of them as well.

Definition 3.2. For any subsets M,U ⊂ Rn+1 we define DC×R(M ;U) to be
the infimum of all d > 0 such that M ∩ U is contained in the region bounded
between H(±d) × R.
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In practice M will be a minimal hypersurface and U an open set, like a
ball. We think of DC×R(M ;U) as the distance of M from C×R on the region
U . By the discussion after Definition 2.1, if M is the graph of u over C ×R on
the region U , then DC×R(M ;U) is comparable to the sup norm supU |rγu|.

In terms of this distance we have the following non-concentration estimate
for minimal hypersurfaces close to a cylindrical cone C × R, analogous to
Proposition 3.1.

Proposition 3.3. Let s ∈ (0, 1/2). There is an r0 = r0(s, C) > 0 and a constant
A > 0 depending on the cone C with the following property. Suppose that
M ⊂ Rn × R is a codimension one stationary integral varifold defined in the
region {|y| < 1}. Then

DC×R(M ; {|y| < 1/2}) ≤ ADC×R(M ; {r > r0} ∩ {|y| < 1})
+ sDC×R(M ; {|y| < 1}).

For the proof see [22]. The basic idea is similar to the proof of Proposi-
tion 3.1 above. The main difference is that instead of the comparison functions
tV in that proof, here we use the barrier surfaces Xϵ given in Proposition 2.4,
using the function f(y) = 4(1+ y)−1 +4(1− y)−1, which blows up at y = ±1.

In applications it is important to have similar non-concentration estimates
for a distance function DTλ from minimal surfaces Tλ that are perturbations
of C × R on an annular region, depending on a parameter λ. In different
applications below different families will be required, the common feature being
that in each cross sectionRn×{y} the surface Tλ is well approximated by a leaf
of the Hardt–Simon foliation (depending on y). In these settings the definition
of the distance DTλ is more complicated, based on a dichotomy: when M is
sufficiently close to Tλ to be the graph of a function u over it, then we can
define a sup-type norm in terms of u, while when M is relatively far from Tλ

then we can define a distance in terms of the leaves H(t) of the Hardt-Simon
foliation as in Definition 3.2. For the detailed definition see for instance [22,
Definition 11.7].

4. Uniqueness of tangent cones

In this section we will discuss Question Q1 from the Introduction, on the
uniqueness of cylindrical tangent cones. The first such uniqueness result was
shown by Simon [18]. Although his result holds for more general cones, for
simplicity we will focus on the case of quadratic cones C = C(Sp × Sq).
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4.1. Simon’s uniqueness theorem

Theorem 4.1. [18] Suppose that a minimal hypersurface has a multiplicity one
cylindrical tangent cone C(Sp × Sq) × R, where p+ q > 6. Then this tangent
cone is unique.

We briefly sketch a proof of this result based on the non-concentration esti-
mate Proposition 3.3. Simon’s proof is based on a different non-concentration
estimate for an L2 distance (see [18, Corollary 2.3]).

Let us denote by V the cone C(Sp × Sq) × R and all of its rotations in
Rn+1. It can be shown that all minimal cones sufficiently close to C × R are
in V. In addition the minimal cones C(Sp ×Sq)×R are integrable in a strong
sense for p+ q > 6, namely all degree one Jacobi fields correspond to rotations
(see Simon [18, Equation (17)]).

We can define the distance DV (M ;U) for any V ∈ V analogously to Defini-
tion 3.2, and to simplify notation below, we write DV (M) = DV (M ;B1\Bρ0).
Here ρ0 is the constant appearing in Lemma 2.3 with d = 1. We have the
following geometric 3-annulus lemma.

Proposition 4.2. There is an L > 0 such that for sufficiently small d > 0 we
have the following. Suppose that M ∈ M is a minimal hypersurface in B1.
Suppose that DV (M) < d and α ∈ (α1,α2), for V ∈ V. Then

(i) If DV (LM) ≥ LαDV (M), then DV (L2 M) ≥ LαDV (LM).
(ii) If DV (LM) ≥ LαDV (L2 M), then DV (M) ≥ LαDV (LM).

The proof is by contradiction, similar to Simon [14, Lemma 2] for instance,
with the non-concentration estimate, Proposition 3.3 playing an important
role. For the proof see [23, Proposition 5.12].

For any B > 0 let us define the quantity

EB(M) = inf{DV (M) +DV (LBM) : V ∈ V},
for the value of L in the 3-annulus lemma above. Note that EB(M) can be
used to control the distance between M and LBM on the annulus B1\Bρ0 in
the flat norm for instance (see [23, Lemma 6.2]). I.e. we have dF (M,LBM) ≤
CEB(M).

Uniqueness of the tangent cone follows from the following.

Proposition 4.3. There is a B > 0 with the following property. Suppose that M
is a stationary integral varifold in B1, such that the density of M at the origin
equals that of C(Sp × Sq) × R, and the area of M in B1 is sufficiently close
to that of C(Sp × Sq)×R. Suppose p+ q > 6 as above. Then if the Hausdorff
distance between M and C(Sp × Sq)×R is sufficiently small on the unit ball,
we have

EB(LBM) ≤ 1
2
EB(M).
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Proof. We give a sketch of the proof. For the details see the proof of [23,
Proposition 6.6], which applies in the more difficult non-integrable setting that
we discuss below.

The proof is by contradiction. We suppose that we have a sequence Mi

converging to C(Sp × Sq) × R on the unit ball B1, satisfying the assumption
on the density at the origin. We will show that the required conclusion holds
for sufficiently large i, if B is chosen sufficiently large.

Let α′
1 < α′

2 such that α′
i ∈ (α1,α2) for the constants in Proposition 4.2.

First we claim that for large i there are Vi ∈ V such that one of the following
two conditions holds:
(a) DVi(L2BMi) ≥ Lα′

1BDVi(LBMi),
(b) DVi(Mi) ≥ Lα′

2BDVi(LBMi).
This follows essentially by choosing Vi to be the “best fit” cone to LBMi on
the annulus B1\Bρ0 and then using the last claim in Lemma 2.3, together with
the non-concentration estimate. The integrability of the cone C ×R is crucial
here, since it allows us to eliminate the degree 1 component of the Jacobi field
that models the behavior of Mi relative to Vi by choosing Vi appropriately.

Next we suppose that condition (a) holds for sufficiently large i. Proposi-
tion 4.2 implies that for large i, we will have

DVi(L
(k+1)BMi) ≥ Lα′

1BDVi(L
kBMi),

for k > 0 as long as LkBMi is still sufficiently close to Vi. Letting ki be the
largest value of k for which this still holds, we end up with a contradiction
using the following: on the one hand the monotonicity formula for minimal
surfaces implies that LkiBMi has to converge to a minimal cone as i → ∞,
but on the other hand the growth condition above (note that the rate of growth
is independent of i) implies that this is not possible.

Finally, we can assume that condition (b) holds for all large i, while condi-
tion (a) fails. Let di = DVi(LBMi). We have

DVi(Mi) ≥ Lα′
2BDVi(L

BMi) = Lα′
2Bdi,

DVi(L
2BMi) ≤ Lα′

1BDVi(L
BMi) = Lα′

1Bdi.

Using the second inequality we can estimate EB(LBMi) from above in terms
of di: we have EB(LBMi) ≤ CLα′

1Bdi. Using the first inequality we can then
argue that EB(Mi) ≥ 2EB(LBMi) once i is large enough. !

Uniqueness of the tangent cone follows by iterating this Proposition. For
any N > 0, as long as LkBM stays sufficiently close to C(Sp ×Sq)×R on the
annulus B1\Bρ0 for all k ≤ N , we have the bound

dF (M,L(N+1)BM) ≤ dF (M,LBM) + · · ·+ dF (LNBM,L(N+1)BM)

≤ C(EB(M) + · · ·+ EB(LNBM))
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≤ 2CEB(M).

In particular if EB(M) is sufficiently small, then we can let N be arbitrarily
large, and it follows that LkBM remains close to M on the annulus for all
k > 0. This implies uniqueness of the tangent cone.

4.2. The tangent cone C(S3 × S3) × R

The assumption that p + q > 6 in Simon’s Theorem 4.1 implies that the
corresponding cones C(Sp×Sq)×R are integrable, in the sense that all Jacobi
fields that are homogeneous of degree one, and are locally in W 1,2, correspond
to rotations in Rn+1. There are two remaining minimizing cones of this type,
C(S4 × S2) × R and C(S3 × S3) × R. Neither of these is integrable, because
they admit the degree one Jacobi field φ = y3r−2 − y, where as above y is the
coordinate on the R factor, while r = |x| on the remaining Rn factor.

In this section we will discuss the following result.

Theorem 4.4. [23, Theorem 1.1] Let M be an area-minimizing hypersurface in
a neighborhood of 0 ∈ R9, that admits C × R as a multiplicity one tangent
cone at the origin, where C = C(S3 × S3) is the Simons cone. Then C ×R is
the unique tangent cone at 0.

Note that uniqueness of the remaining quadratic cone C(S2 × S4) × R is
still open.

For tangent cones with isolated singularities, uniqueness in the non-integr-
able case was shown by Simon [14] using his very influential infinite dimen-
sional &Lojasiewicz inequality. It seems to be difficult to extend this approach
to cylindrical tangent cones, since in that case the cross section is singular and
it is not clear whether a general &Lojasiewicz inequality can still be expected to
hold. Instead, the approach in [23] is based on constructing minimal surfaces
Tδ modeled on the Jacobi field δφ, and proving a &Lojasiewicz type inequality
only for this one-dimensional family.

4.2.1. The construction of Tδ . The first step in constructing the minimal sur-
faces Tδ is to focus on the link Σ0 = S7 ∩ (C(S3 × S3) × R). The minimal
surface Σ0 has two singular points, modeled on the Simons cone C(S3 × S3).
The Jacobi field φ restricts to a Jacobi field, also denoted by φ, on Σ0, which
blows up at the rate of r−2 near the two singular points. Up to scaling this is
the only Jacobi field that is also O(4)×O(4)-invariant and has at worst O(r−2)
singularities. This Jacobi field spans the cokernel of the O(4)×O(4)-invariant
linearized operator, and so we can hope to find perturbations Σδ modeled on
δφ, which are minimal modulo the function φ.

It is convenient to choose a function ζ, compactly supported away from the
singularities, such that ζ is also O(4) × O(4)-invariant, it is an odd function
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of y, and
∫

ζφ =
∫

φ2 on Σ0. The following result shows that we can find
smoothings of Σ0 that are minimal modulo the function ζ.

Proposition 4.5. There exist smooth hypersurfaces Σδ for sufficiently small δ ̸=
0 such that their mean curvature is given by m(Σδ) = h(δ)ζ and

h(δ) = cδ4/3 +O(|δ|4/3+κ),

h′(δ) =
4
3
cδ1/3 +O(|δ|1/3+κ). (4.1)

Here c < 0 and κ > 0.

To construct Σδ we first construct an approximate solution Σ̃δ by gluing
together the graph of δφ with scaled down copies ±δ1/3H of the Hardt–Simon
smoothing of C(S3 × C3). The reason why this works is that to leading order
±δ1/3H is the graph of ±δr−2 over C(S3 × S3), which matches the leading
order behavior of δφ at the singular points. We then construct Σδ as a graph
over Σ̃δ.

Remark 4.6. Note that if Σ0 were smooth, then it would follow from real
analyticity of the mean curvature operator that we could solve the equation
m(Σδ) = h(δ)ζ, and the resulting h(δ) would be real analytic. In particular
either h(δ) would have finite order of vanishing, or it would vanish identically.
This kind of statement is at the heart of Simon’s &Lojasiewicz inequality.

In our singular setting we need to work with specific features of our problem
to derive the estimate (4.1) with a nonzero coefficient c. In particular a key
ingredient is a refined asymptotic expansion of H as a graph over C(S3 ×C3).
It turns out (see [23, Proposition 3.3]) that H is asymptotically the graph of

r−2 + br−3 +O(r−8)

over C(S3 × S3), where b < 0.
An expansion of this type is the main missing ingredient in proving the

uniqueness result for the cylindrical cone C(S2 × S4) × R. In principle it is
possible that in the case of C(S2 × S4) × R, or another cylindrical cone, the
analogous function h(δ) vanishes to infinite order, but is not identically zero.
This would be somewhat analogous to the situation exploited by White [26]
to construct examples of harmonic maps with non-unique tangent maps.

Given the smoothings Σδ of the link, we construct minimal perturbations
Tδ of the cone V0 = C(S3 × S3) × R, modeled on the Jacobi field δφ. Let us
denote by Vδ = C(Σδ) the cone over Σδ. We try to construct a minimal graph
Tδ over Vδ. Note that the mean curvature of Vδ satisfies m(Vδ) = h(δ)ζρ−2,
where ζ is extended as a degree one homogeneous function, and ρ = (r2+y2)1/2
as before.

To first order we need to take the graph of u over Vδ such that LVδ(u) =
−h(δ)ζρ−2. This in turn is closely related to solving the equation LV0(v) =
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−h(δ)φρ−2 on the cone V0. Using that φ is in the kernel of the linearized
operator LΣ0 on the link, we have

LV0(c0φ ln ρ) = φρ−2

for a suitable constant c0. It follows from these considerations that to leading
order we need to consider the graph of uδ = −c0h(δ)φδ ln ρ over Vδ, where φδ

generates the family Σδ and is extended as a degree one function to Vδ. It is
shown in [23, Proposition 4.5] that indeed there is a minimal hypersurface Tδ

for small δ, which to leading order is the graph of uδ over Vδ. Because of the
ln ρ term, this Tδ is only defined on an annular region where | ln ρ| < |δ|−κ for
some small κ > 0.

4.2.2. Proving Theorem 4.4. The proof of Theorem 4.4 follows from a decay
estimate similar to Proposition 4.3. First, we define

EB(M) = inf{DW (M) +DW (LBM) : W ∈ W},

as before. Here W consists of all rotations of the cone V0 as before, and in
addition it contains rotations of cones Wδ modeled on the Jacobi fields δφ
(see [23, Remark 4.6] for the definition). The cones Wδ are perturbations of
the Vδ defined above, but to leading order their mean curvature is given by
m(Wδ) = h(δ)φδρ−2. The idea is that we would like to use φ instead of ζ in the
contructions above, and φδ is the natural extension of the singular function φ
to the smoothings Σδ. Geometrically the Wδ can be viewed as interchangeable
with Vδ.

The definition of the distance DW is much more subtle than before, since
the cross sections of the hypersurfaces W ∈ W are not leaves of the Hardt–
Simon foliation. We define the distance DTδ(M) analogously. The correspond-
ing non-concentration estimate, relative to the surfaces Tδ, has the same form
as Proposition 3.3, although the proof is substantially more complicated (see
[23, Proposition 5.6]).

A final complication in trying to mimic the proof of Proposition 4.3 is
that the minimal surfaces Tδ are only defined on annular regions of the form
| ln ρ| < |δ|−κ, rather than on the entire unit ball. This is an issue when we try
to iterate the three annulus lemma, as in case (a) of the proof of Proposition 4.3
for instance, since the quantity DLkBTδi

(LkBMi) only makes sense if LkBTδi

is still defined over the annulus B1\Bρ0 . This in turn is only true as long as
| lnLkB | < |δi|−κ, i.e. kB < |δi|−κ for a small κ > 0. Using this one can
show that in case (a) we get a contradiction for large i as in the proof of
Proposition 4.3, as long as DLBTδi

(LBMi) > ϵ|h(δi)|, and ϵ can be chosen as
small as we like if i is chosen larger.

On the other hand, if DLBTδi
(LBMi) ≤ ϵ|h(δi)|, then we can show that

A(LBMi)θ − A(2LBMi)θ ≥ C−1|h(δi)|
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for large i, and a suitable θ > 0. Here A is the excess

A(M) = Area(M ∩ B1/2) − Area(V0 ∩ B1/2).

This estimate can be viewed as a &Lojasiewicz type inequality, and it relies on
the fact that h(δ) has a finite order of vanishing in (4.1). Using this it follows
that

EB(LBMi) < CB(A(LBMi)θ − A(2LBMi)θ).
In conclusion we obtain the following decay estimate, analogous to Propo-

sition 4.3.

Proposition 4.7. (See [23]) There are θ, C,B > 0 with the following property.
Let M be an area minimizing hypersurface in B1, with density equal to that
of the cone C × R at the origin. If the Hausdorff distance from M to C × R
on B1 is sufficiently small, then one of the following holds for the quantity EB

defined above:
(i) EB(LBM) ≤ 1

2EB(M).
(ii) EB(LBM) ≤ C

(
A(LBM)θ − A(2LBM)θ

)
.

The uniqueness result, Theorem 4.4 follows from this decay estimate in a
similar way as in the previous section.

5. Local construction of minimal hypersurfaces

In this section we discuss the construction of minimal hypersurfaces in a neigh-
borhood of 0 ∈ Rn ×R with an isolated singularity at the origin, and tangent
cone C × R. In the context of Question Q2 in the introduction, this result
says that when the tangent cone is a cylindrical cone, then the singular set
of the minimal surface can look very different from that of its tangent cone.
The construction itself is analogous to the construction of singular Calabi–Yau
metrics with isolated singularities in [24] (see also Hein–Naber [9]).

The starting point of the construction is to find a suitable Jacobi field on
C×R, which will describe the leading order deviation of our surfaces from their
tangent cone at the origin. Suppose that ℓ is an integer such that ℓ − γ > 1.
Here γ is as in Sect. 2. Then C × R admits a homogeneous Jacobi field of
degree ℓ − γ of the form

uℓ = (yℓr−γ + a1y
ℓ−2r2−γ + . . . a⌊ℓ/2⌋y

ℓ−2⌊ℓ/2⌋r2⌊ℓ/2⌋−γ)φ1, (5.1)

where, as before, φ1 is the first eigenfunction of −LΣ on the link Σ of C, and
r−γφ1 is the corresponding Jacobi field on C. The ai are suitable constants
uniquely determined by the condition that LC×Ruℓ = 0.

We can consider the graph of uℓ over C×R on a region where |uℓ| ≪ r, i.e.
where |y|ℓ ≪ rγ+1. At the same time, on the region where r is much smaller,
we can glue in suitable scaled copies of the Hardt–Simon smoothings H± in
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the slices of the form Rn×{y}. This uses that to leading order H± is the graph
of r−γφ1 over C. Interpolating between the two regions using cutoff functions
we obtain a hypersurface X whose mean curvature will be almost zero in a
suitable weighted space. We then show that in a possibly smaller neighborhood
of 0 we can find a minimal graph over X. The fact that many of these minimal
hypersurfaces are area minimizing in a neighborhood of the origin follows by
using barrier surfaces constructed in Proposition 2.4. For the details see [22].

Theorem 5.1. There exist minimal hypersurfaces in a neighborhood of 0 ∈
Rn ×R, modeled on the Jacobi field uℓ, that are smooth away from the origin,
and have tangent cone C × R as their unique (multiplicity one) tangent cone
at the origin. If the integer ℓ in the construction is sufficiently large, then the
minimal hypersurface that we construct is area minimizing in a neighborhood
of the origin.

The first step is to write down suitable approximate solutions. Let us define
the number a = ℓ

1+γ , and let β ∈ (1, a). We define X in the ball {ρ ≤ A−1}
for a sufficiently large A, in the following three pieces:

• On the region where r ≥ 2|y|β we let X be the graph of uℓ over C × R.
It is convenient to deal separately with the region where r ≥ |y|, where
we have |r−1uℓ| = O(rℓ−γ−1) as r → 0. Since ℓ−γ > 1, it makes sense to
consider the graph of uℓ on a sufficiently small neighborhood of 0. At the
same time, on the region 2|y|β ≤ r ≤ |y| we have |r−1uℓ| = O(|y|ℓr−γ−1)
as r → 0. Since ℓ > β(γ + 1), it makes sense to consider the graph of uℓ

on this region too, once r is sufficiently small.
• On the region where r ≤ |y|β , we define X to be the surface H(yℓ) in the

slice Rn × {y}. Note that by Definition 2.1 we have H(yℓ) = |y|aH±.
• On the intermediate region |y|β ≤ r ≤ 2|y|β we interpolate between
the two definitions above, using a cutoff function. More precisely, let
χ : R → [0, 1] be a standard cutoff function, with χ(t) = 1 for t < 1 and
χ(t) = 0 for t > 2. In addition recall that H± is the graph of ±r−γφ1+v±
over C, outside of a large ball. On the region |y|β ≤ r ≤ 2|y|β we let X
be the graph of

uℓ + χ

(
|x|
|y|β

)[
yℓr−γφ1 − uℓ + |y|av±(|y|−ax)

]

over C ×R, where the choice of v± depends on the sign of yℓ. Note that
this definition matches up with the definitions of X in the two regions
above.

The following result shows that the mean curvature of X is small in a
suitable weighted space.

Proposition 5.2. Let β ∈ (1, a). Suppose that δ > ℓ − γ is sufficiently close to
ℓ − γ, and τ ≤ −γ. Then there exists a κ > 0 such that on the punctured ball
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{0 < ρ < A−1} for sufficiently large A, we have the estimates

|mX |+ r|∇mX | < A−κρδ−τrτ−2.

Here mX denotes the mean curvature of X, and ∇mX is the derivative of mX

on X.

For the proof of this result, see [22]. The basic idea is that every point
(x, y) ∈ X has a neighborhood U of radius comparable to R = |x|, such that
when we rescale by R−1, the resulting surface R−1U can be viewed as a graph
over either H × R or C × R. We then estimate the mean curvatures of these
graphs and scale back to obtain the required estimate.

Next we define suitable weighted spaces, in which we can analyze the lin-
earized operator LX of the mean curvature of graphs over X. We consider
locally Ck,α-functions on X∩ρ−1(0, A−1

0 ) for a fixed large A0, and define their
weighted Ck,α

δ,τ -norm by

∥f∥Ck,α
δ,τ

= sup
R,S>0

R−τSτ−δ∥f∥Ck,α

R−2gX
(ΩR,S).

Here ΩR,S ⊂ X ∩ ρ−1(0, A−1
0 ) is the region where ρ ∈ (S, 2S) and r ∈ (R, 2R).

The metric gX denotes the induced metric on X, and the subscript R−2gX
indicates that we measure the usual Hölder norm using this rescaled metric.
The metric R−2gX has bounded geometry on ΩR,S , with bounds independent
of R,S, which implies that the Jacobi operator of X defines a bounded linear
map

LX : C2,α
δ,τ → C0,α

δ−2,τ−2.

At the same time the estimate in Proposition 5.2 implies that

∥mX∥C2,α
δ,τ (ρ−1(0,A−1]) ≤ CA−κ

for A > 2A0.
Given the approximate solution X, the main ingredient for constructing a

minimal graph over X is the following result on inverting the Jacobi operator.

Proposition 5.3. Let τ ∈ (3− n+ γ,−γ), and suppose that δ avoids a discrete
set of indicial roots. Then for sufficiently large A > 0, the Jacobi operator

LX : C2,α
δ,τ (X ∩ ρ−1(0, A−1]) → C0,α

δ−2,τ−2(X ∩ ρ−1(0, A−1])

is surjective, with a right inverse P bounded independently of A.

The proof of this result is based on first constructing an approximate right
inverse P̃ . Given a function u onX∩ρ−1(0, A−1

0 ), we first use cutoff functions to
decompose u into pieces supported on regions of X that are well approximated
by either C × R or H × R. We then analyze the linearized operator on these
model pieces, and patch together local inverses using further cutoff functions.
For the details, see [22], as well as [24] for the analogous result in the context
of Calabi–Yau metrics.
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Let us write mX(u) for the mean curvature of the graph of u over X, and
define the non-linear part QX of the mean curvature operator by

mX(u) = mX + LX(u) +QX(u).

Given the right inverse P constructed above, the problem of finding a minimal
graph over X, i.e. solving mX(u) = 0, can be written as

u = P (−mX − QX(u)).

The solution u is then given by the contraction mapping theorem, once the
parameter A is sufficiently large. For the details see [22]. We remark that the
construction of the surfaces Tδ in the proof of Theorem 4.4 involves very similar

6. Highly symmetric hypersurfaces

In the previous section we showed that there are minimal hypersurfaces with
isolated singularities, but with cylindrical tangent cones. In this section we
show a converse of this, for highly symmetric minimal surfaces, addressing
another aspect of Question Q2 from the Introduction. We restrict ourselves
to minimizing cones C = C(Sp × Sq) for p + q > 6, and to codimension one
stationary integral varifolds M in a neighborhood of the origin 0 ∈ Rn × R
that are invariant under the action of the group O(p+1)×O(q+1) on Rn =
Rp+1 × Rq+1.

In Sect. 5, given any integer ℓ such that ℓ−γ > 1, we constructed a minimal
hypersurface modeled on a Jacobi field uℓ, defined in (5.1). The construction
can be performed in an O(p+1)×O(q+1)-invariant way. Our goal is to show
that in fact all such highly symmetric minimal surfaces with tangent cone
C × R at the origin are graphs over the hypersurfaces that we constructed
previously. More precisely we have the following.

Theorem 6.1. Let M be a stationary integral varifold in a neighborhood of the
origin in Rn × R, with tangent cone C × R at the origin (with multiplicity
one), where C = C(Sp × Sq), with p + q > 6. Suppose that M is invariant
under the action of G = O(p+1)×O(q+1) on Rn. Then either M = C ×R
in a neighborhood of the origin, or M is a graph over one of the surfaces
constructed in Sect. 5 near the origin and so it has an isolated singularity at
the origin.

Note that in this result it is essential that we use the Euclidean ambient
metric on Rn+1. Indeed, Simon’s construction [12] can be done in an invariant
way, and leads to minimal hypersurfaces with tangent cone C×R at the origin,
and essentially arbitrary singular set nearby, as long as we allow the ambient
metric to be a perturbation of the Euclidean one.

The idea of the proof of Theorem 6.1 is to show that under the assumptions
the minimal surface M is modeled to leading order on one of the Jacobi fields
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uℓ on C×R from before, unless M = C×R. At the same time we have already
constructed minimal surfaces T that are modeled on the uℓ to leading order.
We then show that M must approach one of these models T at a sufficiently
fast rate as ρ → 0 to ensure that M is actually graphical over T near the
origin.

The first step in this approach is to show that indeed M is modeled on a
non-zero Jacobi field over C × R, unless M = C × R. For this we need the
following strong unique continuation result.

Theorem 6.2. Suppose that M is an n-dimensional stationary integral varifold
in a neighborhood of the origin 0 ∈ Rn × R, which admits C × R as a (mul-
tiplicity one) tangent cone at the origin. Suppose that for all k > 0 there is a
constant Ck such that for all ρ < 1 we have

∫

M∩Bρ(0)
d2 < Ckρ

k,

i.e. the L2-distance from M to C × R on the ball Bρ(0) vanishes to infinite
order as ρ → 0. Then M = C × R.

Sketch of proof. The proof relies on a similar idea as the monotonicity of fre-
quency used by Almgren [2] and Garofalo–Lin [7], although the details are
quite different, since we are not able to define a suitable frequency function in
our setting. To explain the basic idea, let us denote by d(M, ρ) some measure
of the distance between M and C×R on the ball Bρ(0). Suppose that d(M, ρ)
is defined in a scale invariant way, so that d(M, ρ) = d(ρ−1M, 1). In practice
d(M, ρ) is a scaled L2-distance, “regularized” by adding a small multiple of an
L∞-type distance. It is possible that one could also use the L2-distance itself
by relying on the non-concentration result due to Simon [18, Corollary 2.3] in
the arguments below.

Suppose that λ > 0. Let us say that the three-annulus property holds for
the pair (M,λ), if d(M, e−λ) ≥ 1

2d(M, 1) implies d(M, e−2λ) ≥ 1
2d(M, e−λ).

Note that if for some λ > 0 the three-annulus property holds for (ekλM,λ)
for all k ≥ 0, and in addition d(M, e−λ) ≥ 1

2d(M, 1), then iterating the three-
annulus property we find that d(M, e−kλ) ≥ 2−kd(M, 1). This should imply
that M cannot approach its tangent cone at infinite order for any reasonable
definition of the distance d.

From a quantitative version of the three-annulus lemma, Proposition 3.3
(see [22, Proposition 4.3]), together with a contradiction argument, one expects
that perturbing λ slightly if necessary, the three-annulus property holds for
(M,λ), whenever M is sufficiently close to C × R, say whenever d(M, 1) <
E(λ), for a function E converging to zero as λ → 0. A precise version of this
statement, [22, Proposition 4.4], says that for a suitable definition of d, we can
choose E(λ) = λQ for some Q > 0.
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Given this, we can conclude as follows. Assuming that ρ−1M is sufficiently
close to C for all ρ < 1, the three-annulus property will hold for the pairs
(ρ−1M,λ0), for some λ0 > 0. If for a given ρ0 ∈ (0, 1) we had d(M, e−λ0ρ0) ≥
1
2d(M, ρ0), then M would not approach its tangent cone at infinite order.
Therefore for all ρ < 1 we must have

d(M, e−λ0ρ) <
1
2
d(M, ρ).

Then for all ρ < e−λ0 the three-annulus property holds for (ρ−1M,λ1) for
some λ1 < sλ0, with s < 1 depending only on the number Q above. Iterating
this, it follows that if M approaches its tangent cone at infinite order, then we
have d(M, ρ0) = 0 for ρ0 = e−λ0(1+s+s2+...), leading to Theorem 6.2. !

Let M be as in the statement of Theorem 6.1, and suppose that M is not
equal to C×R in a neighborhood of the origin. The strong unique continuation
result implies that by a rescaling process we can extract a non-zero Jacobi field
U on C × R, corresponding to the leading order behavior of M at the origin.
We define the degree of M to be d, if

U = Ud +O(ρc+γr−γ)

for some c > d as ρ → 0, and Ud is a non-zero degree d homogeneous Jacobi
field.

Since we are considering M that are O(p + 1) × O(q + 1)-invariant, the
Jacobi field U is of the form

U =
∑

k,ℓ≥0

ak,ℓr
2k−γyℓ,

i.e.
U = λuℓ +O(ρc+γr−γ)

for some λ ̸= 0 and c > ℓ − γ, where uℓ is the function in (5.1). We have
Ud = λuℓ, so that the degree of M is d = ℓ − γ.

We denote by T±1 the minimal surfaces constructed in Theorem 5.1, mod-
eled on the Jacobi fields ±uℓ, and define

Tλ = λ(1−(ℓ−γ))−1
T1, T−λ = λ(1−(ℓ−γ))−1

T−1 for λ > 0.

We let T0 = C×R. For sufficiently small |λ|, the surface Tλ is defined in B2(0)
and to leading order we can think of Tλ as the graph of λuℓ over C × R, at
least away from the singular ray.

To prove Theorem 6.1 the strategy is to show that under the assumptions
in the theorem M will decay towards Tλ for a suitable λ ̸= 0 at a rate faster
than the degree ℓ − γ. In a sufficiently small neighborhood of the origin this
will imply that M is actually a graph over Tλ, and in particular it has an
isolated singularity at the origin. The proof has similarities with the proof
of Theorem 4.1, the difference being that instead of proving decay towards
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the tangent cone, we now need to prove decay towards one of the surfaces
Tλ, determining the next leading order behavior M beyond the tangent cone.
Here the fact that uℓ spans the space of O(p+ 1) × O(q + 1)-invariant Jacobi
fields on C × R plays the role of integrability of the tangent cone. In order to
use this approach to prove a result similar to Theorem 6.1 without symmetry
assumptions, we would need to construct hypersurfaces like T modeled on more
general Jacobi fields. This leads to significant new difficulties if T is expected
to still have a non-isolated singular set.

7. Liouville type theorems

Finally, we consider Question Q3 from the introduction, i.e. the question of
classifying entire minimal surfaces in Rn+1 with a given tangent cone at in-
finity. The simplest result of this kind follows directly from the monotonicity
formula: if the tangent cone C of M at infinity is a (multiplicity one) hyper-
plane, then M is a translate of C. This is a Liouville type rigidity result, which
is closely related to the regularity of minimal surfaces that are sufficiently close
to a hyperplane in a ball.

The first classification result beyond this is the following.

Theorem 7.1. (Simon–Solomon [20]) Let M be a minimal hypersurface inRn+1

with tangent cone at infinity given by a quadratic cone C = C(Sp ×Sq). Then
up to translations and scalings M is either equal to one of the Hardt–Simon
smoothings of C, or to C itself.

The basic input in this classification result is that for such quadratic cones
C we have a good understanding of the space J≤1 of Jacobi fields on C with
degree at most 1. As shown in [20] this space is spanned by the following:

(i) r−γ , for a certain 0 < γ < n−2
2 as in Sect. 2.

(ii) The functions x .→ z · ν(x), where z ∈ Rn+1, x ∈ C and ν is the unit
normal vector to C. These Jacobi fields are homogeneous of degree 0.

(iii) The functions x .→ Ax · ν(x) for A ∈ so(n+1). These are homogeneous
of degree 1.

In addition, these Jacobi fields each have geometric meaning in terms of de-
formations of the cone C through minimal surfaces: (i) corresponds to the
Hardt–Simon foliation; (ii) to translations; (iii) to rotations.

Given this, we can give a rough sketch of Simon–Solomon’s result.

Sketch of proof of Theorem 7.1. Suppose that M is a minimal hypersurface
with tangent cone C = C(Sp × Sq) at infinity. The fact that the degree one
Jacobi fields all correspond to rotations means that C is integrable. It follows
from Allard–Almgren [1] that M converges to C at a polynomial rate. In
particular, near infinity M is modeled on the graph of a Jacobi field u over C
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with degree less than 1. Replacing C by a translate C+z, we can write M as a
graph over C + z near infinity, modeled on a Jacobi field u over C that has no
degree 0 component. Similarly, replacing C by a leaf cH of the Hardt–Simon
foliation (possibly c = 0), we can write M as a graph over cH+z near infinity,
modeled on a Jacobi field u on C with no degree 0 or degree −γ components.
It follows that M converges to cH + z at a rate faster than r−γ . Replacing M
with M − z we can assume that z = 0.

The fact that M approaches cH at a rate faster than r−γ implies that for
any t > 0, M is contained between the surfaces (c ± t)H near infinity. We
can now argue using the maximum principle together with the Hardt-Simon
foliation to show that M must equal one of the foliates, which is then cH. !

The generalization of Simon–Salamon’s result to general minimizing cones
C with isolated singularities was taken up by Chan [5]. She showed that there
are minimal hypersurfaces asymptotic to C corresponding to the space of Ja-
cobi fields of degree less than one on C, however it is not known whether her
construction exhausts all such minimal hypersurfaces. The missing ingredient
is to understand whether the minimal hypersurfaces constructed by Chan vary
continuously—this statement in the case of quadratic cones is clear since we
have an explicit understanding of the corresponding hypersurfaces.

Let us now consider the case of cylindrical tangent cones C ×R at infinity.
In analogy with the cases discussed above, one expects that minimal hyper-
surfaces asymptotic to C × R can be understood in terms of Jacobi fields on
C × R of degree at most 1. A difficulty is that already in the simplest case
where C is a quadratic cone, there will be many more Jacobi fields than before.
For example for C(S3 × §3)×R, the Jacobi fields of degree less than 1 include

r−2, yr−2, y2r−2 − 1
3
,

as well as the Jacobi fields corresponding to translations. As above, it is impor-
tant to understand what minimal surfaces would correspond to these Jacobi
fields and their linear combinations. The fastest decaying Jacobi field r−2 cor-
responds to the Hardt–Simon smoothings cH × R as before. The next, yr−2

corresponds to the minimal graphs constructed by Bombieri–De Giorgi–Giusti
[3]. We do not know, however, what minimal surfaces correspond to y2y−2 − 1

3
and combinations of this with faster decaying Jacobi fields.

It is natural to impose additional conditions on M to obtain results. One
important question is to classify minimal surfaces M that lie on one side of
a minizing cone. For cylindrical tangent cones we have the following result,
proved under additional hypotheses by Simon [11].

Theorem 7.2. [6] Let C ⊂ Rn be a strictly minimizing and strictly stable cone
in the sense of Hardt–Simon [8]. Let M ⊂ Rn+k be a minimal surface with
tangent cone C × Rk at infinity, which lies on one side of C × Rk. Then M
coincides with a foliate cH × Rk of the Hardt–Simon foliation.
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The proof is roughly along the lines of the sketch above for Theorem 7.1,
crucially using a non-concentration estimate like Proposition 3.3 to relate the
behavior of minimal surfaces to Jacobi fields. The point of the additional hy-
pothesis of lying on one side of C×Rk is that in this case M must be modeled
on a Jacobi field u on C × Rk near infinity that has a sign. But there is
only a one-dimensional space of such Jacobi fields, corresponding to the first
eigenfunction of the Jacobi operator on the link of C, and we understand
the corresponding minimal surfaces well: they are precisely the Hardt–Simon
smoothings cH × Rk.

In the case of quadratic cones C(Sp×Sq)×R we also understand a slightly
larger space of Jacobi fields: the ones with degree at most −γ + 1, where γ is
as in (i) above. Namely these are the Jacobi fields spanned by r−γ and yr−γ .
Using this, we expect that techniques similar to the proof of Theorem 7.2 can
be used to show the following.

Conjecture 7.3. Let M ⊂ Rn+1 be a minimal graph, whose tangent cone at
infinity is C(Sp × Sq) × R. Then up to translation and scaling, M is the
minimal graph constructed by Bombier–De Giorgi–Giusti [3] in the case of
p = q = 3 and by Simon [16] more generally.
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