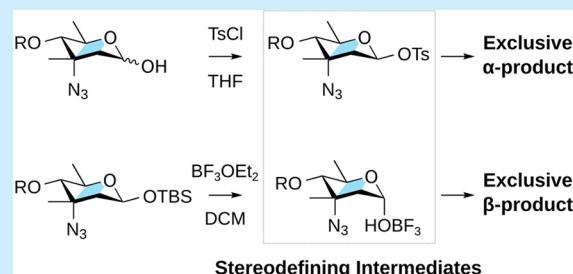


# Origins of Selectivity in Glycosylation Reactions with Saccharosamine Donors

Brian P. Garreffii, Ryan W. Kwok, Mateusz Marianski, and Clay S. Bennett\*


 Cite This: *Org. Lett.* 2023, 25, 8856–8860


Read Online

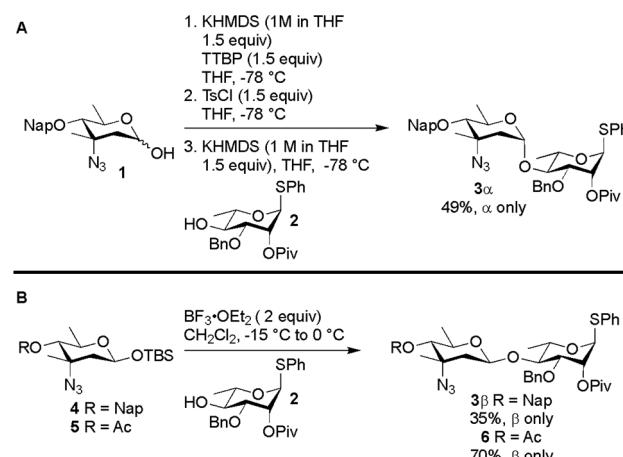

ACCESS

Metrics &amp; More

Article Recommendations

Supporting Information

**ABSTRACT:** A combination of DFT calculations and experiments is used to describe how the selection of a promoter can control the stereochemical outcome of glycosylation reactions with the deoxy sugar saccharosamine. Depending on the promoter, either  $\alpha$ - or  $\beta$ -linked reactive intermediates are formed. These studies show that differential modes of activation lead to the formation of distinct intermediates that undergo highly selective reactions through an  $S_N2$ -like mechanism.

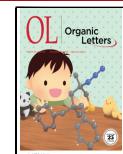


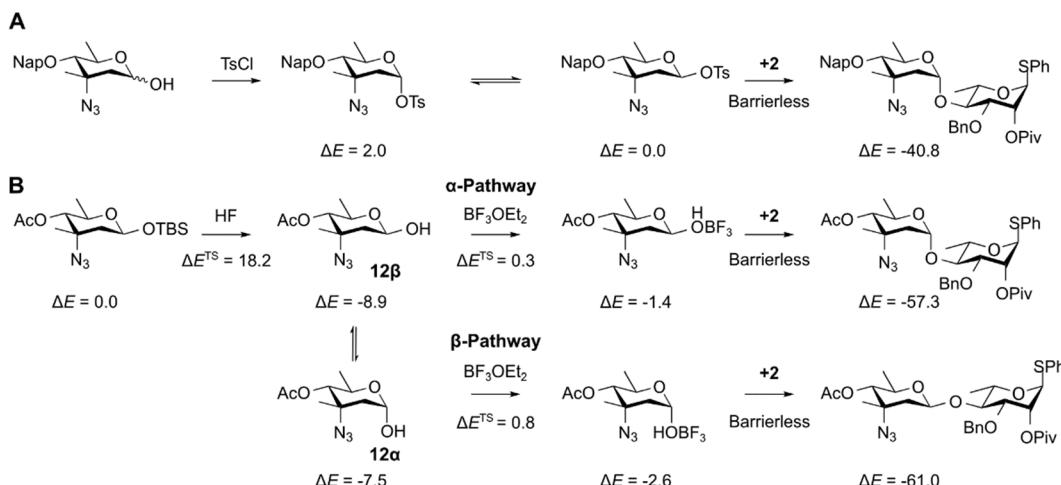

Many natural products possess glycans composed of deoxy sugars, which are critical for their biological activity.<sup>1</sup> Importantly, the introduction of non-native sugars into natural products can modulate their activity through increasing potency or mitigating toxicity.<sup>2</sup> Thus, glycodiversification, where a natural product is obtained through fermentation and its sugar components are modified, represents an attractive prospect for the discovery of new therapeutics. A significant hurdle to the wider adoption of glycodiversification using deoxy sugars lies in the fact that controlling the diastereoselectivity in glycosylation reactions with these substrates is extremely challenging.<sup>3</sup> This is especially true in the context of substrates possessing multiple sites of deoxygenation, unusual configurations, or the addition of heteroatoms other than oxygen. While this situation has spurred a number of elegant methods for selective direct synthesis of both  $\alpha$ - and  $\beta$ -linked deoxy sugars, general solutions for controlling selectivity in reactions with these compounds have yet to arise.<sup>4</sup> Such a situation could be remediated through a better understanding of the factors controlling the selectivity in these reactions. Here we describe studies directed at elucidating the mechanisms of selectivity in glycosylation reactions using 2,3,6-trideoxy-3-methyl-3-amino sugar saccharosamine (Sac). This sugar undergoes both highly  $\alpha$ - and  $\beta$ -selective glycosylation reactions, where the selectivity is controlled entirely by the mode of activation.

Recently, one of our laboratories had the need to synthesize  $\beta$ -linked saccharosamine as part of a larger campaign directed at the total synthesis of the heptadecasaccharide antibiotic saccharomicin B.<sup>5</sup> Our initial approach to controlling selectivity in this glycosylation reaction was to use our sulfonate-mediated dehydrative glycosylation reaction.<sup>6</sup> We chose this reaction because this chemistry had produced products with very high to exclusive levels of  $\beta$ -selectivity through  $S_N2$ -like displacement of an  $\alpha$ -linked sulfonate, with

other substrates studied in our lab. Surprisingly, when saccharosamine 1 was activated with tosyl chloride and KHMDS at low temperature, followed by treatment with acceptor 2, compound 3 $\alpha$  was formed exclusively as the  $\alpha$ -anomer (Scheme 1). Despite several attempts at optimization, we were unable to reverse the selectivity of the reaction. In an

## Scheme 1. Effects of Sulfonate-Mediated Glycosylation (A) and OTBS Glycoside Activation (B) on the Stereochemical Outcome of Glycosylation Reactions with Saccharosamine





Received: October 27, 2023

Revised: November 21, 2023

Accepted: December 5, 2023

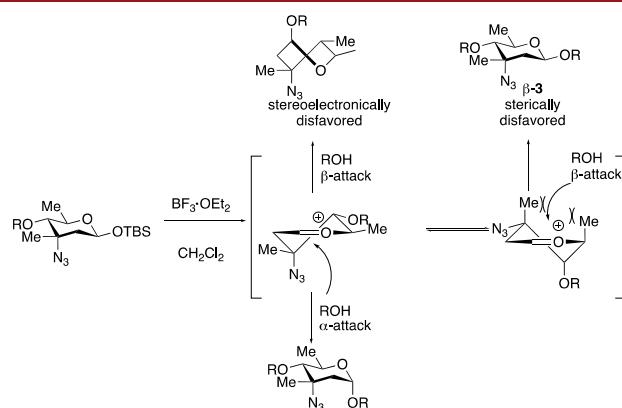
Published: December 7, 2023





**Figure 1.** Proposed mechanisms for the reactions depicted in **Scheme 1** with relative energies,  $\Delta E$ , in  $\text{kcal mol}^{-1}$  obtained through DFT and the PCM solvation model.

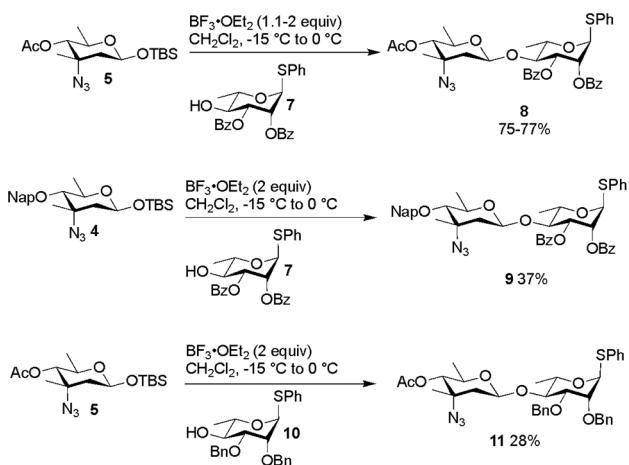
attempt to obtain the desired  $\beta$ -linked product we screened several other glycosylation reactions.<sup>7</sup> Just as surprising we found that the selectivity in the reaction could be reversed through conversion of **1** to the anomeric *O*-TBS ether **4** followed by activation with  $\text{BF}_3\text{OEt}_2$  to afford the  $\beta$ -linked product **3β** exclusively.<sup>8</sup> This selectivity was independent of the protecting group on the sole alcohol of the molecule, and changing the Nap protecting group to an acetate resulted in an increase in yield with no change in selectivity.


While we were satisfied with the outcome with these conditions, it was confusing how such simple changes could lead to a complete reversal in selectivity of this reaction. In the case of the sulfonate chemistry, previous work from our lab and others had shown that the glycosyl sulfonates preferentially adopt an  $\alpha$ -configuration at the anomeric center. While we could not rule out the intermediacy of a glycosyl cation, such a situation was deemed unlikely as the observed high level of selectivity would not be expected based off models for addition oxocarbenium ions.<sup>9</sup> Furthermore, the  $\beta$ -specificity we observed with the *O*-TBS glycoside also did not fit with the established stereochemical models of addition to oxocarbenium cations. These observations led us to consider that the selectivities could be the result of two different modes of  $\text{S}_{\text{N}}2$  displacement.<sup>10</sup>

In order to obtain a better picture of what was going on in our reaction, we turned to DFT calculations. We performed geometry optimization and transition state searches using Gaussian16<sup>11</sup> at the PBE1PBE+D3/6-311+G(d,p) level of theory and with the PCM solvation model.<sup>12–14</sup> The presented energies represent the relative changes in energetics of the reaction species along the reaction profile but do not include factors such as availability and concentration of the reagents. The functional had been performing reliably in conformational and reactivity studies of glycans.<sup>15</sup> Due to convergence problems of this transition state using the PCM solvent model, the energy of this step was obtained by optimizing the gas phase structure and adding single-point solvent corrections. Because the energy of this transition state is lower than that of the individual reactants, we defined this reaction step as barrierless.

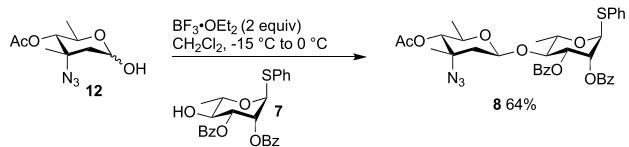
For the glycosyl tosylate chemistry, calculations showed that the  $\beta$ -linked tosylate was favored over the  $\alpha$ -tosylate by a  $\Delta E$  value of 2.0  $\text{kcal mol}^{-1}$  (Figure 1A). Both tosylates then react

with deprotonated acceptor **2** in a barrierless step. Therefore, the DFT calculations confirm that **1** yields the  $\alpha$ -linked product through the  $\text{S}_{\text{N}}2$ -displacement of the  $\beta$ -linked sulfonate intermediate, which is significantly more stable among two anomers of the tosylate intermediate.


Ascertaining the cause of selectivity in OTBS glycoside activation was less straightforward. As noted above, we ruled out a glycosyl cation because the selectivity did not fit into established stereochemical models for addition (Figure 2).



**Figure 2.** Established modes of addition to oxocarbenium cations do not account for the observed  $\beta$ -specific glycosylation upon activation of *O*-TBS glycosides with  $\text{BF}_3\text{OEt}_2$ .

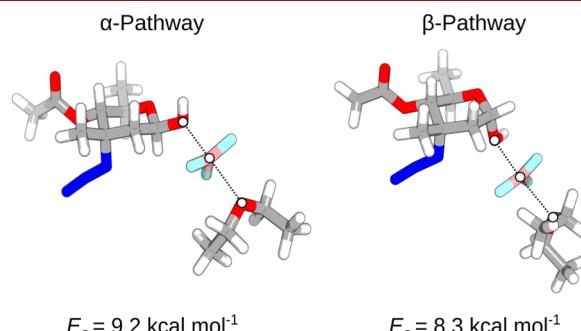

Moreover, non-half-chair intermediates were found to be unstable during DFT optimizations and always converged to the models shown in the figure. In order to gain a better picture of what was happening, we first ran a series of experiments to help identify potential intermediates (Scheme 2). We initially varied the protecting groups on both the donor and acceptor to examine armed/disarmed effects on the reaction.<sup>16</sup> As a baseline we examined the reaction between **5** and **7**, which had been previously described in our efforts toward saccharomicin A.<sup>5a</sup> This reaction consistently afforded the desired  $\beta$ -linked **8** as the only product, regardless of the amount of promoter used in the reaction. When **5** was replaced with armed donor **4** we again only observed the  $\beta$ -linked product **9**, albeit in a greatly reduced yield consistent with our previous observations. Finally using acceptor **10** possessing

## Scheme 2. Effect of Protecting Groups on Glycosylation



arming protecting groups in place of 7 again led to formation of the  $\beta$ -linked product 11 along with a number of decomposition products arising from intramolecular aglycone transfer.<sup>17</sup> Importantly we were unable to detect any  $\alpha$ -linked product.

Having established that the protecting groups on the coupling partners were not affecting the outcome of the reaction, we next turned our attention to examining how putative intermediates performed under the reaction conditions (Scheme 3). Noting that  $\text{BF}_3\cdot\text{OEt}_2$  can deprotect  $O$ -


Scheme 3. Activation of Hemiacetal with  $\text{BF}_3\cdot\text{OEt}_2$ 

TBS ethers,<sup>18</sup> we chose to examine hemiacetal 12 in the reaction. Pleasingly, we were able to obtain the product as a single  $\beta$ -linked isomer, albeit in a slightly attenuated yield. With this information in hand, we again turned to DFT to further inform on the reaction. Herein, the calculations have been carried out using the same level of theory as the previous reaction. The optimization of the transition state of the attack by the deprotonated nucleophile 2 in PCM required adding one explicit DCM molecule, which was then included in the overall reaction balance.<sup>19</sup> Because the energy of this transition state is again lower than that of the individual reactants, we marked this reaction as barrierless.

First, we discarded the mechanism where  $\text{BF}_3\cdot\text{OEt}_2$  directly attaches to the  $O$ -TBS of donor 5 (Figure S1). Here, the reaction leads to the formation of F-TBS and a glycosyl donor with an  $-\text{OBF}_2$  moiety attached to the anomeric carbon. Although the predicted transition state energy,  $\Delta E^{\text{TS}}$ , of 19.9 kcal mol<sup>-1</sup> is comparable with the mechanisms discussed later, we found that the  $-\text{OBF}_2$  moiety is a very poor leaving group, and even activation with another  $\text{BF}_3$  yields a highly unstable intermediate ( $\Delta E > 30$  kcal mol<sup>-1</sup>). Thus, we explored alternative reaction paths.

Next, we considered the deprotection of  $O$ -TBS by a HF molecule, putatively generated by decomposition of  $\text{BF}_3$ , to form a hemiacetal  $12\beta$  and a stable F-TBS.<sup>20</sup> These products are favored by 8.9 kcal mol<sup>-1</sup> over the reagents (Figure 1B).

The deprotection of 5 to form a  $\beta$ -hemiacetal requires crossing a  $\Delta E^{\text{TS}}$  of 18.2 kcal mol<sup>-1</sup>. The hemiacetal  $12\beta$  can then undergo anomerization, although DFT calculations predict that the  $\beta$ -anomer is more stable than the  $\alpha$ -anomer by a  $\Delta E$  value of 1.4 kcal mol<sup>-1</sup>. The hydroxyl group can then be activated by a transfer of  $\text{BF}_3$  from  $\text{BF}_3\cdot\text{OEt}_2$ .<sup>21</sup> Importantly, the attachment of the  $\text{BF}_3$  to the less stable  $\alpha$ -anomer has an activation energy  $E_a$  (defined as  $E_a = \Delta E^{\text{TS}} - \Delta E$ ) of 8.3 kcal mol<sup>-1</sup>, which is lower than the  $E_a$  value of 9.2 kcal mol<sup>-1</sup> for the reaction with the  $\beta$ -anomer. This suggests that the reaction follows the Curtin–Hammett principle where a less stable intermediate gives better access to the transition state (Figure 3).<sup>22</sup> The  $\text{BF}_3$ -adduct of the  $\alpha$ -anomer is also more stable by



**Figure 3.** Activation energy,  $E_a$ , is defined as the energy difference between the transition state and the preceding intermediate,  $\Delta E^{\text{TS}} - \Delta E$ , for the two competing pathways. Despite being more stable by 1.4 kcal mol<sup>-1</sup>, the  $\beta$ -intermediate (left) must overcome a larger  $E_a$  of 9.2 kcal mol<sup>-1</sup> than the 8.3 kcal mol<sup>-1</sup> needed for the  $\alpha$ -intermediate (right). Hence the  $\beta$ -pathway is preferred.

1.2 kcal mol<sup>-1</sup> in comparison to the  $\beta$ -anomer. Next, the activated  $\alpha$ -anomer  $12\alpha$  will then undergo an  $S_N2$  reaction with deprotonated acceptor 2 to form product  $3\beta$  in a barrierless process. Therefore, the DFT suggests that the  $\beta$ -selectivity of the  $O$ -TBS ethers is afforded by the anomerization of the deprotected hemiacetal  $12\beta$ , which opens the pathway leading to the  $\beta$ -product.

In conclusion, using DFT calculations, we have shed insight into the apparent aberrant behavior of saccharosamine donors under different activation conditions. Using  $O$ -alkylation to activate the saccharosamine hemiacetal under basic conditions leads to the formation of a  $\beta$ -linked sulfonate, which undergoes displacement to afford  $\alpha$ -linked products. Conversely, activating either the same hemiacetal or the corresponding  $\beta$ -linked anomeric TBS ether using Lewis acidic conditions leads to the formation of  $\beta$ -linked products through the intermediacy of an  $\alpha$ -linked  $\text{OBF}_3$  leaving group. In both cases, DFT predicts that the stereochemical outcome of the reaction is the result of the formation of different reactive intermediates as a result of different modes of activation. These studies lend support to the growing notion that it is important to consider the nature of the active intermediate, and hence the selection of the promoter, in chemical glycosylation reactions. In light of growing evidence that glycosylation reactions proceed through  $S_N2$ -like manifolds,<sup>23</sup> we anticipate that such information will be useful in future efforts to develop stereoselective glycosylation reactions.

## ■ ASSOCIATED CONTENT

### Data Availability Statement

The data underlying this study are available in the published article and its [Supporting Information](#).

### SI Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.orglett.3c03607>.

Experimental details, characterization data ( $^1\text{H}$  NMR,  $^{13}\text{C}$  NMR, 2-D NMR spectral data), and xyz structures of intermediates and transition states ([PDF](#))

## ■ AUTHOR INFORMATION

### Corresponding Authors

**Mateusz Marianski** — *Department of Chemistry, Hunter College, The City University of New York, New York, New York 10065, United States; PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, New York 10028, United States; [orcid.org/0000-0002-6566-9931](#); Email: [mateusz.marianski97@login.cuny.edu](mailto:mateusz.marianski97@login.cuny.edu)*

**Clay S. Bennett** — *Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States; [orcid.org/0000-0001-8070-4988](#); Email: [clay.bennett@tufts.edu](mailto:clay.bennett@tufts.edu)*

### Authors

**Brian P. Garreffí** — *Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States*

**Ryan W. Kwok** — *Department of Chemistry, Hunter College, The City University of New York, New York, New York 10065, United States; PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, New York 10028, United States; [orcid.org/0000-0001-7245-9142](#)*

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acs.orglett.3c03607>

### Author Contributions

<sup>†</sup>B.P.G. and R.W.K. contributed equally.

### Notes

The authors declare no competing financial interest.

## ■ ACKNOWLEDGMENTS

C.S.B. thanks the National Science Foundation (CHE-1954841 and CHE-2246963) for generous financial support. M.M. gratefully acknowledges the funding from the National Institute of General Medical Sciences (SC2GM135145). R.W.K. thanks NSF Research Traineeship program (2151945) for his support.

## ■ REFERENCES

- (1) Elshahawi, S. I.; Shaaban, K. A.; Kharel, M. K.; Thorson, J. S. A comprehensive review of glycosylated bacterial natural products. *Chem. Soc. Rev.* **2015**, *44*, 7591–7697.
- (2) (a) Cai, H.; Wang, H.-Y. L.; Venkatadri, R.; Fu, D.-X.; Forman, M.; Bajaj, S. O.; Li, H.; O'Doherty, G. A.; Arav-Boger, R. Digitoxin Analogues with Improved Anticytomegalovirus Activity. *ACS Med. Chem. Lett.* **2014**, *5*, 395–399. (b) Huseman, E. D.; Byl, J. A. W.; Chapp, S. M.; Schley, N. D.; Osheroff, N.; Townsend, S. D. Synthesis and Cytotoxic Evaluation of Arimetamycin A and Its Daunorubicin and Doxorubicin Hybrids. *ACS Cent. Sci.* **2021**, *7*, 1327–1337.
- (c) Zhang, G.; Fang, L.; Zhu, L.; Zhong, Y.; Wang, P. G.; Sun, D. Syntheses and Biological Activities of 3'-Azido Disaccharide Analogues of Daunorubicin against Drug-Resistant Leukemia. *J. Med. Chem.* **2006**, *49*, 1792–1799. (d) Wilcock, B. C.; Endo, M. M.; Uno, B. E.; Burke, M. D. C2'-OH of Amphotericin B Plays an Important Role in Binding the Primary Sterol of Human Cells but Not Yeast Cells. *J. Am. Chem. Soc.* **2013**, *135*, 8488–8491.
- (3) (a) Meng, S.; Li, X.; Zhu, J. Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. *Tetrahedron* **2021**, *88*, 132140. (b) Bennett, C. S.; Galan, M. C. Methods for 2-Deoxyglycoside Synthesis. *Chem. Rev.* **2018**, *118*, 7931–7985.
- (4) (a) Carney, N.; Perry, N.; Garabedian, J.; Nagorny, P. Development of  $\alpha$ -Selective Glycosylation with 1-Oleandral and Its Application to the Total Synthesis of Oleandrin. *Org. Lett.* **2023**, *25*, 966–971. (b) Mukherji, A.; Addanki, R. B.; Halder, S.; Kancharla, P. K. Sterically Strained Brønsted Pair Catalysis by Bulky Pyridinium Salts: Direct Stereoselective Synthesis of 2-Deoxy and 2,6-Dideoxy- $\beta$ -thioglycosides from Glycals. *J. Org. Chem.* **2021**, *86*, 17226–17243. (c) Barpuzary, B.; Kim, M.; Rhee, Y. H. Synthetic Study toward Saccharomicin Based upon Asymmetric Metal Catalysis. *Org. Lett.* **2021**, *23*, 5969–5972. (d) Hoang, K. M.; Lees, N. R.; Herzog, S. B. General Method for the Synthesis of  $\alpha$ - or  $\beta$ -Deoxyaminoglycosides Bearing Basic Nitrogen. *J. Am. Chem. Soc.* **2021**, *143*, 2777–2783. (e) Ghosh, T.; Mukherji, A.; Kancharla, P. K. Influence of Anion-Binding Schreiner's Thiourea on DMAP Salts: Synergistic Catalysis toward the Stereoselective Dehydrative Glycosylation from 2-Deoxyhemiacetals. *J. Org. Chem.* **2021**, *86*, 1253–1261. (f) Liu, X.; Lin, Y.; Peng, W.; Zhang, Z.; Gao, L.; Zhou, Y.; Song, Z.; Wang, Y.; Xu, P.; Yu, B.; et al. Direct Synthesis of 2,6-Dideoxy- $\beta$ -glycosides and  $\beta$ -Rhamnosides with a Stereodirecting 2-(Diphenylphosphinoyl)acetyl Group. *Angew. Chem., Int. Ed.* **2022**, *61*, No. e202206128. (g) Liu, K.-M.; Wang, P.-Y.; Guo, Z.-Y.; Xiong, D.-C.; Qin, X.-J.; Liu, M.; Liu, M.; Xue, W.-Y.; Ye, X.-S. Iterative Synthesis of 2-Deoxyoligosaccharides Enabled by Stereoselective Visible-Light-Promoted Glycosylation. *Angew. Chem., Int. Ed.* **2022**, *61*, No. e202114726. (h) Sau, A.; Palon-Nieto, C.; Galan, M. C. Substrate-Controlled Direct  $\alpha$ -Stereoselective Synthesis of Deoxyglycosides from Glycals Using B(C6F5)3 as Catalyst. *J. Org. Chem.* **2019**, *84*, 2415–2424. (i) Jeanneret, R.; Walz, C.; van Meerbeek, M.; Coppock, S.; Galan, M. C. AuCl3-Catalyzed Hemiacetal Activation for the Stereoselective Synthesis of 2-Deoxy Trehalose Derivatives. *Org. Lett.* **2022**, *24*, 6304–6309. (j) Zeng, J.; Wang, R.; Zhang, S.; Fang, J.; Liu, S.; Sun, G.; Xu, B.; Xiao, Y.; Fu, D.; Zhang, W.; et al. Hydrogen-Bonding-Assisted Exogenous Nucleophilic Reagent Effect for  $\beta$ -Selective Glycosylation of Rare 3-Amino Sugars. *J. Am. Chem. Soc.* **2019**, *141*, 8509–8515.
- (5) (a) Garreffí, B. P.; Maney, A. P.; Bennett, C. S. Synthesis of the Branched Tetrasaccharide Fragment of Saccharomicin. *A. Org. Lett.* **2023**, *25*, 369–372. (b) Bylsma, M.; Bennett, C. S. Stereospecific Synthesis of the Saccharosamine-Rhamnose-Fucose Fragment Present in Saccharomicin B. *Org. Lett.* **2018**, *20*, 4695–4698.
- (6) (a) Zhuo, M.-H.; Wilbur, D. J.; Kwan, E. E.; Bennett, C. S. Matching Glycosyl Donor Reactivity to Sulfonate Leaving Group Ability Permits  $S_N2$  Glycosylations. *J. Am. Chem. Soc.* **2019**, *141*, 16743–16754. (b) Lloyd, D.; Bennett, C. S. An Improved Approach to the Direct Construction of 2-Deoxy- $\beta$ -Linked Sugars: Applications to Oligosaccharide Synthesis. *Chem. Eur. J.* **2018**, *24*, 7610–7614. (c) Issa, J. P.; Bennett, C. S. A Reagent-Controlled  $S_N2$ -Glycosylation for the Direct Synthesis of  $\beta$ -Linked 2-Deoxy-Sugars. *J. Am. Chem. Soc.* **2014**, *136*, 5740–5744.
- (7) Attempts to observe the glycosyl tosylate by VT NMR were unsuccessful. See: Bylsma, M. Progress on the Total Synthesis of the Heptasaccharide Fragment Present in the Antibacterial Agent Saccharomicin B. Ph.D. Dissertation, Tufts University, Medford, MA, 2019; <https://dl.tufts.edu/concern/pdfs/v405sp882> (Accessed November 15, 2023).
- (8) Daley, L.; Gumiński, Y.; Demerseman, P.; Kruczynski, A.; Etiévant, C.; Imbert, T.; Hill, B. T.; Monneret, C. Synthesis and Antitumor Activity of New Glycosides of Epipodophyllotoxin, Analogues of Etoposide, and NK 611. *J. Med. Chem.* **1998**, *41*, 4475–4485.

(9) Beaver, M. G.; Woerpel, K. A. Erosion of Stereochemical Control with Increasing Nucleophilicity: O-Glycosylation at the Diffusion Limit. *J. Org. Chem.* **2010**, *75*, 1107–1118.

(10) For a general discussion about the role of  $S_N1$  and  $S_N2$  mechanisms in glycosylation, see: (a) Crich, D. En Route to the Transformation of Glycoscience: A Chemist's Perspective on Internal and External Crossroads in Glycochemistry. *J. Am. Chem. Soc.* **2021**, *143*, 17–34. (b) Adero, P. O.; Amarasekara, H.; Wen, P.; Bohé, L.; Crich, D. The Experimental Evidence in Support of Glycosylation Mechanisms at the  $S_N1$ – $S_N2$  Interface. *Chem. Rev.* **2018**, *118*, 8242–8284.

(11) Frisch, M. J.; et al. *Gaussian 16*, revision C.01; Gaussian, Inc.: Wallingford, CT, 2016. <https://gaussian.com>.

(12) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Methods Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.

(13) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate *ab initio* Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H–Ou. *J. Chem. Phys.* **2010**, *132*, 154104.

(14) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Solvation Models. *Chem. Rev.* **2005**, *105*, 2999–3094.

(15) (a) Csonka, G. I.; Kaminsky, J. *J. Chem. Theory Comput.* **2011**, *7*, 988–997. (b) Marianski, M.; Supady, A.; Ingram, T.; Schneider, M.; Baldau, C. Assessing the Accuracy of Across-the-Scale Methods for Predicting Carbohydrate Conformational Energies for the Examples of Glucose and  $\alpha$ -Maltose. *J. Chem. Theory Comput.* **2016**, *12*, 6157–6168. (c) Kwan, E. E.; Park, Y.; Besser, H. A.; Anderson, T. L.; Jacobsen, E. N. Sensitive and Accurate  $^{13}\text{C}$  Kinetic Isotope Effect Measurements Enabled by Polarization Transfer. *J. Am. Chem. Soc.* **2017**, *139*, 43–46. (d) Marianski, M.; Mucha, E.; Greis, K.; Moon, S.; Pardo, A.; Kirschbaum, C.; Thomas, D. A.; Meijer, G.; von Helden, G.; Gilmore, K.; Seeberger, P. H.; Pagel, K. Remote Participation during Glycosylation Reactions of Galactose Building Blocks: Direct Evidence from Cryogenic Vibrational Spectroscopy. *Angew. Chem., Int. Ed.* **2020**, *59*, 6166–6171. (e) Greis, K.; Leichnitz, S.; Kirschbaum, C.; Chang, C.-W.; Lin, M.-H.; Meijer, G.; von Helden, G.; Seeberger, P. H.; Pagel, K. *J. Am. Chem. Soc.* **2022**, *144*, 20258–20266.

(16) Fraser-Reid, B.; Wu, Z.; Uddodong, U. E.; Ottosson, H. Armed/disarmed Effects in Glycosyl Donors: Rationalization and Side-tracking. *J. Org. Chem.* **1990**, *55*, 6068–6070.

(17) Li, Z.; Gildersleeve, J. C. Mechanistic Studies and Methods To Prevent Aglycon Transfer of Thioglycosides. *J. Am. Chem. Soc.* **2006**, *128*, 11612–11619.

(18) Crouch, R. D. Selective Deprotection of Silyl Ethers. *Tetrahedron Lett.* **2013**, *69*, 2383–2417.

(19) (a) Hosoya, T.; Takano, T.; Kosma, P.; Rosenau, T. Theoretical Foundation for the Presence of Oxacarbenium Ins in Chemical Glycoside Synthesis. *J. Org. Chem.* **2014**, *79*, 7889–7894. (b) Hosoya, T.; Kosma, P.; Rosenau, T. Contact Ion Pairs and Solvent-Separated Ion Pairs from D-Mannopyranosyl and D-Glucopyranosyl Triflates. *Carbohydr. Res.* **2015**, *401*, 127–131.

(20) Nielsen, M. M.; Stougaard, B. A.; Bos, M.; Glibstrup, E.; Pedersen, C. M. Glycosyl Fluorides as Intermediates in  $\text{BF}_3\text{OEt}_2$ -Promoted Glycosylation with Trichloroacetimidates. *Eur. J. Org. Chem.* **2017**, *2017*, 1281–1284.

(21) Zhang, Z.; Kumar, R. K.; Li, G.; Wu, D.; Bi, X. Synthesis of 4-Ynamides and Cyclization by the Vilsmeier Reagent to Dihydrofuran-2(3H)-ones. *Org. Lett.* **2015**, *17*, 6190–6193.

(22) Lemieux, R. U.; Hendriks, K. B.; Stick, R. V.; James, K. *J. Am. Chem. Soc.* **1975**, *97*, 4056–4062.

(23) Andreana, P. R.; Crich, D. Guidelines for O-Glycoside Formation from First Principles. *ACS Central Science* **2021**, *7*, 1454–1462.