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ABSTRACT: A combination of DFT calculations and experiments is used 5 Tscl 5 ]
to describe how the selection of a promoter can control the stereochemical Roﬁ\\% on — RO %OTS — 5)::::;::;
outcome of glycosylation reactions with the deoxy sugar saccharosamine. Ns THF Ns

Depending on the promoter, either - or f-linked reactive intermediates
are formed. These studies show that differential modes of activation lead to
the formation of distinct intermediates that undergo highly selective Roﬁ/ BF:OEt, o 0

reactions through an Sy2-like mechanism. oTBS —=
Na DCM Ns HOBF;

Exclusive
~ B-product

Stereodefining Intermediates

any natural products possess glycans composed of other substrates studied in our lab. Surprisingly, when
deoxy sugars, which are critical for their biological saccharosamine 1 was activated with tosyl chloride and
activity." Importantly, the introduction on non-native sugars
into natural products can modulate their activity through
increasing potency or mitigating toxicity.” Thus, glycodiversi-

KHMDS at low temperature, followed by treatment with
acceptor 2, compound 3a was formed exclusively as the a-

fication, where a natural product is obtained through anomer (Scheme 1). Despite several attempts at optimization,
fermentation and its sugar components are modified, we were unable to reverse the selectivity of the reaction. In an
represents an attractive prospect for the discovery of new

therapeutics. A significant hurdle to the wider adoption of Scheme 1. Effects of Sulfonate-Mediated Glycosylation (A)
glycodiversification using deoxy sugars lies in the fact that and OTBS Glycoside Activation (B) on the Stereochemical
controlling the diastereoselectivity in glycosylatlon reactions Outcome of Glycosylation Reactions with Saccharosamine
with these substrates is extremely challenging.’ This is A 1. KHMDS (1M in THF

especially true in the context of substrates possessing multiple 15equiv)

. . . cpe TTBP (1.5 equiv)

sites of deoxygenation, unusual configurations, or the addition THF, .78 °C

of heteroatoms other than oxygen. While this situation has Zﬁ_ﬁ:' (_17-85§C°|”i")

spurred a number of elegant methods for selective direct Napoﬁk . . Napo%

synthesis of both a- and p-linked deoxy sugars, general N OH I:g“gc?iv(; "FAHIE T';; .

solutions for controlling select1v1ty in reactions with these SPh nO OPiv
compounds have yet to arise.* Such a situation could be Ho 7597 2 9%, w"'y
remediated through a better understanding of the factors BnO 5oy

controlling the selectivity in these reactions. Here we describe

studies directed at elucidating the mechanisms of selectivity in B BFOEty (2 equiv)

glycosylation reactions using 2,3,6-trideoxy-3-methyl-3-amino RO o CHzCly, -15°C00°C

sugar saccharosamine (Sac). This sugar undergoes both highly %OTBS SPl % ?\#

a- and f-selective glycosylation reactions, where the selectivity '\ER N HOL7 2 N sproNap OO

is controlled entirely by the mode of activation. 5R=Ac BnO ey Hoe Bonly
Recently, one of our laboratories had the need to synthesize 70%, B only

P-linked saccharosamine as part of a larger campaign directed

at the total synthesis of the heptadecasaccharide antibiotic -

saccharomicin B.> Our initial approach to controlling Rec?wed: October 27, 2023 OL e "Laers,

selectivity in this glycosylation reaction was to use our Revised: - November 21, 2023 l )

sulfonate-mediated dehydrative glycosylation reaction.” We Accepted: D ecember 5, 2023 =

chose this reaction because this chemistry had produced Published: December 7, 2023

products with very high to exclusive levels of f-selectivity =

through Sy2-like displacement of an a-linked sulfonate, with
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Figure 1. Proposed mechanisms for the reactions depicted in Scheme 1 with relative energies, AE, in kcal mol™" obtained through DFT and the

PCM solvation model.

attempt to obtain the desired f-linked product we screened
several other glycosylation reactions.” Just as surprising we
found that the selectivity in the reaction could be reversed
through conversion of 1 to the anomeric O-TBS ether 4
followed by activation with BF;-OEt; to afford the f-linked
product 3f exclusively.” This selectivity was independent of
the protecting group on the sole alcohol of the molecule, and
changing the Nap protecting group to an acetate resulted in an
increase in yield with no change in selectivity.

While we were satisfied with the outcome with these
conditions, it was confusing how such simple changes could
lead to a complete reversal in selectivity of this reaction. In the
case of the sulfonate chemistry, previous work from our lab
and others had shown that the glycosyl sulfonates preferentially
adopt an a-configuration at the anomeric center. While we
could not rule out the intermediacy of a glycosyl cation, such a
situation was deemed unlikely as the observed high level of
selectivity would not be expected based off models for addition
oxocarbenium ions.” Furthermore, the J-specificity we
observed with the O-TBS glycoside also did not fit with the
established stereoelectronic models of addition to oxocarbe-
nium cations. These observations led us to consider that the
selectivities could be the result of two different modes of Sy2
displacement."’

In order to obtain a better picture of what was going on in
our reaction, we turned to DFT calculations. We performed
geometry optimization and transition state searches using
Gaussian16'' at the PBE1PBE+D3/6-311+G(d,p) level of
theory and with the PCM solvation model.'*~"* The presented
energies represent the relative changes in energetics of the
reaction species along the reaction profile but do not include
factors such as availability and concentration of the reagents.
The functional had been performing reliably in conformational
and reactivity studies of glycans.'” Due to convergence
problems of this transition state using the PCM solvent
model, the energy of this step was obtained by optimizing the
gas phase structure and adding single-point solvent corrections.
Because the energy of this transition state is lower than that of
the individual reactants, we defined this reaction step as
barrierless.

For the glycosyl tosylate chemistry, calculations showed that
the fB-linked tosylate was favored over the a-tosylate by a AE
value of 2.0 kcal mol™" (Figure 1A). Both tosylates then react
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with deprotonated acceptor 2 in a barrierless step. Therefore,
the DFT calculations confirm that 1 yields the a-linked
product through the Sy2-displacement of the p-linked
sulfonate intermediate, which is significantly more stable
among two anomers of the tosylate intermediate.
Ascertaining the cause of selectivity in OTBS glycoside
activation was less straightforward. As noted above, we ruled
out a glycosyl cation because the selectivity did not fit into
established stereoelectronic models for addition (Figure 2).
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Figure 2. Established modes of addition to oxocarbenium cations do
not account for the observed f-specific glycosylation upon activation
of O-TBS glycosides with BF;-OEt,.

Moreover, non-half-chair intermediates were found to be
unstable during DFT optimizations and always converged to
the models shown in the figure. In order to gain a better
picture of what was happening, we first ran a series of
experiments to help identify potential intermediates (Scheme
2). We initially varied the protecting groups on both the donor
and accegtor to examine armed/disarmed effects on the
reaction.'® As a baseline we examined the reaction between $
and 7, which had been previously described in our efforts
toward saccharomicin A.>* This reaction consistently afforded
the desired f-linked 8 as the only product, regardless of the
amount of promoter used in the reaction. When § was replaced
with armed donor 4 we again only observed the p-linked
product 9, albeit in a greatly reduced yield consistent with our
previous observations. Finally using acceptor 10 possessing
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Scheme 2. Effect of Protecting Groups on Glycosylation
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arming protecting groups in place of 7 again led to formation
of the M-linked product 11 along with a number of
decomposition products arising from intramolecular aglycone
transfer.'” Importantly we were unable to detect any a-linked
product.

Having established that the protecting groups on the
coupling partners were not affecting the outcome of the
reaction, we next turned our attention to examining how
putative intermediates performed under the reaction con-
ditions (Scheme 3). Noting that BF;-OEt, can deprotect O-

Scheme 3. Activation of Hemiacetal with BF; OEt,

BFy»OEt, (2 equiv) 7
Ac0$&“ CHsCly, 15 °C 10 0 °C ACO%OW
N, O sPh Ny B0 [
HO@Q% 7 864%
BzO OBz

TBS ethers,'® we chose to examine hemiacetal 12 in the
reaction. Pleasingly, we were able to obtain the product as a
single f-linked isomer, albeit in a slightly attenuated yield.
With this information in hand, we again turned to DFT to
further inform on the reaction. Herein, the calculations have
been carried out using the same level of theory as the previous
reaction. The optimization of the transition state of the attack
by the deprotonated nucleophile 2 in PCM required adding
one explicit DCM molecule, which was then included in the
overall reaction balance.'” Because the energy of this transition
state is again lower than that of the individual reactants, we
marked this reaction as barrierless.

First, we discarded the mechanism where BF;-OEt, directly
attaches to the O-TBS of donor § (Figure S1). Here, the
reaction leads to the formation of F-TBS and a glycosyl donor
with an —OBF, moiety attached to the anomeric carbon.
Although the predicted transition state energy, AE™, of 19.9
kcal mol™! is comparable with the mechanisms discussed later,
we found that the —OBF, moiety is a very poor leaving group,
and even activation with another BF; yields a highly unstable
intermediate (AE > 30 kcal mol™'). Thus, we explored
alternative reaction paths.

Next, we considered the deprotection of O-TBS by a HF
molecule, putatively generated by decomposition of BF;, to
form a hemiacetal 12 and a stable F-TBS.>” These products
are favored by 8.9 kcal mol™" over the reagents (Figure 1B).
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The deprotection of § to form a f-hemiacetal requires crossing
a AE™ of 182 kcal mol™!. The hemiacetal 128 can then
undergo anomerization, although DFT calculations predict
that the f-anomer is more stable than the @-anomer by a AE
value of 1.4 kcal mol™. The hydroxyl group can then be
activated by a transfer of BF; from BF;-OEt,.” Importantly,
the attachment of the BF; to the less stable @-anomer has an
activation energy E, (defined as E, = AE™ — AE) of 8.3 kcal
mol™!, which is lower that the E, value of 9.2 kcal mol™ for the
reaction with the f-anomer. This suggests that the reaction
follows the Curtin—Hammet principle where a less stable
intermediate gives better access to the transition state (Figure
3).”* The BF;-adduct of the a-anomer is also more stable by

o-Pathway

B-Pathway

E,=9.2 kcal mol* E,= 8.3 kcal mol?

Figure 3. Activation energy, E,, is defined as the energy difference
between the transition state and the preceding intermediate, AE™ —
AE, for the two competing pathways. Despite being more stable by
1.4 keal mol™, the f-intermediate (left) must overcome a larger E, of
9.2 kcal mol™! than the 8.3 kcal mol™! needed for the a-intermediate
(right). Hence the f-pathway is preferred.

1.2 kcal mol™ in comparison to the B-anomer. Next, the
activated @-anomer 12a will then undergo an Sy2 reaction
with deprotonated acceptor 2 to form product 38 in a
barrierless process. Therefore, the DFT suggests that the f-
selectivity of the O-TBS ethers is afforded by the
anomerization of the deprotected hemiacetal 12f, which
opens the pathway leading to the S-product.

In conclusion, using DFT calculations, we have shed insight
into the apparent aberrant behavior of saccharosamine donors
under different activation conditions. Using O-alkylation to
activate the saccharosamine hemiacetal under basic conditions
leads to the formation of a -linked sulfonate, which undergoes
displacement to afford a-linked products. Conversely,
activating either the same hemiacetal or the corresponding /-
linked anomeric TBS ether using Lewis acidic conditions leads
to the formation of S-linked products through the intermediacy
of an a-linked OBF; leaving group. In both cases, DFT
predicts that the stereochemical outcome of the reaction is the
result of the formation of different reactive intermediates as a
result of different modes of activation. These studies lend
support to the growing notion that it is important to consider
the nature of the active intermediate, and hence the selection
of the promoter, in chemical glycosylation reactions. In light of
growing evidence that glycosylation reactions proceed through
Sx2-like manifolds,* we anticipate that such information will
be useful in future efforts to develop stereoselective
glycosylation reactions.
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