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Despite the use of machine learning tools, it is challenging to properly model cause-specific deaths in
colorectal cancer (CRC) patients and choose appropriate treatments. Here, w e  propose an
interesting feature selection framework, namely union with recursive feature elimination (U-RFE),
to select the  union feature sets that are crucial in CRC progression-specific mortality using The
Cancer Genome Atlas (TCGA) dataset. Based on the union feature sets, w e  compared the perfor-
mance of 5 classification algorithms, including logistic regression (LR), support vector machines
(SVM), random forest (RF), eXtreme gradient boosting (XGBoost), and Stacking, to identify the best
model for classifying 4-category deaths. In the first stage of U-RFE, LR, SVM, and RF were  used as
base estimators to obtain subsets containing the  same number of features but not exactly the same
specific features. Union analysis of the  subsets was then  performed to determine the final union
feature set, effectively combining the advantages of different algorithms. We found that the  U-RFE
framework could improve various models’ performance. Stacking outperformed LR, SVM, RF, and
XGBoost in most scenarios. When the  target feature number of the RFE was set to 50 and the union
feature set contained 298 deterministic features, the  Stacking model achieved F1_weighted,
Recall_weighted, Precision_weighted, Accuracy, and Matthews correlation coefficient of 0.851, 0.864,
0.854, 0.864, and 0.717, respectively. The performance of the minority categories was also signif-
icantly improved. Therefore, this recursive feature eliminationebased approach of feature selec-
tion improves performances of classifying CRC deaths using clinical and omics data or those using
other data with high feature redundancy and imbalance.

© 2023 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.

Introduction

Colorectal cancer (CRC) ranks second in the  number of cancer
deaths in the  United States and is highly heterogeneous and
aggressive.1 Numerous analyses of clinical studies have shown
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that most deaths from CRC can be attributed to disease pro-
gression and undertreatment .2-4 During the  complex multistage
progression of CRC,5-8 local recurrence is possible in patients
with cured CRC,9,10 and the  recurrence rate in patients wi th stage
IV CRC is even as high as 80% within 3 years after surgery.11

Therefore, accurate classification of causes of death in (COD)
CRC patients is of great importance to CRC research and
management.
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Machine learning (ML) has evolved rapidly in the  past 15
years. 2 In the  medical field, ML is widely used for diagnosis and
prognosis of diseases, medical imaging and signal processing, and
planning and scheduling. 3-20 Prognosis refers to the  use of ML to
learn the  relevant information about the  patient’s condition and
use the  learned model to predict the  future development of CRC
recurrence or death.

With the  rapid development of high-throughput sequencing
technologies, comprehensive information on CRC cases can be
obtained at the  molecular level.21,22 However, the  multiomics data
are characterized by the  inherent  category imbalance of medical
data, that is, the  number of individuals with disease progression
may be much smaller than that of individuals without disease
progression. When classification models are applied directly to
omics data, the  model learns much of redundant  feature infor-
mation, resulting in reduced model performance.23,24 In addition,
due  to imbalance in labels’ distribution,25 the  learned model is
further biased (in favor of) toward the  majority category. This is
undesirable for medical data and clinical practice. Since minority
categories often contain information about diseased samples,
patient health may deteriorate or even result in death if minority
categories are misclassified.26,27 This remains a great challenge for
CRC prognostication at the  molecular level. Thus, there  is an ur-
gent need to identify the  features in CRC omic and clinical data
that can achieve both high specificity and high accuracy.

Feature selection is a data dimensionality reduction tech-
nique28,29 that discards a large number of irrelevant and

redun-
dant features from the  original feature space and retains a set of
decisive/important features. It not only preserves the  original
feature values but also reduces the  complexity of the  model, im-
proves its learning rate, and increases its performance. If feature
selection is not performed, it may lead to the  curse of dimen-
sionality, which greatly reduces the  efficiency of the  model. As
technology advances, the  increasing size and complexity of
genomic data have led to the  development of additional feature
selection methods. These methods have improved the  accuracy,
efficiency, and interpretability of feature selection.30,31

Linear analysis is the  earliest feature extraction method,
including Linear Discriminant Analysis (LDA).32 Therefore, LDA
can not only achieve data dimensionality reduction33,34 but also
achieve data classification.33 Its core idea is the  principle that the
error within the  category is the  smallest and the  error between
the  categories is the  largest. The matrix eigenvalues determined
by the  intraclass covariance matrix and the  interclass covariance
matrix provide an entropy ranking, and the  top eigenvalues and
the  corresponding eigenvectors are the  solution results of the  LDA
algorithm.35 Lee et  al36 preprocessed the  data collected by the
medical internet  of things based on the  LDA model to solve the
problem of high computation cost caused by high data di-
mensions. However, the  linear algorithm will inevitably lead to
information loss while reducing the  data dimension and at the
same time lose the  biological meaning of the  original data, which
is not conducive to analyzing the  results based on the  data and
understanding the  essential problems reflected by the  data. In
particular, these methods are often powerless in the  face of
complex nonlinear data.

In order to solve the  problem of dimensionality reduction of
high-dimensional nonlinear data, a series of feature extraction
methods for nonlinear data, including kernelization dimension-
ality reduction algorithm,37,38 popular learning algorithm,39 data
dimensionality reduction based on neural network,40 Adaptive
encoders (Autoencoder),41 etc., have been proposed. These feature
extractions based on ML techniques have made great progress in
practical applications. However, nearly all of them used a single

algorithm to select features for binary or multicategory classifi-
cation. The ensemble feature selection methods were  rarely, if at
all, used for multicategory or patient-outcome classification. It is
unclear whether  and how we  can combine multiple algorithms to
help select features for the  multicategory classification of patient
outcomes. Therefore, we  hypothesize that adding the features that
are deemed important by various algorithms or removing the  less
important features would improve the performance metrics of ML
algorithms in the multicategory classification of patient outcomes.

To test this hypothesis, w e  develop and evaluate a 2-stage
Union with Recursive Feature Elimination (U-RFE) feature selec-
tion framework. The TCGA CRC data were  used, as an example, to
identify the  features required for reaching the  best multicategory
COD classification performance. U-RFE first selects the  union
feature sets that are crucial in CRC progression-specific mortality.
Based on the union feature sets, we  compared the  performances of
5 classification algorithms, including logistic regression (LR),
support vector machines (SVM), random forest (RF), eXtreme
gradient boosting (XGBoost), and Stacking, to identify the  best
model for classifying four-category deaths. Specifically, in the  first
stage, different ML algorithms would be used as base estimators
for feature selection, generating different feature subsets and
fetching the  shared ones of these feature subsets. In the  second
stage, feature analysis was performed on feature subsets,
considering the  respective advantages of different ML algorithms.
The intersection of the  feature subsets (ie, shared features) was
first used as the base set, and then, the  other features contained in
the  subset were  sorted and added to the  base set sequentially.
Based on this changing feature set, the  LR, SVM, RF, XGBoost, and
Stacking algorithms were  used to classify the  multicategory COD
of the  patients in TCGA Program dataset. Then, w e  evaluate the
multimetric performance of each model as described before,42

until the  set with the  best classification performance was found
and determined as the  final decisive union feature set.

Methods

The COD classification prediction model for CRC data consists
of 2 main processes: data preprocessing and model tuning based
on U-RFE. Data preprocessing consists of 4 steps: sample deletion,
one-hot encoding processing, missing value processing, and
determination of classification labels. The model tuning based on
U-RFE consists of 3 steps: RFE feature selection, the  U-RFE feature
selection, and optimization of classification models.

Our CRC dataset was downloaded from cBioPortal.org in
February 2019. All the  above analyses for CRC were  run on python
3.6 version. Among them, RF, LR, SVM, and grid search were  from
scikit-learn 0.24.2, and XGBoost was from package xgboost1.5.2.
The main workflow of the  analyses is shown in Figure 1.

Data Preprocessing

We obtained individual-level data for CRC (Pan-Cancer Atlas)
from the  TCGA.43 Additionally, TCGA data are deidentified and
publicly available. Therefore, this is an exempt study using pub-
licly available deidentified data and did not require an Institu-
tional Review Board review. Besides, a limited removal of batch
effects has been conducted.44

The CRC data contain the  following 3 parts: data_-
clinical_patient, data_clinical_sample, and data_RNA_Seq_v2_
mRNA_median_all_sample_Zs-cores (RNA). All RNA-seq (mRNA)
data were  dichotomized based on the  z-scores (greater than the
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Data processing and par      oning

Raw Dataset

less than 10% of the  samples (n ¼  14 (2.38%) for AJCC_PATHOLO-
GIC_TUMOR_STAGE, 7 (1.19%) for PATH_M_STAGE, 3 (0.51%) for
ICD_O_3_SITE, respectively). The features with missing values are

Data Preprocessing

Train Set Test Set

Parameters ini aliza on

replaced with “NA” (not available) when  the  missing data
constitute not less than 10% of the  samples (eg, n ¼  101, 17.15% for
radiation therapy, and n ¼  274, 46.52% for weight, respectively).
The patients (n ¼  2) who had no available data on sex or age are
removed. The weight is classified into 3 categories, including
weight_above_average (weight >      median of the  weight),
weight_below_average (weight  median of the  weight), and
weight_NA (missing data) before being dichotomized using a one-

(The base es mator, the target feature, and step)                                                                hot encoding approach. A small number of missing values also
occur in the  RNA dataset, but due  to their relatively high data

RFE with LR

Subset 1

RFE with SVM

Subset 2

RFE with RF

Subset 3

dimensionality (20,531 features), all features containing missing
values were  removed directly. The processed CRC data contained
589 samples and 17,719 features.

Two features from data_clinical_patient, OS_STATUS (OS,
Overall Survival Status) and PFS_STATUS (PFS, Progression Free

The first stage

Taking the intersec on
as the basis set

Fetching the merged set

Importance ranking with RF

Adding the feature in turn

Status), were  then used together to determine the  COD classifi-
cation labels. Among them, OS_STATUS has 2 values as follows: 0
means alive (LIVING) and 1 means dead (DECEASED), and
PFS_STATUS also has 2 values as follows: 0 means no progress
status (CENSORED) and 1 means disease progress status (PRO-
GRESSION). Therefore, the  category labels are formulated as
shown in Table 2. The corresponding label names for each cate-

Genera ng the Union
feature sets

Training models with different classifiers
based on different union feature sets

Test Set

the Union feature test
sets

gory are as follows: alive without progression (AWNP), alive with
progression (AWP), death without progression (DWNP), and death
with progression (DWP). The sample sizes for each category were
406 (AWNP, 68.9%), 64 (AWP, 10.9%), 35 (DWNP, 5.9%), and 84
(DWP, 14.3%), respectively.

The second
stage

Comparing the performance of various models

Select and save the model

Model Tuning Based on Union with Recursive Feature Elimination

Recursive Feature Elimination Feature Selection
Therefore, RFE is the  main representative of wraparound

Figure  1.
Flow chart  of the  Union wi th  Recursive Feature Elimination (U-RFE) framework.

median considered “1”; otherwise considered “0”) so that no
normality test would be required. These 3 data parts are linked by
the  PATIENT_ID, which was randomly generated and not linked to
any protected health information.

In the  data cleaning process, as shown in Table 1, the  samples
TCGA_F5_6810, TCGA_5M_AAT5, and TCGA_5M_AATA were  first
removed because they did not have corresponding tags. The
samples TCGA_AF_2689 and TCGA_AA_3558 were  removed
because they did not exist in the  RNA dataset.

For data_clinical_patient and data_clinical_sample, all features
were  dichotomized using a one-hot encoding approach as
described before.42 The features with missing values are filled
with a median value of the  feature when  the  missing data present

feature selection, which introduces classification algorithms into
the  feature selection process to eliminate redundancy between
features and output the  optimal combination of features.45 It ob-
tains the  importance of each feature in the  current training set by
means of a base estimator and then  removes the  low-importance
features from it to obtain a new  subset of features. The core idea of
RFE is to repeat this recursive process on a new  subset of features
until the  number of selected features is reached.

When RFE was used for feature selection, the  base estimator,
the  number of features selected (n_feature_to_select), and the
feature removal step must  be determined. Based on the  training
set, an optimized base estimator was used to obtain the  impor-
tance of each feature (feature parameters). The number of features
removed during each recursion was controlled according to the
feature removal step until a feature set was obtained that matched
the  number of features selected. Even if the  number of features
selected was consistent, the  final selection of features may vary
depending on the  base estimator, the  parameters of the  base
estimator, or the  feature removal step.

Table  1
Excluded samples  a n d  reasons

Excluded samples

TCGA_F5_6810

TCGA_5M_AAT5

TCGA_5M_AATA

TCGA_AF_2689

TCGA_AA_3558

Reason for exclusion

Category label does  n o t  exist

Not p r e sen t  in t h e  RNA da t a

The Union with Recursive Feature Elimination Feature Selection
To select more representative, important, and comprehensive

features, the  U-RFE feature selection framework was proposed in
this study.

Normally, only classifiers with the  feature_importances_ or
coef_ attribute can be used as base estimators of U-RFE. By
contrast, LR, SVM, and RF classifiers all have feature_importances_
or coef_ attributes, but use their own different strategies to
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Table  2
Formula te  classification labels

OS_STATUS

0

0

1

1

PFS_STATUS

0

1

0

1

Meaning

Alive wi th  No Progression, AWNP

Alive wi th  Progression, AWP

Dead wi th  No Progression，  DWNP

Dead wi th  Progression, DWP

Classification label

1

2

3

4

compute feature importance and have their own advantages in
the  classification process. For example, the  regularization
parameter in the  LR classifier prevents overfitting of the  model
and solves the  problem of possible colinearity between high-
dimensional features;46,47 the  SVM classifier is suitable for small
sample sizes;48,49 and the  RF is not easily affected by categories
imbalance.50 Therefore, in this article, the  LR, SVM, and RF clas-
sifiers were  used as the  base estimators to select their respective
feature subsets, and then, feature subset fusion was used to
combine the  advantages of each base estimator.

Due to the  high dimensionality of the  CRC data (17,719 fea-
tures) and the  high redundancy among the  features, the  setting of
the  step size during feature removal is crucial for the  final set of
retained features. RF has the  ability to rank the  importance of
features and is often used as a tool for feature removal. Therefore,
before designing the  U-RFE algorithm, we  used RF to observe the
correspondence between the classification effect of the model and
the  gradual decrease in the  number of features. The whole analysis
process is repeated 10 times, and the  average value is taken to
obtain the  curves of accuracy and F1_weighting with the  change
of the  number of features, as shown in Figure 2. From the curves, it
can be seen that although the  overall classification effect is not
satisfactory, the  correspondence between the  number of features
and the  classification effect can still be seen: when  the  number of
features is high, the  classification performance does not change
much and the  classification effect is poor. As the  number of fea-
tures decreases, the  classification performance gradually im-
proves. However, when  the  number of features is reduced to

nearly 50, the classification performance declines sharply again. It
is noteworthy that after repeating the  above process 10 times,
there  were  still differences in the individual feature sets generated
by the  same base estimator. The differences are more pronounced
for the low-ranking features whose importance appears to vary by
the  experiment runs.

According to this rule of change, in the  subsequent RFE process
using different base estimators, w e  first set the  feature removal
step size to 5,000, which can efficiently and quickly remove the
features that have a small impact on the  classification effect, but
when  the  number of features is reduced to nearly 200, the
removal step size is reset to 10. The subsequent use of different
base estimators to select the  base features according to the  setting
of the  removal step size can make the  feature removal process
efficient and effective. Following this method of setting the
removal step and using different base estimators several times to
select the  base features, the  feature removal process can effec-
tively retain the  sensitive features and is relatively efficient. Then,
when  fusing the  feature sets obtained by each base estimator, it is
possible to maximize the  strengths and avoid the  weaknesses to
improve the  classification effect.

The 3 base estimators (LR, SVM, and RF) need to be parameters
tuned in each round of RFE feature recursive elimination. After 10
repeats, 30 feature subsets with the  same number of features were
obtained for feature union.

The error of a ML model arises from the  combination of biases
and variances. In general, increasing the  number of features re-
duces the bias, and decreasing the number of features reduces the

Figure  2.
Classification performance of different numbers  of features using RF for feature selection.
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variance. However, reducing bias increases variance and vice versa
(bias-variance trade-off). Therefore, the  number of features in the
final feature subset should neither be as high as it could be nor as
low as it could be.

For the high-dimensional TCGA CRC dataset, to take into account
the  strengths of each of the  3 base estimators, a two-step process of
coarse and fine-tuning is performed to determine the  optimal
target feature number for the  subset of features used for union.

In the  coarse tuning stage, the  target feature numbers for RFE
feature selection are set to the following representative numbers:
50, 100, 200, 800, 1400, 2000, and 2600. For each target feature
number, 3 base estimators (LR, SVM, and RF) will be used to obtain
the  corresponding feature subset. The 3 feature subsets with the
same target feature number were  merged to obtain the  corre-
sponding merged sets. Before deciding to use the  RF classification
algorithm, w e  also tried other classification algorithms such as LR
and SVM. The classification effect of each model was compared
using effective evaluation metrics. The RF algorithm had a better
overall classification effect than other algorithms (data not
shown) and thus was finally chosen. Based on the  7 merged sets
with different target feature numbers, the  RF classification algo-
rithm was used to classify COD on each merged set, and the
optimal target feature number for the  subset was roughly deter-
mined based on the  classification effect.

In the  fine-tuning stage, the  optimal target feature number
in the  subsets was analyzed in more detail: the  target feature
number in the  subsets was gradually optimized in steps of 10
or 50 (the step size is set to 50 when  the  number of features is
greater than 100 and to 10 when  the  number of features is less
than 100). The intersection of 30 subsets with the  same target
feature number based on 10 repeats was taken as the  basis for
each round and then  features outside the  intersection and

However, CRC data are a highly imbalanced dataset. If accuracy
was simply used as a performance metric, the  trained classifier
would be biased toward the  majority category, resulting in lower
recognition rates for the  minority categories.51-54 Therefore, in
addition to a hierarchical 10-fold cross-validation strategy, per-
formance        metrics        Precision_weighted,        Recall_weighted，
F1_weighted, and Matthews correlation coefficient (MCC) as shown
in (1e4) were  used to help determine the  model parameters.55-57

F1_weighted is a harmonized average of precision and recall, and
the  weights were  set separately according to the  percentage of
each classification in the  training set, which can better overcome
the  problem of model bias toward the  majority categories. MCC
also provides a more reliable performance measure than accuracy
in the  case of unbalanced data or different category sizes.

P  
Precision$Numi

Precision weighted ¼ i¼1
n ð1Þ

Numi
i¼1

n  
Recall$Numi

Recall weighted ¼ i¼1     
n ð2Þ

Numi
i¼1

P  
F1$Numi

F1 weighted ¼ i¼1
n ð3Þ

Numi
i¼1

n  
TPi  

n  
TNi  

n  
FPi  

n  
FNi

MCC ¼vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4Þ
u n  

TPi þ  
n  

FPi

n  
TPi þ  

n  
FNi

n  
TNi þ  

n  
FPi

n  
TNi þ  

n  
FNi

i¼1 i¼1 i¼1 i¼1 i¼1 i¼1 i¼1 i¼1

within the  merged set were  gradually added to the  union set
according to the  feature priority obtained by the  RF algorithm
(features belonging to 2 subsets have priority over features
belonging to one subset). Our preliminary data using a small
set of tuning parameters show that XGBoost and Stacking both
performed very well. Thus, w e  directly included them in the
second stage. For the  data corresponding to different feature
union sets, LR, SVM, RF, XGBoost, and Stacking classifiers were
selected for classification prediction, and suitable evaluation
metrics were  used for model evaluation. Finally, the  set of
feature union sets that reaches the  highest Accuracy or
Recall_weighed as the  tie-breaker for the  sets with the  same yet
highest accuracy was selected as the  final feature selection set.

Optimization of Classification Models
In the  U-RFE process, each of the  classifiers involved requires

the  tuning of model parameters and hyperparameters. Although
the  hyperparameters to be optimized vary between models (as
shown in Table 3), all can be optimized using a grid search for the
main hyperparameters.

Among the  various classifiers employed for selecting the  model
and determining its parameters, the  stacked classifier is unique in
that it is an ensemble classifier. Often, several individual classifiers
were  combined to achieve significantly better performance met-
rics than a single classifier. When using a Stacking classifier for the
CRC dataset, 2 factors need to be considered: the  classification
performance of the  individual classifiers should not be too poor
and there  should be a wide variety among the  individual classi-

fiers.58,59 Therefore, to better combine the  advantages of different
classifiers, the  classifiers in the  first layer of Stacking were  set to
LR, SVM, RF, and XGBoost. However, the  features used in the
second layer of the  Stacking model are a combination of the
predicted labels of the  different classifiers obtained in the  first
layer, and the  complexity of the  features is greatly reduced.
Therefore, the  second layer classifier is usually a simple classifier
for classification prediction.60 Considering the  overall complexity

and efficiency of the  model, decision tree (DT) is used here as the
classifier in the second layer of Stacking. Our preliminary study on
a few different stacking combinations shows that DT seems like
the  best choice (data not shown).
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Table  3
Hyperparamete r  opt imization  range for different classification mode l s

Classifiers

RF

SVM

LR

XGBoost

DT

Optimized p a r a m e t e r s

n_es t imators

min_samples_split

min_samples_leaf

max_ d e p t h

kernel

C

solver

C

n_es t imators

learning_rate

max_ d e p t h

min_samples_split

min_samples_leaf

max_ d e p t h

Hyperparamete r  opt imiza t ion  range

[20, 210]

[2, 20]

[2, 20]

[2, 20]

[rbf, linear, sigmoid]

[0.1, 3]

[liblinear, newton-cg,  lbfgs, sag, saga]

[0.1, 3]

[20, 110]

[0.1, 1]

[2, 20]

[2, 20]

[2, 20]

[2, 20]

Increment

10

2

2

2

e

0.1

e

0.1

10

0.1

2

1

1

1

Automation of the Union With Recursive Feature Elimination
Process

We developed a Python package to automate and simplify the
U-RFE process for wide and convenient use of the  methodology.
The package provides the  end  user with 2 options, including the
default range and increment of targeted feature numbers (10 to
200 features, with 10 as the  increment) or those defined  by the
end user. Based on the  range and increment of targeted feature
numbers, the  package will automate the  process and present the
end use with tabulated performance metrics of LR, SVM, RF,
Stacking, and XGBoost, using various union feature sets. After the
selected feature set is determined by reviewing the  tabulated al-
gorithm performances, the  end  user can simply customize the
package with the  final number of the  features without a specified
increment of 0 (ie, a preset number of features) and save the tuned
algorithm and selected features for future application.

Results

Coarse Tuning for Feature Selection

Based on the  RFE strategy, the  base estimators were  LR, SVM,
and RF, respectively, and the selected target feature numbers were
set to 50, 100, 200, 800, 1400, 2000, and 2600 to obtain the  cor-
responding feature subsets. The subsets of features with the  same
target feature number were  combined, and then, the  RF classifier
was trained based on the  training merge set according to the
features contained therein. The RF classifier was used to classify
and predict the  corresponding test merge set samples. The Accu-
racy, Precision_weighted, Recall_weighted, F1_weighted, and MCC
metrics were  compared, and the  results are shown in Figure 3.

The results in Figure 3 show that the  individual feature subsets
obtained when  the selected target feature numbers were  set to 50,
100, 200, 800, 1400, 2000, and 2600, respectively, differed, but the
RF classification models corresponding to their concatenated sets
obtained almost equal Accuracy and Recall_weighted on the  test
merge sets composed of the  same samples, whereas the  Pre-
cision_weighted, F1_weighted, and MCC differed significantly, but
several curves still show a t rend of decreasing with increasing
number of feature values. When the  selected target feature
number is greater than 200, the  classification performance indi-
cator drops sharply.

The          Accuracy,          Precision_weighted,          Recall_weighted,
F1_weighted, and MCC metrics obtained without feature selection

were  0.689, 0.482, 0.689, 0.567, and 0.011 for 4-category COD,
respectively, and were  almost useless for the  identification of a
few minority categories. However, the  results in Figure 3 show
that the  overall effect can be effectively improved after feature
selection, and the  performance metrics corresponding to an in-
crease in the  target feature number corresponding to the  base
estimator show a decreasing trend;  therefore, the  target feature
number was set within 200, and the  classification effect was
relatively better.

Fine-Tuning for Feature Selection

The first stage of the  analysis determined that a target feature
number of less than 200 was preferable for the  selection of the  RFE
base estimator. Further feature selection was performed on this
basis.

Consider the  following 2 points: 1, the  initial selection stage
exhibits a decreasing t rend in the  overall performance metrics as
the  number of features increases, and 2, after obtaining 3 feature
subsets with the  number of features equal to the  target feature

Figure  3.
Model performance metrics for the  selected merge  features in the  first stage.
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Figure  4.
The classification performance metrics of different classifiers for union features w h e n  the  target feature number  was 50.

number, the  further union of the  3 feature subsets needs to be
completed. The final number of optimal features obtained will be
greater than the  target feature number.  Therefore, the  target
feature number selected by the  RFE-based estimator in the  se-
lection stage was set to 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150,
and 200, respectively.

For each target feature number,  each of the  3 RFE-based esti-
mators selects a different subset of features. This process is
repeated 10 times to obtain 30 subsets of features. The intersec-
tion of these 30 subsets was first taken to obtain the  most
important common features as the  base set for feature union. For
example, in the  case of a target feature number of 50, all 30 feature
subsets had 50 features, but after taking the intersection, there  are
only 20 features in common, whereas there are 278 features that
were  outside the  intersection but within the  union.

types of estimators, whereas the  lower-ranked group includes
common features belonging to subsets obtained wi th the
same type of estimator. We th en rank the  features within
each group according to the  importance given by the  RF al-
gorithm. We finally add these ranked features sequentially to
the  base set by their group tier (the higher-ranked group first)
and then  within-group ranking order. Using these union sets,
we  choose LR, SVM, RF, XGBoost, and Stacking classifiers to
perform classification prediction and evaluate their perfor-
mances. Figure 4 shows that the  Accuracy, Precision_weighted,
Recall_weighted, F1_weighted, and MCC metrics exhibit some
smoothness w h e n  the  target feature number is smaller than
200, after which the  performance varies between classifiers,
wi th some rising while others falling.

The same analysis was carried out when  the  target feature
To de te rmine w he ther  these 278 features should be number was set to the  other aforementioned values. The t rend of

included in the  final union feature set, we  created 2-tier
subset groups. The higher-ranked group includes common
features belonging to different subsets obtained wi th different

the  performance metrics was shown in Figure 5 for a target
feature number of 70 and in Figure 6 for a target feature number of
150. The trends in the  performance metrics remain similar.

7
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Figure  5.
The classification performance metrics of different classifiers for union features w h e n  the  target feature number  was 70.

Overall, the  Stacking classifier outperformed the  other classifiers,
whereas the  RF classifier performed relatively poorly.

Determination of the Final Union Feature Set

Through the  above analyses, we  obtained the  corresponding
performance metrics after applying different classifiers for clas-
sification prediction under  a series of union feature sets corre-
sponding to different target feature numbers. It is noteworthy that
when  the  target feature numbers are different, the  specific fea-
tures contained in the  union feature sets may be different, despite
the  fact that they contain the same number of features. Most of the
classification models corresponding under  these different union
sets outperform the  classification models before feature selection
in the  4 performance metrics. However, it is unclear how to
determine the  final set of union features.

We then  first identify all models with accuracy above 0.8 (the
accuracy of models without feature selection was only about 0.6 to
0.7). Then, a strategy of F1_weighted first, Recall_weighted second,
Precision_weighted third, and MCC last was adopted to rank all
models. The parameters of the  models with optimal performance
metrics corresponding to each target feature number are listed in
Table 4 and show that the  Stacking classification model performed
optimally in most cases. This finding is also consistent with the  re-
sults of the  previous analysis. Comparing the  information in Table 4
longitudinally, the performance metrics of the Stacking classification
model were optimal when the target feature number was 50, and the
corresponding union feature set contains 298 features.

The error of a ML model arises from the  combination of biases
and variances. In general, increasing the  number of features re-
duces the bias, and decreasing the number of features reduces the
variance. However, reducing bias increases variance and vice versa
(bias-variance trade-off).61 Therefore, the  number of features in
the  final feature subset should neither be as high as it could be nor

8



Fei Deng et al. / Lab Invest 104 (2024) 100320

Figure  6.
The classification performance metrics of different classifiers for union features w h e n  target feature number  was 150.

Table  4
The opt imal  classification pe r fo rmance  wi th  different basic fea tures  n u m b e r s

TFN NFUF

10 41

20 125

30 164

40 246

50 298

60 347

70 395

80 435

90 482

100 526

150 724

200 923

NFA Optimal classifier

35 XGBoost

118 Stacking

158 Stacking

232 Stacking

278 Stacking

325 Stacking

367 Stacking

399 Stacking

439 Stacking

475 Stacking

635 Stacking

795 Stacking

F1_weighted

0.79

0.834

0.82

0.841

0.851

0.843

0.844

0.838

0.843

0.843

0.844

0.831

Recall_weighed

0.827

0.851

0.837

0.849

0.864

0.858

0.859

0.856

0.859

0.858

0.861

0.847

Precision_weighed

0.79

0.837

0.814

0.851

0.854

0.852

0.844

0.839

0.84

0.854

0.847

0.837

Accuracy

0.827

0.851

0.837

0.849

0.864

0.858

0.859

0.856

0.859

0.858

0.861

0.847

NFA, n u m b e r  of fea tures  a d d e d  t o  t h e  base  se t ;  NFUF, n u m b e r  of fea tures  contained  in t h e  un ion  fea ture  se t ;  TFN, t h e  target  fea ture  n u m b e r .
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Table  5
The classification e r ro r  corresponding t o  t h e  opt imal  classification mode l

we  believe that in practical applications, the selection of feature sets
and models should not only depend on certain performance met -

TFN NFUF Bias

10 41 0.849

20 125 0.709

30 164 0.801

40 246 0.764

50 298 0.592

60 347 0.623

70 395 0.629

80 435 0.679

90 482 0.697

100 526 0.687

150 724 0.693

200 923 0.758

Variance MSE

0.290 1.139

0.145 0.853

0.140 0.941

0.100 0.864

0.076 0.668

0.099 0.722

0.082 0.711

0.111 0.790

0.103 0.800

0.124 0.811

0.076 0.769

0.092 0.850

rics but also be more focused on the  objectives of the  applica-
tion.64,65 For example, if we  tend to accurately predict samples
belonging to the  DWP category, then  a model that performs well in
this minority category should be selected, even if its corresponding
overall performance is not the  best. It, therefore, makes sense to
perform careful feature selection and model comparison.

Ranking of Features

Further comparison of the  specific features included in the
different union feature sets. We found that as the  target feature
numbers of the  RFE base estimator were  set to increasingly larger

MSE, m e a n  squa red  e r ro r ;  NFUF, n u m b e r  of fea tures  contained  in t h e  un ion  fea ture

se t ;  TFN, t h e  target  fea ture  n u m b e r .

as low as it could be. Due to the  relative proximity of the  multiple
models listed in Table 4 in terms of performance metrics, w e
further evaluated the  performance of the  above classification
models in terms of bias and variance (Table 5). When the  target
feature number had a value of 50 and the  corresponding union
feature set contained 298 features, the  Stacking classification
model still performed best (Bias, Variance, and Mean squared
error were  all minimized).

Discussion

Model Selection

Based on the  above analyses, when  the  target feature number
selected by the  RFE base estimator was set to 50, a union feature
set with 298 features was obtained. Based on this union feature
set, the  classification prediction using ML models can achieve
excellent classification performance metrics and small classifica-
tion errors, with the Stacking model performing even better. Given
the  imbalanced nature of CRC data, we  were  very concerned about
the  performance of the  classification models on the  minority
categories with small sample sizes.62,63 Therefore, we  selected a

union feature set containing 298 and 395 features obtained with
target feature numbers of 50 and 70, respectively. The classifica-
tion performance of the  minority categories was observed using
the  Stacking classifier and compared with the  performance of the
classification model before feature selection. The results are
shown in Table 6. Due to the  high dimensionality of the  original
CRC data (17,719 features), the  classification model would have
been time consuming if the  Stacking algorithm had been used
directly for classification. Therefore, we  compared the  perfor-
mance of the  LR, SVM, RF, and XGBoost algorithms and present
here  the  classification results of the  best-performing RF classifier.

As shown in Table 6, these models hardly ever correctly pre-
dicted a sample in the  minority categories before feature selection
was performed. The 2 models that underwent  U-RFE feature se-
lection performed well in the  majority category and both per-
formed significantly in the  minority categories, although their
performance in the  DWNP category was still unsatisfactory.
Although the  union feature set with 298 features had the  best
overall classification performance and the  lowest corresponding
classification error, it performed slightly worse on some minority
categories (DWP) than the  union feature set with 395 features. It is
believed that similar results would be observed if more classifica-
tion models with different union sets were  compared. Therefore,

values, the  number of features included in the  final resulting
union feature set increased accordingly. As shown in Figure 7,
features in the  previous level were  fully included in the  next union
feature set, which is consistent with the  mechanism of recursive
feature selection in RFE.

However, the  position of a particular feature in the  different
union feature sets may vary. This is because changes in the  value
of the  target feature number determine changes in the  subset of
features selected. Some features that were  originally in a union of
3 subsets may in another case belong to only 2 of these subsets or
may even change to belong to only one subset. As a result, their
ranking positions in the  final union set eventually change. The
change in feature importance ranking also further affects the
classification performance of the  final model. Appendix 1 lists the
ranking of the  298 selected features when  the  target feature
number value was 50.

Conclusion

To address the  poor performance of ML on the  TCGA CRC clinical
and omic data that have a large number of features, a small number
of samples, and a strong sample imbalance, we  propose an inter-
esting U-RFE feature selection method to generate a union feature
set. Based on the  union feature set, the  final decisive union feature
set and classification model were  determined by comparing the
classification performance and classification error of several clas-
sifiers including LR, SVM, RF, XGBoost, and Stacking. These results
show that the  U-RFE feature selection method greatly reduces
feature redundancy and effectively improves the  overall perfor-
mance of the  classification model for multicategory CRC outcomes.

The comprehensive performance of the  model is not the  only
criterion for model selection.66 This article presents a method for
selecting the  appropriate set of features and classification models
when  the  data are imbalanced, which allows us to take into ac-
count the  classification of the  minority categories while focusing
on comprehensive performance.67,68      Our recursive feature
eliminationebased approach of feature selection improves the
performances of classifying CRC deaths using clinical and omic
data or those using other data with high feature redundancy and
imbalance.

Some limitations of this study are noteworthy. Although the  U-
RFE feature selection method proposed here is time consuming in
the  feature selection process, it can provide useful proof in prin-
ciple for refined model selection, and the  generated models will be
more efficient in future sample classification prediction. More-
over, a major limitation of this study was the  lack of validation of
the  algorithm on another dataset. This limitation is largely
attributable to the  lack of a high-quality CRC dataset with a 4-
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Table  6
Optimal classification pe r fo rmance  of different classifiers o n  each category

TFN NFUF

e 17,719 b

50 298

70 395

Classifiers

RF

RF

Stacking

RF

Stacking

Categories

AWNP

AWP

DWNP

DWP

Weighted

AWNP

AWP

DWNP

DWP

Weighted

AWNP

AWP

DWNP

DWP

Weighted

AWNP

AWP

DWNP

DWP

Weighted

AWNP

AWP

DWNP

DWP

Weighted

Accuracy F1

0.689 0.816

0

0

0

0.567

0.739 0.852

0.365

0.0

0.235

0.656

0.864 0.936

0.779

0.392

0.703

0.851

0.756 0.864

0.498

0.0

0.204

0.678

0.859 0.931

0.778

0.318

0.708

0.844

Recall Precision

0.992 0.693

0 0

0                                  0

0                                  0

0.689 0.482

1.0 0.742

0.267 0.682

0.0 0.0

0.175 0.541

0.739 0.662

0.961 0.912

0.833 0.754

0.300 0.600

0.675 0.754

0.864 0.854

1.0 0.761

0.417 0.787

0.0 0.0

0.138 0.4

0.756 0.663

0.956 0.908

0.833 0.744

0.25 0.5

0.688 0.761

0.859 0.844

Runtime(s)a

0.014

0.013

0.053

0.013

0.055

a Runt ime(s)  of a  single t e s t  sample .
b  17 ,719 indicates t h e  classification resul t  w i t h o u t  fea ture  selection.

category COD. Furthermore, there  are some features with missing
data in the  TCGA CRC dataset. The median imputing method and
the  creation of the missing data category used here may not be the
best method to input all missing features. Future works seem
warranted to address this limitation. In addition, the  two-stage
feature selection process may be time consuming and overly
complex. Automation of our proposed framework may help end
users, whereas the  underlying scientific merits of combining
various algorithms may still overwhelming to some users. Finally,
the  sample size is relatively small, whereas it was reasonably large
for omics datasets with detailed survival outcomes, and it is
difficult to find  a similar dataset. Future research may be focused
on addressing these limitations.

The model developed in this study can help us understand the
molecular mechanisms of CRC progression and, to some extent,
assist physicians to more effectively manage CRC patients. At the
same time, the  analysis method proposed in this article is also
applicable to other types of datasets.
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