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Introduction

Colorectal cancer (CRC) ranks second in the number of cancer
deaths in the United States and is highly heterogeneous and
aggressive.l Numerous analyses of clinical studies have shown
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ABSTRACT

Despite the use of machine learning tools, it is challenging to properly model cause-specific deaths in
colorectal cancer (CRC) patients and choose appropriate treatments. Here, we propose an
interesting feature selection framework, namely union with recursive feature elimination (U-RFE),
to select the union feature sets that are crucial in CRC progression-specific mortality using The
Cancer Genome Atlas (TCGA) dataset. Based on the union feature sets, we compared the perfor-
mance of 5 classification algorithms, including logistic regression (LR), support vector machines
(SVM), random forest (RF), eXtreme gradient boosting (XGBoost), and Stacking, to identify the best
model for classifying 4-category deaths. In the first stage of U-RFE, LR, SVM, and RF were used as
base estimators to obtain subsets containing the same number of features but not exactly the same
specific features. Union analysis of the subsets was then performed to determine the final union
feature set, effectively combining the advantages of different algorithms. We found that the U-RFE
framework could improve various models’ performance. Stacking outperformed LR, SVM, RF, and
XGBoost in most scenarios. When the target feature number of the RFE was set to 50 and the union
feature set contained 298 deterministic features, the Stacking model achieved F1 weighted,
Recall_weighted, Precision_weighted, Accuracy, and Matthews correlation coefficient of 0.851, 0.864,
0.854, 0.864, and 0.717, respectively. The performance of the minority categories was also signif-
icantly improved. Therefore, this recursive feature eliminationebased approach of feature selec-
tion improves performances of classifying CRC deaths using clinical and omics data or those using
other data with high feature redundancy and imbalance.

© 2023 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.

that most deaths from CRC can be attributed to disease pro-
gression and undertreatment.” During the complex multistage
progression of CRC,>® local recurrence is possible in patients
with cured CRC,”'? and the recurrence rate in patients with stage
IV CRC is even as high as 80% within 3 years after surgeryAll
Therefore, accurate classification of causes of death in (COD)
CRC patients is of great importance to CRC research and
management.
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Machine learning (ML) has evolved rapidly in the past 15
years.12 In the medical field, ML is widely used for diagnosis and
prognosis of diseases, medical imaging and signal processing, and
planning and scheduling.l"”m Prognosis refers to the use of ML to
learn the relevant information about the patient’s condition and
use the learned model to predict the future development of CRC
recurrence or death.

With the rapid development of high-throughput sequencing
technologies, comprehensive information on CRC cases can be
obtained at the molecular level.>>? However, the multiomics data
are characterized by the inherent category imbalance of medical
data, that is, the number of individuals with disease progression
may be much smaller than that of individuals without disease
progression. When classification models are applied directly to
omics data, the model learns much of redundant feature infor-
mation, resulting in reduced model performance.”>>* In addition,
due to imbalance in labels’ distribution,25 the learned model is
further biased (in favor of) toward the majority category. This is
undesirable for medical data and clinical practice. Since minority
categories often contain information about diseased samples,
patient health may deteriorate or even result in death if minority
categories are misclassified.”®>” This remains a great challenge for
CRC prognostication at the molecular level. Thus, there is an ur-
gent need to identify the features in CRC omic and clinical data
that can achieve both high specificity and high accuracy.

Feature selection is a data dimensionality reduction tech-

. 28,29 - -
nique~ "~ that discards a large number of irrelevant and
redun-

dant features from the original feature space and retains a set of
decisive/important features. It not only preserves the original
feature values but also reduces the complexity of the model, im-
proves its learning rate, and increases its performance. If feature
selection is not performed, it may lead to the curse of dimen-
sionality, which greatly reduces the efficiency of the model. As
technology advances, the increasing size and complexity of
genomic data have led to the development of additional feature
selection methods. These methods have improved the accuracy,
efficiency, and interpretability of feature selection.???!

Linear analysis is the earliest feature extraction method,
including Linear Discriminant Analysis (LDA).32 Therefore, LDA
can not only achieve data dimensionality reduction®*** but also
achieve data classification.®” Its core idea is the principle that the
error within the category is the smallest and the error between
the categories is the largest. The matrix eigenvalues determined
by the intraclass covariance matrix and the interclass covariance
matrix provide an entropy ranking, and the top eigenvalues and
the corresponding eigenvectors are the solution results of the LDA
algorithm.35 Lee et al*® preprocessed the data collected by the
medical internet of things based on the LDA model to solve the
problem of high computation cost caused by high data di-
mensions. However, the linear algorithm will inevitably lead to
information loss while reducing the data dimension and at the
same time lose the biological meaning of the original data, which
is not conducive to analyzing the results based on the data and
understanding the essential problems reflected by the data. In
particular, these methods are often powerless in the face of
complex nonlinear data.

In order to solve the problem of dimensionality reduction of
high-dimensional nonlinear data, a series of feature extraction
methods for nonlinear data, including kernelization dimension-
ality reduction algorithm,ﬂ‘38 popular learning algorithm,” data
dimensionality reduction based on neural network,*’ Adaptive
encoders (Autoencoder),“ etc., have been proposed. These feature
extractions based on ML techniques have made great progress in
practical applications. However, nearly all of them used a single

algorithm to select features for binary or multicategory classifi-
cation. The ensemble feature selection methods were rarely, if at
all, used for multicategory or patient-outcome classification. It is
unclear whether and how we can combine multiple algorithms to
help select features for the multicategory classification of patient
outcomes. Therefore, we hypothesize that adding the features that
are deemed important by various algorithms or removing the less
important features would improve the performance metrics of ML
algorithms in the multicategory classification of patient outcomes.

To test this hypothesis, we develop and evaluate a 2-stage
Union with Recursive Feature Elimination (U-RFE) feature selec-
tion framework. The TCGA CRC data were used, as an example, to
identify the features required for reaching the best multicategory
COD classification performance. U-RFE first selects the union
feature sets that are crucial in CRC progression-specific mortality.
Based on the union feature sets, we compared the performances of
5 classification algorithms, including logistic regression (LR),
support vector machines (SVM), random forest (RF), eXtreme
gradient boosting (XGBoost), and Stacking, to identify the best
model for classifying four-category deaths. Specifically, in the first
stage, different ML algorithms would be used as base estimators
for feature selection, generating different feature subsets and
fetching the shared ones of these feature subsets. In the second
stage, feature analysis was performed on feature subsets,
considering the respective advantages of different ML algorithms.
The intersection of the feature subsets (ie, shared features) was
first used as the base set, and then, the other features contained in
the subset were sorted and added to the base set sequentially.
Based on this changing feature set, the LR, SVM, RF, XGBoost, and
Stacking algorithms were used to classify the multicategory COD
of the patients in TCGA Program dataset. Then, we evaluate the
multimetric performance of each model as described before,*’
until the set with the best classification performance was found
and determined as the final decisive union feature set.

Methods

The COD classification prediction model for CRC data consists
of 2 main processes: data preprocessing and model tuning based
on U-RFE. Data preprocessing consists of 4 steps: sample deletion,
one-hot encoding processing, missing value processing, and
determination of classification labels. The model tuning based on
U-RFE consists of 3 steps: RFE feature selection, the U-RFE feature
selection, and optimization of classification models.

Our CRC dataset was downloaded from cBioPortal.org in
February 2019. All the above analyses for CRC were run on python
3.6 version. Among them, RF, LR, SVM, and grid search were from
scikit-learn 0.24.2, and XGBoost was from package xgboost1.5.2.
The main workflow of the analyses is shown in Figure 1.

Data Preprocessing

We obtained individual-level data for CRC (Pan-Cancer Atlas)
from the TCGA.* Additionally, TCGA data are deidentified and
publicly available. Therefore, this is an exempt study using pub-
licly available deidentified data and did not require an Institu-
tional Review Board review. Besides, a limited removal of batch
effects has been conducted.*?

The CRC data contain the following 3 parts: data -
clinical_patient, data_clinical sample, and data RNA Seq v2_
mRNA_median_all sample Zs-cores (RNA). All RNA-seq (mRNA)
data were dichotomized based on the z-scores (greater than the
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Figure 1.
Flow chart of the Union with Recursive Feature Elimination (U-RFE) framework.

median considered “1”; otherwise considered “0”) so that no
normality test would be required. These 3 data parts are linked by
the PATIENT _ID, which was randomly generated and not linked to
any protected health information.

In the data cleaning process, as shown in Table 1, the samples
TCGA_F5_6810, TCGA_5M_AATS, and TCGA_5M_AATA were first
removed because they did not have corresponding tags. The
samples TCGA_AF 2689 and TCGA AA 3558 were removed
because they did not exist in the RNA dataset.

For data_clinical patient and data_clinical sample, all features
were dichotomized using a one-hot encoding approach as
described before.*” The features with missing values are filled
with amedian value of the feature when the missing data present

Table 1

Excluded samples and reasons

Excluded samples Reason for exclusion

TCGA_F5_6810
TCGA_5M_AATS
TCGA_SM_AATA
TCGA_AF_ 2689
TCGA_AA_3558

Category label does not exist

Not present in the RNA data

less than 10% of the samples (n % 14 (2.38%) for AICC_PATHOLO-
GIC_TUMOR_STAGE, 7 (1.19%) for PATH M _STAGE, 3 (0.51%) for
ICD_O_3_SITE, respectively). The features with missing values are
replaced with “NA” (not available) when the missing data
constitute not less than 10% of the samples (eg, n % 101, 17.15% for
radiation therapy, and n % 274, 46.52% for weight, respectively).
The patients (n % 2) who had no available data on sex or age are
removed. The weight is classified into 3 categories, including
weight_above average (weight > median of the weight),
weight below_average (weight median of the weight), and
weight NA (missing data) before being dichotomized using a one-
hot encoding approach. A small number of missing values also
occur in the RNA dataset, but due to their relatively high data
dimensionality (20,531 features), all features containing missing
values were removed directly. The processed CRC data contained
589 samples and 17,719 features.

Two features from data clinical patient, OS_STATUS (OS,
Overall Survival Status) and PFS_STATUS (PFS, Progression Free
Status), were then used together to determine the COD classifi-
cation labels. Among them, OS_STATUS has 2 values as follows: 0
means alive (LIVING) and 1 means dead (DECEASED), and
PFS_STATUS also has 2 values as follows: 0 means no progress
status (CENSORED) and 1 means disease progress status (PRO-
GRESSION). Therefore, the category labels are formulated as
shown in Table 2. The corresponding label names for each cate-
gory are as follows: alive without progression (AWNP), alive with
progression (AWP), death without progression (DWNP), and death
with progression (DWP). The sample sizes for each category were
406 (AWNP, 68.9%), 64 (AWP, 10.9%), 35 (DWNP, 5.9%), and 84
(DWP, 14.3%), respectively.

Model Tuning Based on Union with Recursive Feature Elimination

Recursive Feature Elimination Feature Selection

Therefore, RFE is the main representative of wraparound
feature selection, which introduces classification algorithms into
the feature selection process to eliminate redundancy between
features and output the optimal combination of features.*” It ob-
tains the importance of each feature in the current training set by
means of a base estimator and then removes the low-importance
features from it to obtain anew subset of features. The core idea of
RFE is to repeat this recursive process on a new subset of features
until the number of selected features is reached.

When RFE was used for feature selection, the base estimator,
the number of features selected (n_feature to_select), and the
feature removal step must be determined. Based on the training
set, an optimized base estimator was used to obtain the impor-
tance of each feature (feature parameters). The number of features
removed during each recursion was controlled according to the
feature removal step until a feature set was obtained that matched
the number of features selected. Even if the number of features
selected was consistent, the final selection of features may vary
depending on the base estimator, the parameters of the base
estimator, or the feature removal step.

The Union with Recursive Feature Elimination Feature Selection

To select more representative, important, and comprehensive
features, the U-RFE feature selection framework was proposed in
this study.

Normally, only classifiers with the feature importances_ or
coef attribute can be used as base estimators of U-RFE. By
contrast, LR, SVM, and RF classifiers all have feature_importances_
or coef attributes, but use their own different strategies to
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Table 2
Formulate classification labels

OS_STATUS PFS_STATUS Meaning Classification label
0 0 Alive with No Progression, AWNP 1
0 1 Alive with Progression, AWP 2
1 0 Dead with No Progression, DWNP 3
1 1 4

Dead with Progression, DWP

compute feature importance and have their own advantages in
the classification process. For example, the regularization
parameter in the LR classifier prevents overfitting of the model
and solves the problem of possible colinearity between high-

dimensional features;d'("47 the SVM classifier is suitable for small

sample sizes;*®*” and the RF is not easily affected by categories
imbalance.”” Therefore, in this article, the LR, SVM, and RF clas-
sifiers were used as the base estimators to select their respective
feature subsets, and then, feature subset fusion was used to
combine the advantages of each base estimator.

Due to the high dimensionality of the CRC data (17,719 fea-
tures) and the high redundancy among the features, the setting of
the step size during feature removal is crucial for the final set of
retained features. RF has the ability to rank the importance of
features and is often used as a tool for feature removal. Therefore,
before designing the U-RFE algorithm, we used RF to observe the
correspondence between the classification effect of the model and
the gradual decrease in the number of features. The whole analysis
process is repeated 10 times, and the average value is taken to
obtain the curves of accuracy and F1_weighting with the change
of the number of features, as shown in Figure 2. From the curves, it
can be seen that although the overall classification effect is not
satisfactory, the correspondence between the number of features
and the classification effect can still be seen: when the number of
features is high, the classification performance does not change
much and the classification effect is poor. As the number of fea-
tures decreases, the classification performance gradually im-
proves. However, when the number of features is reduced to

nearly 50, the classification performance declines sharply again. It
is noteworthy that after repeating the above process 10 times,
there were still differences in the individual feature sets generated
by the same base estimator. The differences are more pronounced
for the low-ranking features whose importance appears to vary by
the experiment runs.

According to this rule of change, in the subsequent RFE process
using different base estimators, we first set the feature removal
step size to 5,000, which can efficiently and quickly remove the
features that have a small impact on the classification effect, but
when the number of features is reduced to nearly 200, the
removal step size is reset to 10. The subsequent use of different
base estimators to select the base features according to the setting
of the removal step size can make the feature removal process
efficient and effective. Following this method of setting the
removal step and using different base estimators several times to
select the base features, the feature removal process can effec-
tively retain the sensitive features and is relatively efficient. Then,
when fusing the feature sets obtained by each base estimator, it is
possible to maximize the strengths and avoid the weaknesses to
improve the classification effect.

The 3 base estimators (LR, SVM, and RF) need to be parameters
tuned in each round of RFE feature recursive elimination. After 10
repeats, 30 feature subsets with the same number of features were
obtained for feature union.

The error of a ML model arises from the combination of biases
and variances. In general, increasing the number of features re-
duces the bias, and decreasing the number of features reduces the

0.65

0.60

score

— RF_acc
RF_F1_weighted

RF_acc_fitting
RF_F1_weighted_fitting

10 210 410 610 810

1010

1210 1410 1610 6220 16220

feature numbers

Figure 2.

Classification performance of different numbers of features using RF for feature selection.
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variance. However, reducing bias increases variance and vice versa
(bias-variance trade-off). Therefore, the number of features in the
final feature subset should neither be as high as it could be nor as
low as it could be.

For the high-dimensional TCGA CRC dataset, to take into account
the strengths of each of the 3 base estimators, a two-step process of
coarse and fine-tuning is performed to determine the optimal
target feature number for the subset of features used for union.

In the coarse tuning stage, the target feature numbers for RFE
feature selection are set to the following representative numbers:
50, 100, 200, 800, 1400, 2000, and 2600. For each target feature
number, 3 base estimators (LR, SVM, and RF) will be used to obtain
the corresponding feature subset. The 3 feature subsets with the
same target feature number were merged to obtain the corre-
sponding merged sets. Before deciding to use the RF classification
algorithm, we also tried other classification algorithms such as LR
and SVM. The classification effect of each model was compared
using effective evaluation metrics. The RF algorithm had a better
overall classification effect than other algorithms (data not
shown) and thus was finally chosen. Based on the 7 merged sets
with different target feature numbers, the RF classification algo-
rithm was used to classify COD on each merged set, and the
optimal target feature number for the subset was roughly deter-
mined based on the classification effect.

In the fine-tuning stage, the optimal target feature number
in the subsets was analyzed in more detail: the target feature
number in the subsets was gradually optimized in steps of 10
or 50 (the step size is set to 50 when the number of features is
greater than 100 and to 10 when the number of features is less
than 100). The intersection of 30 subsets with the same target
feature number based on 10 repeats was taken as the basis for
each round and then features outside the intersection and

However, CRC data are a highly imbalanced dataset. If accuracy
was simply used as a performance metric, the trained classifier
would be biased toward the majority category, resulting in lower
recognition rates for the minority categories.’;"54 Therefore, in
addition to a hierarchical 10-fold cross-validation strategy, per-
formance metrics Precision_weighted, Recall_weighted,
F1_weighted, and Matthews correlation coefficient (MCC) as shown
in (1e4) were used to help determine the model parameters.ss'57
F1_weighted is a harmonized average of precision and recall, and
the weights were set separately according to the percentage of
each classification in the training set, which can better overcome
the problem of model bias toward the majority categories. MCC
also provides a more reliable performance measure than accuracy
in the case of unbalanced data or different category sizes.

Precision$Num;
Precision_weighted A  } |

Numi
i%1

P RecallSNum;

Recall_weighted WA b
Num;
inl
P
F1SNum;
F1_weighted 6L §3p
p
Numi

i%1

within the merged set were gradually added to the union set
according to the feature priority obtained by the RF algorithm
(features belonging to 2 subsets have priority over features
belonging to one subset). Our preliminary data using a small
set of tuning parameters show that XGBoost and Stacking both
performed very well. Thus, we directly included them in the
second stage. For the data corresponding to different feature
union sets, LR, SVM, RF, XGBoost, and Stacking classifiers were
selected for classification prediction, and suitable evaluation
metrics were used for model evaluation. Finally, the set of
feature union sets that reaches the highest Accuracy or
Recall_weighed as the tie-breaker for the sets with the same yet
highest accuracy was selected as the final feature selection set.

Optimization of Classification Models

In the U-RFE process, each of the classifiers involved requires
the tuning of model parameters and hyperparameters. Although
the hyperparameters to be optimized vary between models (as
shown in Table 3), all can be optimized using a grid search for the
main hyperparameters.

P

™ p © FN;
i%l i%l i%l i%l1 i%l i%1

Among the various classifiers employed for selecting the model
and determining its parameters, the stacked classifier is unique in
that it is an ensemble classifier. Often, several individual classifiers
were combined to achieve significantly better performance met-
rics than a single classifier. When using a Stacking classifier for the
CRC dataset, 2 factors need to be considered: the classification
performance of the individual classifiers should not be too poor
and there should be a wide variety among the individual classi-
fiers. 57 Therefore, to better combine the advantages of different
classifiers, the classifiers in the first layer of Stacking were set to
LR, SVM, RF, and XGBoost. However, the features used in the
second layer of the Stacking model are a combination of the
predicted labels of the different classifiers obtained in the first
layer, and the complexity of the features is greatly reduced.
Therefore, the second layer classifier is usually a simple classifier
for classification prediction.®” Considering the overall complexity
and efficiency of the model, decision tree (DT) is used here as the
classifier in the second layer of Stacking. Our preliminary study on
a few different stacking combinations shows that DT seems like
the best choice (data not shown).
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Table 3

Hyperparameter optimization range for different classification models

Classifiers Optimized parameters Hyperparameter optimization range Increment
n_estimators [20, 210] 10
min_samples_split [2,20] 2
RF min_samples_leaf [2,20] 2
max_depth [2,20] 2
kernel [rbf, linear, sigmoid] e
SVM
€ [0.1, 3] 0.1
solver [liblinear, newton-cg, Ibfgs, sag, saga] e
" C [0.1, 3] 0.1
n_estimators [20, 110] 10
XGBoost learning_rate [0.1, 1] 0.1
max_depth [2, 20] 2
min_samples_split [2, 20] 1
DT min_samples_leaf [2, 20] 1
max_depth [2, 20] 1

Automation of the Union With Recursive Feature Elimination
Process

We developed a Python package to automate and simplify the
U-RFE process for wide and convenient use of the methodology.
The package provides the end user with 2 options, including the
default range and increment of targeted feature numbers (10 to
200 features, with 10 as the increment) or those defined by the
end user. Based on the range and increment of targeted feature
numbers, the package will automate the process and present the
end use with tabulated performance metrics of LR, SVM, RF,
Stacking, and XGBoost, using various union feature sets. After the
selected feature set is determined by reviewing the tabulated al-
gorithm performances, the end user can simply customize the
package with the final number of the features without a specified
increment of O (ie, a preset number of features) and save the tuned
algorithm and selected features for future application.

Results

Coarse Tuning for Feature Selection

Based on the RFE strategy, the base estimators were LR, SVM,
and RF, respectively, and the selected target feature numbers were
set to 50, 100, 200, 800, 1400, 2000, and 2600 to obtain the cor-
responding feature subsets. The subsets of features with the same
target feature number were combined, and then, the RF classifier
was trained based on the training merge set according to the
features contained therein. The RF classifier was used to classify
and predict the corresponding test merge set samples. The Accu-
racy, Precision_weighted, Recall weighted, F1_weighted, and MCC
metrics were compared, and the results are shown in Figure 3.

The results in Figure 3 show that the individual feature subsets
obtained when the selected target feature numbers were set to 50,
100, 200, 800, 1400, 2000, and 2600, respectively, differed, but the
RF classification models corresponding to their concatenated sets
obtained almost equal Accuracy and Recall weighted on the test
merge sets composed of the same samples, whereas the Pre-
cision_weighted, F1_weighted, and MCC differed significantly, but
several curves still show a trend of decreasing with increasing
number of feature values. When the selected target feature
number is greater than 200, the classification performance indi-
cator drops sharply.

The Accuracy, Precision_weighted, Recall_weighted,
F1_weighted, and MCC metrics obtained without feature selection

were 0.689, 0.482, 0.689, 0.567, and 0.011 for 4-category COD,
respectively, and were almost useless for the identification of a
few minority categories. However, the results in Figure 3 show
that the overall effect can be effectively improved after feature
selection, and the performance metrics corresponding to an in-
crease in the target feature number corresponding to the base
estimator show a decreasing trend; therefore, the target feature
number was set within 200, and the classification effect was
relatively better.

Fine-Tuning for Feature Selection

The first stage of the analysis determined that a target feature
number of less than 200 was preferable for the selection of the RFE
base estimator. Further feature selection was performed on this
basis.

Consider the following 2 points: 1, the initial selection stage
exhibits a decreasing trend in the overall performance metrics as
the number of features increases, and 2, after obtaining 3 feature
subsets with the number of features equal to the target feature

Classification Performance of RF
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Figure 3.

Model performance metrics for the selected merge features in the first stage.



Fei Deng et al. / Lab Invest 104 (2024) 100320

A 0.3

0.8 [
kS
5
=
o -
E 0.7 + LR
g
£ ——SVM
L
-9

——RF
0.6 —e— XGBoost
—e— Stacking
0. 5 1 1 1 1 1 1 1 1
20 60 100 140 180 220 260 298
The number of union features
F1_weighted
0.9
0.8

Perfomance Metrics
(=]
-~
T

—e—RF
0.6
—— XGBoost
—e— Stacking
0. 5 1 1 1 1 1 1 1 1
20 60 100 140 180 220 260 298
The number of union features
Precision_weighted
Figure 4.

The classification performance metrics of different classifiers for union features when the

number, the further union of the 3 feature subsets needs to be
completed. The final number of optimal features obtained will be
greater than the target feature number. Therefore, the target
feature number selected by the RFE-based estimator in the se-
lection stage was set to 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150,
and 200, respectively.

For each target feature number, each of the 3 RFE-based esti-
mators selects a different subset of features. This process is
repeated 10 times to obtain 30 subsets of features. The intersec-
tion of these 30 subsets was first taken to obtain the most
important common features as the base set for feature union. For
example, in the case of atarget feature number of 50, all 30 feature
subsets had 50 features, but after taking the intersection, there are
only 20 features in common, whereas there are 278 features that
were outside the intersection but within the union.

To determine whether these 278 features should be
included in the final union feature set, we created 2-tier
subset groups. The higher-ranked group includes common
features belonging to different subsets obtained with different
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target feature number was 50.

types of estimators, whereas the lower-ranked group includes
common features belonging to subsets obtained with the
same type of estimator. We then rank the features within
each group according to the importance given by the RF al-
gorithm. We finally add these ranked features sequentially to
the base set by their group tier (the higher-ranked group first)
and then within-group ranking order. Using these union sets,
we choose LR, SVM, RF, XGBoost, and Stacking classifiers to
perform classification prediction and evaluate their perfor-
mances. Figure 4 shows that the Accuracy, Precision_weighted,
Recall_weighted, F1_weighted, and MCC metrics exhibit some
smoothness when the target feature number is smaller than
200, after which the performance varies between classifiers,
with some rising while others falling.

The same analysis was carried out when the target feature
number was set to the other aforementioned values. The trend of
the performance metrics was shown in Figure 5 for a target
feature number of 70 and in Figure 6 for a target feature number of
150. The trends in the performance metrics remain similar.
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The classification performance metrics of different classifiers for union features when the target feature number was 70.

Overall, the Stacking classifier outperformed the other classifiers,
whereas the RF classifier performed relatively poorly.

Determination of the Final Union Feature Set

Through the above analyses, we obtained the corresponding
performance metrics after applying different classifiers for clas-
sification prediction under a series of union feature sets corre-
sponding to different target feature numbers. It is noteworthy that
when the target feature numbers are different, the specific fea-
tures contained in the union feature sets may be different, despite
the fact that they contain the same number of features. Most of the
classification models corresponding under these different union
sets outperform the classification models before feature selection
in the 4 performance metrics. However, it is unclear how to
determine the final set of union features.

We then first identify all models with accuracy above 0.8 (the
accuracy of models without feature selection was only about 0.6 to
0.7). Then, a strategy of F1_weighted first, Recall_weighted second,
Precision_weighted third, and MCC last was adopted to rank all
models. The parameters of the models with optimal performance
metrics corresponding to each target feature number are listed in
Table 4 and show that the Stacking classification model performed
optimally in most cases. This finding is also consistent with the re-
sults of the previous analysis. Comparing the information in Table 4
longitudinally, the performance metrics of the Stacking classification
model were optimal when the target feature number was 50, and the
corresponding union feature set contains 298 features.

The error of a ML model arises from the combination of biases
and variances. In general, increasing the number of features re-
duces the bias, and decreasing the number of features reduces the
variance. However, reducing bias increases variance and vice versa
(bias-variance trade—off).(’1 Therefore, the number of features in
the final feature subset should neither be as high as it could be nor
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The classification performance metrics of different classifiers for union features when target feature number was 150.
Table 4
The optimal classification performance with different basic features numbers
TFN NFUF NFA Optimal classifier F1_weighted Recall_weighed Precision_weighed Accuracy
10 41 35 XGBoost 0.79 0.827 0.79 0.827
20 125 118 Stacking 0.834 0.851 0.837 0.851
30 164 158 Stacking 0.82 0.837 0.814 0.837
40 246 232 Stacking 0.841 0.849 0.851 0.849
50 298 278 Stacking 0.851 0.864 0.854 0.864
60 347 325 Stacking 0.843 0.858 0.852 0.858
70 395 367 Stacking 0.844 0.859 0.844 0.859
80 435 399 Stacking 0.838 0.856 0.839 0.856
90 482 439 Stacking 0.843 0.859 0.84 0.859
100 526 475 Stacking 0.843 0.858 0.854 0.858
150 724 635 Stacking 0.844 0.861 0.847 0.861
200 923 795 Stacking 0.831 0.847 0.837 0.847

NFA, number of features added to the base set; NFUF, number of features contained in the union feature set; TFN, the target feature number.
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Table 5

The classification error corresponding to the optimal classification model

TFN NFUF Bias Variance MSE
10 41 0.849 0.290 1.139
20 125 0.709 0.145 0.853
30 164 0.801 0.140 0.941
40 246 0.764 0.100 0.864
50 298 0.592 0.076 0.668
60 347 0.623 0.099 0.722
70 395 0.629 0.082 0.711
80 435 0.679 0.111 0.790
90 482 0.697 0.103 0.800
100 526 0.687 0.124 0.811
150 724 0.693 0.076 0.769
200 923 0.758 0.092 0.850

MSE, mean squared error; NFUF,number of features contained in the union feature
set; TFN, the target feature number.

as low as it could be. Due to the relative proximity of the multiple
models listed in Table 4 in terms of performance metrics, we
further evaluated the performance of the above classification
models in terms of bias and variance (Table 5). When the target
feature number had a value of 50 and the corresponding union
feature set contained 298 features, the Stacking classification
model still performed best (Bias, Variance, and Mean squared
error were all minimized).

Discussion
Model Selection

Based on the above analyses, when the target feature number
selected by the RFE base estimator was set to 50, a union feature
set with 298 features was obtained. Based on this union feature
set, the classification prediction using ML models can achieve
excellent classification performance metrics and small classifica-
tion errors, with the Stacking model performing even better. Given
the imbalanced nature of CRC data, we were very concerned about
the performance of the classification models on the minority
categories with small sample sizes.®>® Therefore, we selected a
union feature set containing 298 and 395 features obtained with
target feature numbers of 50 and 70, respectively. The classifica-
tion performance of the minority categories was observed using
the Stacking classifier and compared with the performance of the
classification model before feature selection. The results are
shown in Table 6. Due to the high dimensionality of the original
CRC data (17,719 features), the classification model would have
been time consuming if the Stacking algorithm had been used
directly for classification. Therefore, we compared the perfor-
mance of the LR, SVM, RF, and XGBoost algorithms and present
here the classification results of the best-performing RF classifier.

As shown in Table 6, these models hardly ever correctly pre-
dicted a sample in the minority categories before feature selection
was performed. The 2 models that underwent U-RFE feature se-
lection performed well in the majority category and both per-
formed significantly in the minority categories, although their
performance in the DWNP category was still unsatisfactory.
Although the union feature set with 298 features had the best
overall classification performance and the lowest corresponding
classification error, it performed slightly worse on some minority
categories (DWP) than the union feature set with 395 features. It is
believed that similar results would be observed if more classifica-
tion models with different union sets were compared. Therefore,

we believe that in practical applications, the selection of feature sets
and models should not only depend on certain performance met-
rics but also be more focused on the objectives of the applica-
tion.®*% For example, if we tend to accurately predict samples
belonging to the DWP category, then a model that performs well in
this minority category should be selected, even if its corresponding
overall performance is not the best. It, therefore, makes sense to

perform careful feature selection and model comparison.

Ranking of Features

Further comparison of the specific features included in the
different union feature sets. We found that as the target feature
numbers of the RFE base estimator were set to increasingly larger
values, the number of features included in the final resulting
union feature set increased accordingly. As shown in Figure 7,
features in the previous level were fully included in the next union
feature set, which is consistent with the mechanism of recursive
feature selection in RFE.

However, the position of a particular feature in the different
union feature sets may vary. This is because changes in the value
of the target feature number determine changes in the subset of
features selected. Some features that were originally in a union of
3 subsets may in another case belong to only 2 of these subsets or
may even change to belong to only one subset. As a result, their
ranking positions in the final union set eventually change. The
change in feature importance ranking also further affects the
classification performance of the final model. Appendix 1 lists the
ranking of the 298 selected features when the target feature
number value was 50.

Conclusion

To address the poor performance of ML on the TCGA CRC clinical
and omic data that have a large number of features, a small number
of samples, and a strong sample imbalance, we propose an inter-
esting U-RFE feature selection method to generate a union feature
set. Based on the union feature set, the final decisive union feature
set and classification model were determined by comparing the
classification performance and classification error of several clas-
sifiers including LR, SVM, RF, XGBoost, and Stacking. These results
show that the U-RFE feature selection method greatly reduces
feature redundancy and effectively improves the overall perfor-
mance of the classification model for multicategory CRC outcomes.

The comprehensive performance of the model is not the only
criterion for model selection.®® This article presents a method for
selecting the appropriate set of features and classification models
when the data are imbalanced, which allows us to take into ac-
count the classification of the minority categories while focusing
on comprehensive perforn‘uance(’7’(’x Our recursive feature
eliminationebased approach of feature selection improves the
performances of classifying CRC deaths using clinical and omic
data or those using other data with high feature redundancy and
imbalance.

Some limitations of this study are noteworthy. Although the U-
RFE feature selection method proposed here is time consuming in
the feature selection process, it can provide useful proof in prin-
ciple forrefined model selection, and the generated models will be
more efficient in future sample classification prediction. More-
over, a major limitation of this study was the lack of validation of
the algorithm on another dataset. This limitation is largely
attributable to the lack of a high-quality CRC dataset with a 4-
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Table 6
Optimal classification performance of different classifiers on each category

TFN NFUF Classifiers Categories Accuracy Fl1 Recall Precision Runtime(s)"
AWNP 0.689 0.816 0.992 0.693
AWP 0 0 0
e 17,719° RF DWNP 0 0 0 0.014
DWP 0 0 0
Weighted 0.567 0.689 0.482
AWNP 0.739 0.852 1.0 0.742
AWP 0.365 0.267 0.682
RF DWNP 0.0 0.0 0.0 0.013
DWP 0.235 0.175 0.541
50 256 Weighted 0.656 0.739 0.662
AWNP 0.864 0.936 0.961 0.912
AWP 0.779 0.833 0.754
Stacking DWNP 0.392 0.300 0.600 0.053
DWP 0.703 0.675 0.754
Weighted 0.851 0.864 0.854
AWNP 0.756 0.864 1.0 0.761
AWP 0.498 0.417 0.787
RF DWNP 0.0 0.0 0.0 0.013
DWP 0.204 0.138 0.4
70 195 Weighted 0.678 0.756 0.663
AWNP 0.859 0.931 0.956 0.908
AWP 0.778 0.833 0.744
Stacking DWNP 0.318 0.25 0.5 0.055
DWP 0.708 0.688 0.761
Weighted 0.844 0.859 0.844

? Runtime(s) of a single test sample.
b 17,719 indicates the classification result without feature selection.

category COD. Furthermore, there are some features with missing
data in the TCGA CRC dataset. The median imputing method and
the creation of the missing data category used here may not be the
best method to input all missing features. Future works seem
warranted to address this limitation. In addition, the two-stage
feature selection process may be time consuming and overly
complex. Automation of our proposed framework may help end
users, whereas the underlying scientific merits of combining
various algorithms may still overwhelming to some users. Finally,
the sample size is relatively small, whereas it was reasonably large
for omics datasets with detailed survival outcomes, and it is
difficult to find a similar dataset. Future research may be focused
on addressing these limitations.

w124
-
o2
Z

395

347

298

50 60 70 150
The target feature number
Figure 7.

The number of features included in the union features sets (NFUF) by the targeted

feature number.

The model developed in this study can help us understand the
molecular mechanisms of CRC progression and, to some extent,
assist physicians to more effectively manage CRC patients. At the
same time, the analysis method proposed in this article is also
applicable to other types of datasets.
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