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Abstract

In the past decade, with the rapid development of molecular medicine and the application of more sophisticated methods for dis-
ease diagnosis and treatment, a number of molecular markers have become available for liver diseases. Pathogenesis-related mark-
ers are likely to be effectively discovered and rigorously validated, due to the unique biological links to diseases. The present study
reviews the predominant clinical and research articles in the previous decade to provide a pathogenic perspective of current and
emerging biomarkers for liver diseases, including hepatocellular neoplasms (e.g. hepatocellular carcinoma), non-neoplastic hepato-
cellular diseases, intrahepatic biliary diseases, and other liver diseases. Although it remains challenging to cover all markers for the
diagnosis and prognosis of liver diseases, current and emerging molecular markers in clinical practice and under investigation are
reviewed in a wide spectrum of liver diseases, in order to help clinicians and researchers identify liver disease markers for reference.
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Introduction

Chronic liver disease and cirrhosis account for 44,000 deaths in
the United States and two million deaths worldwide each year, and
primary liver cancer was diagnosed in more than 40,000 adults in
2022 in the United States, as estimated by the American Society
of Clinical Oncology.! This leads to the high burden of disability,
and increases healthcare utilization. A number of traditional liver
markers, including serologic and immunohistochemical markers,
do not directly reflect the liver disease mechanism. Therefore, there
is a need to identify better molecular markers for its diagnosis and
prognosis. In the past decade, with the rapid progress of molecular
medicine and the application of more sophisticated methods for dis-
ease diagnosis and treatment, a number of molecular markers have
become available for liver diseases.> ¢ The present review provides
a summary of current and emerging molecular markers for common
liver diseases. Emerging proteomic and artificial intelligence tools
can greatly help identify more sensitive, yet specific, markers.”#
However, a common challenge in developing molecular markers
for liver diseases, as in other fields, is to determine how to effec-
tively identify and rigorously validate these.* Pathogenesis-related
markers may be the best leads for unique biological links to disease
development, and these would likely provide a high-yield. Hence,
the present review provides a pathogenic perspective on current and
emerging biomarkers for liver diseases. It is noteworthy that molec-
ular markers may be associated with and important for predicting
the progression of some liver diseases. However, due to the limited
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space and scope of the present review, this topic was not discussed
at length, despite its importance.

Molecular markers for hepatocellular diseases
Malignant hepatocellular tumors

Hepatocellular carcinoma (HCC)

More than 90% of HCCs are correlated to a known etiology,” and
hepatocarcinogenic mechanisms can be classified as etiologically
specific and nonspecific mechanisms.!® Specific mechanisms in-
clude hepatitis B via viral integration, with the constant cis- and
trans-activation of oncogenic factors,!! hepatitis C via the oncogenic
effects of the core antigen and NS5A protein,!>!3 and aflatoxin via
direct genotoxic effects, leading to TP53 codon 249 mutations.!*
Nonspecific mechanisms accumulate the abnormalities imposed by
chronic liver diseases.!> HCC usually develops from chronic liver
disease to a dysplastic nodule, prior to progression into HCC. The
molecular markers for high-grade dysplasia include telomere short-
ening, telomerase reverse transcriptase (TERT) activation, and cell-
cycle checkpoint inactivation.!® Early HCC accumulates mutations
in CTNNBI, which encodes B-catenin, and progressed HCC further
presents with 7P53 mutations, DNA amplification, alterations in
methylations, and other genetic abnormalities.!” Multiple immu-
nohistochemical markers are used to assist in the HCC diagnosis:
polyclonal CEA, CD10, HepPar, arginase-1, and albumin iz situ hy-
bridization (ISH) are used as hepatocellular markers, while glypi-
can-3, glutamine synthetase (GS), HSP70, CD34, alpha-fetoprotein
(AFP) and clusterin are used to identify hepatocellular malignancy.?
HSP70, glypican-3 and GS have been recommended in international
guidelines.'® Molecular testing is used for DNAJBI-PRKACA
translocation, in order to diagnose fibrolamellar variant HCCs.3

Serologically, due to the low sensitivity (20%) in early HCC and
fluctuating levels in cirrhosis, AFP was removed from the present
screening assessment guidelines of the Canadian Association for
the Study of the Liver (CASL), and the European Association for
the Study of the Liver (EASL).1%20 However, AFP is still presently
used with other serological biomarkers, such as Lens culinaris-ag-
glutinin-reactive fraction of AFP, and protein-induced by vitamin
K absence or antagonist-IT (PTVKA-II), for high risk populations.?!
Furthermore, studies have determined the des-gamma-carboxy
prothrombin in patients with negative AFP. The results revealed
that AFP was positive in 67% of HCCs, while AFP was negative in
66% of small HCCs and 20% of all HCCs.?>-23 However, none of
the serologic markers were accepted by clinical practice guidelines
for HCC screening due to cost-effectiveness, challenges in avail-
ability, and study result variations.!”

Numerous markers are under investigation. Autophagy-relat-
ed genes and their regulatory proteins are associated with HCC,
including Beclin-1, ATG5 and ATG7, and these control a large
number of molecular pathways in HCC oncogenesis, such as phos-
phatidylinositol-4,5-bisphosphate  3-kinase PI3K/AKT/mTOR,
ERK/mitogen-activated protein kinase (MAPK), and apoptosis
p53 pathways.?#25 For example, the ATG-4B mRNA expression
controlled by autophagy-related genes may contribute to HCC de-
velopment via the noncoding of miRNA-661, and this has been
proven to be clinically useful, with 100% sensitivity, in a clinical
validation, especially in early-stage HCC.2¢ Furthermore, HBV-
related HCC is associated with mutated 7P53, which involves the
genetic integration with host genomes.?” HCV-related HCC over-
express the Kinesin family member 20A, Cyclin B1, Hyaluronan-
mediated motility receptor, and other genes. In addition, these
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markers are linked to lower survival in patients with HCV-associ-
ated HCC.28 A study on IL-28 genetic polymorphisms revealed the
association of the T allele with higher risk of HCC development.?’
Another study revealed that two genotypes of certain single nucle-
otide polymorphisms (SNPs) of IL-28 were associated with lower
risk of HCC development.?® Thus, the role of IL28 in diagnosing
and prognosticating HCC appears unclear, if not contradictory.

Molecular factors are also used for the prognosis. Cytokeratin
19 (CK19) positivity is associated with increased recurrence rates,
nodal metastasis, and more resistance to trans-arterial chemoem-
bolization and percutaneous radiofrequency ablation.31-33 The ex-
pression of miR-1180-3p increases in HCC, and is linked to tumor
proliferation and poor survival.3* A study conducted on KEGG
pathways revealed that this epigenetic marker is associated with
the regulation of the MAPK pathway, cell proliferation, apoptosis,
and cell differentiation.3*

Immune checkpoint proteins drive signaling pathways that
suppress T-cell function,?s including PD-1, PD-L1 and CTLA-4.
Nivolumab was the first US Food and Drug Administration (FDA)-
approved anti-PD-1 antibody for treating HCC. In addition, in 2020,
the FDA granted the accelerated approval to nivolumab, in combi-
nation with ipilimumab, which targets CTLA-4 for the treatment of
patients with HCC, who were previously treated with sorafenib.3¢
Furthermore, a study has recommended the anti-PD-1 antibody
agent for PD-L1 positive HCC patients.3” Tumor mutation burden
and microsatellite instability (MSI)/mismatch repair (MMR) are
used to guide the immunotherapy for several cancers. These may
play an important role in HCC immunotherapy in the future.?

Hepatoblastoma (HB)

Approximately 80% of HBs exhibit genetic alternations in the Wnt/
B-Catenin signaling pathway. These alterations include the deletion
of CTNNBI exon 3, AXIN genes, and the APC gene.3#40 Qverex-
pressed targets for Wnt signaling were also observed, such as cyclin
D1, survivin and MYC. In addition, MYC further activates the Wnt
signaling as a positive feedback mechanism.#! The genomic profil-
ing of HB can be classified into two subtypes, based on genetic in-
stability (gains of chromosomes 8q and 2p): the overexpression of
hepatic progenitor cell markers (AFP, CK19 and EpCAM), and the
upregulation of MYC. Tumors with genetic instability are more ag-
gressive, with a higher grade, and are more likely to metastasize.?
Histopathologically, HBs can be classified as epithelial or mixed
epithelial, and mesenchymal.** Epithelial HB may consist of fetal,
embryonal, small cell undifferentiated, cholangioblastic and macro-
trabecular components. B-catenin and glutamine GS are expressed
in mesenchymal and fetal components.** Furthermore, AFP high-
lights less-differentiated epithelial components, and HepParl can be
observed in more differentiated epithelial components. Moreover,
glypican-3 is expressed in epithelial fetal and embryonal compo-
nents.'5 In addition, CK7 and CK19 are positive in cholangioblastic
components. SMARCB (INI1) highlights all HB components, ex-
cept for small cell undifferentiated components.'5

Benign hepatocellular tumors

Focal nodular hyperplasia (FNH)

The pathogenesis of FNH has not been fully explored. The pres-
ence of large vessels and vascular anomalies suggest the etiology
of focally elevated blood flow.*5 Studies have revealed the altered
expression of angiopoietin genes, ANGPTI and ANGPT2, with an
elevated ANGPT1:ANGPT?2 ratio in FNH.#¢ The activation of the
f-catenin pathway would result in a “map-like” GS expression,
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without mutations in CTNNBI or AXIN1.*7*8 The immunohisto-
chemistry for FNH revealed that LFABP retained its normal ex-
pression, J-catenin was negative for nuclear expression, and serum
amyloid A and C-reactive protein (CRP) were usually negative.6
Furthermore, patchy serum amyloid A or peri-septal CRP staining
may be observed in some FNH cases.*’

Hepatocellular adenoma (HCA)

HCAs are clonal benign neoplasms of four common subtypes:
hepatocyte-nuclear-factor-1a. mutated (H-HCA), B-catenin-mutated
type with the upregulation of GS (b-HCA), inflammatory type
(IHCA) with the serum-amyloid-A overexpression, and unclassified
type.3® H-HCA demonstrates biallelic HNF1A and CYP1B1 inacti-
vation mutations. Liver fatty-acid binding protein is the characteristic
for this group. IHCA activates IL-6/JAK/STAT due to mutations of
the IL6ST gene, which codes gp130, FRK, STAT3, GNAS and/or
JAK1. C-reactive protein/serum amyloid A is usually diffuse posi-
tive, with a well-defined demarcation. The b-HCA- and B-catenin-
activated IHCA (b-IHCA, having features of both IHCA and b-HCA)
presents with CTNNB 1-activated genomic abnormalities, leading to
[-catenin pathway activation. Immunohistochemical marker GS is
a good surrogate for genetic abnormality. GS diffuse homogeneous
overexpression indicates the exon 3 mutation, GS heterogeneous
staining with a starry-sky pattern indicates the exon 3 S45 mutation,
and a GS faint expression indicates the exon 7/8 mutation. The exon
3 mutation is usually associated with high risk of HCC.15

The term, “borderline lesion” or “atypical hepatocellular neo-
plasm,” has been used for b-HCA with cytologic atypia, but this
remains insufficient for the diagnosis of HCC. This type has a high
likelihood of HCC development. The TERT promoter mutation, as
a typical genetic change in HCC, is usually identified in b-HCA/b-
THCA, with malignant transformations.5'2 Since surgical resec-
tion is recommended for b-HCA/b-IHCA and borderline lesion,
it is crucial for B-catenin activation to be detected for CTNNBI
mutations. Molecular testing for CTNNBI genomic abnormalities,
TERT promoter mutations, and chromosomal gains (1, 7 and 8)
may be warranted when GS immunostaining is equivocal.!s

In addition to the common HCA subtypes, sonic hedgehog HCA
(shHCA) has been reported to present with somatic deletions of
INHBE, leading to the fusion of INHBE and GLI1, and this special
group may be identified by PTGDS immunostaining.53 Arginino-
succinate synthase 1 (ASS1) overexpression has been reported in
another subtype of HCA (ASS1-positive HCA), and both subtypes
are associated with high risk of hemorrhage.

Non-neoplastic hepatocellular diseases

Autoimmune hepatitis (AIH)

Autoimmune hepatitis (AIH) is an inflammatory liver disease in
patients of all ages, and has female dominance. The key diagnostic
criterion for all AIH scoring systems is the detection of autoan-
tibodies.5* AIH type 1 can affect both adults and children, with
characteristic positive anti-nuclear and/or anti-smooth muscle an-
tibodies. On the other hand, AIH type 2 mostly affects children
with characteristic positive anti-liver-kidney microsomal-1 and/
or anti-liver cytosol-1 antibody. The autoantigens for type 2 AIH
include cytochrome P4502D6 (CYP2D6)5 and formiminotrans-
ferase cyclodeaminase (FTCD),3¢ while those for type 1 AIH re-
main unclear. The genomic predisposition has been studied in AIH.
Type 1 AIH presents with MHC class II HLA DRB1*03, which
can be observed in all age groups, and DRB1*04, which is a late
onset disease. Type 2 AIH presents with changes in DRB1*07 and
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DRBI1*03.57 It has been reported that the serologic parameters of
lymphocyte-to-platelet ratio (LPR) and immunoglobulin-to-plate-
let ratio (IGPR) are independently linked to the liver fibrosis stage
in ATH patients without prior treatment.5

Metabolic-associated fatty liver disease (MAFLD)

MAFLD, which was previously termed as, non-alcoholic fatty
liver disease, is defined by the presence of >5% steatosis and met-
abolic risk factors, especially type-2 diabetes, obesity and meta-
bolic syndrome, with the exclusion of excessive alcohol use.58 The
reasons for the interindividual variability may be attributable to
the different genetic backgrounds, epigenetic modifications and
epitranscriptomics, and these are the recently described biologi-
cal determinants.5® Genetic variants involved in liver lipid-metab-
olism are the major genetic risk factors for MAFLD, which in-
clude PNPLA3, TM6SF2, GCKR, MBOAT?7, and HSD17B13.60-61
Furthermore, epitranscriptomics is an emerging field, which helps
understand how chemical RNAs and their modifications control
RNA structures and functions, without changing the sequences. A
large number (>100) of chemical RNA modifications have been
described. Among these, N6-methyladenosine (m6 A) plays an im-
portant role in glucose and lipid homeostasis, and is involved in
the progression of MAFLD.®? In light of the gut-liver crosstalk,
gut-specific PPARa may be applied as a novel target and predic-
tive biomarker of NAFLD treatment.63

Hemochromatosis (HC)

HC is genetically heterogeneous, exhibits the uncontrolled iron
absorption in the small intestine, and may present with progres-
sive iron overload.®* Its complications include arthritis, diabetes,
heart failure, hepatic cirrhosis, and HCC.%5 Recent reviews and
guidelines have classified HC into four types, based on its gen-
otype-phenotype correlation, and type 2 and type 4 were further
subdivided into subtypes A and B. The involved genes are, as fol-
lows: type 1, HFE; type 2a, HIV (hemojuvelin); type 2b, HAMP
(hepcidin); type 3, TFR2 (transferrin receptor 2); type 4a and 4b,
both SLC40al (ferroportin).t%%7 Although type 4a and 4b are as-
sociated with the same gene, the transferrin saturation (TSAT) in
type 4a is usually low-to-normal, unlike the elevated TSAT in type
4b and other types. Liver biopsy is usually used to predict the dis-
ease progression and outcomes of patients with repeatedly high
serum ferritin levels (>1,000 pg/L), and helps prevent and identify
advanced fibrosis or subclinical cirrhosis before cirrhosis is devel-
oped. Indeed, the close surveillance for HCC is warranted, even
for patients treated with iron depletion, when advanced fibrosis or
subclinical cirrhosis is identified.6”

Molecular markers of intrahepatic biliary diseases

Intrahepatic cholangiocarcinoma (iCCA)

iCCA is a malignant intrahepatic epithelial neoplasm with biliary
differentiation, and expresses biliary markers, such as epithelial
membrane antigen (EMA), CK7 and CK19. There are two sub-
types of iCCA: large duct and small duct. Large duct iCCA may
develop from biliary intraepithelial neoplasia or intraductal papil-
lary neoplasm of the bile ducts,®:¢° while the carcinogenesis of
small duct iCCA has not been fully explored. This may develop
from liver progenitor cells,”® or from transformed and transdiffer-
entiated hepatic progenitor cells, or mature hepatocytes.”':72 Due
to the different cell origins of large duct and small duct iCCA, the
expression of a number of markers differs between these two sub-
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types. Small duct iCCA is positive for CD56, C-reactive protein,
N-cadherin and IDH1/2 mutations, while large duct iCCA is posi-
tive for MUC5AC, MUC6, S100, TTF1, AGR2, MMP7 and KRAS
mutations.”>-75 Based on the integrative analysis of expression and
mutation profiles, iCCA can be classified into proliferation and in-
flammation subclasses. The inflammation subclass presents with
the activation of inflammatory pathways, the overexpression of cy-
tokine IL10/IL6, and STAT activation. The proliferation subclass
presents with the activation of oncogene signaling pathways, with
the positivity of RAS, MAPK, c-MET, BRAF and KRAS. The pro-
liferation subclass genomically resembles poor-prognostic HCC.15
The C-reactive protein expression in iCCA is associated with a
better prognosis, while the EMA expression implies a worse prog-
nosis.”76 Small duct iCCA has better overall survival and longer
time to recurrence, when compared to large duct iCCA.77

Benign biliary tumors

Bile duct adenoma (BDA)

The pathogenesis of BDA remains controversial. It has been con-
sidered that BDA is a reactive process, due to post-inflammatory
or traumatic injury.”® Subsequent studies have revealed that the
majority of BDAs bear the BRAF V600E mutation, and some are
associated with cholangiocarcinoma, which suggests the neoplastic
process of BDA.7%80 Similar to normal bile ducts, cytokeratin CK7
and CK19 are expressed in BDA, since these also express other fore-
gut antigens, MUC6, MUCS5AC and TTF2.81 In order to distinguish
BDA from iCCA, the immunohistochemistry for low Ki67 and wild-
type p53 may be helpful. Some authors have reported to use EZH2
negativity and p16 positivity to assist in the BDA diagnosis.$?:83

Biliary adenofibroma (BAF)

BAF is considered as a primary epithelial neoplasm with secondary
stomal changes.?* Although the morphology of BAF resembles the
von Meyenburg complex, the immunohistochemical profile remains
different. In addition to the expression of EMA, CK7, CK19 and
CA19-9, BAF also presents with the amplifications of CCNDI and
ERBB2, suggesting its neoplastic nature. Furthermore, the CDKN24
mutation was reported in a case with malignant transformation.85

Non-neoplastic bile duct diseases

Primary biliary cholangitis (PBC)

The pathogenesis of PBC may be attributable to the genetic pre-
disposition, environmental triggers, and complex interactions be-
tween the two.%¢ One of the hallmarks of PBCs is serologically
positive anti-mitochondrial autoantibodies (AMAs). However,
AMA is not the only autoantibody detected in PBC. For exam-
ple, disease-specific antinuclear antibodies (ANA) are present in
approximately 33% of PBC patients, and present with the char-
acteristic multiple nuclear dots (MND) or a rim-like/membranous
(RLM) pattern in indirect immunofluorescence in vitro.8” These
patterns are diagnostic hallmarks of PBC, which can establish a
diagnosis for PBC in patients without positive AMA (e.g. AMA-
negative PBC patients with cholestasis).®® The primary target an-
tigens in RLM-pattern-associated antibodies are nuclear envelope
proteins p62 and gp210. The presence of these antibodies is as-
sociated with a higher mortality rate, even in the patients without
bilirubinemia at the time of diagnosis.8%

Unlike various autoimmune liver diseases, potential autore-
active liver resident NK cells are enriched in the livers of PBC
patients, and exhibit an increase in cytotoxic activities against au-
tologous biliary epithelial cells.”! Biliary epithelial cells express
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various antigens that allow interactions with the immune system,
such as CD1d activates NK T cells.”? Activated biliary epithelial
cells are important for maintaining the characteristic inflammation
of PBC via chemokine CCL19, cytokines, and vascular cell ad-
hesion molecule-1.2> However, to our knowledge, none of these
markers have been proven for use as immunohistochemical mark-
ers for PBC diagnosis or prognosis.

Primary sclerosing cholangitis (PSC)

PSC is strongly associated with aberrant HLA alleles.** The strong
link between PSC and inflammatory bowel disease leads to the
“microbiota hypothesis.” In the microbiota hypothesis, microbial
molecules driven by intestinal dysbiosis reach the liver via portal
circulation, and initiate a host of aberrant cholangiocytic behav-
iors (e.g. senescence).”>%7 The histopathologic hallmark of PSC is
obliterative-concentric periductal loose fibrosis (“onion skinning”),
while its radiological hallmark is the “beaded” biliary trees. During
PSC development, cholangiocytic activation leads to the recruit-
ment and infiltration of CD68+ macrophages. These macrophages
produce proinflammatory cytokines that activate other immune
system cells, and secrete profibrotic mediators, such as TGF-f3 and
platelet-derived growth factor (PDGF), which lead to the activation
of hepatic stellate cells.?® Thus, cholangiocytes present with degen-
erative and atrophic changes, which in turn, causes biliary strictures,
biliary occlusions (“bile duct scars™), and a “beaded” appearance on
radiological imaging.”® Periodic acid-Schiff staining with diastase
can reveal the significantly thickened bile duct basement membrane,
with a specificity of 95%, for PSC diagnosis.!?

Molecular markers of other liver diseases

Liver fibrosis

Most chronic liver diseases can progress to liver fibrosis, and form
fibrous scars. Hepatic stellate cells, which are activated by chronic
liver injury, are the major source of fibrous scars in liver fibrosis.!"!
Myofibroblasts, which are usually not present in normal livers, can
be activated in the liver by chronic injury.!%? Hepatic fibrosis is the
formation of fibrous scars, and is the result of excessive extracellular
matrix proteins. The primary source of extracellular matrix proteins
are myofibroblasts,'?3 which are derived mainly from liver resident
activated hepatic stellate cells and activated portal fibroblasts. Nu-
merous molecular markers have been reported to be able to label my-
ofibroblasts activated from hepatic stellate cells, including Desmin,
CD146, CD105, GFAP, LRAT, Synemin, Synaptophysin, p75
(NGFR), PDGFRB1, PPARy, Adiporl, ADFP1, CD36, Cytoglobin,
SPP1, LOX, LOXL2, NRID2 and IL-17RA.194105 Myofibroblasts
may also derive from activated portal fibroblasts.!® The molecular
markers that highlight myofibroblasts from this source are, as fol-
lows: THY1, Elastin, CD105, Cofilin, Fibulin2, Gremlin, NTPD2,
Smoothelin, Calcitonin o, Mesothelin, uroplakin 1p, basonuclin 1,
Asporin, Vitrin, IL-18R1 and COL15A1.197-119 The modulation of
TGF-B signaling via the TLR4-MyD88-NF-kB axis provides a link
between proinflammatory and profibrogenic signals.!® However,
none of these molecular markers has been applied for diagnostic or
therapeutic use.

Combined hepatocellular-cholangiocarcinoma (cHCC-CCA)
and undifferentiated liver carcinoma (ULC)

The pathogenesis of cHCC-CCA and ULC remains unclear.
cHCC-CCA is molecularly more similar to iCCA, when compared
to HCC, and characteristic mutations have been identified in both

12 DOI: 10.14218/GEJLR.2022.00010 | Volume 21 Issue 1, September 2022


https://doi.org/10.14218/GEJLR.2022.00010

Liang Y.X. et al: Molecular markers of liver diseases

HCC (CTNNBI) and iCCA (KRAS and IDHI).""-113 cHCC-CCA
with progenitor cell morphology is often positive for fetal-type
growth factor SALL4.75 Intermediate cell carcinoma of the liver
is the term reserved for primary liver carcinoma with monotonous
morphological features. These are intermediated between hepato-
cellular and cholagniocytic cytologic features, and monotonous
tumor cells express some HCC and iCCA markers.!* Undifferen-
tiated carcinoma lacks the definitive morphological and immuno-
histochemical features of any differentiation beyond the epithelial
marker expression, and there is no evidence of specific carcinoma
differentiation.!s

Epithelioid hemangioendothelioma

Epithelioid hemangioendothelioma (EHE) is a malignant endothe-
lial neoplasm that comprises epithelioid endothelial cells in myx-
ohyaline or fibrous stroma. These tumor cells are positive for en-
dothelial markers CD31, CD34, D2-40 and ERG."5 Cytokeratin
CK8 and CK18 may be patchy positive in tumor cells.''¢ The char-
acteristic feature of EHE is t(1;3)(p36;q25) translocation, leading to
WWTRI-CAMTAL gene fusion, and this has been identified in 90%
of EHEs.17-11% Immunostaining marker CAMTA1 has been used in
studies, presenting a positive result in 85-90% of cases.!20-121

Cautionary notes

The present review focused on the current and emerging molecular
markers of liver diseases through the lens of pathogenesis. Various
diseases, such as various types of cancers, share common signal path-
ways during their development (e.g. p53, c-Myc and APC). Thus, a
number of markers may be found to be useful for diagnosing diseases
of other organs. However, these alternations should be interpreted
with caution, and combined with other clinicopathological data.

These current and emerging molecular markers remain largely
untested in a large population, and warrant additional studies, par-
ticularly clinical trials, in order to determine the clinical values.
Furthermore, as a limitation of the present study, a number of these
markers were qualitative, and not quantitative, which may be sub-
jected to interpretation bias.

Conclusions

The present review discussed the current and emerging molecular
markers of common liver diseases. Specific focus was given on
molecular, immunohistochemical and serological markers for diag-
nostic assistance and prognostic prediction, from a pathogenic per-
spective. Due to the rapid development of this field, it remains chal-
lenging to cover all markers for the diagnosis and prognosis of liver
diseases. Nevertheless, markers in clinical practice and under inves-
tigation were reviewed in a wide spectrum of liver diseases (Table
).3:15-23.31-34,37-40,42,44,48,49,51,53,54.,57.61,65.75.,76,80,85.87,88.92,98,111,119,120

Machine learning tools and high-throughput proteomics would help
reveal more-sensitive and more specific markers of liver diseases in
the future.”-$
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Disease
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18
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16
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Diagnosis
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HSP70
Glypican-3

In practice

Diagnosis

Immunohistochemistry

In practice

Diagnosis

Immunohistochemistry

Glutamine synthetase

Under Investigation

Diagnosis of dysplasia

Southern blotting

FISH

Telomere length

Under Investigation

Diagnosis of fibrolamellar variant

DNAJB1-PRKACA translocation

AFP

19,20
21

In practice (controversial)

Screening

Serology

Under investigation

Serology Screening (with AFP)

Lens culinaris-agglutinin-
reactive fraction of AFP

21
23
2

Under investigation

Screening (with AFP)

Serology

PIVKA-II

Gene Expr

(continued)

Under investigation
Under investigation

Diagnosis of HCC
Diagnosis of HCC

Serology
Serology

des-gamma-carboxy prothrombin
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