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Abstract
In a companion paper,we presentthe first spatially resolved polarized image of Sagittarius A* on eventhorizon
scales, captured using the Event Horizon Telescope, a global very long baseline interferometric array operating at a
wavelength of1.3 mm.Here we interpretthis image using both simple analytic models and numericalgeneral
relativistic magnetohydrodynamic (GRMHD) simulations.The large spatially resolved linear polarization fraction
(24%–28%, peaking at ∼40%) is the most stringent constraint on parameter space, disfavoring models that are too
Faraday depolarized.Similar to our studies of M87*, polarimetric constraints reinforce a preference for GRMHD
models with dynamically important magnetic fields.Although the spiral morphology of the polarization pattern is
known to constrain the spin and inclination angle, the time-variable rotation measure (RM) of Sgr A* (equivalent to
≈46° ± 12° rotation at 228 GHz) limits its present utility as a constraint. If we attribute the RM to internal Faraday
rotation,then the motion of accreting material is inferred to be counterclockwise,contrary to inferences based on
historical polarized flares, and no model satisfies all polarimetric and total intensity constraints. On the other hand, if
we attribute the mean RM to an externalFaraday screen,then the motion of accreting materialis inferred to be
clockwise, and one model passes all applied total intensity and polarimetric constraints: a model with strong magnetic
fields, a spin parameter of 0.94, and an inclination of 150°. We discuss how future 345 GHz and dynamical imaging
will mitigate our present uncertainties and provide additional constraints on the black hole and its accretion flow.
Unified Astronomy Thesaurus concepts: Black holes (162); Supermassive black holes (1663); Black hole physics
(159); Galactic center (565); Radio interferometry (1346); Polarimetry (1278); Magnetohydrodynamics (1964)
Supporting material: figure set

1. Introduction
Synchrotron emission from the plasma nearsupermassive

black holes (BHs) provides a crucial source of insight into the
physical processes that drive accretion and outflow in galactic
cores.It is intrinsically polarized,and both linear polarization
and circular polarization provide information about the emitting
plasma’s density, temperature,composition, and magnetic
field. In the rest frame of the emitting fluid, the linear
polarization direction is orthogonal to the local magnetic fields,
so images of linear polarization capture the projected magnetic
field structure perpendicular to the line of sight. Any
magnetized plasma along the line of sightimparts additional
polarimetric effects via Faraday rotation, which rotates the
plane of linear polarization with a λ2 dependence,where λ is
the observing wavelength,and Faraday conversion,which
exchanges linearand circular polarization states.Finally, for
emission near a BH,the polarization is subjectto achromatic
rotation from propagation in a curved spacetime.

Recently, the Event Horizon Telescope (EHT) Collaboration
published imagesof the supermassiveBH at the Galactic
center, Sagittarius A* (Sgr A* ; Event Horizon Telescope

Collaboration et al. 2022a, 2022b, 2022c, 2022d, 2022e,
2022f, hereafter Papers I–VI).These images revealed a bright
emission ring encircling a centralbrightness depression (the
“apparentshadow”),consistentwith the expected appearance
of a Kerr BH with a mass M ≈ 4 × 106 Me that is only
accreting a trickle of materialrelative to that captured atthe
Bondi radius in a radiatively inefficient manner (e.g.,
Hilbert 1917; Bardeen 1973;Luminet 1979; Jaroszynski&
Kurpiewski 1997; Falcke et al. 2000). Comparisons of the EHT
measurements with numerical simulations provide estimates of
the mass accretion rateM M M10 yr 108 1 3

B ~ ~- - - and a
luminosity that is L  1036erg s−1 ∼ 10−9LEdd (see, e.g.,
Paper V,and references therein).HereMB is the Bondi mass
accretion rate and L Edd≡ 4πGMc mp/σ T is the Eddington
luminosity, with G, c, mp, and σT being the gravitational
constant,speed of light, proton mass, and Thomson cross
section, respectively.Previously, measurementsof linearly
polarized emission near Sgr A* gave strong evidence for this
low accretion state (e.g., Agol 2000; Quataert& Gruzinov
2000). In addition, the emission ring morphology, including the
lack of a pronounced brightness asymmetry in EHT images,
favors a viewing angle in Sgr A* that is at a low to moderate
inclination (50°)relative to the angular momentum of the
inner accretion flow (see,e.g.,Figure 9 in Paper V).

Event Horizon Telescope Collaboration et al. (2024, hereafter
Paper VII) reports the firstpolarized images of Sgr A*, using
EHT observations at230 GHz taken in 2017. These images
show a prominent spiral polarization pattern in the emission ring
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that is temporally stable, strongly linearly polarized (≈25%), and
dominated by azimuthally symmetric structure. Both the image-
averaged polarization fraction (mnet∼ 5%) and the resolved
polarization fraction (〈|m|〉 ≈ 25%)are significantly higherin
Sgr A* than in the EHT’s observations of M87* (Event Horizon
Telescope Collaboration et al. 2021a, hereafter M87* Paper VII).
In M87*, this polarization pattern was explained by coherent and
dynamically important magnetic fields,depolarized by Faraday
effects (EventHorizon Telescope Collaboration etal. 2021b,
hereafter M87* Paper VIII).

In this paper, we provide the theoretical modeling and
interpretation to accompany PaperVII. In Section 2, we
summarize the new polarimetric observationalconstraints on
Sgr A*. In Section 3, we provide general arguments about what
these constraints imply forSgr A* through comparison with
three simple models: one-zone physical models to evaluate the
plasma properties,geometricalring models to evaluate the
degree of coherence in the polarized image,and semianalytic
emission models to evaluate the interplay between spacetime
and emission parametersin determining polarized image
structure.In Section 4,we describe a large library of general
relativistic magnetohydrodynamic (GRMHD)simulations for
Sgr A*. In Section 5, we evaluate which of these GRMHD
models are compatible with the observationalconstraints.In
Section 6, we summarize our findings and describe the
prospects for improved constraints from future observations
of Sgr A* .

2. Summary of Polarimetric Observations
In Paper VII, static polarimetric images are constructed from

the Sgr A* EHT data taken on 2017 April6th and 7 between
226.1 and 230.1 GHz (see Section 2 ofPaperVII for more
details). For theoretical interpretation, we adopt eight observa-
tional constraints derived from images generatedby the
THEMIS and the m-ring reconstruction methods (note that “m”
is the azimuthal/angular mode number here,not polarization
fraction; see Johnson et al. 2020). Of the four methods included
in Paper VII, these are the only methods that provide Bayesian
posteriors,from which we compute 90% confidence intervals.
These methods make drastically different assumptions and, in a
sense,bracketthe possible spatialand temporalvariability. In
brief, the m-ring method fits a ring model to each snapshot
independently, but the allowed spatial variability is very limited
by construction (m � 2 for total intensity, m � 3 for linear
polarization,and m � 2 for circular polarization).In contrast,
THEMIS attempts to optimize a single static image most
consistentwith the full data over time, with a noise budget
attributed to time variability. Despite the vast differences
between these models,they recover key image quantities with
similar accuracy in synthetic data tests and arrive atmostly
consistent observables (Paper VII).

Throughoutthis work, the large and time-variable rotation
measure (RM) of Sgr A* poses a significant systematic uncertainty.
Defined as RM ≡ Δχ/Δλ2, where χ is the electric vector position
angle (EVPA),the RM of Sgr A* may originate from Faraday
rotation internal to the emitting region, an external screen, changes
in the plasmaprobed as a function of optical depth, or a
combination of these effects. Examining the polarized light curves
for the same 2 days as our EHT observations, Wielgus et al. (2024)
arrive at RM 4.65 10 rad m1.18

1.25 5 2á  = -ñ ´-
+ - . We reservea

lengthy discussion ofthe RM of Sgr A* in both observations
and theory for Appendix C.In summary,the fraction of the RM

that can be attributed to an externalFaraday screen is currently
unresolved. Thus, throughout this work we consider the recovered
image statistics both with and without RM derotation. Derotating
the image corresponds to an interpretation where the time-averaged
RM is attributed to a relatively stable externalFaraday screen,
separate from our models, which can be corrected for. Refraining
from doing so corresponds to an interpretation in which all of the
RM is generated internally,within our models.Our GRMHD
simulations can reproduce the intraday variability of the RM, but
not its stability of sign (see Appendix C).

For each of these methods,eight observationalconstraints
explored in this paper are computed,listed in Table 1. To
generate these ranges,a large quantity of images consistent
with the data were generated from each method’s posterior
distribution. We computed the relevant observables for each of
these images and then inferred 90% confidence regions.The
m-ring method does notprovide independentvalues of vnet,
which is fixed to the mean ALMA-inferred value for circular
polarization analysis (see Paper VII). When combining the two
methods for theoreticalinterpretation,we adoptthe minimum
and maximum of the union of both 90% confidence regions
(see Figure 10 in Paper VII for a visualization).

The quantities mnet and vnet correspond to the net linear and
circular polarization thatwould be inferred from a spatially
unresolved measurementfor the time-averaged image.These
are given by
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where ∑i denotes a summation over each pixel i. For the time-
resolved light curves, which are distinct from the values
inferred from our static image reconstructions,Wielgus etal.
(2022b, 2024) find 2.6% < mnet< 11% and −2.1% < v net<
− 0.7%, respectively,where we quote the central90% of the
values observedduring the same 2 days of observation.
Interestingly,we find that the m-ring method arrives atmuch

Table 1
Polarimetric Constraints Derived from the Static Reconstruction of Sgr A*

Observable m-ring THEMIS Combined

mnet(%) (2.0, 3.1) (6.5, 7.3) (2.0, 7.3)
vnet (%) L (−0.7, 0.12) (−0.7, 0.12)
〈|m|〉 (%) (24, 28) (26, 28) (24, 28)
〈|v|〉 (%) (1.4, 1.8) (2.7, 5.5) (0.0, 5.5)
|β1| (0.11,0.14) (0.10,0.13) (0.10,0.14)
|β2| (0.20,0.24) (0.14,0.17) (0.14,0.24)
∠β 2 (deg) (as observed) (125,137) (142, 159) (125, 159)
∠β 2 (deg) (RM derotated) (−168, −108) (−151, −85) (−168, −85)
|β2|/|β 1| (1.5, 2.1) (1.1, 1.6) (1.1, 2.1)

Note. These two methods each provide posteriors, from which 90% confidence
regions are quoted. As constraints on our models, we conservatively adopt the
minimum and maximum of these 90% confidence regions from both of these
methods combined (rightmostcolumn),with the exception of 〈|v|〉, which is
treated as an upper limit. Derotation assumesthat the mean RM can be
attributed to an external Faraday screen, for which a frequency of 228.1 GHz is
adopted.
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lower values of mnet thanTHEMIS, which may be attributable to
temporal cancellations of fluctuating EVPA patterns.

The remainderof our constraints are structuralquantities,
beginning with 〈|m|〉 and 〈|v|〉, the image-averaged linear and
circular polarization fraction.These are given by

m , 3i i i

i i
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Note that these quantities depend on the effective resolution of
our images.Throughoutthis work we quote values from our
simulations corresponding to 20 μas resolution to mimic EHT
resolution.We treatthe resolved circular polarization fraction
〈|v|〉 as an upper limit, and thus the combined range extends to
0 in Table 1. This is due to the fact that the circularly polarized
images presented in Paper VII show structural differences that
we attribute to noise (see also Event Horizon Telescope
Collaboration etal. 2023,hereafter M87* Paper IX).Because
of the absolute magnitude inherentto the definition of this
quantity, it is biased high when the signal-to-noise ratio is
too low.

Complex βm modes correspond to Fourier decompositions of
the linear polarization structure,where m refers to the number
of times that an EVPA tick rotates with azimuth (Palumbo et al.
2020).These coefficients are defined by

I
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where ρ and j correspond to polar coordinates in the image and
P = Q + iU. The rotationally invariantmode,β2, has natural
connectionsto what we believe are azimuthally symmetric
disk/jet structures, in particular the magnetic field geometry. Its
amplitude encodes the strength of this mode,while its phase
encodes the pitch angle and handedness of EVPA ticks.We
observe ∠β2 closer to ±180° than 0°, which corresponds to tick
patterns that are more toroidal than radial.

When considering observationalconstraintswithout RM
derotation,we simply adoptthe range of ∠β2 as observed on
the sky.When considering observationalconstraints with RM
derotation,we derotate ∠β2 assuming that there is an external
Faraday screen between us and the emitting region that we can
characterize by the mean RM over time. Since ∠β2 depends on
twice the EVPA, we therefore add −2〈RM〉λ2 to ∠β 2, where
〈RM〉 is the mean RM observed on April 6 and 7.Therefore,
the range on ∠β2 had been significantly shifted by the Faraday
screen by2RM 92.02

23.4
24.7l = - -

+ deg.Applying this derotation
both shifts and broadens the constraint.

Mean images from the posterior distributions generated by
each method are plotted in Figure 1. Two sets of linearly
polarized images are shown,corresponding to images without
and with derotation, respectively. Note that derotation reverses
the handedness of the polarization spiral,which has important
implications for the flow structure.In the first two rows,total
intensity is shown in gray scale,with contours drawn at 25%,
50%, and 75% of the peak brightness. These same contours are
repeated in the bottom row.In the top and middle rows, the

colored ticks encode linear polarization, where the length scales
with the total linearly polarized intensity and the color scales
with the fractional polarization. The dashed white contours plot
the linearly polarized intensity rather than the total intensity.

Finally, we also compute the simplest nonrotationally
symmetric mode,β1, as a probe of polarization asymmetry.
Again, |β1| encodes the strength ofthis mode, and we use
|β2|/|β 1| as a probe of rotationalsymmetry.Since there is no
clear axis (such as the spin axis) to define ∠β1 = 0°, we do not
study ∠β1. We also refrain from computing higher-orderβm
modes,which are more likely to be sensitive to smaller-scale
noise fluctuations.

3. Analytic Models
As discussed in the previous section,the linearly polarized

image of Sgr A* exhibits three salient features:

1. It has a large resolved polarization fraction of 24%–28%,
with a peak of ∼40%,much higher than M87*.

2. The linear polarization structure is highly ordered.
3. The ordered structure exhibits a high degree of rotational

symmetry, which appears to spiral inward with

Figure 1. Polarized images of Sgr A* used for physicalinterpretation in this
work. Two methods from Paper VII,snapshot m-ring and THEMIS, are
included.Top and middle:total intensity is shown in gray scale,polarization
ticks indicate the EVPA, the tick length is proportional to the linear polarization
intensity magnitude,and color indicatesfractional linear polarization.The
dotted contour levels correspond to linearly polarized intensities of 25%, 50%,
and 75% of the polarization peak.The solid contour levels indicate total
intensity at25%, 50%, and 75% of the peak brightness.The top row shows
images without derotation, and the middle row shows images with a derotation
of 46.0 deg to account for Faraday rotation. Bottom: total intensity is indicated
in solid colored contours at 25%, 50%, and 75% of the peak brightness, and the
Stokes brightness is indicated in the diverging colormap, with red/blue
indicating a positive/negative sign.
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counterclockwisehandednessafter derotating by the
apparent RM,or clockwise without derotating.

Before exploring more physically complete GRMHD models,
we demonstrate that each of these features can be understood in
the context of simple analytic models.

3.1. One-zone Modeling
We use the basic assumptions described in PaperV that

Sgr A* is an accreting BH with extremely small Eddington ratio
and follow M87 * Paper VIII to include polarimetry. This
polarized one-zonemodel validates the more complicated
numerical models shown later in this paper and offers a natural
explanation for the high polarization fraction of Sgr A* relative
to M87* .

We model the accretion flow around Sgr A* as a uniform
sphereof plasma with radius r = 5 rg, where rg = GM/c 2,
comparable to the observed size of Sgr A* at 230 GHz
(Papers III and IV),with uniform magnetic field oriented ata
fiducial 60° inclination relative to the line of sight. The
outcomes of our one-zone modeldepend only weakly on the
field orientation. Note that the plasma velocity and the
gravitational redshift are neglected.

In Paper V, we assumed that the plasma is optically thin, the
ion−electron temperature ratio is 3, the ions are subvirial by a
factor of 3, and plasma β ≡ Pgas/P mag= 1. Adopting the
observational flux constraint Fν = 2.4 Jy (Wielgus et al. 2022a),
we obtained the self-consistentsolution ne ; 10 6 cm−3 and
B ; 29 G. Using this solution,we can estimate the strength of
the Faraday rotation at 230 GHz with the optical depth to
Faraday rotation Vt r :

⎜ ⎟
⎛
⎝

⎞
⎠

r
r

r
0.98

5
, 7V

g
V ( )t r» ´r

where ρV is the Faraday rotation coefficient(e.g., Jones&
Hardee 1979). In contrast, similar modeling arrived at

r r5.2 5 gV ( )t ~r for M87* (M87* Paper VIII). The value
inferred for Sgr A* suggests thatthe internalFaraday rotation

may not be negligible (see also Wielgus et al. 2024), but it also
may not necessarily lead to substantial depolarization.

By including optical depth effects and using the Dexter
(2016) polarized synchrotron emission and transfercoeffi-
cients, we relax some assumptions,such as ion−electron
temperatureratios and virial factor, and plot the allowed
parameter space as in M87* Paper VIII. Specifically,

1. we relax the flux constraint to 2 Jy < Fν < 3 Jy to include
the effect of variability; and

2. we require the same assumption thatSgr A* is optically
thin, i.e., τ < 1.

The above requirements are marked by the gray and green
regions in Figure 2,respectively.The magnetic field strengths
are shown as red dotted contour lines, and the different panels
assumedifferent plasma β. In blue, we plot the contour
corresponding to 2

Vt p>r , beyond which internal Faraday
depolarizationbecomesincreasingly important. Unlike for
M87* (see Figure 2 of M87* PaperVIII), we find that the
regions where the totalflux and optically thin constraints are
satisfied only occur in Faraday thin regions of parameter space.
We note that this is compatible with multifrequency RM
measurementsthat suggest 1

V
t ~r (Wielgus et al. 2024).

Again, this is enough to noticeably rotate the EVPA pattern,
but not enough to cause substantial depolarization.

In summary,the total flux and optical depth constraints of
Sgr A* naturally require small Faraday depths,which explains
the large inferred values of 〈|m|〉.

3.2. Ordered Polarization: Ordered Fields
Because beam depolarization can only decrease the observed

polarization fraction, measurements of the linear polarization at
varying angular scales provide information about the degree of
order in the underlying polarization. A priori, it could be
possible thatthe the underlying magnetic field is significantly
tangled on scales much smaller than the beam.However,the
combination of unresolved (mnet≈ 0.07) and EHT-resolved
(〈|m|〉 ≈ 0.25) linear polarization measurements constrains the
degree of order in the true,underlying polarization pattern on

Figure 2. Allowed parameter space in electron number density (ne) and dimensionless electron temperature (Θe) for the one-zone model described in Section 3.1. The
panels correspond to different assumed values of plasma β = Pgas/P mag. We require that the total flux density 2 Jy < Fν < 3 Jy (gray region) and optical depth τ < 1
(green region). Corresponding magnetic field strengths are shown as red dotted lines. In blue, we plot the Faraday thick region,2Vt p>r . Unlike for M87* , we find
that the model is Faraday thin wherever there is intersection between our two constraints.
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scales smaller than our beam size, disallowing significant
spatially unresolved disorder.

As a simple toy model, we analyzed a thin, circular ring with
polarization confined to two azimuthal Fourier modes,labeled
with index ℓ.155 First, we include a constant (ℓ = 0) mode that
defines mnet. We fix the amplitude of this mode to be 0.07 to
match unresolved observationsof Sgr A* . Next, we add a
second mode with varying index ℓ > 0 and an amplitude of 0.7,
similar to the peak fractional polarization expected for
synchrotron emission.By varying ℓ, we can crudely assess
the allowed degree of coherence in the polarization of Sgr A*.

Figure 3 shows the resolved fractionalpolarization 〈|m|〉 at
an angular resolution of 20 μas as a function of the secondary
mode index ℓ. Both a perfectly ordered polarization field (ℓ = 0)
and a highly disordered polarization field (ℓ ? 1) will have
mnet≈ 〈|m|〉. For the former,there is no beam depolarization;
for the latter, the beam depolarization eliminates all small-scale
polarized power, even at the resolution of the EHT. Hence, the
high value of 〈|m|〉 relative to m net that we observeis a
powerful diagnostic of coherent polarized structure.

As expected, small values of ℓ produce resolved polarization
fractions that are too high, while large values of ℓ produce
resolved polarization fractions thatare too low. Many effects
that are notincluded in this toy modelcould further decrease
the resolved fractional polarization—theamplitude of the
small-scale polarization structure could be significantly less
than the synchrotron maximum (e.g.,from optical depth or
Faraday depolarization), there could be a mix of more than two

modes,and there could be radial polarization structure that
causes beam depolarization.Hence,this example provides a
conservative lowerlimit on the scale of coherentpolarized
structure.To be consistentwith our measurements of Sgr A* ,
we require ℓ  4,corresponding to structure on angular scales
of 5 20 asℓ gq q m» »

p . Here θg = r g/d, where d is the distance
and 5θg is the approximate radiusof the emission ring in
Sgr A*. Hence,even withoutdetailed modeling,we anticipate
that the underlying polarization in Sgr A* is highly ordered,
with significant power on azimuthal scales of θ ≈ 4M or more.
That is, the large resolved polarization fraction implies relative
order of the magnetic field pattern on scales below the
beam size.

3.3. Decoding the Polarization Morphology
Semianalyticmodels enable computationally inexpensive

investigation of the effects of model parameters on images. For
example,semianalytic models of radiatively inefficientaccre-
tion flows have been used for decades to gain tractable yet
physically motivated insightsinto accretion flows (Bromley
et al. 2001; Broderick et al. 2009, 2011, 2014, 2016; Pu et al.
2016; Pu & Broderick 2018; Vincent et al. 2022). Here we
explore a very simple model, KerrBAM (or Kerr Bayesian
Accretion Modeling), a semianalyticmodel for equatorial,
axisymmetric synchrotron emission around a Kerr BH
(Palumbo etal. 2022). This modeling framework carries out
ray-tracing in a Kerr spacetime to produce a modelimage
assuming an equatorial ring of emission with a specified fluid
velocity, magnetic field geometry,and radial emission profile.
Here we use this simple model to illustrate the effects of
inclination and spin on polarized image structure.

As our starting point, we average156 magnetic fields and
velocity fields in three KHARMA GRMHD simulations (to be
discussed in Section 4) in both time and azimuth. We specify a
ring of emission centered at a radius of 6rg and use the values
of the fluid velocity and magnetic field extracted from the
GRMHD midplane at this radius.157 To give the emission ring
a realistically finite width, the emission is spread in a Gaussian
spanning approximately 4rg–8rg, keeping the velocity and
magnetic field vectors constant.With these values,KerrBAM
is able to capture the effects of beaming,frame dragging,and
lensing on the resultantimage.Note thatthis modelexcludes
the likely contribution of emission off the midplane (e.g.,
Falcke et al.1993; Markoff et al.2007).

For three different magnetically arrested disks (MADs) with
spins of 0, +0.5, and +0.94, we plot severalpolarimetric
quantities of interest (leftmost column) and their model images
(subsequent columns) in Figure 4. Along with the polarimetric
observables, we overlay our constraints in gray, where for ∠β2
the range without RM derotation is shown as a hatched region.
Since this modelplaces emission exactly atthe midplane by
construction,images produced at inclinations too close to 90°
are misleading and thereforenot included. The KerrBAM
prescription doesnot include Faraday effects,only crudely
modeling optical depth (in this case applying a midplane-
normal crossing opticaldepth τ⊥ = 0.5 applied uniformly to

Figure 3. The combination of unresolved (mnet) and EHT-resolved (〈|m|〉)
linear polarization measurements (at 20 μas resolution) constrains the degree of
order in the underlying polarization image. In this schematic example,a
polarized m-ring has a fixed netpolarization,mnet≡ 0.07 (denoted with the
black dashed line),together with a single strongly polarized mode athigher
order, ℓ, that controls the degree of disorder. For small values of ℓ, the resulting
image is too ordered,with 〈|m|〉 exceeding our observed value forSgr A*

(denoted with the upperyellow band). For large values of m, the resulting
image is too disordered, with beam depolarization eliminating the highly
polarized image structure.In this example, the fields must be substantially
ordered to be consistent with our observationsof Sgr A* , with polarized
structure that is coherent on scales of the ℓ ≈ 4 mode, corresponding to angular
scales of θ ≈ 4θg ≈ 20 μas.

155 This toy model is equivalent to the “m-ring” model used in Paper VII, but
we label with the index “ℓ” here to avoid ambiguities.

156 Ratherthan four-vectorcomponents,we average the Hodge dualof the
Faraday tensor and then reconstruct the averaged magnetic field vector from the
condition bμuμ = 0.
157 The velocity is computed in the frame of the zero angularmomentum
observer in Boyer–Lindquist coordinates, while the magnetic field is computed
in the fluid frame.
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 ,  , and  ) and assuming a prespecified emission model
confined to the midplane, so detailed agreementwith the
GRMHD models is neither expected nor achieved.Never-
theless, this model is useful for understandingseveral
qualitative trends in our GRMHD library that are successfully
reproduced.

First, the net polarization is minimized at low inclination,
since the symmetry of the accretion flow causes cancellation of
polarization in the integrated image. The amplitude of the
rotationally invariant mode β2 is always high, due to the
underlying azimuthal symmetry of the system. Meanwhile, the
amplitude of |β1| is stronger at higher inclinations, as it is
sensitive to asymmetries in the polarized image.Finally, we

highlight the spin dependence of∠β 2, which this modeling
demonstrates is driven by the evolution of the magnetic field
and velocity structure in the GRMHD simulations due to frame
dragging (see also Ricarte et al. 2022; Chael et al. 2023; Emami
et al. 2023b).The a* = 0 model has ∠β2 ∼ −180°, corresp-
onding to a very toroidal EVPA pattern and thus radial
magnetic fields.Meanwhile, the higher spin models acquire
−180  ∠β2  0 owing to their more spiralEVPA structures.
Interestingly,∠β 2 remains strikingly stable with inclination,
although the overall image structure appears to evolve
substantially by eye.

This exploration shows that some of the most salient
qualitative features of the polarized image can be traced back

Figure 4. Left column: image quantities determined from simplified analytic KerrBAM models evaluated using MAD GRMHD fluid velocities and magnetic fields of
three spins. In this and subsequent figures, we plot our observational constraints as gray bands for reference, with the ∠β2 constraint prior to RM derotation shown as a
hatched region. We use this model to understand key trends, but we caution that more physically complete GRMHD models are necessary for quantitative comparison.
Right three columns: corresponding KerrBAM images evaluated at four example inclinations.
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to fundamental properties of the fluid and spacetime (magnetic
field geometry and spin) without necessarily invoking more
uncertain aspects of GRMHD models such as Faraday rotation,
the electron-to-ion temperature ratio, and the electron distribu-
tion function. However, more physically complete calculations
with GRMHD simulations that include these effects self-
consistently are still necessary for quantitative comparison.

4. GRMHD Models
While semianalytic models provide qualitative insights and

intuition about BH accretion flows, they do not enforce
conservation laws or capture time-dependent phenomena such
as turbulence and shocks that play a crucial role in
determining the detailed system structure.Thus, we generate
dynamical source models using numerical ideal GRMHD
simulations.A fluid approximation would appear to conflict
with the fact that the rate of Coulomb collisions is small,
leading to mean free paths well exceeding the system size,
implying that a collisionless kinetic treatmentof the plasma
may be necessary (Mahadevan & Quataert1997). However,
kinetic instabilities can produce small-scale inhomogeneities
in the magnetic field that produce an effective collisionality
through particle–wave interactions (Kunz et al. 2014;
Riquelme et al. 2015; Sironi & Narayan 2015; Meyrand
et al. 2019). We implicitly assume thatradiative effects like
cooling are not dynamically important for the fluid evolution.
This assumption is well motivated given the low accretion
rate of Sgr A* ,M M10 6

Edd - , for which the radiative cooling
timescale is long compared to the accretion timescale (Dibi
et al. 2012; Ryan et al. 2017; Chaelet al. 2018; Porth et al.
2019; but see also Yoon et al.2020).

In Paper V, to compare with total intensity EHT and
multiwavelength constraints, we generated a suite of
GRMHD-derived images sampling a range ofinitial condi-
tions and parameterizations ofthe electron temperature and
distribution function. We simplify our exploration in this
work, limiting ourselves to simulations with untilted torus-
like initial conditions, relativistic thermal electron distribution
functions (eDFs) lacking nonthermal contributions, and
electron temperatures prescribed via the Mościbrodzka etal.
(2016) R − β prescription (see Equation (8) below). The
properties of our GRMHD simulations are summarized in
Table 2. Radiative transferis integrated within a radius of
100rg, explicitly ignoring material in highly magnetized
regions with σ ≡ b 2/ρ > 1, within which mass density is
artificially injected to keep the simulation stable.We briefly
test the impact of our choices of outer integration radius, the σ
cut, and the eDF in Appendices D–F, respectively.While
departures from these assumptions are both interesting and

physically justified, we defer a thorough investigation of these
topics to future work.

Our GRMHD library samples a five-dimensionalparameter
space.The first parameteris the magnetic field state,either
an MAD model (Bisnovatyi-Kogan & Ruzmaikin 1976;
Igumenshchev et al. 2003; Narayan et al. 2003; Tchekhovskoy
et al. 2011) or a standard and normal evolution (SANE) model
(De Villiers et al. 2003; Gammie etal. 2003; Narayan etal.
2012; Sądowski et al.2013).These describe models in which
the magnetic flux threading the horizon for a given accretion
rate has saturated and become dynamically important(MAD)
or not (SANE). The second is the BH spin, which we denote as
a* ä [ − 1, 1], where a negative sign indicates a retrograde disk
with respect to the spin vector.Third is the inclination,which
uniformly samples i ä [0°,180°], instead of only i ä [0°,90°]
as probed in Paper V, because Faraday rotation and emission of
circular polarization break the symmetry when polarization is
considered.Our fourth parameter is Rhigh, which sets the
asymptotic value of the ion-to-electron temperature ratio as
plasma β → ∞ (Mościbrodzka et al.2016).Specifically,

T

T
R R1

1 1
, 8i

e
low 2 high

2

2 ( )
b

b

b
=

+
+

+

where Ti and Te are the ion and electron temperatures,
respectively. While the potential importance of electron cooling
for M87* motivated models with cooler electrons,Rlow = 10,
here we only consider Rlow = 1 owing to the much smaller
Eddington ratio of Sgr A* . Finally, our fifth parameter is the
magnetic field polarity with respect to the angular momentum
vector of the disk, either aligned or reversed, which affects the
direction of Faraday rotation and the handedness of circularly
polarized emission.This last degree of freedom only matters
for polarized radiative transfer and was ignored in Paper V. We
produce a library of imagesfor each combination of these
parameters,tabulated in Table 3.

Table 2
Summary of the Sgr A* GRMHD Simulation Library Used in This Work

Setup GRMHD GRRT a* Mode Γad tfinal rout Resolution

Torus KHARMA IPOLE 0, ±0.5, ±0.94 MAD/SANE 4
3

4
3

50,000 1000 288 × 128 × 128
Torus BHAC RAPTOR 0, ±0.5, ±0.94 MAD/SANE 4

3
4
3

30,000 3333 512 × 192 × 192
Torus H-AMR IPOLE 0, ±0.5, ±0.94 MAD/SANE 13

9
5
3

35,000 1000/200 348/240 × 192 × 192

Note. The last column is N1 × N 2 × N 3, with coordinate x1 monotonic in radius, x2 monotonic in colatitude θ, and x3 proportional to longitude f. Times are given in
units of tg and radii in units of rg. Different settings may be adopted for MAD models compared to SANE ones,as denoted by a /.

Table 3
Summary of Parameters Sampled by Our GRMHD Libraries

Parameter Values

Magnetic field state MAD, SANE
a* −0.94, −0.5, 0.0, 0.5, 0.94
i (deg) 10, 30, 50, 70, 90, 110, 130, 150, 170
Rhigh 1, 10, 40, 160
Magnetic field polarity Aligned, Reversed

Note. We coarsely sample a five-dimensionalparameterspace.For each
combination of parameters and for each of the KHARMA and BHAC codes, we
ray-trace the equivalent of 10 nights of observations.
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We retain the use of multiple codes to assessnumerical
systematic differences. For scoring, we generatelibraries
spanning 15,000tg (tg ≡ r g/c), equivalent to about 10 8 hr
nights of observation for the parameter combinations listed in
Table 3 using two code combinations:KHARMA 158 (Prather
et al. 2021) + IPOLE159 (Mościbrodzka & Gammie 2018) and
BHAC160 (Porth et al. 2017; Olivares et al. 2019) +RAPTOR161

(Bronzwaer et al. 2018, 2020), where the first and second codes
in each pair correspond to GRMHD and GRRT,respectively.
As a further consistency check,a third set is generated with
H-AMR162 (Liska et al. 2022) +IPOLE for a subset of parameter
space (only i � 90°, aligned fields,and 5000tg) that we do not
use for scoring.

Each simulation is initialized with a torus of gas in constant
angular momentum hydrodynamic equilibrium (Fishbone &
Moncrief 1976). These tori are perturbed with a weak, poloidal
magnetic field.The simulations vary in their initial radius of
maximum pressure (from ∼15rg to 40rg) and adiabatic index,
Γad. Codesdiffer in their choice of Γad because Γad= 4/3
applies to a fluid of relativistic electrons and Γad= 5/3 applies
to a fluid of nonrelativistic ions, but only one fluid is evolved in
these models. Depending on the torus size and initial magnetic
field configuration,the simulations develop into an MAD or
SANE state (see,e.g.,Wong et al.2022).

In Figure 5, we plot a selection of time-averaged GRMHD
snapshots from our library,blurred to EHT resolution using a
Gaussian convolution kernel with an FWHM of 20 μas. In the
left panelof each setwe plot total intensity in gray scale and
the resolved linearpolarization as colored ticks.In the right
panel of each set, we plot the circular polarization from blue to

red with total intensity contours.Each panel is individually
normalized such that the color maps span from 0 to themax( )
on the left and max(∣ ∣) on the right. Each of these models is
an MAD a * = 0.94, Rhigh= 40 aligned field simulation,
computed with different codes as indicated above.

The codes exhibitagreementin terms of total intensity and
polarized morphology butdiffer somewhatin the degree of
polarization. As the inclination grows, the total intensity image
becomes more asymmetric owing to Dopplerbeaming (e.g.,
Falcke etal. 2000; Medeiros etal. 2022; Paper V).The same
holds true for the polarization,which is further affected by a
Faraday depolarization gradient (see Appendix A.3). The
magnetic field geometry as sampled by deflected lightrays is
encoded in the image of circular polarization.In particular,
edge-on images in circular polarization exhibit sign inversions
along both a horizontal and vertical axis due to flips in the line-
of-sight magnetic field direction,and this signal disappears as
the viewing angle decreases (Ricarte et al. 2021; Tsunetoe et al.
2021).

5. GRMHD Model Scoring
We introduce a novel methodology to score each ofour

GRMHD models using the eight polarimetric constraints in
Table 1. Our new scoring scheme acts on time-averaged
GRMHD images and attempts to accommodate variations
between codes.Note that we only include quantities inferred
from our polarimetric images in these constraints,but we will
discuss comparisons with totalintensity and multifrequency
constraints derived in Paper V.

1. First, each modeltime series of images is splitinto 10
windows, each with 1500 M duration. Within each
window, we produce a time-averaged image by averaging
each of the Stokes parameters. Then, we blur the average
image with a Gaussian kernel with an FWHM of 20 μas
and compute each of the eight observables for scoring.

Figure 5. Gallery of example time-averaged simulations in our library. Each panel displays a time-averaged and blurred (with a 20 μas FWHM Gaussian kernel) MAD
a* = 0.94, Rhigh = 40 aligned models at three different inclinations. The first panel of each set displays total intensity and linear polarization, while the second panel of
each setdisplays total intensity and circularpolarization.Tick lengths scale the totalpolarized flux density in a given pixel, while their colors scale with the
polarization fraction.H-AMR models are ray-traced only for a subset of models for comparison and are not used for scoring.

158 https://github.com/AFD-Illinois/kharma
159 https://github.com/moscibrodzka/ipole
160 https://bhac.science
161 https://github.com/jordydavelaar/raptor
162 https://www.matthewliska.com/home-1/project-four-zng9g-rd5bb
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2. For each combination of parameters,we combine the
values of the observables predicted by the KHARMA and
BHAC codes. Since there are 10 windows and two sets of
codes,this results in 20 different samples.From these
values, we compute the 90% quantiles163 of each
observable to capture the time variability.

3. A model passes an individual observational constraint if
there is overlap between its 90% quantile region and that
of the observations. A model passes a set of observational
constraints if it passes allof the constraints in the set
simultaneously.

The most important differencescompared to the scoring
system utilized in Paper V are that this new system operates on
time-averaged images and combines the results from multiple
codes into a single theoreticalrange.We tested performing
scoring using only one simulation set at a time. Since
KHARMA model electron temperatures are assigned system-
atically hotter than those of the BHAC models (see
Appendix H), KHARMA passes models with larger Rhigh.
There is more disagreementbetween the codesfor SANE
models than for MAD models.The constraints with the most
disagreementbetween the two codes are ∠β2, |β2|/|β 1|, and
mnet, with the KHARMA simulations ruling out more SANE
models than the BHAC simulations in each case.

Each of the observational constraints has known connections
with the underlying physics. For brevity, we defer a
pedagogicalexploration of how each of our free parameters

is imprinted onto the observables to Appendix A.We study
how each individual constraint affects model selection in
Appendix B. Here we summarize the highest-levelscoring
results,first excluding ∠β2 and then including ∠β2 either as
observed or after performing RM derotation.

5.1. Constraints Independent of RM
In Figure 6, we plot a pass/fail table combining all

polarimetric constraints,with the exception of ∠β 2. These
plots combine both polarities of the magnetic field,showing a
pass as long as either polarity passes. These tables are slightly
but not systematically different as a function of magnetic field
polarity.

We find that the tight constraint on 〈|m|〉 (24%–28%) is the
most powerful, driving most of the trends shown in this figure.
It is much more constraining on parameter space than mnet, for
which a much larger range (2.0%–7.3%) is allowed.The |β2|
constraint rules out a few additional typically edge-on models,
but it does not provide too much more additional constraining
power because 〈|m|〉and |β2| are correlated.Without ∠β 2,
Figure 6 reveals no significant preference between i > 90° and
i < 90° models.

While our total intensity constraints generally favored larger
values of Rhigh (due largely to multiwavelength constraints;
Paper V), our polarimetric constraintsusually prefer more
moderate values. This is because larger values of Rhigh usually
lead to larger internal Faraday rotation depths (see
Appendix A.4), which is the most important physicaldriver
of depolarization in our models. However, an interesting trend
with respect to spin allows one of the best-bet models of
Paper V to continue to pass with Rhigh= 160. This is the MAD
a* = 0.94, Rhigh= 160, i = 30°/150° model. MAD models
with larger spin have smaller Faraday rotation depths(see

Figure 6. Combined polarimetric constraints on the GRMHD modellibrary excluding ∠β2. Orange models fail,green models pass atboth the given and its
supplementary angle, and blue regions only pass with the given or supplementary angle as indicated. SANE models are plotted on the top half, and MAD models are
plotted on the bottom half. Different columns correspond to different spins from −0.94 to 0.94. Within each wedge, the radial direction corresponds to Rhigh and the
azimuthal direction corresponds to observer inclination.

163 For ∠β2, to evade problems with phase wrapping, we translate angles into
unit vectors in the complex plane centered at 0 before computing 90% quantiles
and then translate back.If the magnitude of the mean of these unit vectors is
less than 0.05, we set the lower and upper ranges of ∠β2 to −180° and 180°,
respectively. This occurs predominantly when a model is so depolarized that its
∠β 2 is approximately uniformly distributed.
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Appendix H), allowing them to pass the 〈|m|〉 constraintfor
larger values of Rhigh. We refer readers to Appendix B for a
more detailed breakdown of each constraint considered
individually.

5.2. Constraints Including ∠β2 without RM Derotation
First, we discuss the ∠β2 constraint if RM derotation is not

performed. It is possible that the RM may be attributed entirely
to Faraday rotation captured within our simulation domain.
GRMHD models are capable of producing the correct
magnitude of RM from Faraday rotation on event horizon
scales,but they tend to produce RM sign flips that are not
consistentwith decades of Sgr A* observations thatproduce
negative values of the RM (Ricarte et al. 2020; M87*

Paper VII; Wielgus et al. 2024). However,it is possible that
this problem is related to the excess variability in our models
identified in Paper V. We further discussthe uncertainties
surrounding our interpretation of the RM in Appendix C.

If one attributes the RM entirely to internal Faraday rotation,
then our constrainton ∠β 2 spans the interval(125°, 160°).
Adding this constraint to Figure 6 results in Figure 7. A
selection for i < 90° arises because the handednessof the
polarization spiral is opposite that of the magnetic field, which
inherits the handedness of the inflowing and emitting gas (see
Section 3.3 and Appendix A.3).This corresponds to counter-
clockwise motion, which disagrees with hot spot interpretations
of polarized flares both in the near-IR (NIR; GRAVITY
Collaboration et al. 2018, 2020a, 2020b) and in the
submillimeter(Vos et al. 2022; Wielgus et al. 2022b).That
is, consistency with clockwise motion would require
−180° < ∠β 2 < 0° if we assume that ∠β 2 tracesmagnetic
field lines with outgoing Poynting flux (Chael et al. 2023),
which does not agree with the linearly polarized morphology as
observed on the sky.

Without RM derotation,no modelcan simultaneously pass
all total intensity and polarimetric constraints.This is because
the a* = 0.94 best-betmodel of Paper V produces an EVPA
pattern thatis too radial (see Appendix A.2).All models that
pass our polarization constraintsin Figure 7 fail multiple
constraints on the total intensity. In particular, all eight models
shown in Figure 7 produce too much flux in the infrared to
match observations,and all but the SANE model at a* = 0.94
overproduce the X-ray flux (Paper V). Both of these are serious
failures, as both the IR and X-ray fluxes estimated by our
models are lower limits owing to our lack of nonthermal
electrons and smallsimulation domain relative to the X-ray-
emitting area. Five of the models additionally fail to match the
observed size and flux of the source at 86 GHz (Issaoun et al.
2019).All of these models also fail at least one total intensity
structuralconstraint(m-ring and visibility amplitude morph-
ology tests in Paper V). In conclusion, we cannot find a
concordance model of Sgr A* without RM derotation.

5.3. Constraints Including ∠β2 with RM Derotation
Alternatively, in this section we interpret the mean RM as an

external Faraday screen, motivating derotation. As discussed in
Section 2,∠β 2 depends on twice the RM,for which a mean
value of RM 4.65 10 rad m1.18

1.25 5 2á  = -ñ ´-
+ - has been

obtained. This potentially results in a shift in ∠β 2 of
2 RM 92.02

23.4
24.7lá ñ = - -

+ deg if this RM is interpreted as an
external Faraday screen.In this picture, a relatively stable
external screen explains the constant sign of RM that has been
observed for decades (nevertheless with variation on the order
of ∼105 rad m−2). Then, an additional componenton event
horizon scales,which is already included self-consistently in
our models,explains the subhour time variability.

If one attributes the mean RM of a given day entirely to an
external screen, then our constraint on ∠β2 spans (−168°, −85°).

Figure 7. Same as Figure 6, but including the constraint on the phase of β2 without RM derotation. Only models with counterclockwise motion (i < 90°) pass. There is
no model that passes all polarimetric and total intensity constraints utilized in Paper V.
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Adding this constraint to Figure 6 results in Figure 8. Performing
this cut requiresinclination angles >90°, correspondingto
clockwise motion on the sky, which now agrees with the
aforementioned models of polarized NIR and submillimeter flares.

With RM derotation, one of the best-betmodels from our
total intensity analysis passes allapplied total intensity and
polarimetric constraints. This is the MAD a* = 0.94,
Rhigh= 160, i = 150° aligned model. The second best-bet
model from Paper V had a * = 0.5 and otherwise identical
parameters.This second modelpasses allconstraints except
〈|m|〉, which it underproducesby ∼3%. In order for the
a* = 0.94 best-bet model to pass, at least 97% of the measured
RM must arise from an externalscreen.Notably, the best-bet
model fails if the smaller RM measured at 86 GHz a few days
prior, (−2.14 ± 0.51) × 105 rad m−2 (Wielgus et al. 2024), is
instead interpreted as the external screen.

In Figure 9,we visualize the best-bet model (BHAC shown)
that survives with RM derotation.In the left two columns,we
plot its full polarimetric image in the style of Figure 5. No
blurring is applied in the leftmost column, and a 20 μas FWHM
Gaussian kernelis convolved with the image in the second
column to approximate EHT resolution.This model features a
bright photon ring, and in our image without blurring, we omit
total intensity contours from the circularpolarization map to
reveal a photon ring sign inversion (discussed in Mościbrodzka
et al. 2021; Ricarte et al.2021).

On the right, we produce a map of the density of the
observed emission in the equivalent KHARMA simulation
(using Kerr–Schild coordinates).The emission density map is
normalized such that its peak value is unity, and it is visualized
in logarithmic scale with 3 orders of magnitude in dynamic
range.Our line of sight is indicated by the green arrow, and a
white contour encloses 90% of the total emission. This reveals
that while the emission is peaked at small radius near the disk
midplane, a substantial fraction of the emission originates from

a more diffuse jet funnel region. Computing an emission-
weighted characteristic emission radiusx x dV dV¯  ò òº ,
where ò is the emission density and x is the radius in cylindrical
coordinates,we find x 7.3¯ = . We note that our choicesto
include only thermal electron distribution functions and cut out
regions with σ > 1 in this work minimize the potential
contribution of a jet to the total emission (e.g.,Figure 12 of
Fromm et al. 2022). A significant jet componentmay be
necessaryto reproduce the flat spectral index at these
frequencies(Falcke et al. 1993; Falcke & Markoff 2000;
Mościbrodzka & Falcke 2013).

At a radius of 7.3rg, we compute a mass-weighted average
magnetic field strength of26 G4

3
-
+ , where the range quoted here

corresponds to the 16th to 84th percentile values obtained in
the time series. This value agrees reasonably well with the one-
zone model discussed in Section 3.1, although we note that this
value evolves substantially with radius,reaching67 G9

8
-
+ at a

radius of 4rg and560 G80
80

-
+ at the horizon.

This modelproduces an outflow power of 4 × 1038erg s−1

and has an accretion rate of 5 × 10−9 Me yr−1. This model has
a very large jet efficiency of approximately 150% powered by
the Blandford & Znajek (1977) mechanism.Yet despite its
efficiently, the jet’s power is not high enough to expect global
effects on the evolution of our Galaxy (e.g.,Su et al.2021).

6. Discussion and Conclusion
The first polarized image of Sgr A* on event horizon scales

exhibits a high resolved polarization fraction of 24%–28% and
an ordered, rotationally symmetric EVPA pattern. Through
semianalytic arguments and comparisons to GRMHD simula-
tions,we come to the following conclusions:

1. The large resolved polarization fraction implies thatthe
magnetic field on eventhorizon scales cannotbe very
tangled on scales smallerthan beam,nor can Faraday

Figure 8. Same as Figure 6, but including the constraint on the phase of β2 with RM derotation. Only models with clockwise motion (i > 90°) pass. A best-bet model
from Paper V passes all total intensity and polarimetric constraints: MAD a* = 0.94, Rhigh = 160, i = 150° aligned.
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rotation add too much additionaldisorder to the EVPA
structure.The disparity between the spatially resolved
(24%–28%)and unresolved (2.0%–7.3%)linear polar-
ization fractions can be attributed to cancellations due to
the symmetric nature of the image.

2. Driven mostly by the spatially resolved polarization
fraction, our constraints strongly favor MAD models over
their SANE counterparts,as in M87* Paper VIII.

3. If we rely on internal Faraday rotation to produce the
observed RM and do not perform derotation, then there is
no model that passes alltotal intensity and polarimetric
constraints.

4. On the other hand, if we assume thatthe RM can be
attributed to an externalscreen and derotate the EVPA
pattern,then we find one modelthat passes allapplied
total intensity and polarimetric constraints: MAD
a* = 0.94, Rhigh= 160, i = 150° aligned.

While our ideal GRMHD simulations containing only
thermal electron distributions have done remarkably wellat
reproducing many of the observed quantities of Sgr A* , they
nevertheless have many known imperfections.Most of these
models overestimate time variability, including the best-bet
model (Paper V), and we caution that the values inferred from
our best-bet model should not be interpreted as measurements.
Known areas where these simulations can be improved include
the following:

1. Initial Conditions: All of our simulations are initialized with
tori that are either perfectly aligned or antialigned with the
BH angular momentum axis.Simulations feeding the BH
via stellar winds have differentvariability characteristics
(Murchikova etal. 2022) and can self-consistently predict
an externalFaraday screen (Ressleret al. 2019, 2023).

Tilted disk models (e.g.,Fragile etal. 2007;Liska et al.
2018; Chatterjee et al. 2020) may lead to different Faraday
rotation characteristicsowing to their geometry atlarge
radii.

2. Electron Thermodynamics:The Mościbrodzka et al.
(2016) prescription that we adopt to set the electron
temperature broadly captures the trends seen in kinetic
simulations that explicitly model heating and cooling
(e.g., Chael et al. 2018; Dexter et al. 2020; Mizuno et al.
2021; Dihingia et al. 2023) but does not reproduce them
in much detail. More generally, a nonthermal contribution
to the electron distribution function is believed to be
necessary to reproduce the spectralenergy distribution
(Özel et al. 2000; Markoff et al. 2001; Davelaaret al.
2018) and is naturally predicted by particle-in-cell
simulations (Kunz et al. 2016; Ball et al. 2018).
Nonthermal electron distribution functions can have
significantimpacts on both totalintensity and polarized
properties (e.g.,Markoff et al. 2001; Mao et al. 2017;
Davelaaret al. 2018; Cruz-Osorio etal. 2022; Fromm
et al. 2022; PaperV) and are a promising avenue to
continue theoretical exploration.

3. Plasma Composition: Wong & Gammie (2022) demon-
strate thatmodels fed by helium rather than hydrogen
may have substantially differentemission morphologies,
tending toward higher temperatures and lower densities
and thus higher polarization fractions.Meanwhile, the
presence of electron–positron pairs can significantly alter
Faraday effects,leading to potential signatures in both
linear and circular polarization thathave notbeen fully
explored (Anantua et al. 2020; Emami et al. 2021, 2023a;
M87* Paper IX).

Figure 9. The best-bet model of Sgr A* : MAD a* = 0.94, Rhigh = 160, i = 150° aligned. In the left two columns, we plot its simulated image in the style of Figure 5.
Images in the first column are unblurred, and images in the second column are blurred with a Gaussian with an FWHM of 20 μas, approximating EHT resolution. In
the right panel, we provide a map of the emission in this model. The white contour encloses 90% of the total emission, the dashed white circle demarcates the horizon,
and the green arrow indicates our viewing angle. While the emission peaks close to the BH in the midplane, a significant fraction of emission originates from a more
diffuse region,including the jet sheath.
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Several ongoing developmentswithin the EHT will be
impactful for testing our present interpretation, especially
explorations in time and frequency.An effort is ongoing to
produce dynamical movies of Sgr A* , despite the challenges of
very sparse snapshot(u,v) coverage (Tiede etal. 2020; Farah
et al. 2022; Levis et al. 2023).Measurements of the apparent
angular velocity or potentially the motion of hot spots will
provide additional constraints on spin and inclination (Wielgus
et al. 2022b; Conroy et al. 2023). The dynamic reconstruction
and geometric modeling ofthese data by Knollmüller et al.
(2023) are consistentwith the inferred inclination and clock-
wise motion of our best-betmodel. On longer timescales (of
years), it will be important to obtain averages of quantities such
as ∠β2, which varies little in our models owing to its tight link
with BH spin.

In the frequency domain,future EHT data sets will include
345 GHz data.The wavelength dependence ofthe scattering
screen toward the Galactic center inhibits imaging of Sgr A* at
lower frequencies below 86 GHz (Johnson et al. 2018; Issaoun
et al. 2019, 2021). On its own, a 345 GHz polarized image
would already strongly mitigate one of our largestsystematic
uncertainties, the RM; the total EVPA rotation would decrease
by a factor of 2, as it is proportional to ν−2 . These images will
also have intrinsically higherresolution by a factor of 50%.
Simultaneous dual-band observations could enable the produc-
tion of RM maps, which would be our best tool for
characterizing the Faraday screen and disambiguating our
approach to derotation.If the RM truly originates from an
external Faraday screen and the emission origin does not
significantly change,then at 345 GHz we should observe a
spatially uniform EVPA rotation of ∼20° clockwise relative to
our 230 GHz image (roughly halfway between the top two
rows in Figure 1). Meanwhile, RM due to internal Faraday
rotation may exhibit more spatial variation and potentially sign
flips owing to turbulence in the inner accretion flow (Ricarte
et al. 2020).

Given the vastnessof parameterand modeling space
available to theoreticalinterpretation,we expectthe polarized
image of Sgr A* to continue to constrain models for many
studies to come.This growing EHT data setwill continue to
challengetheoreticalmodels and provide insights into the
nature of BHs,accretion,and plasma physics.
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Appendix A
Key Trends: Bridging Theory and Observations

Using our GRMHD models,we explore a five-dimensional
parameter space, constrained by eight observable aspects of the
polarized image that we believe are tied to the models in
physically understood ways.Below, we highlight the most
salient trends in our simulated image library to explain their
physical origins. We focus on illustrative examples in this
appendix,but we provide exhaustive distributions ofobser-
vables calculated from our GRMHD models in Appendix H.

A.1. Magnetic Field State
By construction, SANE models have weaker magnetic fields

near the horizon than their MAD counterparts at a given
accretion rate. As a result, once the fluid is rescaled to
reproduce the observed millimeter flux, SANE models usually
have larger mass densities.This translates directly to a larger
Faraday rotation depth, which is directly implicated for
scrambling/depolarizing EHT model images (Mościbrodzka
et al. 2017; Jiménez-Rosales & Dexter2018; Ricarte et al.
2020; M87* PaperIX). Our SANE models are also colder
(PaperV), which further increases the efficiency ofFaraday
rotation (Jones & O’Dell 1977; Quataert & Gruzinov 2000).

In Figure 10, we explore the differences between our MAD
and SANE models with fixed a* = 0.5, Rhigh= 40, i = 50° and
aligned fields. In the top panels, we plot the time-averaged
KHARMA images in total intensity and linear polarization,
blurred to a resolution of 20 μas. In the bottom panels,we
compare differences in resolved linear and circular polarization
fraction, Faraday rotation depth,and β2. In these and the
following plots in this section,we display theoretical error
ranges that are calculated based on differences between codes,
time variability, and nearest neighbors in parameter space. The
details of how these theoreticalerror bars are calculated are
provided in Section 5.

Here we see thatthe SANE model has much lower linear
polarization fraction (〈|m|〉 and |β2|), which can be attributed to
a much larger Faraday depth ( Vtá ñr ).164 Much larger Faraday
depths in SANE models than their equivalentMADs drive
most of the differences between these two classes of models.
SANE models can also produce largercircular polarization
(〈|v|〉) owing to Faraday conversion (M87* Paper IX). Palumbo
et al. (2020) showed that |β2| is a strong discriminant between
MAD and SANE models of M87* . As expected,|β2| is
significantly larger for the MAD model than for the SANE

164 Faraday rotation depth is obtained by integrating the radiative transfer
coefficient of Faraday rotation,ρV, along each geodesic,and then performing
an intensity-weighted average across the image (see,e.g.,M87* Paper VIII).
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model. Interestingly,while SANE models of M87* usually
exhibit ∠β 2 ∼ 0, corresponding to radialEVPA patterns,the
EVPA pattern in this SANE model acquires some twist owing
to a tilted forward jet that we view in projection (top left).

A.2. Spin
The BH spin is a particularly interesting quantity to constrain

owing to implications for its cosmic assembly and feedback
processes.A number of EHT-related studieshave recently
explored signatures ofspin, and resolved linearpolarization
structure has been shown to be one of the most promising and
accessible probes(Palumbo et al. 2020; Chael et al. 2023;
Emami et al.2023b; Qiu et al.2023; Ricarte et al.2023).

In Figure 11, we plot the phase and amplitude of β2 as a
function of spin for the subsetof the MAD R high= 10, i =
30°/150° reversed models.The outer accretion disk rotates
counterclockwise on the sky for i = 30° and clockwise on the
sky for i = 150°, which is reflected by the sign of ∠β 2 (or
rather,the sign of its imaginary component).As discussed in
Section 3.3,∠β 2 evolves with spin owing to frame dragging,
which results in changes in the magnetic field and velocity
structure (Palumbo et al. 2020; Event Horizon Telescope
Collaboration etal. 2021b; Ricarte et al. 2022; Chael et al.
2023; Emamiet al. 2023b;Qiu et al. 2023).The mosthighly
spinning prograde models acquire a strong azimuthal magnetic
field component,resulting in more radial EVPA patterns (∠β2
closer to 0°). Finally, |β2| is stronger for symmetric and ordered

progrades than fortheir messierretrograde counterparts (see
also Qiu et al.2023).

A.3. Inclination
The inclination of Sgr A* is of particular interest because its

polarized flaring activity can be interpreted with a polarized hot
spot model that favors a relatively face-on viewing angle
(GRAVITY Collaboration etal. 2020a,2020b;Wielgus etal.
2022b). In addition, it is of interest whether or not the accretion
disk or BH angular momentum axes align with any structure in
its environment.

Inclination is imprinted on the polarized image in a variety of
ways, and we plot most of our polarimetric observables as a
function of inclination in Figure 12. Here MAD a* = 0.94,
Rhigh = 10 models are considered.These modelsproduce
rotationally symmetric images when viewed face-on,and thus
cancellation leads to opposite behavior of mnet and 〈|m|〉, the
latter of which decreases with inclination owing to Faraday
depolarization.Intuitively, |β2|, the amplitude of the rotation-
ally invariant mode, is strongest for face-on viewing angles and
weakestfor edge-on viewing angles.Meanwhile, the asym-
metric β1 mode has the largest amplitude for intermediate
inclinations. The handedness of the linear polarization spiral is
directly encoded in sign Im 2( ( ))b , and thus we see that
∠β 2 > 0° for i < 90° and ∠β 2 < 0° for i > 90°. Finally, vnet is
sensitive to whether the poloidal field is pointed toward us or
away from us,but note that it is not perfectly antisymmetric

Figure 10. Comparison of the MAD and SANE a* = 0.5, Rhigh = 40, i = 50° aligned models (KHARMA images plotted). As in Figure 5,the lengths of the ticks
scale with the polarized flux in each pixel, normalized for each model individually. A selection of polarimetric observables are shown with theoretical error bars, along
with our observational constraints in gray. The constraint on ∠β2 prior to RM derotation is shown with a hatched band instead of a filled band. With other parameters
held fixed, SANE models typically have lowerresolved linearpolarization owing to higherFaraday depths and can sometimes reach large values ofcircular
polarization.Large Faraday depths in SANEs result in lower values of 〈|m|〉 and |β2|.
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about i = 90° owing to contributions from Faraday conversion
(Ricarte et al.2021).

A.4. Rhigh (Electron Temperature)
As described in Section 4, Rhigh sets the ratio of ion-to-

electron temperature as plasma β → ∞ (Mościbrodzka etal.
2016). Increasing Rhigh while fixing all other parameters makes
the electrons of a given model cooler and less efficient emitters.
Thus, models with larger Rhigh tend to have larger values of
when rescaled to achieve the same targetflux. As a result,
increasing Rhigh indirectly increases the Faraday rotation depth
(Mościbrodzka etal. 2017; Jiménez-Rosales & Dexter 2018;

Ricarte et al. 2020; M87* PaperVIII). Increasing Rhigh also
shifts emission away from the midplane and concentrates it
toward the jet funnel region (Paper V; Wong et al. 2022). This
effect is much weaker for MADs than for SANEs, since MAD
models intrinsically have smaller plasma β on horizon scales.

In Figure 13,we plot time-averaged BHAC MAD a* = 0.5,
i = 130° aligned field models as a function of Rhigh, as well as
several of their linear polarization observables.Increasing
Faraday depolarization explains the declines in 〈|m|〉 and |β2|
with Rhigh. The polarization grows more asymmetric as Rhigh
increases,because at this inclination the Faraday thick
midplane is at the top half of the image.This, combined with

Figure 11. Rotationally symmetric linear polarization structure as a function of spin, encapsulated in the phase and amplitude of β2. For this plot, MAD Rhigh = 10,
i = 30°/150° reversed models are included, with either i = 30° in blue or i = 150° in red. Our observational constraints are shown as gray bands, and the constraint
prior to RM derotation is shown as a hatched region. In this slice of parameter space, prograde models with spin values that are too large tend to produce polarization
patterns that are too azimuthally symmetric and radially oriented compared to our observations.

Figure 12. A selection of polarimetric observables plotted as a function of inclination in a slice of our parameter space corresponding to MAD a* = 0.94, Rhigh = 10
reversed models. In very ordered models such as this one, symmetry and cancellation lead to the smallest net linear polarization fractions for face-on viewing angles at
the same time that the resolved linear polarization fraction is highest. In this model, ∠β2 encodes the direction of motion, and vnetencodes the direction of the magnetic
field with respect to the line of sight.
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increased Faraday rotation that slightly turns ticks clock-
wise,165 leads to a shift in ∠β2. In addition, |β2|/|β 1| decreases
as the polarization grows more asymmetric.

A.5. Magnetic Field Polarity
In ideal GRMHD, the equations governing the evolution of a

magnetized fluid are invariantto a sign flip of the magnetic
field direction. However, the equationsof GRRT are not,
leading to potential polarimetric signatures of the poloidal field
direction. When performing radiative transfer, jV (intrinsic
circular polarization of emitted radiation) and ρV (Faraday
rotation) are each sensitive to the direction ofthe field with

respectto the photon wavevector. The historically negative
Stokes V of Sgr A* is suggestive of a magnetic field oriented
away from us. However, M87* Paper IX discusses how flipping
the magnetic field direction can have nontrivialeffects on the
circularly polarized image (beyond a simple sign flip) and
noticeable effectson ∠β 2 due to Faraday effects (see also
Ricarte et al.2021; Emami et al.2023b).

In Figure 14, we highlight the differences between aligned
and reversed field models forthe time-averaged KHARMA
MAD a * = 0.5, Rhigh= 160, i = 130° models.Each modelis
blurred with a 20 μas FWHM Gaussian beam shown in total
intensity and linearpolarization ticks on the leftand circular
polarization and totalintensity contours on the right.We write
∠β2 and vnet for each model in the lower left corner,revealing
significant and unpredictable differences, motivating independent

Figure 13. Time-averaged images and a selection of polarimetric observables as a function of Rhigh, for the slice of our parameter space corresponding to MAD
a* = 0.5, i = 130° aligned models (BHAC images plotted). In this slice of parameter space, Faraday rotation has a clear effect, since increasing Rhigh leads to smaller
linear polarization fractions and correspondingly |β2|. At this inclination, sight lines at the top of the image pass through the Faraday thick-disk midplane, increasing
the polarization asymmetry as Rhigh increases, which is reflected in |β2|/|β 1|. Both line-of-sight Faraday rotation and changing emission regions lead to a trend in ∠β2.

Figure 14. Impact of reversing the polarity of the magnetic field on the time-averaged KHARMA MAD Rhigh = 160, a* = 0.5, i = 130° model. In radiative transfer,
the handedness of Faraday rotation and intrinsic circularly polarized emission flip sign when the magnetic field flipped. This can lead to changes in the morphologies
of both linearly and circularly polarized images.

165 For an aligned field model with i > 90°, the poloidal field is pointed away
from us, leading to a systematic clockwise shift.
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ray-tracing for each magnetic field polarity. In linear polarization,
the difference comes from reversing the direction thatFaraday
rotation shifts the EVPA pattern. The magnitude of this effect is
larger than that reported in M87* Paper IX because M87* models
are oriented almostcompletely face-on,viewed through an
evacuated funnel(Ricarte etal. 2020).Models of Sgr A* can
accumulate largerFaraday rotation depths as radiation passes
through more of the disk at larger inclinations.In circular
polarization, this particular model is mostly characterized by an
overall sign flip, but this is not uniform across the image, leading
to a small difference in vnet. This is because the coefficientof
Faraday conversion, which exchangeslinear and circular
polarization,is invariant to a sign flip in the magnetic field
direction.

Appendix B
Impacts of Individual Observational Constraints

In Section 5, we included a limited selection of plots
reflecting which of our models passed each of the polarimetric
observationalconstraints on Sgr A*. Here we break down the
impact of each constraint individually.

In Figure 15, we plot the impact of our 〈|m|〉 constraint,
which we find is the most important for model selection.
Compared to the other constraints, 〈|m|〉 is measured relatively
precisely and the two methods agree very well.The Faraday
rotation depth explains the trends in this figure (see
Appendix H). More Faraday depolarization tends to occur if
Rhigh is larger, if the inclination is larger, or if the model is
SANE. Of the models that fail the 〈|m|〉 constraint, most are too
depolarized, but some low-Rhigh, high-spin, face-on models are
ruled out for predicting values of 〈|m|〉 that are too large.We
find that 〈|m|〉 is much more constraining than mnet (Figure 16),
which is measured much lessprecisely.Recall that mnet is

substantially lower (and less consistent with the light curve) in
the m-ring model thanTHEMIS. We find that if the higher and
tighter mnet constraintfrom THEMIS had been adopted on its
own, then this would have ruled out many face-on models
(explained in Section 3.3 and Appendix A.3), including the
a* = 0.94 best-bet model.

Our circular polarization constraints are not very impactful.
Our upper limit on 〈|v|〉 rules out no models (Figure 17), as all
GRMHD models produce 〈|v|〉 lower than the upper limit
(similar to M87* Paper IX).Our constrainton vnet is also not
very impactful (Figure 18), but while not visible with our
plotting scheme,it does rule out many retrograde models that
have aligned fields. These models produce preferentially
positive vnet, while decades of Sgr A* observations produce
vnet< 0.

Our constraints on |β1| (Figure 19), |β2| (Figure 20), and
|β2|/|β 1| (Figure 21) are impactful, but they are correlated with
each other and 〈|m|〉. Compared to 〈|m|〉, |β2| additionally rules
out some i = 90° models. The ratio |β 2|/|β 1| is not very
constraining,as mostmodels naturally produce |β2| > |β1|, in
agreementwith the observations.While some methods in
Paper VII produced ratios up to ∼5, which would have pushed
our selection toward more face-on inclinations, the two
methods retained in this paper produced more modestvalues.
Interestingly, a few face-on models are ruled out for being too
dominated by the rotationally symmetric mode.

Finally, we consider the effect of ∠β2 both with and without
RM derotation in Figures 22 and 23, respectively.In either
case, models with preferentially radial EVPA patterns are most
likely to fail, such as face-on prograde MAD models (see
Appendix A.2). With derotation, this constraintproducesa
preference for clockwise motion on the sky (i > 90°). Without
derotation,the opposite is true,and more models failoutright
since the constraint is tighter.

Figure 15. Individual impactof our 〈|m|〉 constrainton modelselection.This tight constraintis our most informative,ruling out models that are either overly or
insufficiently Faraday depolarized.
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Figure 16. Individual impact of our mnet constraint on model selection.This is less impactful than 〈|m|〉,mostly because the allowed range is much larger.

Figure 17. Individual impact of our 〈|v|〉 constraint on model selection,which is treated as an upper limit.All models naturally produce smaller resolved circular
polarization fractions than this constraint.
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Figure 18. Individual impact of our vnetconstraint on model selection. This is not very constraining, but it does rule out models whose distributions of vnetare skewed
toward positive values.

Figure 19. Individual impact of our |β1| constraint on model selection.
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Figure 20. Individual impact of our |β2| constraint on model selection.This observable is correlated with 〈|m|〉 and behaves similarly.

Figure 21. Individual impact of our |β2|/|β 1| constraint on model selection.This only rules out a few face-on models that are too rotationally symmetric.

22

The Astrophysical Journal Letters, 964:L26 (37pp),2024 April 1 The Event Horizon Telescope Collaboration et al.



Appendix C
Rotation Measure

The RM of Sgr A* is a significant systematic uncertainty in our
work, affecting our interpretation of ∠β2. The RM is defined as

RM , C12 ( )c

l
º

D

D

where χ is the EVPA and λ is the wavelength. If the EVPA of
the polarized emission does not intrinsically change with

wavelength (due to optical depth), and the polarized emission is
situated entirely behind a Faraday screen that is uniform
relative to the size of the emitting region, then the RM is related
to a path integral along the line of sight via

f
n B ds
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Figure 22. Individual impact of our ∠β2 constraint with RM derotation.This constraint produces a preference for i > 90°.

Figure 23. Individual impact of our ∠β2 constraint without RM derotation.Compared to Figure 22,fewer models pass and there is now a preference for i < 90°.
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where ne is the electron number density, B|| is the local
magnetic field parallel to the photon wavevector, and
f log 2e e erel

2( ) ( ) ( ) »Q Q Q , a factor causing lower efficiency
as electrons become too relativistic (Jones & O’Dell 1977).If
the two assumptionsabove are correct,then the “intrinsic”
EVPA pattern can be easily recovered by derotating the EVPA
by RMλ2.

Sgr A* has exhibited a constantsign of RM for decades
(Bower et al. 2018), which supports the interpretation ofa
stable external Faraday screen. GRMHD simulations including
RM from event horizon scales predict ubiquitous sign flips on
subhour timescales thatare notobserved (Ricarte etal. 2020;
Ressler etal. 2023; Wielgus etal. 2024).On the other hand,
Sgr A* exhibits non-λ2 evolution of the EVPA when compar-
ing the 86 GHz and 230 GHz bands.At 86 GHz,the RM on
nearly simultaneous days to our observations is only
−2 × 105 rad m−2 compared to −5 × 105 rad m−2 at 230 GHz
(Wielgus etal. 2024). In addition to subhour time variability,
this suggests that at least some of the RM must also come from
internal Faraday rotation on event horizon scales.

Carefully predicting the RM directly for all of our GRMHD
simulations would increase the computational cost by factors of
a few (more than 2) with the software utilized in this work. This
is because ray-tracing must be performed at different
frequencies atnonuniform spacings to resolve potentialphase
wrapping and non-λ2 behavior of the EVPA. Nevertheless, we
check the RM for a few snapshots of our models in Figure 24,
where the RM is estimated by ray-tracing at 213, 215, 227, and
229 GHz (emulating observations) and then fitting for the slope
RM = dχ/dλ 2. MAD models are plotted in the top row,and
SANE models are plotted in the bottom row. Three inclinations
are shown:30° in blue, 50° in orange, and 90° in gray. All
models are at Rhigh= 40 and in an aligned field configuration.
Note that these simulations only include material within 100rg,
but ab initio simulations of the accretion of Sgr A* from stellar

winds suggest that a steady Faraday screen could potentially be
situated at even larger radii (Ressler et al.2019,2023).

We find that most of our models naturally produce
|RM| ∼ 105 rad m−2 at at least one point in time, in rough
agreement with the observed value. The SANE models, as well
as the MADs at 90°, tend toward larger values,similar to
models of M87* (Ricarte et al. 2020). However, as in previous
works, the RM flips sign in every model at least once.
Interestingly, we find similar order-of-magnitude values of RM
if Faraday rotation is explicitly switched off during ray-tracing
(ρV = 0) in some of these models.This suggests that evolving
emission origin as a function of frequency may contribute to
the inferred RM and its variability.

Our findings in Figure 24 are broadly consistentwith an
interpretation wherein the rapid time variability of RM is
caused by variability on event horizon scales,but the stability
of sign is maintained by an external Faraday screen along the
line of sight, motivating derotation of ∠β2. On the other hand,
it may also be possible that all of the RM originates from event
horizon scales, and our GRMHD models overpredict the
variability in RM in the same way that they overpredict
variability in total intensity (Paper V). To resolve this, 345 GHz
imaging of Sgr A* will be critical; 345 GHz is less affected by
Faraday rotation by a factorof (345/230)2 ≈ 2. In addition,
RM maps produced via simultaneous multifrequency imaging
will help determine the nature of the Faraday screen.

Appendix D
Impact of Outer Integration Radius

Although we are confident that most of the emission in our
models originates close to the event horizon (r  10rg),
Faraday rotation can originate atmuch larger radius in our
models, more so as the inclination increases (Dexter et al. 2020;
Ricarte et al. 2020). This is especially problematic because
materialat these radiimay not have had enough time in the
simulation to reach equilibrium. This concern is more

Figure 24. RM as a function of time for a selection of KHARMA model snapshots,each with Rhigh = 40 and aligned magnetic fields.Our models can roughly
reproduce the observed magnitude of the RM but predict rapid sign flips (colored vs.white markers) that are not observed.

24

The Astrophysical Journal Letters, 964:L26 (37pp),2024 April 1 The Event Horizon Telescope Collaboration et al.



important for studies of Sgr A* than for M87* because we view
M87* at an inclination of only 17° through an evacuated
funnel.

We test the impact of the outer radiative transfer integration
radius in Figure 25, where we ray-trace a few KHARMA
snapshots at a variety of radii ranging from 30rg to 300rg. We
focus on ∠β2, which should be directly affected by Faraday
rotation on large scales.Inclinations of both 50° and 90° are
considered, with Rhigh values of both 10 and 160. Fortunately,
we find that ∠β2 appears to have converged for most of these
models before 100rg, where we perform the ray-tracing in this
paper. We find that the models that do exhibit substantial
evolution with outer integration radius all produce 〈|m|〉 lower
than observed. Note that SANE models at 90° inclinations with
Rhigh= 160 are the mostFaraday-thick models in our library.
Models at i = 90 and/or high R high appearto have the most
evolution with respect to the integration radius. This is
consistentwith the expectation that higher inclinations and
higher Rhigh values will increase the amount of Faraday rotation
owing to more photons traveling through dense, cold regions in
the GRMHD domain.

While ∠β 2 appears to show evolution for some models,the
other polarimetry metrics are well converged and show
minimal change for all models across integration radius.
However,although we have checked the GRRT step,recall
that our GRMHD models are only converged within r  30rg
owing to computationallimitations. Exploration with simula-
tions that are valid to larger radii that may produce an external
Faraday screen self-consistently (e.g.,Ressleret al. 2023)
would be an interesting avenue for future analysis.

Appendix E
Impact of Cutting Jet Center (“σ cut”)

The polar funnelin the GRMHD simulations is filled with
horizon-penetrating field lines and thoughtto contain plasma
with orders of magnitude lower density than the accretion disk.

By the same token, the funnel magnetization σ := B2/ρ is
believed to be much larger than the magnetization in the disk.
Since there are very few emitting particles in the funnel,its
contribution to the overall image is expected to be negligible.
In practice, to keep the numerical GRMHD evolution stable, σ
is not allowed to assume realistic values but is instead capped
at moderate values σ  50–100 by artificially injecting mass
(e.g., Porth et al. 2019). Hence,we cannot trust the inflated
mass density in this region. Assuming that emission in the
σ ? 1 funnel should in reality be negligible, we follow the
common practice and set all radiation transport coefficients to
zero when the magnetization exceeds a critical value σcut= 1.
This choice is only safe when no σ � 1 regions form naturally
in the disk and when the mixing of disk and funnel plasma at
the jet wall is inefficient. In this case the gradient in
magnetization is steep which means thatwhether we adopt
σcut= 1 or, e.g., σcut= 25 does not affect the results. In reality,
however,finite-resolution effects in the GRMHD simulations,
resolved interchange instabilities,and potentially strong disk
magnetization can cause a dependence on the adopted thresh-
old value.

Using the BHAC/RAPTOR data,we have carried outspot
checks with two “best-bet” models whereby we increase the
threshold to σcut= 25: model 1 is MAD a * = 0, Rhigh= 40,
i = 150° aligned, and model 2 is MAD a* = 0.94, Rhigh= 160,
i = 30° aligned. In either case, the constraints change only by a
few percent,e.g., in model 2 the average β2 phase changed
from 63° to 66° and the average netpolarization wentdown
from 2.9% to 2.7%. In model 1, the change in average β2 phase
is somewhat larger (going from −97° to −109°), but still small
compared to the overall spread of the distributions. This shows
that the results on polarized submillimeter emission are quite
robust againstchange in the adopted value of the σcut and
emission ator within the highly magnetized funneldoes not
dominate in the model.

Figure 25. ∠β2 as a function of outer integration radius for a selection of KHARMA models. The GRRT in our work includes material at r � 100rg, encoded by the
gray band.Lines transition from thick to thin at the first radius at which |β2| < 0.05. For models with |β2| > 0.05, ∠β 2 typically converges by r = 100rg.
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Appendix F
Impact of Nonthermal Electrons

Throughout this work, we have considered only thermal
eDFs when performing GRRT.Here we briefly explore the
impact of nonthermal electrons in the polarimetric properties of
one GRMHD model: MAD a * = 0, Rhigh= 40, i = 150°
aligned.Two nonthermal prescriptions are explored:

1. Variable κ: In each cell, a κ distribution (Vasyliunas
1968; Xiao 2006) is applied, using a κ(σ, β) prescription
originating from particle-in-cellsimulations (Ball et al.
2018; Davelaar et al.2019).

2. κ = 5: A κ distribution with a constant value of κ = 5 is
applied globally (Davelaar et al.2018).

We ray-trace 300 snapshotsfor each of these casesand
compare with the thermal model snapshots.The accretion rate
is kept fixed, but we find that the average flux density is 2.3 Jy
for all cases.In Figure 26,we plot a selection of polarimetric
quantities for these models. Each marker is placed at the
median, and the error bars extend to the 16th and 84th
percentiles.Overall, we find only subtle differences between
these different eDF models.We find that 〈|m|〉 declines in the
nonthermal eDF models, coincident with increases in the
Faraday rotation depth (2.2,4.2, and 6.3 for thermal,Variable
κ, and κ = 5 models,respectively). Interestingly,vnet switches
sign in the κ = 5 model, while ∠β2 varies only slightly, due to
its link with the underlying field geometry. Overall, images
with nonthermal eDFs will be useful to study in future work.

Figure 26. Comparison of thermal and nonthermal eDFs for MAD a* = 0, Rhigh = 40, i = 150° aligned models. Changes in the distributions of polarimetric quantities
motivate future exploration in this area.
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Appendix G
An Interpolative Scoring Scheme

With our GRMHD models, we coarsely samplea five-
dimensional parameter space.Here we investigate the possibi-
lity that this sparse sampling misses potentially passing models
by performing scoring using expanded theoreticalerror bars.
We conceptualize each combination ofa* , Rhigh, and i as a
volume in three-dimensionalparameter space. For each
neighbor in parameter space,if the 90% quantiles of the

neighbor do not overlap, we linearly interpolate the lower and
upper rangesof each observable to the midpointsof their
nearest neighbors. This scheme helps mitigate sparse sampling
but, as we discuss,may lead to false positives if observables
evolve rapidly between adjacent models. In addition, this
methodology fails to consider correlated evolution between
observables.

In Figures 27 and 28, we show the results of our
interpolative scoring scheme considering all polarimetric

Figure 27. Same as Figure 7,but using the interpolative scoring scheme described in Appendix G.

Figure 28. Same as Figure 8,but using the interpolative scoring scheme described in Appendix G.
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constraints withoutand with RM derotation,respectively.As
expected, many more models pass in both cases. The
preference forclockwise motion with derotation or counter-
clockwise motion without derotation is less dramatic with this
scheme.Without derotation,both best-betmodels still fail.
With derotation, the second best-betmodel from Paper V,
MAD a * = 0.5, Rhigh= 160, i = 30°/150°, also passes in this
scheme.Without interpolation,this modelhad only failed by
producing too little 〈|m|〉.

This interpolative scoring scheme does not produce as clear
of a preference for MAD over SANE models. We find that this
difference is driven by a shortcoming of this method:SANE
models evolve very rapidly with R high, especially between
Rhigh= 1 and Rhigh= 10, leading to very large theoretical error
bars.We explore one example in Figure 29,where a setof
KHARMA SANE a * = − 0.5, i = 150° aligned field models
are ray-traced at intermediate values of Rhighä {3, 5, 8}. Each
of our eight polarimetric observables is plotted,and we better
resolve the rapid evolution in these parameters with Rhigh. A
noteworthy interaction occurs in our interpolation scheme with
〈|m|〉 and ∠β2, two of our most constraining observables.We
see that at Rhigh= 1 the model overproduces 〈|m|〉 but fails to
reproduce ∠β2, which is too radial. Meanwhile, SANE models
with Rhigh= 10 have too low 〈|m|〉 and a uniformly distributed
∠β 2. Interpolation allows models in this region to pass because
our scoring system suggeststhat there might be a model
with intermediate Rhigh that has both a correct ∠β2 and a correct
〈|m|〉. However, with better resolution in Rhigh, we do not find
an individual model that would pass. Overall, this exercise
shows thatour main conclusions are notlikely driven by our
sparse sampling of parameter space.

Appendix H
GRMHD Observable Distributions

To visualize trends of our eight observablesin the five-
dimensionalparameterspace that we explore, we provide
“violin” plots of our observables from our models as a figure
set, the complete version of which is available in the online
journal. In each figure, we considerone observable and one
magnetic field state (either MAD or SANE models). One
figure, the distributions of mnet for MAD models, is shown in
Figure 30. Different spins are shown in different columns, and
different values of Rhigh are shown in differentrows. Within
each panel,we plot distributions as a function of inclination,
where only five of the nine inclinations ray-traced in this work
are included to improve readability.Aligned field models are
shown on the left, and reversed field models are shown on the
right. The distributions with opposite magnetic field polarity
are usually very similar, with the notable exceptions of vnetand,
more subtly, ∠β 2. To display the relative agreementor
disagreementbetween codes,we plot BHAC modelsin red
and KHARMA models in blue. H-AMR models, which are ray-
traced for a subset of models only for comparison here and not
for scoring, are displayed as dashed distributions when
available.Finally, the observationalconstraints are shown in
gray,where,as usual,the allowed range for ∠β2 without RM
derotation is shown as a hatched region.

Our last set of plots, distributions of the Faraday rotation
depth Vtá ñr , are notdirectly observable butdrive many of our
physical trends,as well as differences between codes.For a
detailed discussion of the physical trends present in these
figures,we refer readers to Appendix A.

Figure 29. Distributions of observables for a selection of SANE models ray-traced with greater resolution in Rhigh between 1 and 10. These correspond to KHARMA
SANE a* = − 0.5, i = 150° aligned models.We find rapid evolution in this part of parameter space.
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Differences between our KHARMA and BHAC models
inflate our theoreticalerror bars in Section 5.We find that at
leastpart of these differences arise from physicalapproxima-
tions regarding the assignmentof electron temperature during
the GRRT. One fluid with a single adiabatic index is evolved in
our GRMHD codes, but it represents both relativistic electrons
(with an adiabatic index of 4/3) and nonrelativistic ions (with
an adiabatic index of 5/3). During the GRRT step of our

calculations,only the electron temperature is relevantfor the
synchrotron emission that we observe. When assigning electron
temperatures,RAPTOR adopts (see,e.g.,Davelaar et al.2018)

u m

m R
1

3 1
, H1e

p

e ( )
( )

r
 =Q

+

where Θe is the electron temperature,u is the internal energy,
and R = Ti/T e given by Equation (8). Meanwhile, IPOLE

Figure 30. Distributions of observables for either MAD or SANE models. BH spin a* varies in each column, and Rhigh varies in each row. Inclination varies along the
x-axis. BHAC and KHARMA GRMHD simulations are shown in red and blue in each case, respectively, with H-AMR shown as a dashed curve. Distributions plotted
on the left represent aligned magnetic fields, while those plotted on the right represent reversed magnetic fields. Our observational constraint is shown in gray. The
complete figure set (18 images) is available in the online journal.
(The complete figure set (18 images) is available.)
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accounts for the difference in adiabatic indices by adopting
u m
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where γe= 4/3 and γ p = 5/3. Equation (H2) is physically
justified, but it sacrifices internal consistency with the GRMHD
simulations,where a single fluid with γ = 4/3 is evolved
(Wong et al. 2022). When we set γe= γ p = γ = 4/3 in
Equation (H2),we recover Equation (H1) used by RAPTOR.
Electron temperatures assigned by RAPTOR are systematically
colder,3/4 as hot as theIPOLE prescription at R = 1,and 1/2
as hot as R → ∞ . This explains the systematically larger
Faraday depths in our BHAC models relative to both KHARMA
and H-AMR,which are both ray-traced withIPOLE.

Larger differencesare seen between SANE modelsthan
MADs. A unique SANE model is not believed to exist,and
differencesare known to occur at the GRMHD fluid level
(Porth et al.2019).
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