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ABSTRACT

Spectrum cartography (SC) techniques craft multi-domain (e.g.,
space and frequency) radio maps from limited measurements, which
is an ill-posed inverse problem. Recent works used low-dimensional
priors such as a low tensor rank structure and a deep generative
model to assist radio map estimation—with provable guarantees.
However, a premise of these approaches is that the sensors are able
to send real-valued feedback to a fusion center for SC—yet practical
communication systems often use (heavy) quantization for signal-
ing. This work puts forth a limited feedback-based SC framework.
Similar to a prior work, a generative adversarial network (GAN)-
based deep prior is used in our framework for fending against heavy
shadowing. However, instead of using real-valued feedback, a ran-
dom quantization strategy is adopted and a maximum likelihood
estimation (MLE) criterion is proposed. Analysis shows that the
MLE provably recovers the radio map, under reasonable conditions.
Simulations are conducted to showcase the effectiveness of the
proposed approach.

Index Terms— Radio maps, spectrum cartography, deep neural
network, generative adversarial network, quantized data.

1. INTRODUCTION

Spectrum cartography (SC) aims to craft a multi-domain (e.g., fre-
quency, time, and space) radio interference propagation map from
limited and sparsely deployed sensors [1,2]. SC is considered central
for establishing radio frequency (RF) awareness in complex commu-
nication scenarios, as the radio maps can assist effective wireless re-
source allocation/management in crowded and interference limited
environments [3].

From a signal processing perspective, SC is an inverse problem—
recovering the high-dimensional multi-domain radio map (which is
a high-order tensor) from limited samples is clearly ill-posed. In the
past decade, many solutions were proposed to solve the recovery
problem; see, e.g., [1,4-9]. In essence, these methods used prior
information of the radio map to come up with its parsimonious and
succinct representations (by using, e.g., dictionary learning [7], ker-
nel modeling [10], and low-rank tensor modeling [1]). Recently, the
work in [2] used deeply learned priors of the radio maps under heav-
ily shadowed scenarios, where handcrafted priors often struggle to
accurately represent such complex data. Notably, the work in [1, 2]
also established recoverability guarantees of their methods, which
sheds lights on key tradeoffs in radio map engineering.

The recent developments of SC, especially the integration with
deep priors to fight shadowing, have been encouraging. Nonethe-
less, the vast majority of the existing SC methods work under the
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premise that the sensors are able to send real-valued power spectrum
measurements to a fusion center. In practice, this type of real-valued
full-precision measurements are rarely used, as they induce heavy
communication overheads. In practice, such measurements are of-
ten quantized before being fed back to the fusion center [3,11]. In the
past decade, a number of attempts were made towards using quan-
tized feedback for RF awareness tasks; see, e.g., [10, 12,13]. In par-
ticular, the work in [10] used a kernel regression method to deal with
quantized measurements-based SC. However, the method in [10] as-
sumed that the power spectral signature of every emitter is known,
but estimating such signatures is a highly nontrivial task [6,14]. How
to recover radio maps under a fully blind setting (i.e., without know-
ing the emitters’ spectral signatures a priori) using quantized mea-
surements with provable guarantees remains an open challenge.

In this work, we propose a new SC approach that generalizes
the recent deep SC method in [2] in a nontrivial way. To be specific,
we use the deep prior-based low-dimensional representation of SC
from [2], as it is proven robust to heavy shadowing. However, unlike
the work in [2] that uses real-valued feedback, we assume that the
sensors quantize the sensed power spectral density in each frequency
using only a few bits. We adopt a random quantization strategy that
is commonly used in quantized compressive sensing [15-19] and
formulate the recovery problem using the maximum-likelihood es-
timation (MLE) principle. To tackle the proposed MLE criterion,
we design a simple and easy-to-implement alternating optimization
algorithm. More importantly, we show that the formulated criterion
ensures recovering the ground-truth radio map (up to bounded er-
rors) under challenging scenarios, e.g., when the deep prior does not
exactly match the ground truth. Simulations using realistic physical
models corroborate our design goals and theoretical claims.

2. PROBLEM STATEMENT AND BACKGROUND

We consider the problem of recovering a spatio-spectral radio map
from N sensors that are sparsely deployed over the space; see sim-
ilar problem settings in [1,2,4-9]. For simplicity, we consider the
case where the spatial domain is a 2D rectangle and is discretized
into I x J grids. Every grid admits a power spectral density (PSD)
that is measured over K frequency bins. Hence, the radio map that
we hope to estimate is a third-order tensor X € R7*7*X where
X (i, 7, k) is the PSD of the signal received at position (, j) and the
kth frequency bin. That is, every fiber [20] of the tensor, X (4, 7, :),
represents the PSD of the received signal measured at the location
(4,7). We also denote @ = {(¢,7)]i € [I],j € [J]} as the set of
locations where the sensors are placed. Note that

Q=N<1J

normally holds, as the number of sensors is often small. Assume
that every sensor acquires the full PSD X (i, js,:) at its location
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Fig. 1: (a) An SC scenario with 2 emitters and 4 sensors. (b) Left:
Measurements acquired by sensors. Right: the radio map to recover
(adapted from [2]). (c) [lustration of (1) (adapted from [1, 2]).

(is,7s) for s = 1,..., N. If the sensors are able to transmit real-
valued feedback to the fusion center, the goal of SC is to recover the
full X from the tensor fibers { X (7, 7,:) };,j)ex at the fusion center.

The scenario and problem statement are illustrated in Fig.1 (a)-
(b). We should mention that although we considered a 2D spatial
domain, the idea can be generalized to cover 3D spatial domains in
a straightforward manner.

2.1. Provable SC using Full-Precision Measurements

The work in [1, 2] proposed two recoverability-guaranteed SC ap-
proaches. Both of their methods started with a physical model of the
radio map that has been widely used in the literature [1, 2, 10, 21].
The radio map model (in the noiseless case) is as follows:

R R
X(i,j,k) =Y S,(i,j)er(k) <= X =Y S,o0c,, (1)
r=1 r=1

[Pt

where “o” denotes the outer product (i.e., [Uov]; ; r = U (i, j)v(k)
for a matrix U and a vector v), S, € R!* is the spatial loss field
(SLF) of the rth emitter, ¢, € R¥ is the PSD of emitter r, and
R is the number of emitters. The SLF captures the spatial power
propagation characteristics of an emitter, and the PSD reflects the
emitter’s spectral band occupancy. Fig. 1 (c) illustrates the model
in (1). The model means that the spatial and spectral information of
the radio map can be decomposed into their own latent factors. This
is reasonable when the frequency band is not very wide, where the
power propagation is still coherent across the neighboring frequency
bins [6, 14].

Many works under the model in (1) were proposed in the past
decade; see, e.g., [1,4-7]. Most of the early works did not have
recoverability guarantees of X using observations over £2. More re-
cently, the work in [1] used a block-term tensor recovery perspective
and formulated the problem as follows:

R
M, ® (X -> (A,Bf)o cr>

r=1
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where M is a mask tensor such that M, (i,5,:) = 1 € R¥

if (¢,7) € Q2 and M (¢,7,:) = O otherwise, and ® denotes the
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Fig. 2: Learning S, = g,(z) using simulated SLFs and the gener-
ative adversarial network (GAN); see other approaches for learning
such generative models in [2].

Hadamard product. The idea of (2) is to model the SLFs as low-
rank matrices, i.e., S, = A,B, with rank(A,) = rank(B,) =
L < min{I, J}. The work presented the first provable blind SC
approach. The caveat is that the low-rank model for the SLFs may
not always hold, especially when the shadowing effects are severe.
To overcome this challenge, the work in [2] modeled the individual
SLFs using a deep generative model and adapted the criterion in (2)
to the following:

2
min
{erzr 3y

)

F

R
Msens ® <X - de(zr) o cr)

r=1

where gg () : RP — R?*/ is a generative deep neural network that
links every SLF with a D-dimensional embedding z, € R with
D << IJ. The model gy (-) is learned from simulated SLFs that
cover a wide range of shadowing situations using neural learners,
e.g., the generative adversarial network (GAN) [22] or the autoen-
coder [23]; see Fig. 2 for illustration and [2] for details. Such a
data-driven prior is often more resilient to heavy shadowing in prac-
tice. Notably, recoverability of the radio map was also established
with the deep model g4 in [2].

2.2. SC Methods using Quantized Data

Both the methods in [1] and [2] are based on the assumption that the
sensors can feedback full-precision real-valued PSD measurements.
However, this is unrealistic, as such real-valued feedback is costly
in terms of communication overhead. The works in [10, 12, 13] con-
sidered using quantized feedback for RF awareness tasks. In partic-
ular, the work in [10] used kernel regression for reconstructing the
radio map with heavily quantized data. However, this method as-
sumes that the fusion center has the full knowledge of the PSDs of
the emitters. Nonetheless, estimating such PSDs per se is a highly
nontrivial problem; see [6, 14]. Furthermore, the existing methods
using quantized measurements for RF awareness in general lack the-
oretical supports. To our best knowledge, the problem of provable
blind SC (i.e., SC under the setting where the emitters’ PSDs are
unknown) using quantized feedback has not been addressed.

3. PROPOSED APPROACH

In this section, we propose a nontrivial generalization of the formu-
lation in (3) to handle quantized measurements.
3.1. Gaussian Quantization

We propose to employ the random quantization scheme that is of-
ten used in quantized compressive sensing and matrix/tensor com-



pletion, e.g., [15-19]. In the following, we denote the ground-truth
radio map by X!, which we wish to recover. Then, our quantization
function G(-) is as follows:

Y (i, j, k) = G(MX (i, , k) + Vi, 4, k) “
G(z)=gq, ifbg_1 <z <by, qe[Q={1,..,Q}
where we propose to use h(z) = log(z + a) for “squeezing”

the dynamic range of the radio map, a is a pre-specified offset,
V(i,5,k) ~ N(0,0%) for all 4,5,k are i.i.d. noise terms, and
{b(j-,}qQ:0 are the pre-specified quantization bins. Adding noise
before quantization is called dithering in signal processing [24].
Roughly speaking, dithering introduces more information to help
recognize the values that are close to the quantization boundaries.
This technique is also widely used in quantized matrix/tensor com-
pletion; see, e.g., [15-19].

Denote M" = h(X?), where h(-) is applied component-wise
onto X . Then, the entries of Y have the following distribution:

where f, is defined using the cumulative distribution function (CDF)
(i.e., the ®-function) of the standard Gaussian variable; i.e.,

fQ(M(i7j7 k)) = P(X(ivja k) =4q | M(i,jv k))
= (I)(bq _M(i7j7 k)) - (I)(bq—l - M(ivjv k)) (6)

Using the above quantization strategy, we formulate our radio map
recovery problem as an MLE criterion:

min Fay (Z,C), subjecttoC >0, (7
{zrer}
where Z = [z1,...,2Rr],C = [c1,...,cr] and Fo vy (Z,C) is

expressed as

K Q R
= 3 3> tviim—alog(fo (MDD go(2r) 0 rlijn)))-

(i,j)€Q k=1 g=1

The constraint on C' is added per its physical meaning, as it consists
of the PSDs of the emitters. Here, the deep generative model of
the SLFs, i.e., go(+) is adopted for the same reason as in [2]—i.e.,
fending against heavy shadowing.

3.2. Algorithm Design

To handle the proposed MLE problem, we propose an alternating
optimization algorithm. The update of C'in the kth iteration can be
carried out as follows:

C*Y  max(C*V - €W — oWV Fay (2™, c™),0),

where V¢ (+) is a gradient-related direction—which could be con-
structed following any off-the-shelf first-order optimization algo-
rithm, e.g., Adagrad [25], Adadelta [26], Adam [27], o'®) is
the step size, and max(C'**1 0) projects C**1) onto the non-
negative orthrant. Similarly, the Z-update can be done as follows:

ZE+D) (k) B(k)ﬁzFQ’X(Z(k)’C(M)'

The algorithm is summarized in Algorithm 1.

3.3. Performance Characterization

In this subsection, we provide recoverability characterization of the
MLE estimator in (7). The following theorem states our main result:

Theorem 1 Assume that gg(-) is P-Lipschitz continuous, and that
Q C {(z,9)i € [I],5 € [J]} is uniformly sampled with replace-
ment, where |Q2| = N. Let Y be the quantized radio map tensor
obtained from (5). Denote the set of solutions as follows:

R
Xr.gy = {1 =8, 0¢, | max|X(i,j,k)| < a, S» = go(zr),
1 1,7,k
-

el < € lgo(z)lr < B 1@ ll2 < w,¥r € R} (®)

Suppose that Ming ey, |X — X*||Fr < v, wherev > Oisa
constant. With probability 1 — 6, the following holds:

CivVRT + Cs 810g(%)
KVN
where X* = "% | go(z)ocy, {25, ¢i Yy is an optimal solution

of the MLE over XR g,; C4 and C5 are constants that depend upon
the parameters a, o2, and o; Cs depends on o2 and o; and

X" — X7|%
IJK -

+ Csv,

7 = 143y/(K + D) log(3VR(B + k) + K log(x) + Dlog(PC).

Proof Sketch: Our proof generalizes the classic quantized matrix
completion’s recoverability analysis (see, e.g., [19]) to incorporate
deep generative models and the case using radio map fiber sampling.
The sketch of our proof can be summarized in the following three
steps: First, the mean squared error (MSE) between the recovered
tensor X* and ground-truth tensor X" is bounded by estimating
the Kullback-Leibler (KL)-divergence between the two distributions
fo(h(X™)) and f,(h(X")). Second, the KL-divergence is upper
bounded by the sum of estimation error, generalization error and
approximation error terms. Third, the generalization error is upper
bounded by using the Rademacher complexity of the deep genera-
tive model. The proof of Theorem 1 is available in a longer version
in [28]. ]

From Theorem 1, one can see that the MSE decreases at a rate
of O(1/v/N), which is similar to those of the existing low rank
matrix/tensor completion works [16,17,19]. In addition, the param-
eter v reflects the learning model’s expressiveness. When a more
complex neural network (NN) is used for modeling gy, v can be
reduced—as increasing the depth/width of an NN also increases its
approximation power. However, a more complex NN increases 7.
This presents a reasonable tradeoff between neural model’s expres-
siveness, sample complexity, and recovery performance. A remark
is that in our algorithm implementation, we found that not explicitly
enforcing the constraints in (8) did not affect recovering the radio
map, perhaps because the solutions are always bounded.

4. SIMULATIONS

Problem Setup. We consider a discretized 2D spatial region that
has 51 x 51 grids. The spectral domain has 64 frequency bins. The
PSDs of the emitters are generated as in [1]. The SLFs are generated
following the joint path loss and log-normal shadowing model from
[29]. The model has two key parameters, i.e., the variance w? and
the decorrelation distance X .. The shadowing effect is more severe



Algorithm 1: Proposed Algorithm

Data: Data Y € RIXIXK ¢ o B maxlter

Result: X
1 Initialize C such that each element are uniformly distributed
U0,1,k=1;

29— go(S\),vr € [R];

while Loy (ZF=1,Cc*-1D) < Fq v (Z®,C®)) — cor
k > maxlIter do

4 ctt) ¢k — aVeFay(Z2®,Cck),

5 C*+D)  max(C*+1) | 0); // where max(-, -) returns
elementwise maximum value.

Z0+D 28— 5V zFo y (20, C™);

forr=1,...,Rdo
‘ S&k-H)

end

10 k< k+1;

11 end

return X = Zfil SS

w N

— go (2,

e ® 9 &

k) o oK),

ocy

S

if w? is larger and X, is smaller. The model also takes long-range
path-loss into consideration.

Generative Model Learning. Our generative model g4(-) is
learned using GAN on a variety of parameter settings for gener-
ating the SLFs; i.e., we use X. spanning from 50 to 100, w taken
from 2 to 7, and the long-range path-loss coefficient 1 uniformly
sampled between 2 and 3 to generate the training data. We use
the Adam optimizer [27] to train the network on 500,000 training
samples with a batch size of 128. The algorithm runs up to 250
epochs. The initial learning rate of the discriminator and generator
are set to be 0.0004 and 0.0001, respectively. We largely follow the
GAN architecture from [30]. We set the latent dimension to be 256
(i.e. z, € R?®%) and the output of the generator to be 51 x 51. We
use sigmoid activation functions at the last layer to ensure that our
generated SLF is non-negative.

Baselines. We use the methods from [2] and [10] (referred to as
DowlJons and kernel regression, respectively) as our baselines. The
DowlJons method in [2] also uses the deep generative model as ours
but does not consider quantization [cf. Eq. (3)]. The method in [10]
uses quantized measurements and multi-kernel regression. However,
the method assumes that C'is known, which presents a much simpler
estimation problem.

Quantization. In our experiments, we construct the 3-bit quantiza-
tion bins {b, }o—o such that number of data lies equally in each bins.
These bins are estimated from the average of 1000 radio maps [31].
We set o2 = 1.5 throughout our experiments unless otherwise spec-
ified. For the baselines, we follow the quantization strategy in Re-
mark 5 of [10].

Evaluation Metric. To evaluate the performance, we use the log-
domain normalized mean square error (LNMSE) as our metric,
which is expressed as follows: LNMSE = Ilﬂmellfw/HMh %,
where M = h(X) is the log-version of X. Using LNMSE in-
stead of NMSE of X converts values to log domain that avoids
over-weighting large values in X, and thus is more reasonable when
dealing with skewed data like radio maps.

Results. Fig. 3 shows the reconstructed radio maps on the first
frequency bin. One can see that the proposed approach reconstructs
a map that is visually the closest to the ground truth. The kernel
regression method creates overly smooth radio maps. This could be
due to a number of factors, including the fact that Gaussian kernels
act as low pass filters [32]. The DowJons method that also uses deep
priors does not have strong smoothing effects. However, as it does

Ground Truth Quantized Data

Sampled Data

Kernel Regression [10] Dowjons [2]

LNMSE: 0.1098 LNMSE: 0.1258 LNMSE: 0.0491

Fig. 3: Ground-truth and reconstructed radio maps by various meth-
ods at frequency bin 1; p = 10%, R = 6, X, = 50, w = 4 and
0% = 1.5, Q = 9 (3-bit quantization).
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Fig. 4: LNMSEs under various conditions.

not take quantization into consideration, the recovered radio map is
less accurate relative to the proposed method.

Fig 4 (a) shows the LNMSE of the reconstructed radio map un-
der various p’s. The results are averaged over 20 Monte Carlo trials
with different SLFs and PSDs. One can see that all methods exhibit
improved performance when p increases, but the proposed method
admits a clearly much lower LNMSE under all p’s relative to the
baselines. This also shows that explicitly considering quantization
in the formulation enhances recovery performance.

Fig 4 (b) shows the LNMSE against the number of quantization
bits. Note that when the size of the quantization bins changes, the
level of dithering (controlled by o) should be adjusted accordingly.
To this end, we run grid search over a validation set to find o2 as 2.5,
2.0, 1.5, and 0.5 for the cases using 1,2,3, and 4 bits, respectively.
One can see that when the number of bits used decreases from 4 to
1, our method is barely affected, which shows robustness to heavy
quantization. However, the baselines’ LNMSEs deteriorates quickly
when the number of bits decreases. Additional experiments can be
found in the extended version of this work [28].

5. CONCLUSION

We considered the problem of quantized spectrum cartography and
proposed a maximum likelihood formulation under a Gaussian quan-
tization strategy. Our formulation used a deep generative model for
SLFs of emitters, which is proven robust to heavy shadowing ef-
fects. We showed that our method has recoverability guarantees of
the radio map tensor, even when the generative model is not perfect.
Simulations supported the theoretical claims.
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