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Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive imaging technique widely used in neuro-
science to understand the functional connectivity of the human brain. While rs-fMRI multi-site data can help to understand
the inner working of the brain, the data acquisition and processing of this data has many challenges. One of the challenges
is the variability of the data associated with different acquisitions sites, and different MRI machines vendors. Other factors
such as population heterogeneity among different sites, with variables such as age and gender of the subjects, must also be
considered. Given that most of the machine-learning models are developed using these rs-fMRI multi-site data sets, the
intrinsic confounding effects can adversely affect the generalizability and reliability of these computational methods, as
well as the imposition of upper limits on the classification scores. This work aims to identify the phenotypic and imaging
variables producing the confounding effects, as well as to control these effects. Our goal is to maximize the classification
scores obtained from the machine learning analysis of the Autism Brain Imaging Data Exchange (ABIDE) rs-fMRI multi-
site data. To achieve this goal, we propose novel methods of stratification to produce homogeneous sub-samples of the 17
ABIDE sites, as well as the generation of new features from the static functional connectivity values, using multiple linear
regression models, ComBat harmonization models, and normalization methods. The main results obtained with our statistical
models and methods are an accuracy of 76.4%, sensitivity of 82.9%, and specificity of 77.0%, which are 8.8%, 20.5%, and
7.5% above the baseline classification scores obtained from the machine learning analysis of the static functional connectiv-
ity computed from the ABIDE rs-fMRI multi-site data.
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Introduction connectivity of the human brain. An active area of research

in neuroscience is the modeling of rs-fMRI data, using com-

Resting-state functional magnetic resonance imaging (rs-
fMRI) is a non-invasive imaging technique based on the
blood oxygen level of the brain (Ogawa et al., 1990, 1993),
widely used in neuroscience to understand the functional
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plex graph theory, to discover the functions and structure
of the human brain, and for the detection of brain disorders
(Sporns et al., 2004, 2005; Stam & Reijneveld, 2007; van
den Heuvel et al., 2008; Bullmore & Bassett, 2011; Sporns,
2012; Bassett & Sporns, 2017).

Initial fMRI studies based in data collected in a single
imaging site, usually had limited statistical power, due to
the difficulties to obtain large amounts of data such as the
limited participants with brain disorders in one geographical
location, as well as limited resources (Van Horn & Toga,
2009). To overcome these limitations, multi-site neuroimag-
ing data have been extensively used in network neuroscience
research in the last decade (Friedman et al., 2006, 2008; Van
Horn & Toga, 2009; Biswal et al., 2010; Gradin et al., 2010;
Poline et al., 2012; Noble et al., 2017; Rao et al., 2017). The
Autism Brain Imaging Data Exchange (ABIDE) functional
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magnetic resonance database (Craddock et al., 2013; Di
Martino et al., 2014; Di Martino et al., 2017) exemplifies a
modern multi-site rs-fMRI database which provides a larger
sample size of rs-fMRI data obtained from a more heteroge-
neous population living in different geographical locations,
resulting in higher statistical power compared to the rs-fMRI
data obtained for a single site (Van Horn & Toga, 2009;
Biswal et al., 2010). The ABIDE database is a powerful tool
for enhancing the reproducibility and the reliability of the
statistical methods and models implemented for the diagno-
sis and discovery of autism spectrum disorders (Abraham
et al., 2017; Eslami et al., 2019; Almughim & Saeed, 2021).

One main challenge for the neuroscience research com-
munity using rs-fMRI multi-site databases is the existence
of confounding effects, associated with variables resulting
from imaging and population heterogeneity among differ-
ent sites. Several studies have shown that these confounding
factors affect the performance of the machine learning mod-
els when executed on rs-fMRI multi-site data (Plitt et al.,
2015; Kassraian-Fard et al., 2016; Abraham et al., 2017).
One main effect is the increase in variability, as well as the
imposition of upper limits on the classification scores, due
to the decrease of statistical power of the machine learning
classification of patients and control subjects.

A first group of confounding effects are those resulting
from the imaging acquisition such as MRI scanner vendor,
scanner technology, magnetic field strength and inhomoge-
neities, and scanning protocols and parameters for the image
acquisition, such as scan length, repetition time, echo time,
acquisition time, and voxel size (Friedman et al., 2006, 2008;
Gountouna et al., 2010; Brown et al., 2011; Birn et al., 2013;
Kostro et al., 2014; Chen et al., 2014; Forsyth et al., 2014;
Feis et al., 2015; Mirzaalian et al., 2016; Abraham et al.,
2017). The control and reduction of these imaging confound
effects have been partially solved by implementing standard
protocols and parameters for the image acquisition proce-
dures (Friedman et al., 2008; Glover et al., 2012; Shinohara
et al., 2017; Chavez et al., 2018).

A second group of confounding effects are those
related to phenotypic data derived from the heterogeneous
population from which the MRI data is obtained, i.e., clinical
information of patients (e.g., taking medications, severity
of disorder symptoms), instructions given to the subjects
during testing (e.g., eyes open or closed), as well as relevant
demographic data (e.g., age range, IQ-range, gender) (Van
Horn & Toga, 2009; Dukart et al., 2011; Birn et al., 2013;
Chen et al., 2014; VanderWeele & Shpitser, 2013; An et al.,
2017; Rao et al., 2017; Dansereau et al., 2017; Fortin et al.,
2018; Badhwar et al., 2020; Reardon et al., 2021; Reiter et al.,
2021; Benkarim et al., 2022). Some studies have implemented
stratification techniques (Parsons, 2014) of the rs-fMRI data
of the ABIDE sites to control the confounding effects due to
diverse phenotypic data. These stratification techniques were
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used to generate sub-samples integrated by subjects sharing
common characteristics such as: gender, age, right-handed,
and eyes open, to obtain more homogeneous and suitable
data sets for the statistical analysis of the static functional
connectivity derived from rs-fMRI multi-site data (Chen
et al., 2013; Nielsen et al., 2013; Vigneshwaran et al., 2013;
Chen et al., 2015; Plitt et al., 2015; Iidaka, 2015; Kassraian-
Fard et al., 2016; Abraham et al., 2017; Guo et al., 2017; Kam
et al., 2017; Sadeghi et al., 2017; Parisot et al., 2018; Wang
et al., 2019; Kong et al., 2019; Khosla et al., 2019; Li et al.,
2020; Sherkatghanad et al., 2020; Reiter et al., 2021).

During the last decade, important research efforts have
been dedicated to identifying the confound variables and
controlling the corresponding effects over the statistical
analysis of multi-site MRI data. Diverse studies imple-
mented statistical regression models to quantify and control
the confounding effects over predictive modelling using
multi-site structural MRI data (Rao et al., 2017), as well as
rs-fMRI data (Dansereau et al., 2017). The harmonization
models, also known as combined batch (ComBat) harmoni-
zation models, are based on an empirical Bayes model, origi-
nally proposed to control batch effects introduced by differ-
ent samples in gene expression microarrays experiments by
Johnson et al. (2007). This model was reformulated in the
context of heterogeneous multi-site diffusion tensor imaging
data by Fortin et al. (2017), to remove confounding effects
introduced by the technical differences of the scanners used
by the different sites, while conserving the variability intro-
duced by selected phenotypic variables. Some studies also
implemented the ComBat harmonization models to correct
site effects in the statistical analysis of static functional con-
nectivity computed from multi-site rs-fMRI data (Yu et al.,
2018; Yamashita et al., 2019; Reardon et al., 2021; Torbati
et al., 2021; Chen et al., 2022).

In this study we used the ABIDE rs-fMRI data with the
17 international imaging sites summarized in Table 1. The
goals of our study were twofold i) the identification of the
phenotypic and imaging variables producing the confound-
ing effects, and ii) to control these confounding effects
to maximize the classification scores obtained from the
machine learning analysis the rs-fMRI ABIDE multi-site
data. To achieve these goals, we propose two set of methods.
The first set of methods were implemented to generate new
features for the machine learning models. These new fea-
tures were computed from the static functional connectivity
values computed from the rs-fMRI multi-site data. The first
methods implemented in this set were multiple linear regres-
sion (MLR) models mainly applicable to the identification
of the confounding variables, however the experimental
results showed that they were also useful to maximize the
classification scores computed with the machine learning
models (see “Multiple Linear Regression Models” section).
The second methods implemented in this set were ComBat
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Ta.ble 1 International Imaging Site C ASD Subjects Avg age Avg FIQ M/F MRI

Sites from ABIDE resting state

fMRI preprocessed (http://prepr  Caltech 18 19 37 2774103  111.5+£112 298 S

ocessed-connectomes-project. CMU 13 14 27 266+5.6 1146103 21/6 S

org/abide/) used in this paper

(Craddock et al., 2013) KKI 28 20 48 100+ 1.3 106.2 + 4.8 36/12 P
Leuven 34 29 63 18.0 +5.0 107.6 + 18.0 55/8 P
MaxMun 28 24 52 253 +11.8 1109 + 11.4 48/4 S
NYU 100 75 175 153 +6.5 110.5 + 14.9 139/36 S
OHSU 14 12 26 10.7 + 1.8 111.0+16.3 26/0 S
Olin 15 19 34 16.6 +3.4 113.2+16.5 29/5 S
Pitt 27 29 56 189 +6.9 110.2 + 12.1 48/8 S
SBL 15 15 30 344 +85 1079 +£9.4 30/0 P
SDSU 22 14 36 144 +1.8 109.4 + 13.6 2917 GE
Stanford 20 19 39 10.0 + 1.6 1114 £ 154 31/8 GE
Trinity 25 22 47 170+ 3.4 110.0 + 13.6 47/0 P
UCLA 44 54 98 13.0+2.2 103.1 = 12.7 86/12 S
UM 74 66 140 140+3.2 106.9 + 13.6 113/27 GE
USM 25 46 71 227+83 1052 +£17.5 71/0 S
Yale 28 28 56 12.7+2.9 99.8 +19.9 40/16 S
TOTAL 530 505 1035 878/157

Sites: California Institute of Technology (Caltech), Carnegie Mellon University (CMU), Kennedy Krieger
Institute (KKI), University of Leuven (Leuven), Ludwig Maximilian University (MaxMun), Oregon
Health and Science University (OHSU), Institute of Living at Hartford Hospital (Olin), University of Pitts-
burgh School of Medicine (Pitt), Social Brain Lab (SBL), San Diego State University (SDSU), Stanford
University (Stanford), Trinity Center for Health Sciences (Trinity), University California Los Angeles
(UCLA),University of Michigan (UM), University of Utah School of Medicine (USM), and Child Study

Center, Yale University (Yale).

MRI vendors: General Electric (GE), Phillips(P), Siemens(S)

harmonization models implemented to control the confound-
ing effects and to maximize the classification scores (see
“ComBat Harmonization Models” section). Since the inde-
pendent variables of the MLR and ComBat harmonization
models give only partial explanation of the variability of
the dependent variables, we also generated new features by
using normalization methods on which the confound vari-
ables were unknown (see “Normalization Methods” section).
The second set of methods were based in the stratification
techniques defined by Parsons (2014) and Neyman (1992)
which basically consists of probability sampling methods
on which the subjects of the target population are divided
into sub-samples or strata where within each sub-sample
the subjects have similar characteristics. These techniques
were implemented to produce homogeneous sub-samples of
the 17 ABIDE sites on which the subjects were in different
ranges of age and/or full IQ (FIQ) (see “Sub-samples Selec-
tion” section).

The main contribution of the work presented in this paper
is a comprehensive approach for the solution of the problem
of confounding effects over the machine learning classifica-
tion models of rs-fMRI multisite-data, consisting of the sets
of proposed methods as well as the extensive set of experi-
ments performed with these methods. The experimental

results were also thoroughly analyzed and compared to
evaluate the effectiveness of each one of the implemented
methods. The proposed approach can be used and improved
by the neuroscience research community to help in the diag-
nosis of brain disorders.

Methods and Materials
ABIDE Resting fMRI Multi-site Data

Functional magnetic resonance imaging (fMRI) is a non-
invasive imaging technique widely used in neuroscience to
measure brain activity and functional connectivity. fMRI
is based on the fact that hemoglobin, the carrier of oxy-
gen from the lungs to the tissues (Marengo-Rowe, 2000),
changes their magnetic properties depending on their level
of oxygenation which in turn is determined by the level of
neuronal activity in the brain. Resting functional magnetic
resonance (rs-fMRI), obtained from subjects who are at
rest at the scanner, reflects dynamic changes in the brain
due to neuronal activity in different regions of the brain.
rs-fMRI, therefore, can be used to estimate the functional
connectivity between these regions (Aertsen et al., 1989;
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Biswal et al., 1995; van de Ven et al., 2004). The rs-fMRI
measured with the MRI scanners need to be preprocessed
to correct for confounding effects such as magnetic field
distortions and head motion, and to improve the signal-
to-noise ratio (Jenkinson & Chappell, 2018). The preproc-
essed rs-fMRI data used in this study was obtained from
the 17 international imaging sites listed in Table 1, pub-
licly available in the ABIDE database, with a total of 530
control and 505 autism subjects (Craddock et al., 2013;
Di Martino et al., 2014, 2017). The preprocessing pipeline
chosen for this data was the Configurable Pipeline for the
Analysis of Connectomes (CPAC), and the filt-global pre-
processing strategy, on which the head motion correction
is performed using a two-stage approach as described in
https://fcp-indi.github.io/docs/latest/user/quick.html and
Cox and Jesmanowicz (1999). The preprocessing pipeline
is described in detail in the ABIDE Preprocessed web-
site (http://preprocessed-connectomes-project.org/abide/
index.html).

Human Brain Functional Networks

In the last two decades, the graph theoretical analysis of
functional connectivity between brain regions, on which
the rs-fMRI data is represented as human brain functional
networks, has been fundamental to identifying organizational
principles in the brain, as well to understanding the causes
of brain disorders (Sporns et al., 2004, 2005; Stam &
Reijneveld, 2007; van den Heuvel et al., 2008; Bullmore
& Bassett, 2011; Sporns, 2012; Bassett & Sporns, 2017).
In this study, the nodes of the human brain functional
networks, which will be referred to as functional networks
for the rest of the paper, were defined by using the cc200
(200 nodes) brain atlas derived from fMRI data (Craddock
et al., 2012), and the weights of edges, i.e., the elements
of the static functional connectivity adjacency matrix of
the functional network, were obtained by computing the
linear correlation between the time series for all pairs of
nodes, using the Pearson correlation function available in
the NumPy package (https://numpy.org). Since the static
functional connectivity adjacency matrix is symmetric, the
static functional connectivity values, which will be referred
to as functional connectivity values for the rest of the paper,
were obtained from the upper triangular part of this matrix.

The Machine Learning Models: ASD-DiagNet
and ASD-SAENet

For this study we selected two state of the art machine learn-
ing models: ASD-DiagNet and ASD-SAENet to perform the
experiments of classification of control and autistic subjects,
and to compare the corresponding results. The classification
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scores computed in our experiments were: Accuracy which
measures the ratio of correctly classified as patient subjects
(true positive) and control subjects (true negative) over the
total number of subjects; sensitivity which measures the ratio
of the correctly classified as patient subjects over the total
number of patients (true positive plus false negative); and
specificity which measures the ratio of the correctly classi-
fied as control subjects over the total number of control sub-
jects (true negative plus false positive), more details about
these scores are given in Zhu et al. (2010).

ASD-DiagNet

ASD-Diagnet was selected as one of the machine learning
classifiers to compute the experimental results included in
this study. ASD-DiagNet is a GPU-based machine learn-
ing model for classifying patients and control subjects by
using only rs-fMRI data. ASD-DiagNet was designed to
implement a joint learning procedure using an autoencoder
for feature extraction, i.e., to compress the original feature
space into a lower dimensional space which contains useful
patterns of the original data. The lower dimensional data
generated by the autoencoder was used as input for the clas-
sification step performed by a single layer perceptron (SLP)
classifier. The features selected for the training samples of
ASD-DiagNet were 25% of the maximum weights and the
same percentage of the minimum weights of the functional
connectivity values. For all our experiments, we used the
data augmentation method using linear interpolation imple-
mented for ASD-DiagNet. A detailed description of ASD-
DiagNet is given in Eslami et al. (2019).

ASD-SAENet

ASD-SAENet was the other machine learning classifier
used to perform a selected set of experiments to compare
their results with those computed with ASD-DiagNet. ASD-
SAENet is a GPU-based machine learning model for clas-
sifying patients and control subjects by using only rs-fMRI
data. ASD-SAENet was designed and implemented as a
sparse autoencoder (SAE) which results in optimized extrac-
tion of features that can be used for classification. These fea-
tures are then fed into a deep neural network (DNN) to per-
form the classification of control and autistic subjects. This
model is trained to optimize the classifier while improving
extracted features based on both reconstructed data error
and the classifier error. The features selected for the train-
ing samples of ASD-SAENet were 25% of the maximum
weights and the same percentage of the minimum weights
of the functional connectivity values. ASD-SAENet did not
implement data augmentation to minimize overfiting. A
detailed description of ASD-DiagNet is given in Almughim
and Saeed (2021).
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Fig. 1 Workflow for the
machine learning analysis of
rs-fMRI data using new features
derived form the functional con-

Functional Connectivity Matrices
(Functional network edges)

nectivity values to control the
confounding effects of multi-

site rs-fMRI data

functional connectivity (FC)
(upper triangular FC matrix)/subject

Multiple linear regression models
ComBat Harmonization models
Normalization methods

Machine Learning model

New features from FC/subject

Classification scores

Generation of New Features

We implemented a set of methods to generate new features for
the machine learning models. These new features were com-
puted from the functional connectivity values obtained from the
rs-fMRI time series (see “Human Brain Functional Networks”
section). The first two methods were multiple linear regres-
sion models, and ComBat harmonization models, which were
implemented assuming that the variables responsible for the
confounding effects were known such as MRI scanner vendor,
as well as some phenotypic variables like age, FIQ, and gen-
der. In the third group of methods included in this set, the new
features were obtained from normalization methods, for which
we assumed that the variables responsible for the confounding
effects were unknown. Figure 1 illustrates the workflow imple-
mented in this study to generate the new features.

A more detailed example of the computation of new
features is illustrated by the workflow of Fig. 2, where the
MLR models are included as an example. The functional
connectivity values as well as the phenotypic values of the
ABIDE subjects were the input data for the creation of a
dictionary for each feature with the values of the functional
connectivity, subject ID, age, gender, FIQ and MRI vendor
of each subject. Then a list of dictionaries was obtained that
was used to compute the new features.

Multiple Linear Regression Models

Multiple linear regression (MLR) models are fitted to random
dependent variablesY = (Y}, Y,, ...., Y,), with corresponding
observation values y = (y;,ys, ...., y,,), to remove the variance

Fig.2 Workflow for computa-

tion of new features for the
machine learning analysis of the
ABIDE rs-fMRI data using the
MLR models

functional connectivity (FC)
(1035 subjects,19900 features)

Phenotypic file
(1035 subjects)

~,

~

dictionary/feature:
subject 1D, fc, age, gender,
FlQ, MRI vendor, site
(1035)

list of dictionaries
(1035,19900)

Multiple linear regression/
feature (1035,19900)

Machine learning
model

New features
(1035,19900)

|

Classification scores
(value, std)
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that can be explained by the independent or predictor vari-
ables. This model is given by

Y=Xp+e ey

where X is the design matrix of independent variables, f
is a vector of unknown parameters and € = (¢}, €,, ..., €,,)
a vector of random errors with E(e;) = 0. If the inverse of
the matrix X’X exists, then the ordinary least square (OLS)
estimates of the fitted value vector, y, are given by

$=XX'X)"'X'y 2

and the residual vector, Ay, is obtained by removing the var-
iance introduced by the independent variables, represented
by the fitted value vector, ¥, from the observation values,
y, of the dependent variables (Tamhane & Dunlop, 2000)

Ay=y-9 3)

We implemented the multiple linear regression (MLR)
models given by Eqgs. (1) to (3) to quantify the confound-
ing effects of each of the independent variables: age, FIQ,
gender and MRI vendor, as well as the effects of some com-
binations of these variables. We obtained two sets of new
features using the MLR models. The first set was obtained
using functional connectivity as dependent variable, and the
second set using the Fisher z-transformation of the func-
tional connectivity, FC, (see “Normalization Methods”
section), as dependent variable. The complete set of new
features computed with the MLR model and the correspond-
ing independent variables are given in Table 2.

ComBat Harmonization Models

In addition to the multiple linear regression models, we
implemented the ComBat harmonization models (Johnson
et al., 2007; Fortin et al., 2017, 2018; Yu et al., 2018), to
remove confounding effects introduced by the technical dif-
ferences of the scanners used by the different sites, while
conserving the variability introduced by selected phenotypic
and MRI vendors variables, and to determine which of each
of the independent variables: age, gender, FIQ or MRI ven-
dor, or combinations of these variables, should be preserved
to maximize the classification scores. A simplified form of
the ComBat model is given by

Y=u,+Xp+y+de 4)

where py is the mean value vector of Y, and the vectors y
and & are parameters representing the additive and multipli-
cative site effects respectively (Johnson et al., 2007), the rest
of the variables are equal to those defined for Eq. (1). The
vector of site adjusted values, ¥, is
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Table2 New features computed with the multiple linear regression
models and the ComBat harmonization models described in “Multi-
ple Linear Regression Models” and “ComBat Harmonization Mod-
els” section

MLR features ComBat features Independent variables

AmirA, AmirA, cbA, chA, age

AmirF, AmirF , cbF, cbF FIQ

AmirG, AmirG, — gender

AmirM , AmirM — MRI vendor

AmiIrAGM, —_— age, gender, MRI
AmirAGM ., vendor

cbAFG, cbAFG,, age, FIQ, gender

o 3 *
5,=y”>'6¢+ﬁy+xﬁ )
where f,, B, r* and 8* are estimated values of the corre-
sponding parameters. The ComBat model removes the con-
founding effects introduced by site effects, and preserves the
variability introduced by the independent variables included
in the the design matrix X (Fortin et al., 2017).

We computed two sets of new features using the ComBat
harmonization models given by Egs. (4) and (5). The first set
was obtained using functional connectivity as dependent var-
iable, and the second set using the Fisher z-transformation
of the functional connectivity, FCr, (see “Normalization
Methods)” section), as dependent variable. The complete
set of new features obtained with the ComBat harmoniza-
tion models and the corresponding independent variables are
given in Table 2. These new features were computed with
the NeuroCombat models available in (https://github.com/
Jfortin1/neuroCombat).

Normalization Methods

Considering that the independent variables of the multiple
linear regression models and the ComBat harmonization
models give only partial explanation of the variability of
the dependent variables, we also generated new features by
implementing normalization methods through the transfor-
mation of the functional connectivity values in more statis-
tically uniform new values, by reducing biases and outliers
introduced by unknown variables (Singh & Singh, 2020).

For the mathematical definition of the normalization
methods implemented in this study, we represented the
functional connectivity, for the 1035 subjects of the 17
ABIDE sites (see Table 1), as a matrix with I = 1035
subjects as rows, and J = 19990 features as columns. The
normalization methods presented in this section are the Fisher
z-transformation, as well as methods to compute new features
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by demeaning the functional connectivity values. All these
methods were implemented with the goal of maximizing the
classification scores by controlling the confounding effects
of unknown variables related to all the sites.

Fisher z-transformation The Fisher z-transformation was
proposed by Fisher (1915) to correct for skewness (lack of
symmetry) of the Pearson correlation coefficients, result-
ing in coefficients approximately normally distributed. We
implemented this method because in this study, the func-
tional connectivity values were computed as Pearson cor-
relation coefficients, and any skewness of these values may
be different between the data of the ABIDE sites with some
potential confounding effects. The new features obtained
with the Fisher z-transformation of the functional connec-
tivity, FC,, were computed as described in “Multiple linear
regression models” and “ComBat harmonization models”
section, and summarized in Table 2.

Demeaning the Functional Connectivity (FC) Values We
implemented normalization methods by demeaning the
functional connectivity values with three different aver-
age values. The following Egs. (6) to (8) were used for the
computation of the three new corresponding normalization
features, Aavg, AavgSite, and AavgSubj.

The new features Aavg are given by

Aavg = FC — ppc 6)

where the component ¢ ; = 2;1 FC/I of the vector pp,

is the average of the j component of the functional con-

nectivity computed over all subjects of the 17 ABIDE sites.
The new features AavgSite are given by

AavgSite = (Aavg; ,Aavg; , ....... ,Aavg; ) @)

where Aavg; =FC,; — pg is the new vector of features,

FCﬂ-k is the functional connectivity vector, and Hi,» k<17,
is the average of all the values of functional connectivity,
for the k™ site.

The new features AavgSubj are given by

AavgSubj = FC — ppc ()
where the component Hrcy,, = Zl!zl FC,;/J of the vector

Hpc,, - 1s the average of the functional connectivity values
Sub
computed for the i subject.

Sub-samples Selection

A common practice in machine learning analysis is to
compare computed classification accuracies with those
obtained by chance level, i.e., by assuming the uniform

distribution that a subject may be classified as patient or
control. For this binary classification problem, the chance
level is equal to 50%, if the sample has infinite size. Ref-
erence (Combrisson & Jerbi, 2015) showed that for small
data sets (less than 200 samples), the empirical chance
level computed from random classification was greater
than the theoretical chance level for an infinite sample,
for example, for a sample size of 100, the chance level
accuracy was 58.0% at a significance level of p < 0.05,
and for a sample size of 60 was 60% at a significance level
of p < 0.05. Considering these limits, the sizes of a high
percentage of the selected sub-samples presented in this
paper were greater than 100 subjects, and when the sub-
samples contained less than 100 subjects, the correspond-
ing accuracies were much greater than 58% (see Table 6).

The stratification methods used to define the baseline and
the homogenous sub-samples included in this work, were
based in the stratification techniques defined by Parsons
(2014) and Neyman (1992), which basically consists of
probability sampling methods on which the subjects of the
target population are divided into sub-samples or strata
where within each sub-sample the subjects have similar
characteristics. The criteria used to select the sites or
subjects included in these sub-samples were suitable to
accomplish the goal of maximizing the classification scores
computed with the machine learning analysis of the rs-fMRI
multi-site data. These criteria were defined in a different
and simplified way that those established in the works of
Parsons (2014) and Neyman (1992).

In this study, we selected homogeneous sub-samples
integrated with subjects classified by ranges of age, and
ranges of full IQ (FIQ). The first eight homogeneous sub-
samples given in Table 3 were formed by grouping sub-
jects with the same range of ages, or of FIQ, the last two
sub-samples were formed with the intersection of subjects
with selected ranges of these phenotypic values.

A set of baseline sub-samples were also selected to
comparing the classification scores obtained with the
new features. The baseline sub-samples, and the classifi-
cation scores computed with these sub-samples are given
in “Experimental Results: Baseline Sub-samples” section.

Methods for the Statistical Comparison of
experimental results computed with
the new features

Considering the strong dependence of the classification
scores on the new features used to compute them, we per-
formed statistical tests and computed the Wasserstein dis-
tance to compare the baseline classification scores, with
those scores computed with the new features obtained
with the models and the normalization methods described
in “Multiple Linear Regression Models”, “ComBat
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Table 3 Homogeneous sub-samples formed by grouping subjects
with the same range of ages, FIQ, or gender as described in “Sub-
samples Selection” section

Sub-sample Acronym C/A/T
0 <age< 10 age-10 74/69/143
10 <age< 15 age-1015 209/203/412
15 <age< 20 age-1520 115/110/225
10 < age < 20 age-1020 324/313/637
20 < age age-20 132/123/255
0<FIQ< 89 FIQ-89 24/92/116
89 <FIQ< 110 FIQ-89110 238/215/453
110 < FIQ FIQ-110 268/198/466
(10 <age<20)n (0 <FIQ age-1020-FIQ-89 21/67/88
<89
(10 <age<20)Nn (89 <FIQ  age-1020-FIQ-89110 153/138/291
<110)

Harmonization Models”, and “Normalization Methods”
sections, respectively. All these classification scores were
computed with the ASD-DiagNet machine learning classi-
fier (see “ASD-DiagNet” section).

To ensure the consistency of the statistical results, three
statistical tests methods were implemented to perform this
statistical analysis. The chosen methods were: The paramet-
ric t-test (tt), and two nonparametric tests: the Kolmogorov-
Smirnov test (kst), and the Mann—Whitney U test (mwt). The
t-test was used to determine if the means of two sets of data
are statistically different from each other. The nonparametric
tests computed several test statistics to determine if two set
of data are samples of the same distribution. All the statis-
tics methods were implemented in the stats sub-package of
the SciPy library in Python (https://scipy.org), more details
about these methods in (Tamhane & Dunlop, 2000; Corder
& Foreman, 2014; Sprent & Smeeton, 2016).

The main limitation of the statistical tests described
above were that the comparison of the classifications
scores ignored the strong dependence of these scores on
the sub-samples. Hence, to rank the new features accord-
ingly to the corresponding values of the classification
scores for each sub-sample, we computed the percentage
difference, for each sub-sample, between the classifica-
tion scores (CS,;) computed with the new features and the
baseline classification scores (CS,;), namely:

A = (CS,; — CS,;,)/CS,, * 100 ©)

The following positive and negative ranges for these dif-
ferences were defined: 0 < A <2.0(pl), 20<A <30
(p2), 3.0 < A <4.0(p3), 40 < A(p4), 0> A > -2.0(nl),
—-2.0> A > -3.0(n2),-3.0 > A > —4.0(n3), and —-4.0 > A
(n4). We then binned the number of values falling in each
range in positive and negative bins. The values in these bins

@ Springer

allowed as to rank the classification scores obtained with the
new features, with the maximum rank assigned to those with
the greatest number of values in the positive bins.

Experiments and Results

We performed a comprehensive set of experiments to
compute the classification scores with the new features
obtained with the models and methods described in “Mul-
tiple Linear Regression Models”, “ComBat Harmonization
Models”, and “Normalization Methods” sections, using
ASD-DiagNet as the machine learning classifier. For these
experiments, we used a total of nineteen new features, as
well as the ABIDE rs-fMRI data of the fourteen baseline
sub-samples given in Table 5, to obtain a total of 266 inde-
pendent experimental results. We compared these results
using the statistical methods described in “Methods for the
Statistical Comparison of Experimental Results Computed
with the New Features” section. We also selected the sub-
sample with which we obtained the maximum value of
the classification scores obtained with each feature. We
also included the computation of the classification scores
using the ABIDE rs-fMRI data of the ten homogeneous
sub-samples given in Table 3. To compare the experimen-
tal results with a different machine learning model, we
computed classification scores with ASD-SAENet (see
“ASD-SAENet” section) using a selected set of the new
features. Since, as far as we know, it is the first time our
proposed baseline and homogeneous sub-samples have
been implemented and used in this type of studies, there
are not similar published results to compare our experi-
mental results. A detailed analysis of all the computed
results are given in the following sections.

All the experiments presented in this work were per-
formed on a Linux server with Ubuntu operating system
version 16.04.6, 22 Intel Xeon Gold 6152 processors, clock
speed 2.1 GHz, and 125 GB of RAM. The GPU in this server
was a NVIDIA Titan Xp, with 30 SM, 128 cores/SM, maxi-
mum clock rate of 1.58 GHz, 12196 MB of global memory,
and CUDA version 11.4 with CUDA capability of 6.1.

Experimental Results: Sub-samples
Experimental Results: Baseline Sub-samples

We formed a baseline set of sub-samples by progressively
selecting the sites with the greatest values of accuracy com-
puted with ASD-DiagNet, i.e., the sub-sample with 4 sites
was integrated by the first four sites of Table 4.

The baseline classification scores computed with ASD-
DiagNet, using the functional connectivity values of the
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subjects grouped in these sub-samples, are given in Table 5,
on which the number of control (C), autistic (A) and total
(T) subjects are included to compare the sizes of the sub-
samples. The last row of Table 5 shows the classification
scores obtained with the machine learning models presented
in (Heinsfeld et al., 2018) for 17 ABIDE sites. These results
showed the existence of confounding effects affecting the
classification scores between-sites. Furthermore, the base-
line classification scores computed with the sub-samples
were always greater than the scores computed with the
whole 17 sites.

The baseline sub-samples and the corresponding baseline
classification scores provided a convenient framework by
comparing the classification scores obtained with the new
features defined in “Multiple Linear Regression Models”,
“ComBat Harmonization Models”, and “Normalization
Methods” sections.

Experimental Results: Homogeneous Sub-samples

Table 6 shows the values and standard deviations of the clas-
sification scores, computed with ASD-DiagNet for each of
the homogeneous sub-samples of the 17 ABIDE sites given
in Table 3. These values were computed using the values
of functional connectivity as features, and the cc200 as the
brain atlas. Only the sub-samples for which the accuracy

Table 4 Values and standard deviations of the classification scores
computed with ASD-DiagNet (see “The Machine Learning Mod-
els: ASD-DiagNet and ASD-SAENet” section) for each ABIDE site,
where the functional connectivity values were used as features, and
cc200 as the brain atlas. The classification scores computed with the
whole 17 ABIDE sites are included for comparison

Site Accuracy Sensitivity Specificity
Olin 81.2+2.7 90.5 +2.7 70.0 +4.5
OHSU 76.8 +2.4 92.7+2.0 63.0 +4.6
whole 17 sites 702 +0.1 68.8 + 0.6 71.6 +0.2
KKI 70.1 + 1.7 295+ 1.5 98.7 +2.2
USM 700+ 1.4 924 +2.2 28.8 +3.0
NYU 66.8 + 1.1 51.6 +2.1 782+ 1.7
UCLA 66.4+0.9 729 +1.2 58.8 +1.7
Yale 64.6 £2.1 587+ 1.6 70.2 +4.3
Stanford 639 +3.4 473 £3.7 81.0+4.9
CMU 63.8 +4.7 60.7 + 10.0 66.0 +5.3
UM 63.4+0.6 489 +1.2 76.5+0.9
Leuven 624 £2.7 552 +3.5 68.7 +3.4
Pitt 61.4+24 67.0 +3.7 554 +2.7
SDSU 559+ 1.7 153 +3.1 82.6+12
SBL 55.0 £3.7 54.7+4.0 553+52
MaxMun 540+1.5 242 +1.8 81.8 +1.7
Caltech 52.1+2.1 58.7+23 485 +3.7
Trinity 44.6 + 1.8 21.6 +£2.7 652 +2.6

Table 5 Values and standard deviations of the baseline classification
scores (accuracy (Ac), sensitivity (Se) and specificity (Sp)) computed
with ASD-DiagNet as described in “Sub-samples Selection” section

Sub-sample C/A/T Ac Se Sp

10-sites 361/353/714 735+ 0.6 71.6 £ 0.5 755+ 0.8
8-sites 274/273/547 732 +0.7 733+ 1.1 73.2+0.5
9-sites 287/287/574 728 + 0.4 722+ 0.9 73.5+0.2
4-sites 82/97/179 72.8 + 0.3 76.5+0.7 68.5+ 0.3
7-sites 254/254/508 72.6 + 0.4 732+ 0.8 71.9 + 0.3
13-sites 444/425/869 72.4+ 0.3 69.7 + 0.5 74.9 + 0.3
6-sites 226/226/452 721+ 0.7 715+ 0.5 72.6 + 1.0
11-sites 395/382/777 71.7+0.1 689 + 0.3 74.5+ 0.3
14-sites 459/440/899 715+ 0.2 70.1+0.5 72.8 + 0.7
15-sites 487/464/951 714+ 0.1 69.2 +0.2 73.5+ 0.3
5-sites 182/172/354 71.2+09 70.1+0.5 72.1+1.3
12-sites 422/411/833 714+ 0.2 68.7 +0.3 74.1 + 0.4
16-sites 505/483/988 70.8 + 0.3 69.1+ 0.7 72.4 +0.2

whole 17 sites  530/505/1035 70.2 + 0.1 68.8 + 0.6 71.6 + 0.6
Heinsfeld et al. 530/505/1035 70 74 63

was equal to or greater than 70% are included. In general,
the accuracy and sensitivity scores obtained with these sub-
samples were greater than those baseline scores computed
with the whole 17 ABIDE sites.

The first two sub-samples of Table 6, which include sub-
jects with 0 < FIQ < 89 obtained the maximum values of
accuracy (85.9%) and sensitivity (99.6%), but they were
unbalanced in the number of autistic and control subjects,
inducing overfitting of the machine learning model and
unbalanced sensitivity and specificity scores. We performed
experiments to correct these unbalances by increasing the
number of control subjects, randomly selected out of the
FIQ-89 and age-10-20-FIQ-89 sub-samples. The classifi-
cation scores computed with 34 and 44 additional control
subjects in the sub-samples FIQ-89-bal and age-10-20-
FIQ-89-bal included in Table 6, respectively, showed how
these classification scores were lower but more balanced
than those obtained with the original sub-samples. These
sub-samples also obtained the maximum values of accuracy
(76.4%, 8.8% above the baseline accuracy) and sensitivity
(82.9%, 20.5% above the baseline sensitivity) among all the
classification scores presented in this paper.

Statistical Comparison of Experimental Results
Computed with the New Features

Table 7 shows the p values obtained from statistical tests
and the Wasserstein distance (wa-d) to compare the base-
line classification scores, with those scores computed with
the new features as defined in “Methods for the Statistical
Comparison of Experimental Results Computed with the
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Table 6 Values and standard deviations of the classification scores,
computed with ASD-DiagNet for each of the homogeneous sub-
samples of the 17 ABIDE sites given in Table 3 and described in
“Experimental Results: Homogeneous Sub-samples” section. The

baseline classification scores computed the whole 17 ABIDE sites
are included for comparison. The number of control (C), autistic (A)
and total (T) subjects are included to compare the sizes of the sub-
samples

Sub-sample C/A/T Accuracy Sensitivity Specificity
FIQ-89 24/92/116 859 + 0.2 98.9 + 0.1 342+ 1.6
age-1020-FIQ-89 21/67/88 84.6 + 0.3 99.6 + 0.4 36.8 + 2.7
age-1020-F1Q-89-bal 65/67/132 76.4 + 0.7 823+ 0.7 68.5 + 0.8
FIQ-89-bal 58/92/150 76.0 + 0.4 82.9 + 0.3 65.1 + 0.7
age-1520 115/110/225 72.0 + 0.2 709 + 0.5 73.1 + 0.8
age-1020 324/313/637 71.9 + 0.1 714 + 04 724 + 0.2
FIQ-89-110 238/215/453 70.3 + 0.5 64.7 + 0.8 754 + 04
whole 17 sites 530/505/1035 70.2 + 0.1 68.8 + 0.6 71.6 + 0.6

New Features” section. Only the new features for which at
least two p-values are less than 0.05 are included.

To rank the new features accordingly to the correspond-
ing values of the classification scores for each sub-sample
(see “Methods for the Statistical Comparison of Experimen-
tal Results Computed with the New Features” section), the
total values in the positive and negative bins obtained for the
accuracy, sensitivity and specificity scores, computed for
each new feature, are summarized in Fig. 3, which provides
an efficient visualization of the rank of the classification
scores obtained with the new features relative to the baseline
classification scores.

Experimental Results: New Features

We implemented a total of nineteen new features, ten of
them using the multiple linear regression models defined in
“Multiple Linear Regression Models” section and six using
the ComBat harmonization models described in “ComBat
Harmonization Models” section (See Table 2). We also
implemented three new features with the normalization
methods described in “Normalization Methods” section.
These new features were used to perform experiments to
compute the classification scores with ASD-DiagNet for
each of the baseline sub-samples described in “Experimental
Results: Baseline Sub-samples”, for which the baseline clas-
sification scores, obtained from the functional connectivity
values, are given in Table 5. Table 8 summarizes the maxi-
mum values of these classification scores obtained with each
new feature and with the corresponding baseline sub-sample.

Experimental Results: Multiple Linear Regression Models

The classification scores computed with the new features
obtained with the multiple linear regression models (“Mul-
tiple Linear Regression Models” section) on which each one
of the individual independent variables age, FIQ, gender
or MRI vendor were regressed out to obtain the new MLR
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features of Table 2, are given in Figs. 4 and 5, on which they
are compared to the baseline classification scores given in
Table 5.

Three of the maximum accuracy scores and four of the
maximum sensitivity scores (see Table 8) were obtained
with the new features computed with the multiple linear
regression models. Seven of these features were among the
first eight features with the maximum counts in the posi-
tive bins for sensitivity (see Fig. 3). Our experiments also
showed that the specificity scores computed with the new
features obtained with the multiple linear regression models,
were below the baseline specificity scores for almost all the
sub-samples, except sub-sample 7, as shown in Figs. 4 and
5. More details about the results obtained with these features
follows.

The first main result obtained with the multiple linear
regression models was that all the classification scores com-
puted with the new features AmirF and AmlrF ., obtained
when the FIQ variables were regressed out (see Table 2),
were smaller than the baseline classification scores shown in
Fig. 4. This result was also confirmed by the p-values given
in Table 7, and the counts in the negative bins summarized
in Fig. 3, obtained by the classification scores computed
with these features.

The second main result was the quantification of the
confounding effects of the variables age, gender or MRI
vendor. The results of the experiments showed that the
new features on which age was regressed out, AmirA and
AmlrA,, were among the first six features with the max-
imum accuracy values given in Table 8. These features
were also among the first six features and the first two
features with the maximum counts in the positive bins
for accuracy and sensitivity given in Fig. 3, respectively.
Figure 4 shows that the accuracy scores computed with
the feature AmirA, were greater than six of the baseline
accuracy scores, and that the sensitivity scores computed
with this feature were greater than all the baseline sensitiv-
ity scores, with a maximum value of sensitivity, computed
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Table 7 p values obtained from statistical tests and the Wasserstein
distance (wa-d) defined in “Methods for the Statistical Comparison
of Experimental Results Computed with the New Features” section.
All the classification scores were computed with ASD-DiagNet for
the sub-samples of Table 5. Only the features for which at least two
p-values are less than 0.05 are included

Feature Score kst tt mwt Wa-d
AmlrA Accuracy 0.92 0.78 0.73 0.002
Sensitivity  0.15 0.14 0.18 0.014
Specificity  0.15 0.04 0.04 0.018
AmirA;, Accuracy 0.34 0.07 0.12 0.003
Sensitivity  0.15 0.06 0.05 0.017
Specificity  0.15 0.03 0.03 0.019
AmirF Accuracy 1077 1071 1073 0.041
Sensitivity  0.06 0.02 0.01 0.02
Specificity  10-° 10°8 10-° 0.061
AmirF, Accuracy 1077 10710 107 0.045
Sensitivity ~ 0.02 0.01 0.01 0.024
Specificity  107° 107° 103 0.066
AmirG Accuracy 0.15 0.05 0.1 0.011
Sensitivity  0.06 0.91 0.54 0.014
Specificity  0.001  0.001  0.001 0.024
AmirG, Accuracy 0.34 0.14 0.21 0.007
Sensitivity  0.92 0.53 0.45 0.006
Specificity 0.06 0.01 0.01 0.02
AmirM Accuracy 0.34 0.04 0.06 0.009
Sensitivity  0.64 0.28 0.26 0.012
Specificity  0.001  0.002  0.0004  0.029
AmirM ., Accuracy 0.34 0.04 0.06 0.009
Sensitivity  0.34 0.37 0.37 0.009
Specificity  0.001  0.003  0.001 0.027
AmlrAGM Accuracy 0.15 0.24 0.16 0.006
Sensitivity  0.64 0.33 0.26 0.011
Specificity  0.005  0.005  0.002 0.019
AmirAGM,  Accuracy 0.15 0.24 0.18 0.007
Sensitivity  0.64 0.3 0.28 0.01
Specificity  0.02 0.01 0.002 0.021
cbA Accuracy 0.15 0.01 0.02 0.013
Sensitivity  0.34 0.07 0.09 0.016
Specificity  0.34 0.18 0.19 0.01
cbAp, Accuracy 0.06 0.02 0.02 0.011
Sensitivity  0.34 0.05 0.14 0.015
Specificity  0.64 0.45 0.40 0.007
Aavg Accuracy 0.34 0.11 0.14 0.008

Sensitivity  0.34 0.43 0.30 0.01

Specificity 0.005 0.001 0.023

for the sub-sample 4, of 78.1%, 13.5% above the baseline
value for the whole 17 sites (see Table 8).

The results of the experiments also showed that the
new feature on which the gender variable was regressed
out, AmlrG,, was among the first eight features with the

maximum accuracy values given in Table 8. This feature
was also among the first seven features with the maximum
counts in the positive bins for the sensitivity score given in
Fig. 3. Figure 4 shows that the sensitivity scores computed
with this feature were greater than ten of the baseline sen-
sitivity scores. Another important result was that the sen-
sitivity score computed with the feature AmlrG obtained a
maximum value among all the sensitivity scores obtained
with the new features, computed for the sub-sample 4, of
78.6%, 14.2% above the baseline value for the whole 17
sites (see Table 8).

Table 8 shows that the sensitivity score computed with
the new feature on which the MRI vendor variable was
regressed out, AmlrM , was among the first three maximum
sensitivity values given in Table 8. This feature was also
among the first seven features with the maximum counts
in the positive bins for sensitivity given in Fig. 3. Figure 4
shows that the sensitivity scores computed with this feature
were greater than eleven of the baseline sensitivity scores,
with a maximum sensitivity score for the sub-sample 4, of
78.0%, 13.4% above the baseline value for the whole 17 sites
(see Table 8).

Additional and important results were computed with
the new features AmlrAGM and AmirAGM ;, which were
obtained with the multiple linear regression models with
age, gender and MRI vendor as independent variables. The
accuracy scores computed with these features were the
maximum values of accuracy among all the features (see
Table 8), with a maximum value of 74.3% (5.8% above the
baseline value) for the sub-sample with 7 sites. Figure 5
shows that the sensitivity scores computed with these fea-
tures were greater than eleven of the baseline sensitivity
scores, with a maximum value of 76.4% (11.1% above the
baseline value) shown in Table 8.

In general, all the results obtained with the new features
computed with the multiple linear regression models were
confirmed by the p-values given in Table 7.

Figure 6 gives an example of the classification scores
computed with ASD-SAENet. The comparison of these
results with those obtained with ASD-DiagNet using the
same features (see Fig. 5), showed that the classifica-
tion scores obtained in these experiments were strongly
dependent on the machine learning model used for these
computations.

Experimental Results: ComBat Harmonization Models

The classification scores computed with the new features
obtained with the ComBat harmonization models (“ComBat
Harmonization Models” section) given in Table 2, are shown
in Fig. 7 on which they are compared to the baselines classi-
fication scores given in Table 5. One of the maximum accu-
racy scores and four of the maximum specificity scores (see
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Fig.3 Summary of total counts of the number of values in the posi-
tive and negative bins in the ranges defined in “Methods for the Sta-
tistical Comparison of Experimental Results Computed with the New

Table 8) were obtained with the new features computed with
the ComBat models. Two of these features were also among
the first three features and four of them were among the first
five features with the maximum counts in the positive bins
for accuracy and specificity (see Fig. 3), respectively. More
details about the results obtained with these features follows.

The new feature ¢chAFG, obtained with the ComBat
models (see Table 2) on which the variability introduced
by the phenotypic variables age, FIQ, and gender was con-
served, was among the first four features with maximum

Features” section, corresponding to the classification scores com-
puted with ASD-DiagNet with the new features

accuracy and maximum specificity values given in Table 8.
Figure 7 shows that the accuracy scores computed with
this feature were greater than the baseline accuracy scores
computed with sub-samples 10 to 16, as well as with the
whole 17 sites. The specificity scores computed with this
feature were greater than ten of the baseline specificity
scores, obtaining the second maximum value of 76.7%
(7.1% above the baseline value) shown in Table 8. This fea-
ture also obtained the maximum value of the counts in the
positive bins for accuracy and the second maximum value

Table 8 The maximum values

. : Feature Ac(SS) % Se(SS) % Sp(SS) %
of the classification scores
(accfuracyﬁ(/,*c)(ssse)fisiﬁvity(SZ) AmlrAGM 743 +0.2(7) 58 752 +0.3(7) 9.3 735 +0.3(7) 2.7
and specificity(Sp)) compute
with ASD-DingNet using the AmirAGM ., 74.2 + 0.7(8) 5.7 76.4 + 0.5(4) 11.1 72.7 + 0.7(8) L5
new features obtained with the AmlrA 74.1 + 0.3(10) 56 781054 135  738+02(10) 3.1
MLR models, ComBat models, cbAFG, 74.1 + 0.1(10) 5.6 744 +0.54) 8.1 76.7 + 0.4(12) 7.1
an nfgrgéliza&m; mfthfds AavgSite 73.8 + 0.2(10) 5.1 77.1 + 0.6(4) 12.1 77.0 £ 0.2(10) 7.5
escribed in “Multiple Linear
Regression Models”, “ComBat AmlirA 73.6 + 0.2(8) 4.8 77.1 £ 1.0(4) 12.1 73.4 +0.2(10) 2.5
Harmonization Models”, and Aavg 73.5+0.3(9) 4.8 774 +0.2(4) 12.5 73.4 +0.4(9) 2.5
“Normalization Methods” AmirG,, 73.1 £ 0.2(10) 4.1 78.1 + 0.5(4) 13.5 73.4 +0.6(12) 2.5
sections respectively, and the cbF 73.0 + 0.2(10) 4.0 75.3 + 0.6(4) 9.4 76.0 + 0.8(13) 6.1
corresponding sub-samples (SS) .
(see Table 5). The percentage AavgSubj 72.8 +0.19) 3.7 74.2 +0.4(4) 7.8 74.4 + 1.2(14) 3.9
difference between the results AmirG 72.7 +0.2(9) 3.6 78.6 + 1.2(4) 14.2 72.8 +£0.3(13) 1.7
obtained with the new features AmirM 72.7 + 0.1(8) 3.6 78.0 + 0.4(4) 134 727+ 0.4(11) 1.6
and the baseline classification AmirM ., 72.7 £ 0.1(9) 3.6 76.5 + 0.7(4) 112 72.9 + 0.4(13) 1.8
scores obtained for the
whole 17 sites are included. cbAFG 72.7 + 0.1(10) 3.6 75.6 +0.5(4) 9.9 75.0 + 0.1(15) 4.8
The five greatest values for cbAg, 72.7 + 0.1(10) 3.6 71.9 +0.6(4) 45 74.2 +0.2(10) 3.6
each classification score are cbF ., 72.6 + 0.1(10) 34 76.7 + 0.6(4) 11.5 75.6 + 0.5(14) 5.6
highlighted in bold cbA 72.5 +0.5(10) 33 74.1 + 1.1(4) 7.7 74.8 + 0.5(13) 4.5
AmirF 70.0 + 0.4(10) -0.3 73.8 £ 1.3(4) 7.3 69.9 + 0.6(13) —2.4
AmirF ., 69.6 + 0.3(10) -0.9 73.5 £ 1.4(4) 6.8 69.5 + 0.2(13) -2.9
FC(whole) 70.2 68.8 71.6
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Fig.4 Classification scores computed with ASD-DiagNet, using selected
new features obtained from the multiple linear regression models with
individual independent variables described in “Multiple Linear Regres-
sion Models” section, compared with the baseline classification scores
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cated by the dashed line, while the maximum values are indicated by the
continuous line
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Fig.5 Classification scores computed with ASD-DiagNet using selected
new features obtained from the multiple linear regression models
described in “Multiple Linear Regression Models” section, compared

for specificity given in Fig. 3. The fifth maximum value of
the specificity score, 75.0% (4.8% above the baseline value)
given in Table 8 was computed with the new feature chAFG.
This feature was also among the first four features with the
maximum values of the counts in the positive bins for speci-
ficity given in Fig. 3.
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with the baseline classification scores given in Table 5. The baseline
values for the whole 17 sites are indicated by the dashed line, while the
maximum values are indicated by the continuous line

The new feature cbF obtained with the ComBat models
(see Table 2) on which the variability introduced by the FIQ
variable was conserved, was among the first four features
with maximum specificity values given in Table 8. Figure 7
shows that the specificity scores computed with this feature
were greater than seven of the baseline specificity scores,
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Fig. 6 Classification scores computed with ASD-SAENet (see “ASD-
SAENet” section) using selected new features obtained from the mul-
tiple linear regression models described in “Multiple Linear Regres-
sion Models” section, compared with the baseline classification scores
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the continuous line
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Fig.7 Classification scores computed with ASD-DiagNet using selected
new features obtained from the ComBat harmonization models described
in “ComBat Harmonization Models” section compared with the baseline

obtaining the third maximum value of 76.0% (6.1% above
the baseline value) shown in Table 8. The new feature chbF,
obtained the third maximum value of the counts in the posi-
tive bins for accuracy and specificity given in Fig. 3, obtain-
ing the fourth maximum value of specificity, 75.6% (5.6%
above the baseline value), given in Table 8.

An important result was that the classification scores
computed using the new features cbA and cbA, obtained
with the ComBat harmonization models, on which the
variability introduced by the age variable was conserved,
obtained the maximum values of the counts in the negative
bins given in Fig. 3 among all the new features obtained with
the ComBat models. This result was also confirmed by the
p-values given in Table 7 for these features.

Experimental Results: Normalization Methods

Figure 8 shows the classification scores computed with
ASD-DiagNet, using the new features obtained from the
normalization methods described in “Normalization Meth-
ods” section, on which they are compared to the baseline
classification scores given in Table 5.
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classification scores (FC) given in Table 5. The baseline values for the
whole 17 sites are indicated by the dashed line, while the maximum val-
ues are indicated by the continuous line

The maximum value of specificity among all the features
(see Table 8), of 77.0% (7.5% above the baseline value), was
obtained with the new feature, AavgSite, for the sub-sample
with 10 sites, which also obtained the maximum counts in
the positive bins for specificity (see Fig. 3). The specificity
scores computed with this feature were also greater than ten
of the baseline specificity scores given in Fig. 8. This feature
also obtained an accuracy score of 73.8% (5.1% above the
baseline value), which was among the first five maximum
accuracy values given in Table 8, and obtained the second
maximum counts in the positive bins for accuracy given in
Fig. 3.

The experimental results also showed that the feature
Aavg was among the first five features with the maximum
counts in the positive bins for sensitivity given in Fig. 3,
with sensitivity scores greater than eight of the baseline
sensitivity scores, obtaining the fifth maximum value of
77.4% (12.5% above the baseline value) among the sensi-
tivity values shown in Table 8. This feature also obtained
the maximum counts in the negative bins for the specific-
ity scores given in Fig. 3, this result was confirmed by the
p-values given in Table 7 for this feature.
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Fig. 8 Classification scores computed with ASD-DiagNet, using the
new features obtained from the normalization methods described in
“Normalization Methods” section, compared with the baseline clas-
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The results for specificity scores also showed that the
feature AavgSubj, was among the first six features with
the maximum counts in the positive bins for the specific-
ity scores, and among the first five features with the maxi-
mum counts in the positive bins for accuracy given in Fig. 3,
respectively.

Discussion and Conclusions

In this paper, we proposed a comprehensive approach for
controlling the confounding effects on the machine learning
analysis of rs-fMRI multi-site data. Our approach consisted
of a novel combination of stratification techniques to pro-
duce a suitable set of homogeneous sub-samples, as well
as the generation of new features for the machine learning
analysis through multiple linear regression models, Com-
Bat harmonization models and normalization methods. The
new features obtained with the multiple linear regression
models were designed to quantify the effects of phenotypic
and imaging variables on the confounding effects. Further-
more, new features obtained with the ComBat models and
the normalization methods were implemented to maximize
the classification scores computed with the machine learn-
ing analysis performed with our existing state of the art
machine-learning models ASD-DiagNet and ASD-SAENet.

We implemented a baseline set of sub-samples from
which we obtained baseline classification scores from the
machine learning analysis of the functional connectivity
values computed with the ABIDE rs-fMRI multi-site data,
to compare with the classification scores computed with the
new features. The comparison between the baseline clas-
sification scores and the classification scores obtained from
the whole 17 ABIDE sites showed that adequately selected
sub-samples outperform the classification scores of larger
sets of data, demonstrating that the quality of the data is
more important than its quantity.

Our empirical experiments performed with the new fea-
tures computed with the multiple linear regression models
and the full IQ (FIQ) as independent variable, resulted in a
considerable reduction of the classification scores, that we
assumed was due to a reduction of the statistical discrimina-
tion power of the machine learning models when this variable
is regressed out. Furthermore our results showed that using
the new features obtained by regressing out the phenotypic
variables of age, gender, or MRI vendors, or a combination
of them, we obtained values of sensitivity scores that were
greater than the baseline sensitivity scores for the majority
of the sub-samples. The maximum values of accuracy and
sensitivity among all the new features were computed with
these new features. However, our results indicated that by

using these new features, a decrease of the specificity scores
for all the baseline sub-samples was obtained.

The ComBat harmonization models were implemented
to remove the confounding effects introduced by the site
effects, and to determine which of each of the independent
variables: age, gender, FIQ or MRI vendor, or combinations
of these variables, should be preserved to maximize the clas-
sification scores. The experimental results obtained with the
new features computed with the ComBat models, showed
that the accuracy and sensitivity scores increased for sub-
samples with 10 or more sites. We also obtained an increase
of the specificity scores for almost all the sub-samples. Four
of the maximum values of specificity scores among all the
features were obtained with these new features.

The experimental results obtained with the new fea-
tures computed with the normalization methods showed an
increase in all the classification scores for almost all the sub-
samples. The maximum value of the specificity score among
all the features was obtained with these new features. Similar
results were obtained for the classification scores computed
with the homogeneous sub-samples implemented with the
goal of maximizing the classification scores. The maximum
values of accuracy and sensitivity scores among all the results
presented in this paper were computed with the homogeneous
sub-samples with subjects with FIQ less than 89.

All the experimental results demonstrated the effective-
ness of our proposed approach to quantify the confounding
effects of the phenotypic and imaging variables, as well to
maximize the classification scores which were obtained with
the proposed statistical models and methods.

The main conclusion obtained from the comprehensive
approach and results presented in this paper, is that the con-
trol of the confounding effects, intrinsic to rs-fMRI multisite
data, over the machine learning analysis of this type of data,
is an essential step towards discovering the functions and
structure of the human brain, detecting brain disorders, and
defining biomarkers useful for the diagnosis of these disor-
ders. We hope that our approach will be used and improved
by the neuroscience research community to maximize the
classification scores of the machine learning analysis of rs-
fMRI multi-site data.

One main limitation of the work presented in this paper
is that the relations between the pehnotypic and imaging
variables and the functional and structural properties of the
human brain of patients and control subjects determining
the results obtained with our experiments and methods are
unknown. Hence, a very important and challenging area of
research in network neuroscience is a detailed and complete
definition of these underlying relationships.

Some additional limitations were the use of only the
ABIDE rs-fMRI multi-site data with one preprocessing
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pipeline, as well as the limitations inherent to the construc-
tion of the functional networks, where only one preexisting
brain atlas was used to defining the nodes, and only the Pear-
son correlation function was used for computing the static
functional connectivity, i.e., the weights of the edges of the
networks. The use of different sets of rs-fMRI multi-site
data, different preprocessing pipelines, as well as, the imple-
mentation of data-driven brain parcellations derived from
the fMRI data (Arslan et al., 2018; Messé, 2020) and addi-
tional methods for the definition of the nodes and the edges
of the functional networks (Faskowitz et al., 2020, 2022),
including the use of time-varying functional connectivity
(Lurie et al., 2020), and new methods for the determination
of optimal sub-samples to reduce the confounding effects by
using, for example, between-group effect size methods, may
asses the reproducibility and consistency of the results and
improve the methods presented in this paper.

Data collection, feature selection and parameter estima-
tion for an accurate machine learning algorithm is a tough
task. This may depend on the characteristics of the cohort,
the representativity of the features and the algorithm com-
plexity. Data quality requirements is emerging lately to
avoid wrong decisions (Omri et al., 2021). It refers to the
ability of the available data to maximize the classification
scores. Further investigations are needed to develop a data
quality model to control the confounding effects to maxi-
mize the classification scores. In addition, one could think
about finding the adapted threshold to select the quantity of
data needed to train the machine learning models for fMRI
classification.
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