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Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive imaging technique widely used in neuro-
science to understand the functional connectivity of the human brain. While rs-fMRI multi-site data can help to understand 
the inner working of the brain, the data acquisition and processing of this data has many challenges. One of the challenges 
is the variability of the data associated with different acquisitions sites, and different MRI machines vendors. Other factors 
such as population heterogeneity among different sites, with variables such as age and gender of the subjects, must also be 
considered. Given that most of the machine-learning models are developed using these rs-fMRI multi-site data sets, the 
intrinsic confounding effects can adversely affect the generalizability and reliability of these computational methods, as 
well as the imposition of upper limits on the classification scores. This work aims to identify the phenotypic and imaging 
variables producing the confounding effects, as well as to control these effects. Our goal is to maximize the classification 
scores obtained from the machine learning analysis of the Autism Brain Imaging Data Exchange (ABIDE) rs-fMRI multi-
site data. To achieve this goal, we propose novel methods of stratification to produce homogeneous sub-samples of the 17 
ABIDE sites, as well as the generation of new features from the static functional connectivity values, using multiple linear 
regression models, ComBat harmonization models, and normalization methods. The main results obtained with our statistical 
models and methods are an accuracy of 76.4%, sensitivity of 82.9%, and specificity of 77.0%, which are 8.8%, 20.5%, and 
7.5% above the baseline classification scores obtained from the machine learning analysis of the static functional connectiv-
ity computed from the ABIDE rs-fMRI multi-site data.
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Introduction

Resting-state functional magnetic resonance imaging (rs-
fMRI) is a non-invasive imaging technique based on the 
blood oxygen level of the brain (Ogawa et al., 1990, 1993), 
widely used in neuroscience to understand the functional 

connectivity of the human brain. An active area of research 
in neuroscience is the modeling of rs-fMRI data, using com-
plex graph theory, to discover the functions and structure 
of the human brain, and for the detection of brain disorders 
(Sporns et al., 2004, 2005; Stam & Reijneveld, 2007; van 
den Heuvel et al., 2008; Bullmore & Bassett, 2011; Sporns, 
2012; Bassett & Sporns, 2017).

Initial fMRI studies based in data collected in a single 
imaging site, usually had limited statistical power, due to 
the difficulties to obtain large amounts of data such as the 
limited participants with brain disorders in one geographical 
location, as well as limited resources (Van Horn & Toga, 
2009). To overcome these limitations, multi-site neuroimag-
ing data have been extensively used in network neuroscience 
research in the last decade (Friedman et al., 2006, 2008; Van 
Horn & Toga, 2009; Biswal et al., 2010; Gradin et al., 2010; 
Poline et al., 2012; Noble et al., 2017; Rao et al., 2017). The 
Autism Brain Imaging Data Exchange (ABIDE) functional 
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magnetic resonance database (Craddock et al., 2013; Di 
Martino et al., 2014; Di Martino et al., 2017) exemplifies a 
modern multi-site rs-fMRI database which provides a larger 
sample size of rs-fMRI data obtained from a more heteroge-
neous population living in different geographical locations, 
resulting in higher statistical power compared to the rs-fMRI 
data obtained for a single site (Van Horn & Toga, 2009; 
Biswal et al., 2010). The ABIDE database is a powerful tool 
for enhancing the reproducibility and the reliability of the 
statistical methods and models implemented for the diagno-
sis and discovery of autism spectrum disorders (Abraham 
et al., 2017; Eslami et al., 2019; Almuqhim & Saeed, 2021).

One main challenge for the neuroscience research com-
munity using rs-fMRI multi-site databases is the existence 
of confounding effects, associated with variables resulting 
from imaging and population heterogeneity among differ-
ent sites. Several studies have shown that these confounding 
factors affect the performance of the machine learning mod-
els when executed on rs-fMRI multi-site data (Plitt et al., 
2015; Kassraian-Fard et al., 2016; Abraham et al., 2017). 
One main effect is the increase in variability, as well as the 
imposition of upper limits on the classification scores, due 
to the decrease of statistical power of the machine learning 
classification of patients and control subjects.

A first group of confounding effects are those resulting 
from the imaging acquisition such as MRI scanner vendor, 
scanner technology, magnetic field strength and inhomoge-
neities, and scanning protocols and parameters for the image 
acquisition, such as scan length, repetition time, echo time, 
acquisition time, and voxel size (Friedman et al., 2006, 2008; 
Gountouna et al., 2010; Brown et al., 2011; Birn et al., 2013; 
Kostro et al., 2014; Chen et al., 2014; Forsyth et al., 2014; 
Feis et al., 2015; Mirzaalian et al., 2016; Abraham et al., 
2017). The control and reduction of these imaging confound 
effects have been partially solved by implementing standard 
protocols and parameters for the image acquisition proce-
dures (Friedman et al., 2008; Glover et al., 2012; Shinohara 
et al., 2017; Chavez et al., 2018).

A second group of confounding effects are those 
related to phenotypic data derived from the heterogeneous 
population from which the MRI data is obtained, i.e., clinical 
information of patients (e.g., taking medications, severity 
of disorder symptoms), instructions given to the subjects 
during testing (e.g., eyes open or closed), as well as relevant 
demographic data (e.g., age range, IQ-range, gender) (Van 
Horn & Toga, 2009; Dukart et al., 2011; Birn et al., 2013; 
Chen et al., 2014; VanderWeele & Shpitser, 2013; An et al., 
2017; Rao et al., 2017; Dansereau et al., 2017; Fortin et al., 
2018; Badhwar et al., 2020; Reardon et al., 2021; Reiter et al., 
2021; Benkarim et al., 2022). Some studies have implemented 
stratification techniques (Parsons, 2014) of the rs-fMRI data 
of the ABIDE sites to control the confounding effects due to 
diverse phenotypic data. These stratification techniques were 

used to generate sub-samples integrated by subjects sharing 
common characteristics such as: gender, age, right-handed, 
and eyes open, to obtain more homogeneous and suitable 
data sets for the statistical analysis of the static functional 
connectivity derived from rs-fMRI multi-site data (Chen 
et al., 2013; Nielsen et al., 2013; Vigneshwaran et al., 2013; 
Chen et al., 2015; Plitt et al., 2015; Iidaka, 2015; Kassraian-
Fard et al., 2016; Abraham et al., 2017; Guo et al., 2017; Kam 
et al., 2017; Sadeghi et al., 2017; Parisot et al., 2018; Wang 
et al., 2019; Kong et al., 2019; Khosla et al., 2019; Li et al., 
2020; Sherkatghanad et al., 2020; Reiter et al., 2021).

During the last decade, important research efforts have 
been dedicated to identifying the confound variables and 
controlling the corresponding effects over the statistical 
analysis of multi-site MRI data. Diverse studies imple-
mented statistical regression models to quantify and control 
the confounding effects over predictive modelling using 
multi-site structural MRI data (Rao et al., 2017), as well as 
rs-fMRI data (Dansereau et al., 2017). The harmonization 
models, also known as combined batch (ComBat) harmoni-
zation models, are based on an empirical Bayes model, origi-
nally proposed to control batch effects introduced by differ-
ent samples in gene expression microarrays experiments by 
Johnson et al. (2007). This model was reformulated in the 
context of heterogeneous multi-site diffusion tensor imaging 
data by Fortin et al. (2017), to remove confounding effects 
introduced by the technical differences of the scanners used 
by the different sites, while conserving the variability intro-
duced by selected phenotypic variables. Some studies also 
implemented the ComBat harmonization models to correct 
site effects in the statistical analysis of static functional con-
nectivity computed from multi-site rs-fMRI data (Yu et al., 
2018; Yamashita et al., 2019; Reardon et al., 2021; Torbati 
et al., 2021; Chen et al., 2022).

In this study we used the ABIDE rs-fMRI data with the 
17 international imaging sites summarized in Table 1. The 
goals of our study were twofold i) the identification of the 
phenotypic and imaging variables producing the confound-
ing effects, and ii) to control these confounding effects 
to maximize the classification scores obtained from the 
machine learning analysis the rs-fMRI ABIDE multi-site 
data. To achieve these goals, we propose two set of methods. 
The first set of methods were implemented to generate new 
features for the machine learning models. These new fea-
tures were computed from the static functional connectivity 
values computed from the rs-fMRI multi-site data. The first 
methods implemented in this set were multiple linear regres-
sion (MLR) models mainly applicable to the identification 
of the confounding variables, however the experimental 
results showed that they were also useful to maximize the 
classification scores computed with the machine learning 
models (see “Multiple Linear Regression Models” section). 
The second methods implemented in this set were ComBat 
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harmonization models implemented to control the confound-
ing effects and to maximize the classification scores (see 
“ComBat Harmonization Models” section). Since the inde-
pendent variables of the MLR and ComBat harmonization 
models give only partial explanation of the variability of 
the dependent variables, we also generated new features by 
using normalization methods on which the confound vari-
ables were unknown (see “Normalization Methods” section). 
The second set of methods were based in the stratification 
techniques defined by Parsons (2014) and Neyman (1992) 
which basically consists of probability sampling methods 
on which the subjects of the target population are divided 
into sub-samples or strata where within each sub-sample 
the subjects have similar characteristics. These techniques 
were implemented to produce homogeneous sub-samples of 
the 17 ABIDE sites on which the subjects were in different 
ranges of age and/or full IQ (FIQ) (see “Sub-samples Selec-
tion” section).

The main contribution of the work presented in this paper 
is a comprehensive approach for the solution of the problem 
of confounding effects over the machine learning classifica-
tion models of rs-fMRI multisite-data, consisting of the sets 
of proposed methods as well as the extensive set of experi-
ments performed with these methods. The experimental 

results were also thoroughly analyzed and compared to 
evaluate the effectiveness of each one of the implemented 
methods. The proposed approach can be used and improved 
by the neuroscience research community to help in the diag-
nosis of brain disorders.

Methods and Materials

ABIDE Resting fMRI Multi‑site Data

Functional magnetic resonance imaging (fMRI) is a non-
invasive imaging technique widely used in neuroscience to 
measure brain activity and functional connectivity. fMRI 
is based on the fact that hemoglobin, the carrier of oxy-
gen from the lungs to the tissues (Marengo-Rowe, 2006), 
changes their magnetic properties depending on their level 
of oxygenation which in turn is determined by the level of 
neuronal activity in the brain. Resting functional magnetic 
resonance (rs-fMRI), obtained from subjects who are at 
rest at the scanner, reflects dynamic changes in the brain 
due to neuronal activity in different regions of the brain. 
rs-fMRI, therefore, can be used to estimate the functional 
connectivity between these regions (Aertsen et al., 1989; 

Table 1   International Imaging 
Sites from ABIDE resting state 
fMRI preprocessed (http://​prepr​
ocess​ed-​conne​ctomes-​proje​ct.​
org/​abide/) used in this paper 
(Craddock et al., 2013)

Sites: California Institute of Technology (Caltech), Carnegie Mellon University (CMU), Kennedy Krieger 
Institute (KKI), University of Leuven (Leuven), Ludwig Maximilian University (MaxMun), Oregon 
Health and Science University (OHSU), Institute of Living at Hartford Hospital (Olin), University of Pitts-
burgh School of Medicine (Pitt), Social Brain Lab (SBL), San Diego State University (SDSU), Stanford 
University (Stanford), Trinity Center for Health Sciences (Trinity), University California Los Angeles 
(UCLA),University of Michigan (UM), University of Utah School of Medicine (USM), and Child Study 
Center, Yale University (Yale).
MRI vendors: General Electric (GE), Phillips(P), Siemens(S)

Site C ASD Subjects Avg age Avg FIQ M/F MRI

Caltech 18 19 37 27.7 ± 10.3 111.5 ± 11.2 29/8 S
CMU 13 14 27 26.6 ± 5.6 114.6 ± 10.3 21/6 S
KKI 28 20 48 10.0 ± 1.3 106.2 ± 4.8 36/12 P
Leuven 34 29 63 18.0 ± 5.0 107.6 ± 18.0 55/8 P
MaxMun 28 24 52 25.3 ± 11.8 110.9 ± 11.4 48/4 S
NYU 100 75 175 15.3 ± 6.5 110.5 ± 14.9 139/36 S
OHSU 14 12 26 10.7 ± 1.8 111.0 ± 16.3 26/0 S
Olin 15 19 34 16.6 ± 3.4 113.2 ± 16.5 29/5 S
Pitt 27 29 56 18.9 ± 6.9 110.2 ± 12.1 48/8 S
SBL 15 15 30 34.4 ± 8.5 107.9 ± 9.4 30/0 P
SDSU 22 14 36 14.4 ± 1.8 109.4 ± 13.6 29/7 GE
Stanford 20 19 39 10.0 ± 1.6 111.4 ± 15.4 31/8 GE
Trinity 25 22 47 17.0 ± 3.4 110.0 ± 13.6 47/0 P
UCLA 44 54 98 13.0 ± 2.2 103.1 ± 12.7 86/12 S
UM 74 66 140 14.0 ± 3.2 106.9 ± 13.6 113/27 GE
USM 25 46 71 22.7 ± 8.3 105.2 ± 17.5 71/0 S
Yale 28 28 56 12.7 ± 2.9 99.8 ± 19.9 40/16 S
TOTAL 530 505 1035 878/157

http://preprocessed-connectomes-project.org/abide/
http://preprocessed-connectomes-project.org/abide/
http://preprocessed-connectomes-project.org/abide/
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Biswal et al., 1995; van de Ven et al., 2004). The rs-fMRI 
measured with the MRI scanners need to be preprocessed 
to correct for confounding effects such as magnetic field 
distortions and head motion, and to improve the signal-
to-noise ratio (Jenkinson & Chappell, 2018). The preproc-
essed rs-fMRI data used in this study was obtained from 
the 17 international imaging sites listed in Table 1, pub-
licly available in the ABIDE database, with a total of 530 
control and 505 autism subjects (Craddock et al., 2013; 
Di Martino et al., 2014, 2017). The preprocessing pipeline 
chosen for this data was the Configurable Pipeline for the 
Analysis of Connectomes (CPAC), and the filt-global pre-
processing strategy, on which the head motion correction 
is performed using a two-stage approach as described in 
https://​fcp-​indi.​github.​io/​docs/​latest/​user/​quick.​html and 
Cox and Jesmanowicz (1999). The preprocessing pipeline 
is described in detail in the ABIDE Preprocessed web-
site (http://​prepr​ocess​ed-​conne​ctomes-​proje​ct.​org/​abide/​
index.​html).

Human Brain Functional Networks

In the last two decades, the graph theoretical analysis of 
functional connectivity between brain regions, on which 
the rs-fMRI data is represented as human brain functional 
networks, has been fundamental to identifying organizational 
principles in the brain, as well to understanding the causes 
of brain disorders (Sporns et  al., 2004,  2005; Stam & 
Reijneveld, 2007; van den Heuvel et al., 2008; Bullmore 
& Bassett, 2011; Sporns, 2012; Bassett & Sporns, 2017). 
In this study, the nodes of the human brain functional 
networks, which will be referred to as functional networks 
for the rest of the paper, were defined by using the cc200 
(200 nodes) brain atlas derived from fMRI data (Craddock 
et al., 2012), and the weights of edges, i.e., the elements 
of the static functional connectivity adjacency matrix of 
the functional network, were obtained by computing the 
linear correlation between the time series for all pairs of 
nodes, using the Pearson correlation function available in 
the NumPy package (https://​numpy.​org). Since the static 
functional connectivity adjacency matrix is symmetric, the 
static functional connectivity values, which will be referred 
to as functional connectivity values for the rest of the paper, 
were obtained from the upper triangular part of this matrix.

The Machine Learning Models: ASD‑DiagNet 
and ASD‑SAENet

For this study we selected two state of the art machine learn-
ing models: ASD-DiagNet and ASD-SAENet to perform the 
experiments of classification of control and autistic subjects, 
and to compare the corresponding results. The classification 

scores computed in our experiments were: Accuracy which 
measures the ratio of correctly classified as patient subjects 
(true positive) and control subjects (true negative) over the 
total number of subjects; sensitivity which measures the ratio 
of the correctly classified as patient subjects over the total 
number of patients (true positive plus false negative); and 
specificity which measures the ratio of the correctly classi-
fied as control subjects over the total number of control sub-
jects (true negative plus false positive), more details about 
these scores are given in Zhu et al. (2010).

ASD‑DiagNet

ASD-Diagnet was selected as one of the machine learning 
classifiers to compute the experimental results included in 
this study. ASD-DiagNet is a GPU-based machine learn-
ing model for classifying patients and control subjects by 
using only rs-fMRI data. ASD-DiagNet was designed to 
implement a joint learning procedure using an autoencoder 
for feature extraction, i.e., to compress the original feature 
space into a lower dimensional space which contains useful 
patterns of the original data. The lower dimensional data 
generated by the autoencoder was used as input for the clas-
sification step performed by a single layer perceptron (SLP) 
classifier. The features selected for the training samples of 
ASD-DiagNet were 25% of the maximum weights and the 
same percentage of the minimum weights of the functional 
connectivity values. For all our experiments, we used the 
data augmentation method using linear interpolation imple-
mented for ASD-DiagNet. A detailed description of ASD-
DiagNet is given in Eslami et al. (2019).

ASD‑SAENet

ASD-SAENet was the other machine learning classifier 
used to perform a selected set of experiments to compare 
their results with those computed with ASD-DiagNet. ASD-
SAENet is a GPU-based machine learning model for clas-
sifying patients and control subjects by using only rs-fMRI 
data. ASD-SAENet was designed and implemented as a 
sparse autoencoder (SAE) which results in optimized extrac-
tion of features that can be used for classification. These fea-
tures are then fed into a deep neural network (DNN) to per-
form the classification of control and autistic subjects. This 
model is trained to optimize the classifier while improving 
extracted features based on both reconstructed data error 
and the classifier error. The features selected for the train-
ing samples of ASD-SAENet were 25% of the maximum 
weights and the same percentage of the minimum weights 
of the functional connectivity values. ASD-SAENet did not 
implement data augmentation to minimize overfiting. A 
detailed description of ASD-DiagNet is given in Almuqhim 
and Saeed (2021).

https://fcp-indi.github.io/docs/latest/user/quick.html
http://preprocessed-connectomes-project.org/abide/index.html
http://preprocessed-connectomes-project.org/abide/index.html
https://numpy.org
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Generation of New Features

We implemented a set of methods to generate new features for 
the machine learning models. These new features were com-
puted from the functional connectivity values obtained from the 
rs-fMRI time series (see “Human Brain Functional Networks” 
section). The first two methods were multiple linear regres-
sion models, and ComBat harmonization models, which were 
implemented assuming that the variables responsible for the 
confounding effects were known such as MRI scanner vendor, 
as well as some phenotypic variables like age, FIQ, and gen-
der. In the third group of methods included in this set, the new 
features were obtained from normalization methods, for which 
we assumed that the variables responsible for the confounding 
effects were unknown. Figure 1 illustrates the workflow imple-
mented in this study to generate the new features.

A more detailed example of the computation of new 
features is illustrated by the workflow of Fig. 2, where the 
MLR models are included as an example. The functional 
connectivity values as well as the phenotypic values of the 
ABIDE subjects were the input data for the creation of a 
dictionary for each feature with the values of the functional 
connectivity, subject ID, age, gender, FIQ and MRI vendor 
of each subject. Then a list of dictionaries was obtained that 
was used to compute the new features.

Multiple Linear Regression Models

Multiple linear regression (MLR) models are fitted to random 
dependent variables YYY = (Y1, Y2, ...., Yn) , with corresponding 
observation values yyy = (y1, y2, ...., yn) , to remove the variance 

Fig. 1   Workflow for the 
machine learning analysis of 
rs-fMRI data using new features 
derived form the functional con-
nectivity values to control the 
confounding effects of multi-
site rs-fMRI data

Fig. 2   Workflow for computa-
tion of new features for the 
machine learning analysis of the 
ABIDE rs-fMRI data using the 
MLR models



656	 Neuroinformatics (2023) 21:651–668

1 3

that can be explained by the independent or predictor vari-
ables. This model is given by

where XXX is the design matrix of independent variables, ��� 
is a vector of unknown parameters and ��� = (�1, �2, ...., �n) 
a vector of random errors with E(�i) = 0 . If the inverse of 
the matrix �′

� exists, then the ordinary least square (OLS) 
estimates of the fitted value vector, ŷ̂ŷy , are given by

and the residual vector, ΔyΔyΔy , is obtained by removing the var-
iance introduced by the independent variables, represented 
by the fitted value vector, ŷ̂ŷy , from the observation values, 
yyy , of the dependent variables (Tamhane & Dunlop, 2000)

We implemented the multiple linear regression (MLR) 
models given by Eqs. (1) to (3) to quantify the confound-
ing effects of each of the independent variables: age, FIQ, 
gender and MRI vendor, as well as the effects of some com-
binations of these variables. We obtained two sets of new 
features using the MLR models. The first set was obtained 
using functional connectivity as dependent variable, and the 
second set using the Fisher z-transformation of the func-
tional connectivity, FCFZ (see “Normalization Methods” 
section), as dependent variable. The complete set of new 
features computed with the MLR model and the correspond-
ing independent variables are given in Table 2.

ComBat Harmonization Models

In addition to the multiple linear regression models, we 
implemented the ComBat harmonization models (Johnson 
et al., 2007; Fortin et al., 2017, 2018; Yu et al., 2018), to 
remove confounding effects introduced by the technical dif-
ferences of the scanners used by the different sites, while 
conserving the variability introduced by selected phenotypic 
and MRI vendors variables, and to determine which of each 
of the independent variables: age, gender, FIQ or MRI ven-
dor, or combinations of these variables, should be preserved 
to maximize the classification scores. A simplified form of 
the ComBat model is given by

where ���Y is the mean value vector of YYY  , and the vectors ��� 
and ��� are parameters representing the additive and multipli-
cative site effects respectively (Johnson et al., 2007), the rest 
of the variables are equal to those defined for Eq. (1). The 
vector of site adjusted values, ŷ̂ŷy , is

(1)YYY = XXX��� + ���

(2)ŷ̂ŷy = X(X�X)−1X�X(X�X)−1X�X(X�X)−1X�yyy

(3)ΔyΔyΔy = yyy − ŷ̂ŷy

(4)YYY = ���Y +XXX��� + ��� + ������

where 𝜇̂̂𝜇̂𝜇y , 𝛽𝛽𝛽  , �∗�∗�∗ and �∗�∗�∗ are estimated values of the corre-
sponding parameters. The ComBat model removes the con-
founding effects introduced by site effects, and preserves the 
variability introduced by the independent variables included 
in the the design matrix XXX (Fortin et al., 2017).

We computed two sets of new features using the ComBat 
harmonization models given by Eqs. (4) and (5). The first set 
was obtained using functional connectivity as dependent var-
iable, and the second set using the Fisher z-transformation 
of the functional connectivity, FCFCFCFZ (see “Normalization 
Methods)” section), as dependent variable. The complete 
set of new features obtained with the ComBat harmoniza-
tion models and the corresponding independent variables are 
given in Table 2. These new features were computed with 
the NeuroCombat models available in (https://​github.​com/​
Jfort​in1/​neuro​Combat).

Normalization Methods

Considering that the independent variables of the multiple 
linear regression models and the ComBat harmonization 
models give only partial explanation of the variability of 
the dependent variables, we also generated new features by 
implementing normalization methods through the transfor-
mation of the functional connectivity values in more statis-
tically uniform new values, by reducing biases and outliers 
introduced by unknown variables (Singh & Singh, 2020).

For the mathematical definition of the normalization 
methods implemented in this study, we represented the 
functional connectivity, for the 1035 subjects of the 17 
ABIDE sites (see Table  1), as a matrix with I = 1035 
subjects as rows, and J = 19990 features as columns. The 
normalization methods presented in this section are the Fisher 
z-transformation, as well as methods to compute new features 

(5)ŷ̂ŷy =
yyy − 𝜇̂̂𝜇̂𝜇y −XXX𝛽𝛽𝛽 + 𝛾∗𝛾∗𝛾∗

𝛿∗𝛿∗𝛿∗
+ 𝜇̂̂𝜇̂𝜇y +XXX𝛽𝛽𝛽

Table 2   New features computed with the multiple linear regression 
models and the ComBat harmonization models described in “Multi-
ple Linear Regression Models” and “ComBat Harmonization Mod-
els” section

MLR features ComBat features Independent variables

ΔmlrAmlrAmlrA , ΔmlrAmlrAmlrAFZ cbAcbAcbA , cbAcbAcbAFZ age
ΔmlrFmlrFmlrF , ΔmlrFmlrFmlrFFZ cbFcbFcbF , cbFcbFcbFFZ FIQ
ΔmlrGmlrGmlrG , ΔmlrGmlrGmlrGFZ —— gender
ΔmlrMmlrMmlrM , ΔmlrMmlrMmlrMFZ —— MRI vendor
ΔmlrAGMmlrAGMmlrAGM , 
ΔmlrAGMmlrAGMmlrAGMFZ

—— age, gender, MRI 
vendor

—— cbAFGcbAFGcbAFG , cbAFGcbAFGcbAFGFZ age, FIQ, gender

https://github.com/Jfortin1/neuroCombat
https://github.com/Jfortin1/neuroCombat
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by demeaning the functional connectivity values. All these 
methods were implemented with the goal of maximizing the 
classification scores by controlling the confounding effects 
of unknown variables related to all the sites.

Fisher z‑transformation  The Fisher z-transformation was 
proposed by Fisher (1915) to correct for skewness (lack of 
symmetry) of the Pearson correlation coefficients, result-
ing in coefficients approximately normally distributed. We 
implemented this method because in this study, the func-
tional connectivity values were computed as Pearson cor-
relation coefficients, and any skewness of these values may 
be different between the data of the ABIDE sites with some 
potential confounding effects. The new features obtained 
with the Fisher z-transformation of the functional connec-
tivity, FCFCFCFZ , were computed as described in “Multiple linear 
regression models” and “ComBat harmonization models” 
section, and summarized in Table 2.

Demeaning the Functional Connectivity (FC) Values  We 
implemented normalization methods by demeaning the 
functional connectivity values with three different aver-
age values. The following Eqs. (6) to (8) were used for the 
computation of the three new corresponding normalization 
features, Δavgavgavg,ΔavgSiteavgSiteavgSite, and ΔavgSubjavgSubjavgSubj.

The new features Δavgavgavg are given by

where the component �FC,j =
∑I

i=1
FCij∕I of the vector ���FC , 

is the average of the jth component of the functional con-
nectivity computed over all subjects of the 17 ABIDE sites.

The new features ΔavgSiteavgSiteavgSite are given by

where Δavgavgavgsik = FCFCFCsik
− �sik

 is the new vector of features, 
FCFCFCsik

 is the functional connectivity vector, and �sik
, k ≤ 17 , 

is the average of all the values of functional connectivity, 
for the kth site.

The new features ΔavgSubjavgSubjavgSubj are given by

where the component �FCSubj,i
=
∑J

j=1
FCi,j∕J of the vector 

���FCSubj
 , is the average of the functional connectivity values 

computed for the ith subject.

Sub‑samples Selection

A common practice in machine learning analysis is to 
compare computed classification accuracies with those 
obtained by chance level, i.e., by assuming the uniform 

(6)Δavgavgavg = FCFCFC − ���FC

(7)ΔavgSiteavgSiteavgSite = (Δavgavgavgsi1 ,Δavgavgavgsi1 , .......,Δavgavgavgsi17 )

(8)ΔavgSubjavgSubjavgSubj = FCFCFC − ���FCSub

distribution that a subject may be classified as patient or 
control. For this binary classification problem, the chance 
level is equal to 50%, if the sample has infinite size. Ref-
erence (Combrisson & Jerbi, 2015) showed that for small 
data sets (less than 200 samples), the empirical chance 
level computed from random classification was greater 
than the theoretical chance level for an infinite sample, 
for example, for a sample size of 100, the chance level 
accuracy was 58.0% at a significance level of p < 0.05 , 
and for a sample size of 60 was 60% at a significance level 
of p < 0.05 . Considering these limits, the sizes of a high 
percentage of the selected sub-samples presented in this 
paper were greater than 100 subjects, and when the sub-
samples contained less than 100 subjects, the correspond-
ing accuracies were much greater than 58% (see Table 6).

The stratification methods used to define the baseline and 
the homogenous sub-samples included in this work, were 
based in the stratification techniques defined by Parsons 
(2014) and Neyman (1992), which basically consists of 
probability sampling methods on which the subjects of the 
target population are divided into sub-samples or strata 
where within each sub-sample the subjects have similar 
characteristics. The criteria used to select the sites or 
subjects included in these sub-samples were suitable to 
accomplish the goal of maximizing the classification scores 
computed with the machine learning analysis of the rs-fMRI 
multi-site data. These criteria were defined in a different 
and simplified way that those established in the works of 
Parsons (2014) and Neyman (1992).

In this study, we selected homogeneous sub-samples 
integrated with subjects classified by ranges of age, and 
ranges of full IQ (FIQ). The first eight homogeneous sub-
samples given in Table 3 were formed by grouping sub-
jects with the same range of ages, or of FIQ, the last two 
sub-samples were formed with the intersection of subjects 
with selected ranges of these phenotypic values.

A set of baseline sub-samples were also selected to 
comparing the classification scores obtained with the 
new features. The baseline sub-samples, and the classifi-
cation scores computed with these sub-samples are given 
in “Experimental Results: Baseline Sub-samples” section.

Methods for the Statistical Comparison of  
experimental results computed with  
the new features

Considering the strong dependence of the classification 
scores on the new features used to compute them, we per-
formed statistical tests and computed the Wasserstein dis-
tance to compare the baseline classification scores, with 
those scores computed with the new features obtained 
with the models and the normalization methods described 
in “Multiple Linear Regression Models”, “ComBat 
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Harmonization Models”, and “Normalization Methods” 
sections, respectively. All these classification scores were 
computed with the ASD-DiagNet machine learning classi-
fier (see “ASD-DiagNet” section).

To ensure the consistency of the statistical results, three 
statistical tests methods were implemented to perform this 
statistical analysis. The chosen methods were: The paramet-
ric t-test (tt), and two nonparametric tests: the Kolmogorov-
Smirnov test (kst), and the Mann–Whitney U test (mwt). The 
t-test was used to determine if the means of two sets of data 
are statistically different from each other. The nonparametric 
tests computed several test statistics to determine if two set 
of data are samples of the same distribution. All the statis-
tics methods were implemented in the stats sub-package of 
the SciPy library in Python (https://​scipy.​org), more details 
about these methods in (Tamhane & Dunlop, 2000; Corder 
& Foreman, 2014; Sprent & Smeeton, 2016).

The main limitation of the statistical tests described 
above were that the comparison of the classifications 
scores ignored the strong dependence of these scores on 
the sub-samples. Hence, to rank the new features accord-
ingly to the corresponding values of the classification 
scores for each sub-sample, we computed the percentage 
difference, for each sub-sample, between the classifica-
tion scores ( CSnf  ) computed with the new features and the 
baseline classification scores ( CSbl ), namely:

The following positive and negative ranges for these dif-
ferences were defined: 0 < ΔΔΔ ≤ 2.0(p1), 2.0 < ΔΔΔ ≤ 3.0

(p2), 3.0 < ΔΔΔ ≤ 4.0(p3), 4.0 < ΔΔΔ(p4), 0 > ΔΔΔ ≥ −2.0(n1), 
−2.0 > ΔΔΔ ≥ −3.0(n2), −3.0 > ΔΔΔ ≥ −4.0(n3), and −4.0 > ΔΔΔ

(n4). We then binned the number of values falling in each 
range in positive and negative bins. The values in these bins 

(9)ΔΔΔ = (CSnf − CSbl)∕CSbl ∗ 100

allowed as to rank the classification scores obtained with the 
new features, with the maximum rank assigned to those with 
the greatest number of values in the positive bins.

Experiments and Results

We performed a comprehensive set of experiments to 
compute the classification scores with the new features 
obtained with the models and methods described in “Mul-
tiple Linear Regression Models”, “ComBat Harmonization 
Models”, and “Normalization Methods” sections, using 
ASD-DiagNet as the machine learning classifier. For these 
experiments, we used a total of nineteen new features, as 
well as the ABIDE rs-fMRI data of the fourteen baseline 
sub-samples given in Table 5, to obtain a total of 266 inde-
pendent experimental results. We compared these results 
using the statistical methods described in “Methods for the 
Statistical Comparison of Experimental Results Computed 
with the New Features” section. We also selected the sub-
sample with which we obtained the maximum value of 
the classification scores obtained with each feature. We 
also included the computation of the classification scores 
using the ABIDE rs-fMRI data of the ten homogeneous 
sub-samples given in Table 3. To compare the experimen-
tal results with a different machine learning model, we 
computed classification scores with ASD-SAENet (see 
“ASD-SAENet” section) using a selected set of the new 
features. Since, as far as we know, it is the first time our 
proposed baseline and homogeneous sub-samples have 
been implemented and used in this type of studies, there 
are not similar published results to compare our experi-
mental results. A detailed analysis of all the computed 
results are given in the following sections.

All the experiments presented in this work were per-
formed on a Linux server with Ubuntu operating system 
version 16.04.6, 22 Intel Xeon Gold 6152 processors, clock 
speed 2.1 GHz, and 125 GB of RAM. The GPU in this server 
was a NVIDIA Titan Xp, with 30 SM, 128 cores/SM, maxi-
mum clock rate of 1.58 GHz, 12196 MB of global memory, 
and CUDA version 11.4 with CUDA capability of 6.1.

Experimental Results: Sub‑samples

Experimental Results: Baseline Sub‑samples

We formed a baseline set of sub-samples by progressively 
selecting the sites with the greatest values of accuracy com-
puted with ASD-DiagNet, i.e., the sub-sample with 4 sites 
was integrated by the first four sites of Table 4.

The baseline classification scores computed with ASD-
DiagNet, using the functional connectivity values of the 

Table 3   Homogeneous sub-samples formed by grouping subjects 
with the same range of ages, FIQ, or gender as described in “Sub-
samples Selection” section

Sub-sample Acronym C/A/T

0 < age < 10 age-10 74/69/143
10 < age ≤ 15 age-1015 209/203/412
15 < age ≤ 20 age-1520 115/110/225
10 < age ≤ 20 age-1020 324/313/637
20 < age age-20 132/123/255
0 < FIQ ≤ 89 FIQ-89 24/92/116
89 < FIQ ≤ 110 FIQ-89110 238/215/453
110 < FIQ FIQ-110 268/198/466
(10 < age ≤ 20 ) ∩ ( 0 < FIQ 
≤ 89)

age-1020-FIQ-89 21/67/88

(10 < age ≤ 20 ) ∩ ( 89 < FIQ 
≤ 110)

age-1020-FIQ-89110 153/138/291

https://scipy.org/
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subjects grouped in these sub-samples, are given in Table 5, 
on which the number of control (C), autistic (A) and total 
(T) subjects are included to compare the sizes of the sub-
samples. The last row of Table 5 shows the classification 
scores obtained with the machine learning models presented 
in (Heinsfeld et al., 2018) for 17 ABIDE sites. These results 
showed the existence of confounding effects affecting the 
classification scores between-sites. Furthermore, the base-
line classification scores computed with the sub-samples 
were always greater than the scores computed with the 
whole 17 sites.

The baseline sub-samples and the corresponding baseline 
classification scores provided a convenient framework by 
comparing the classification scores obtained with the new 
features defined in “Multiple Linear Regression Models”, 
“ComBat Harmonization Models”, and “Normalization 
Methods” sections.

Experimental Results: Homogeneous Sub‑samples

Table 6 shows the values and standard deviations of the clas-
sification scores, computed with ASD-DiagNet for each of 
the homogeneous sub-samples of the 17 ABIDE sites given 
in Table 3. These values were computed using the values 
of functional connectivity as features, and the cc200 as the 
brain atlas. Only the sub-samples for which the accuracy 

was equal to or greater than 70% are included. In general, 
the accuracy and sensitivity scores obtained with these sub-
samples were greater than those baseline scores computed 
with the whole 17 ABIDE sites.

The first two sub-samples of Table 6, which include sub-
jects with 0 < FIQ ≤ 89 obtained the maximum values of 
accuracy (85.9%) and sensitivity (99.6%), but they were 
unbalanced in the number of autistic and control subjects, 
inducing overfitting of the machine learning model and 
unbalanced sensitivity and specificity scores. We performed 
experiments to correct these unbalances by increasing the 
number of control subjects, randomly selected out of the 
FIQ-89 and age-10-20-FIQ-89 sub-samples. The classifi-
cation scores computed with 34 and 44 additional control 
subjects in the sub-samples FIQ-89-bal and age-10-20-
FIQ-89-bal included in Table 6, respectively, showed how 
these classification scores were lower but more balanced 
than those obtained with the original sub-samples. These 
sub-samples also obtained the maximum values of accuracy 
(76.4%, 8.8% above the baseline accuracy) and sensitivity 
(82.9%, 20.5% above the baseline sensitivity) among all the 
classification scores presented in this paper.

Statistical Comparison of Experimental Results 
Computed with the New Features

Table 7 shows the p values obtained from statistical tests 
and the Wasserstein distance (wa-d) to compare the base-
line classification scores, with those scores computed with 
the new features as defined in “Methods for the Statistical 
Comparison of Experimental Results Computed with the 

Table 4   Values and standard deviations of the classification scores 
computed with ASD-DiagNet (see “The Machine Learning Mod-
els: ASD-DiagNet and ASD-SAENet” section) for each ABIDE site, 
where the functional connectivity values were used as features, and 
cc200 as the brain atlas. The classification scores computed with the 
whole 17 ABIDE sites are included for comparison

Site Accuracy Sensitivity Specificity

Olin 81.2 ± 2.7 90.5 ± 2.7 70.0 ± 4.5
OHSU 76.8 ± 2.4 92.7 ± 2.0 63.0 ± 4.6
whole 17 sites 70.2 ± 0.1 68.8 ± 0.6 71.6 ± 0.2
KKI 70.1 ± 1.7 29.5 ± 1.5 98.7 ± 2.2
USM 70.0 ± 1.4 92.4 ± 2.2 28.8 ± 3.0
NYU 66.8 ± 1.1 51.6 ± 2.1 78.2 ± 1.7
UCLA 66.4 ± 0.9 72.9 ± 1.2 58.8 ± 1.7
Yale 64.6 ± 2.1 58.7 ± 1.6 70.2 ± 4.3
Stanford 63.9 ± 3.4 47.3 ± 3.7 81.0 ± 4.9
CMU 63.8 ± 4.7 60.7 ± 10.0 66.0 ± 5.3
UM 63.4 ± 0.6 48.9 ± 1.2 76.5 ± 0.9
Leuven 62.4 ± 2.7 55.2 ± 3.5 68.7 ± 3.4
Pitt 61.4 ± 2.4 67.0 ± 3.7 55.4 ± 2.7
SDSU 55.9 ± 1.7 15.3 ± 3.1 82.6 ± 1.2
SBL 55.0 ± 3.7 54.7 ± 4.0 55.3 ± 5.2
MaxMun 54.0 ± 1.5 24.2 ± 1.8 81.8 ± 1.7
Caltech 52.1 ± 2.1 58.7 ± 2.3 48.5 ± 3.7
Trinity 44.6 ± 1.8 21.6 ± 2.7 65.2 ± 2.6

Table 5   Values and standard deviations of the baseline classification 
scores (accuracy (Ac), sensitivity (Se) and specificity (Sp)) computed 
with ASD-DiagNet as described in “Sub-samples Selection” section

Sub-sample C/A/T Ac Se Sp

10-sites 361/353/714 73.5 ± 0.6 71.6 ± 0.5 75.5 ± 0.8
8-sites 274/273/547 73.2 ± 0.7 73.3 ± 1.1 73.2 ± 0.5
9-sites 287/287/574 72.8 ± 0.4 72.2 ± 0.9 73.5 ± 0.2
4-sites 82/97/179 72.8 ± 0.3 76.5 ± 0.7 68.5 ± 0.3
7-sites 254/254/508 72.6 ± 0.4 73.2 ± 0.8 71.9 ± 0.3
13-sites 444/425/869 72.4 ± 0.3 69.7 ± 0.5 74.9 ± 0.3
6-sites 226/226/452 72.1 ± 0.7 71.5 ± 0.5 72.6 ± 1.0
11-sites 395/382/777 71.7 ± 0.1 68.9 ± 0.3 74.5 ± 0.3
14-sites 459/440/899 71.5 ± 0.2 70.1 ± 0.5 72.8 ± 0.7
15-sites 487/464/951 71.4 ± 0.1 69.2 ± 0.2 73.5 ± 0.3
5-sites 182/172/354 71.2 ± 0.9 70.1 ± 0.5 72.1 ± 1.3
12-sites 422/411/833 71.4 ± 0.2 68.7 ± 0.3 74.1 ± 0.4
16-sites 505/483/988 70.8 ± 0.3 69.1 ± 0.7 72.4 ± 0.2
whole 17 sites 530/505/1035 70.2 ± 0.1 68.8 ± 0.6 71.6 ± 0.6
Heinsfeld et al. 530/505/1035 70 74 63
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New Features” section. Only the new features for which at 
least two p-values are less than 0.05 are included.

To rank the new features accordingly to the correspond-
ing values of the classification scores for each sub-sample 
(see “Methods for the Statistical Comparison of Experimen-
tal Results Computed with the New Features” section), the 
total values in the positive and negative bins obtained for the 
accuracy, sensitivity and specificity scores, computed for 
each new feature, are summarized in Fig. 3, which provides 
an efficient visualization of the rank of the classification 
scores obtained with the new features relative to the baseline 
classification scores.

Experimental Results: New Features

We implemented a total of nineteen new features, ten of 
them using the multiple linear regression models defined in 
“Multiple Linear Regression Models” section and six using 
the ComBat harmonization models described in “ComBat 
Harmonization Models” section (See Table 2). We also 
implemented three new features with the normalization 
methods described in “Normalization Methods” section. 
These new features were used to perform experiments to 
compute the classification scores with ASD-DiagNet for 
each of the baseline sub-samples described in “Experimental 
Results: Baseline Sub-samples”, for which the baseline clas-
sification scores, obtained from the functional connectivity 
values, are given in Table 5. Table 8 summarizes the maxi-
mum values of these classification scores obtained with each 
new feature and with the corresponding baseline sub-sample.

Experimental Results: Multiple Linear Regression Models

The classification scores computed with the new features 
obtained with the multiple linear regression models (“Mul-
tiple Linear Regression Models” section) on which each one 
of the individual independent variables age, FIQ, gender 
or MRI vendor were regressed out to obtain the new MLR 

features of Table 2, are given in Figs. 4 and 5, on which they 
are compared to the baseline classification scores given in 
Table 5.

Three of the maximum accuracy scores and four of the 
maximum sensitivity scores (see Table 8) were obtained 
with the new features computed with the multiple linear 
regression models. Seven of these features were among the 
first eight features with the maximum counts in the posi-
tive bins for sensitivity (see Fig. 3). Our experiments also 
showed that the specificity scores computed with the new 
features obtained with the multiple linear regression models, 
were below the baseline specificity scores for almost all the 
sub-samples, except sub-sample 7, as shown in Figs. 4 and 
5. More details about the results obtained with these features 
follows.

The first main result obtained with the multiple linear 
regression models was that all the classification scores com-
puted with the new features ΔmlrFmlrFmlrF and ΔmlrFmlrFmlrFFZ obtained 
when the FIQ variables were regressed out (see Table 2), 
were smaller than the baseline classification scores shown in 
Fig. 4. This result was also confirmed by the p-values given 
in Table 7, and the counts in the negative bins summarized 
in Fig. 3, obtained by the classification scores computed 
with these features.

The second main result was the quantification of the 
confounding effects of the variables age, gender or MRI 
vendor. The results of the experiments showed that the 
new features on which age was regressed out, ΔmlrAmlrAmlrA and 
ΔmlrAmlrAmlrAFZ , were among the first six features with the max-
imum accuracy values given in Table 8. These features 
were also among the first six features and the first two 
features with the maximum counts in the positive bins 
for accuracy and sensitivity given in Fig. 3, respectively. 
Figure 4 shows that the accuracy scores computed with 
the feature ΔmlrAmlrAmlrAFZ were greater than six of the baseline 
accuracy scores, and that the sensitivity scores computed 
with this feature were greater than all the baseline sensitiv-
ity scores, with a maximum value of sensitivity, computed 

Table 6   Values and standard deviations of the classification scores, 
computed with ASD-DiagNet for each of the homogeneous sub-
samples of the 17 ABIDE sites given in Table  3 and described in 
“Experimental Results: Homogeneous Sub-samples” section. The 

baseline classification scores computed the whole 17 ABIDE sites 
are included for comparison. The number of control (C), autistic (A) 
and total (T) subjects are included to compare the sizes of the sub-
samples

Sub-sample C/A/T Accuracy Sensitivity Specificity

FIQ-89 24/92/116 85.9 ± 0.2 98.9 ± 0.1 34.2 ± 1.6
age-1020-FIQ-89 21/67/88 84.6 ± 0.3 99.6 ± 0.4 36.8 ± 2.7
age-1020-FIQ-89-bal 65/67/132 76.4 ± 0.7 82.3 ± 0.7 68.5 ± 0.8
FIQ-89-bal 58/92/150 76.0 ± 0.4 82.9 ± 0.3 65.1 ± 0.7
age-1520 115/110/225 72.0 ± 0.2 70.9 ± 0.5 73.1 ± 0.8
age-1020 324/313/637 71.9 ± 0.1 71.4 ± 0.4 72.4 ± 0.2
FIQ-89-110 238/215/453 70.3 ± 0.5 64.7 ± 0.8 75.4 ± 0.4
whole 17 sites 530/505/1035 70.2 ± 0.1 68.8 ± 0.6 71.6 ± 0.6
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for the sub-sample 4, of 78.1%, 13.5% above the baseline 
value for the whole 17 sites (see Table 8).

The results of the experiments also showed that the 
new feature on which the gender variable was regressed 
out, ΔmlrGmlrGmlrGFZ , was among the first eight features with the 

maximum accuracy values given in Table 8. This feature 
was also among the first seven features with the maximum 
counts in the positive bins for the sensitivity score given in 
Fig. 3. Figure 4 shows that the sensitivity scores computed 
with this feature were greater than ten of the baseline sen-
sitivity scores. Another important result was that the sen-
sitivity score computed with the feature ΔmlrGmlrGmlrG obtained a 
maximum value among all the sensitivity scores obtained 
with the new features, computed for the sub-sample 4, of 
78.6%, 14.2% above the baseline value for the whole 17 
sites (see Table 8).

Table 8 shows that the sensitivity score computed with 
the new feature on which the MRI vendor variable was 
regressed out, ΔmlrMmlrMmlrM , was among the first three maximum 
sensitivity values given in Table 8. This feature was also 
among the first seven features with the maximum counts 
in the positive bins for sensitivity given in Fig. 3. Figure 4 
shows that the sensitivity scores computed with this feature 
were greater than eleven of the baseline sensitivity scores, 
with a maximum sensitivity score for the sub-sample 4, of 
78.0%, 13.4% above the baseline value for the whole 17 sites 
(see Table 8).

Additional and important results were computed with 
the new features ΔmlrAGMmlrAGMmlrAGM and ΔmlrAGMmlrAGMmlrAGMFZ which were 
obtained with the multiple linear regression models with 
age, gender and MRI vendor as independent variables. The 
accuracy scores computed with these features were the 
maximum values of accuracy among all the features (see 
Table 8), with a maximum value of 74.3% (5.8% above the 
baseline value) for the sub-sample with 7 sites. Figure 5 
shows that the sensitivity scores computed with these fea-
tures were greater than eleven of the baseline sensitivity 
scores, with a maximum value of 76.4% (11.1% above the 
baseline value) shown in Table 8.

In general, all the results obtained with the new features 
computed with the multiple linear regression models were 
confirmed by the p-values given in Table 7.

Figure 6 gives an example of the classification scores 
computed with ASD-SAENet. The comparison of these 
results with those obtained with ASD-DiagNet using the 
same features (see Fig.  5), showed that the classifica-
tion scores obtained in these experiments were strongly 
dependent on the machine learning model used for these 
computations.

Experimental Results: ComBat Harmonization Models

The classification scores computed with the new features 
obtained with the ComBat harmonization models (“ComBat 
Harmonization Models” section) given in Table 2, are shown 
in Fig. 7 on which they are compared to the baselines classi-
fication scores given in Table 5. One of the maximum accu-
racy scores and four of the maximum specificity scores (see 

Table 7   p values obtained from statistical tests and the Wasserstein 
distance (wa-d) defined in “Methods for the Statistical Comparison 
of Experimental Results Computed with the New Features” section. 
All the classification scores were computed with ASD-DiagNet for 
the sub-samples of Table 5. Only the features for which at least two 
p-values are less than 0.05 are included

Feature Score kst tt mwt Wa-d

�mlrAmlrAmlrA Accuracy 0.92 0.78 0.73 0.002
Sensitivity 0.15 0.14 0.18 0.014
Specificity 0.15 0.04 0.04 0.018

�mlrAmlrAmlrAFZ Accuracy 0.34 0.07 0.12 0.003
Sensitivity 0.15 0.06 0.05 0.017
Specificity 0.15 0.03 0.03 0.019

�mlrFmlrFmlrF Accuracy 10−7 10−10 10−5 0.041
Sensitivity 0.06 0.02 0.01 0.02
Specificity 10−6 10−8 10−5 0.061

�mlrFmlrFmlrFFZ Accuracy 10−7 10−10 10−5 0.045
Sensitivity 0.02 0.01 0.01 0.024
Specificity 10−6 10−9 10−5 0.066

�mlrGmlrGmlrG Accuracy 0.15 0.05 0.1 0.011
Sensitivity 0.06 0.91 0.54 0.014
Specificity 0.001 0.001 0.001 0.024

�mlrGmlrGmlrGFZ Accuracy 0.34 0.14 0.21 0.007
Sensitivity 0.92 0.53 0.45 0.006
Specificity 0.06 0.01 0.01 0.02

�mlrMmlrMmlrM Accuracy 0.34 0.04 0.06 0.009
Sensitivity 0.64 0.28 0.26 0.012
Specificity 0.001 0.002 0.0004 0.029

�mlrMmlrMmlrMFZ Accuracy 0.34 0.04 0.06 0.009
Sensitivity 0.34 0.37 0.37 0.009
Specificity 0.001 0.003 0.001 0.027

�mlrAGMmlrAGMmlrAGM Accuracy 0.15 0.24 0.16 0.006
Sensitivity 0.64 0.33 0.26 0.011
Specificity 0.005 0.005 0.002 0.019

�mlrAGMmlrAGMmlrAGMFZ Accuracy 0.15 0.24 0.18 0.007
Sensitivity 0.64 0.3 0.28 0.01
Specificity 0.02 0.01 0.002 0.021

cbAcbAcbA Accuracy 0.15 0.01 0.02 0.013
Sensitivity 0.34 0.07 0.09 0.016
Specificity 0.34 0.18 0.19 0.01

cbAcbAcbAFZ Accuracy 0.06 0.02 0.02 0.011
Sensitivity 0.34 0.05 0.14 0.015
Specificity 0.64 0.45 0.40 0.007

�avgavgavg Accuracy 0.34 0.11 0.14 0.008
Sensitivity 0.34 0.43 0.30 0.01
Specificity 0.005 0.003 0.001 0.023
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Table 8) were obtained with the new features computed with 
the ComBat models. Two of these features were also among 
the first three features and four of them were among the first 
five features with the maximum counts in the positive bins 
for accuracy and specificity (see Fig. 3), respectively. More 
details about the results obtained with these features follows.

The new feature cbAFGcbAFGcbAFGFZ obtained with the ComBat 
models (see Table 2) on which the variability introduced 
by the phenotypic variables age, FIQ, and gender was con-
served, was among the first four features with maximum 

accuracy and maximum specificity values given in Table 8. 
Figure 7 shows that the accuracy scores computed with 
this feature were greater than the baseline accuracy scores 
computed with sub-samples 10 to 16, as well as with the 
whole 17 sites. The specificity scores computed with this 
feature were greater than ten of the baseline specificity 
scores, obtaining the second maximum value of 76.7% 
(7.1% above the baseline value) shown in Table 8. This fea-
ture also obtained the maximum value of the counts in the 
positive bins for accuracy and the second maximum value 

Fig. 3   Summary of total counts of the number of values in the posi-
tive and negative bins in the ranges defined in “Methods for the Sta-
tistical Comparison of Experimental Results Computed with the New 

Features” section, corresponding to the classification scores com-
puted with ASD-DiagNet with the new features

Table 8   The maximum values 
of the classification scores 
(accuracy (Ac), sensitivity(Se) 
and specificity(Sp)) computed 
with ASD-DiagNet using the 
new features obtained with the 
MLR models, ComBat models, 
and normalization methods 
described in “Multiple Linear 
Regression Models”, “ComBat 
Harmonization Models”, and 
“Normalization Methods” 
sections respectively, and the 
corresponding sub-samples (SS) 
(see Table 5). The percentage 
difference between the results 
obtained with the new features 
and the baseline classification 
scores obtained for the 
whole 17 sites are included. 
The five greatest values for 
each classification score are 
highlighted in bold

Feature Ac(SS) % Se(SS) % Sp(SS) %

ΔmlrAGMmlrAGMmlrAGM 74.3 ± 0.2(7) 5.8 75.2 ± 0.3(7) 9.3 73.5 ± 0.3(7) 2.7
ΔmlrAGMmlrAGMmlrAGMFZ 74.2 ± 0.7(8) 5.7 76.4 ± 0.5(4) 11.1 72.7 ± 0.7(8) 1.5
ΔmlrAmlrAmlrAFZ 74.1 ± 0.3(10) 5.6 78.1 ± 0.5(4) 13.5 73.8 ± 0.2(10) 3.1
cbAFGcbAFGcbAFGFZ 74.1 ± 0.1(10) 5.6 74.4 ± 0.5(4) 8.1 76.7 ± 0.4(12) 7.1
ΔavgSiteavgSiteavgSite 73.8 ± 0.2(10) 5.1 77.1 ± 0.6(4) 12.1 77.0 ± 0.2(10) 7.5
ΔmlrAmlrAmlrA 73.6 ± 0.2(8) 4.8 77.1 ± 1.0(4) 12.1 73.4 ± 0.2(10) 2.5
Δavgavgavg 73.5 ± 0.3(9) 4.8 77.4 ± 0.2(4) 12.5 73.4 ± 0.4(9) 2.5
ΔmlrGmlrGmlrGFZ 73.1 ± 0.2(10) 4.1 78.1 ± 0.5(4) 13.5 73.4 ± 0.6(12) 2.5
cbFcbFcbF 73.0 ± 0.2(10) 4.0 75.3 ± 0.6(4) 9.4 76.0 ± 0.8(13) 6.1
ΔavgSubjavgSubjavgSubj 72.8 ± 0.1(9) 3.7 74.2 ± 0.4(4) 7.8 74.4 ± 1.2(14) 3.9
ΔmlrGmlrGmlrG 72.7 ± 0.2(9) 3.6 78.6 ± 1.2(4) 14.2 72.8 ± 0.3(13) 1.7
ΔmlrMmlrMmlrM 72.7 ± 0.1(8) 3.6 78.0 ± 0.4(4) 13.4 72.7± 0.4(11) 1.6
ΔmlrMmlrMmlrMFZ 72.7 ± 0.1(9) 3.6 76.5 ± 0.7(4) 11.2 72.9 ± 0.4(13) 1.8
cbAFGcbAFGcbAFG 72.7 ± 0.1(10) 3.6 75.6 ± 0.5(4) 9.9 75.0 ± 0.1(15) 4.8
cbAcbAcbAFZ 72.7 ± 0.1(10) 3.6 71.9 ± 0.6(4) 4.5 74.2 ± 0.2(10) 3.6
cbFcbFcbFFZ 72.6 ± 0.1(10) 3.4 76.7 ± 0.6(4) 11.5 75.6 ± 0.5(14) 5.6
cbAcbAcbA 72.5 ± 0.5(10) 3.3 74.1 ± 1.1(4) 7.7 74.8 ± 0.5(13) 4.5
ΔmlrFmlrFmlrF 70.0 ± 0.4(10) −0.3 73.8 ± 1.3(4) 7.3 69.9 ± 0.6(13) −2.4
ΔmlrFmlrFmlrFFZ 69.6 ± 0.3(10) −0.9 73.5 ± 1.4(4) 6.8 69.5 ± 0.2(13) −2.9
FC(whole)FC(whole)FC(whole) 70.2 68.8 71.6
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for specificity given in Fig. 3. The fifth maximum value of 
the specificity score, 75.0% (4.8% above the baseline value) 
given in Table 8 was computed with the new feature cbAFGcbAFGcbAFG . 
This feature was also among the first four features with the 
maximum values of the counts in the positive bins for speci-
ficity given in Fig. 3.

The new feature cbFcbFcbF obtained with the ComBat models 
(see Table 2) on which the variability introduced by the FIQ 
variable was conserved, was among the first four features 
with maximum specificity values given in Table 8. Figure 7 
shows that the specificity scores computed with this feature 
were greater than seven of the baseline specificity scores, 

Fig. 4   Classification scores computed with ASD-DiagNet, using selected 
new features obtained from the multiple linear regression models with 
individual independent variables described in “Multiple Linear Regres-
sion Models” section, compared with the baseline classification scores 

(FC) given in Table 5. The baseline values for the whole 17 sites are indi-
cated by the dashed line, while the maximum values are indicated by the 
continuous line

Fig. 5   Classification scores computed with ASD-DiagNet using selected 
new features obtained from the multiple linear regression models 
described in “Multiple Linear Regression Models” section, compared 

with the baseline classification scores given in Table  5. The baseline 
values for the whole 17 sites are indicated by the dashed line, while the 
maximum values are indicated by the continuous line

Fig. 6   Classification scores computed with ASD-SAENet (see “ASD-
SAENet” section) using selected new features obtained from the mul-
tiple linear regression models described in “Multiple Linear Regres-
sion Models” section, compared with the baseline classification scores 

given in Table 5. The baseline values for the whole 17 sites are indi-
cated by the dashed line, while the maximum values are indicated by 
the continuous line
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obtaining the third maximum value of 76.0% (6.1% above 
the baseline value) shown in Table 8. The new feature cbFcbFcbFFZ 
obtained the third maximum value of the counts in the posi-
tive bins for accuracy and specificity given in Fig. 3, obtain-
ing the fourth maximum value of specificity, 75.6% (5.6% 
above the baseline value), given in Table 8.

An important result was that the classification scores 
computed using the new features cbAcbAcbA and cbAcbAcbAFZ obtained 
with the ComBat harmonization models, on which the 
variability introduced by the age variable was conserved, 
obtained the maximum values of the counts in the negative 
bins given in Fig. 3 among all the new features obtained with 
the ComBat models. This result was also confirmed by the 
p-values given in Table 7 for these features.

Experimental Results: Normalization Methods

Figure 8 shows the classification scores computed with 
ASD-DiagNet, using the new features obtained from the 
normalization methods described in “Normalization Meth-
ods” section, on which they are compared to the baseline 
classification scores given in Table 5.

The maximum value of specificity among all the features 
(see Table 8), of 77.0% (7.5% above the baseline value), was 
obtained with the new feature, ΔavgSiteavgSiteavgSite , for the sub-sample 
with 10 sites, which also obtained the maximum counts in 
the positive bins for specificity (see Fig. 3). The specificity 
scores computed with this feature were also greater than ten 
of the baseline specificity scores given in Fig. 8. This feature 
also obtained an accuracy score of 73.8% (5.1% above the 
baseline value), which was among the first five maximum 
accuracy values given in Table 8, and obtained the second 
maximum counts in the positive bins for accuracy given in 
Fig. 3.

The experimental results also showed that the feature 
Δavgavgavg was among the first five features with the maximum 
counts in the positive bins for sensitivity given in Fig. 3, 
with sensitivity scores greater than eight of the baseline 
sensitivity scores, obtaining the fifth maximum value of  
77.4% (12.5% above the baseline value) among the sensi-
tivity values shown in Table 8. This feature also obtained 
the maximum counts in the negative bins for the specific-
ity scores given in Fig. 3, this result was confirmed by the 
p-values given in Table 7 for this feature.

Fig. 7   Classification scores computed with ASD-DiagNet using selected 
new features obtained from the ComBat harmonization models described 
in “ComBat Harmonization Models” section compared with the baseline 

classification scores (FC) given in Table 5. The baseline values for the 
whole 17 sites are indicated by the dashed line, while the maximum val-
ues are indicated by the continuous line

Fig. 8   Classification scores computed with ASD-DiagNet, using the 
new features obtained from the normalization methods described in 
“Normalization Methods” section, compared with the baseline clas-

sification scores (FC) given in Table  5. The baseline values for the 
whole 17 sites are indicated by the dashed line, while the maximum 
values are indicated by the continuous line
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The results for specificity scores also showed that the 
feature ΔavgSubjavgSubjavgSubj , was among the first six features with 
the maximum counts in the positive bins for the specific-
ity scores, and among the first five features with the maxi-
mum counts in the positive bins for accuracy given in Fig. 3, 
respectively.

Discussion and Conclusions

In this paper, we proposed a comprehensive approach for 
controlling the confounding effects on the machine learning 
analysis of rs-fMRI multi-site data. Our approach consisted 
of a novel combination of stratification techniques to pro-
duce a suitable set of homogeneous sub-samples, as well 
as the generation of new features for the machine learning 
analysis through multiple linear regression models, Com-
Bat harmonization models and normalization methods. The 
new features obtained with the multiple linear regression 
models were designed to quantify the effects of phenotypic 
and imaging variables on the confounding effects. Further-
more, new features obtained with the ComBat models and 
the normalization methods were implemented to maximize 
the classification scores computed with the machine learn-
ing analysis performed with our existing state of the art 
machine-learning models ASD-DiagNet and ASD-SAENet.

We implemented a baseline set of sub-samples from 
which we obtained baseline classification scores from the 
machine learning analysis of the functional connectivity 
values computed with the ABIDE rs-fMRI multi-site data, 
to compare with the classification scores computed with the 
new features. The comparison between the baseline clas-
sification scores and the classification scores obtained from 
the whole 17 ABIDE sites showed that adequately selected 
sub-samples outperform the classification scores of larger 
sets of data, demonstrating that the quality of the data is 
more important than its quantity.

Our empirical experiments performed with the new fea-
tures computed with the multiple linear regression models 
and the full IQ (FIQ) as independent variable, resulted in a 
considerable reduction of the classification scores, that we 
assumed was due to a reduction of the statistical discrimina-
tion power of the machine learning models when this variable 
is regressed out. Furthermore our results showed that using 
the new features obtained by regressing out the phenotypic 
variables of age, gender, or MRI vendors, or a combination 
of them, we obtained values of sensitivity scores that were 
greater than the baseline sensitivity scores for the majority 
of the sub-samples. The maximum values of accuracy and 
sensitivity among all the new features were computed with 
these new features. However, our results indicated that by 

using these new features, a decrease of the specificity scores 
for all the baseline sub-samples was obtained.

The ComBat harmonization models were implemented 
to remove the confounding effects introduced by the site 
effects, and to determine which of each of the independent 
variables: age, gender, FIQ or MRI vendor, or combinations 
of these variables, should be preserved to maximize the clas-
sification scores. The experimental results obtained with the 
new features computed with the ComBat models, showed 
that the accuracy and sensitivity scores increased for sub-
samples with 10 or more sites. We also obtained an increase 
of the specificity scores for almost all the sub-samples. Four 
of the maximum values of specificity scores among all the 
features were obtained with these new features.

The experimental results obtained with the new fea-
tures computed with the normalization methods showed an 
increase in all the classification scores for almost all the sub-
samples. The maximum value of the specificity score among 
all the features was obtained with these new features. Similar 
results were obtained for the classification scores computed 
with the homogeneous sub-samples implemented with the 
goal of maximizing the classification scores. The maximum 
values of accuracy and sensitivity scores among all the results 
presented in this paper were computed with the homogeneous 
sub-samples with subjects with FIQ less than 89.

All the experimental results demonstrated the effective-
ness of our proposed approach to quantify the confounding 
effects of the phenotypic and imaging variables, as well to 
maximize the classification scores which were obtained with 
the proposed statistical models and methods.

The main conclusion obtained from the comprehensive 
approach and results presented in this paper, is that the con-
trol of the confounding effects, intrinsic to rs-fMRI multisite 
data, over the machine learning analysis of this type of data, 
is an essential step towards discovering the functions and 
structure of the human brain, detecting brain disorders, and 
defining biomarkers useful for the diagnosis of these disor-
ders. We hope that our approach will be used and improved 
by the neuroscience research community to maximize the 
classification scores of the machine learning analysis of rs-
fMRI multi-site data.

One main limitation of the work presented in this paper 
is that the relations between the pehnotypic and imaging 
variables and the functional and structural properties of the 
human brain of patients and control subjects determining 
the results obtained with our experiments and methods are 
unknown. Hence, a very important and challenging area of 
research in network neuroscience is a detailed and complete 
definition of these underlying relationships.

Some additional limitations were the use of only the 
ABIDE rs-fMRI multi-site data with one preprocessing 
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pipeline, as well as the limitations inherent to the construc-
tion of the functional networks, where only one preexisting 
brain atlas was used to defining the nodes, and only the Pear-
son correlation function was used for computing the static 
functional connectivity, i.e., the weights of the edges of the 
networks. The use of different sets of rs-fMRI multi-site 
data, different preprocessing pipelines, as well as, the imple-
mentation of data-driven brain parcellations derived from 
the fMRI data (Arslan et al., 2018; Messé, 2020) and addi-
tional methods for the definition of the nodes and the edges 
of the functional networks (Faskowitz et al., 2020, 2022), 
including the use of time-varying functional connectivity 
(Lurie et al., 2020), and new methods for the determination 
of optimal sub-samples to reduce the confounding effects by 
using, for example, between-group effect size methods, may 
asses the reproducibility and consistency of the results and 
improve the methods presented in this paper.

Data collection, feature selection and parameter estima-
tion for an accurate machine learning algorithm is a tough 
task. This may depend on the characteristics of the cohort, 
the representativity of the features and the algorithm com-
plexity. Data quality requirements is emerging lately to 
avoid wrong decisions (Omri et al., 2021). It refers to the 
ability of the available data to maximize the classification 
scores. Further investigations are needed to develop a data 
quality model to control the confounding effects to maxi-
mize the classification scores. In addition, one could think 
about finding the adapted threshold to select the quantity of 
data needed to train the machine learning models for fMRI 
classification.
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