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Reconstructing a three-dimensional ocean sound speed field (SSF) from limited and
noisy measurements presents an ill-posed and challenging inverse problem. Exist-
ing methods used a number of pre-specified priors (e.g., low-rank tensor and tensor
neural network structures) to address this issue. However, the SSFs are often too
complex to be accurately described by these pre-defined priors. While utilizing neu-
ral network-based priors trained on historical SSF data may be a viable workaround,
acquiring SSF data remains a nontrivial task. This work starts with a key observa-
tion: Although natural images and SSFs admit fairly different characteristics, their
denoising processes appear to share similar traits—as both remove random com-
ponents from more structured signals. This observation allows us to incorporate
deep denoisers trained using extensive natural images to realize zero-shot SSF recon-
struction, without any extra training or network modifications. To implement this
idea, an alternating direction method of multipliers (ADMM) algorithm using such
a deep denoiser is proposed, which is reminiscent of the plug-and-play (PnP) scheme
from medical imaging. Our PnP framework is tailored for SSF recovery such that
the learned denoiser can be simultaneously used with other handcrafted SSF pri-
ors. Extensive numerical studies show that the new framework largely outperforms
state-of-the-art baselines, especially under widely recognized challenging scenarios,
e.g., when the SSF samples are taken as tensor fibers. The code is available at

https://github.com/OceanSTARLab/DeepPnP.
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I. INTRODUCTION

Three-dimensional (3D) sound speed field (SSF) reconstruction is crucial in various
ocean acoustic applications, including underwater target localization,' object tracking,” and
acoustic communications.® From a signal processing perspective, this task poses significant
challenges—as only limited and noisy measurements are available. For instance, when mul-
tiple conductivity, temperature, and depth (CTD) chains and/or pressure inverted echo
sounders (PIES) are deployed over an area,™” a significant portion of the SSF remains un-
observed; see Fig. 1. Despite recent advancements in high-dimensional 3D data (e.g., SSF,
radio map and hyperspectral image) reconstruction (see, e.g., Refs. [6-11]), existing meth-
ods still struggle to attain reasonable SSF reconstruction under challenging scenarios, e.g.,

when the target SSF exhibits complex dynamics.

To tackle the SSF reconstruction problem—which is an ill-posed inverse problem—it is
essential to integrate a wealth of prior information into the reconstruction process. This often
leads to reconstruction formulations incorporating multiple regularization terms.'? These
regularizers can either be hand-crafted or data-driven. Hand-crafted regularizers are based
on relatively simple hypotheses of the structures of the SSFs (e.g., sparsity,” low rank,®
and local smoothness’) that can be expressed using analytical functions. Hand-crafted
priors make a lot of sense, as they are analytical summaries of the empirical observations.
However, hand-crafted priors often struggle to provide detailed information on fine-grained
sound speed variations. In contrast, the machine learning and vision literature recently

advocated a class of new priors, namely, data-driven learned priors'® !”. These priors make
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FIG. 1. A graphical illustration of multiple randomly deployed conductivity, temperature, and
depth (CTD) chains and pressure inverted echo sounders (PIES), resulting in sparse and fiber-wise

sampling.

use of information learned from data (normally through a carefully designed neural network).
Compared to hand-crafted priors, data-driven priors are usually more flexible and adaptable

in capturing detailed characteristics of data acquired under complex scenarios of interest.

Roughly speaking, in machine learning, there are two types of data-driven learned priors,
i.e., supervised priors and unsupervised priors. Supervised data-driven priors utilize the
knowledge acquired from training SSF data. The incorporation of (often a large amount
of) training data enables such priors to provide a precise characterization of specific sound
speed details.®"'® Nonetheless, in the application of SSF reconstruction, obtaining high-
quality training SSF data for prior training is a highly nontrivial task. Another caveat of
using supervised priors lies in the difficulty of gemeralization under distribution drift. That
is, when the testing data has different characteristics from the training data, using such
learned priors may cause undesirable results (see, e.g., Fig. 14 in Ref. [6]).

4
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Due to the difficulties of acquiring SSF training data, recent advances in SSF reconstruc-

tion primarily relied on unsupervised data-driven priors,”!'%2"

which are reminiscent of the
deep image prior from computer vision.!” This type of priors is not trained over data, but
leverages neural structures to represent the intricate generating processes of complex data.
If the neural structures are properly chosen, then such unsupervised/untrained priors can
capture rich detail of the SSF data while using no training data—see Ref. [9] for an ex-
ample using tensor neural network-based untrained prior to tackle the SSF reconstruction
problem. Nonetheless, the challenge of using untrained deep prior is that the choices of
neural structures seem to be overly abundant—and there has been no metric to measure
7

the “optimality” of such choices. The untrained priors are also prone to overfit to noise,’

which may require multiple heuristics (e.g., early stopping) to intervene.

This work puts forth an alternative framework for deep prior-based SSF reconstruction.
Instead of using trained or untrained priors as regularization terms in the SSF reconstruction
criteria, we propose to employ neural denoisers that are trained over a massive amount of
natural images in SSF recovery. The rationale is that although natural images and SSFs
have fairly different characteristics/data distributions (see the illustration in Fig. 2(a)), the
denoising process of both types of data share similar traits—both aim to remove relatively
random components from more structured “signal” components. Fig. 2(b) presents the
ocean SSF reconstruction results obtained using a state-of-the-art deep generative model
(diffusion model) that has been pre-trained using natural images. The deviation between
the reconstructed SSF and the ground-truth SSF showcases the limitations of employing pre-

trained deep image priors for SSF reconstruction. The advantage of using the natural image
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denoisers is that the training data can be easily acquired. The idea, illustrated in Fig. 3, is

reminiscent of the deep plug-and-play (PnP) framework in computational imaging.'®:6:21:22

However, several challenges need to be addressed in order to adapt the PnP approach to
3D ocean SSF reconstruction. Specifically, deep denoisers are primarily designed for gray
or color images, which typically have one or three channels. In contrast, 3D SSFs typically
consist of multiple channels (or, equivalently, depths). To address this dimension mismatch
issue, by noticing that the image denoiser can effectively remove the noise of the 2D SSFs
at different depths (see Fig. 6 in Sec. [V), we unfold the 3D SSFs along one horizontal axis
and denoise the unfolded matrix using a gray image denoiser. Furthermore, to preserve the
spatial correlations across the three dimensions, we incorporate a tensor t-SVD-based low-
rank prior into our approach. This prior promotes global coherency in the reconstructed
SSFs while ensuring computational efficiency. Experimental results using real-life ocean
SSFs demonstrate the superior performance of our method over state-of-the-art (SOTA)

methods, particularly in realistic settings, e.g., fiber-wise sampling scenarios.

The remainder of this paper is organized as follows. In Sec. I, we formulate the re-
construction problem and show its connection with the denoising problem. In Sec. III, we
propose to plug the pre-trained image denoiser into the reconstruction process and propose
a zero-shot PnP deep tensor-based reconstruction algorithm. Experiments using real-life

SSF data are reported in Sec. [V, followed by the conclusions in Sec. V.

Notations: Lower- and uppercase bold letters (e.g., x and X) are used to denote the
vectors and matrices. Higher-order tensors (order three or higher) are denoted by upper-case

bold calligraphic letters. The tensor t-product is denoted by *. The Kronecker product is
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FIG. 2. (a) Illustration of the unsuitability of pre-trained deep image priors trained on natural
images for ocean sound speed field (SSF) reconstruction, which highlights the evident differences
in data distributions between natural images and SSF data. (b) Illustration of the ocean SSF
reconstruction results obtained using a state-of-the-art deep generative model (diffusion model)
that has been pre-trained using natural images. The deviation between the reconstructed SSF and
the ground-truth SSF showcases the limitations of employing pre-trained deep image priors for

SSF reconstruction.

denoted by ®. The Hadamard product is denoted by ®. || - ||r stands for the Frobenius



100

101

102

Noisy SSFs Clean SSFs
Z A

The Proposed
Plug-and-Play
Approach
FIG. 3. This illustration depicts the rationale behind the proposed approach, which utilizes a pre-
trained deep image denoiser to realize zero-shot ocean SSF reconstruction. The adopted pre-trained
denoiser is capable of capturing shared characteristics between natural images and ocean sound
speed fields that are distinct from noise, including explicit features like continuous variations, as

well as implicit deep features. By leveraging this powerful data-driven regularizer, the accuracy of

the reconstructed SSF can be significantly enhanced.

norm. || - ||« stands for the matrix nuclear norm and || - |1, stands for the tensor nuclear
norm. (-,-) denotes the tensor inner product. X T denotes the transpose of X. R is the
field of real numbers. The folding and unfolding operations are denoted as Fold(X) and

Unfold(X), respectively.
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II. RECONSTRUCTION AND CONNECTIONS TO DENOISING

This section presents the mathematical formulation of the 3D SSF reconstruction prob-

lem, followed by a discussion of its connection with the denoising problem.

A. Reconstruction Problem Formulation

The 3D SSF reconstruction problem aims to estimate the unknown 3D SSF from the

limited and noisy measurements. Specifically, we seek to solve the optimization problem:
min | - 0 @ | m

where X € RI*/*K i the optimization variable (or SSF to be reconstructed) and O is
a binary indicator tensor with O, ;, = 1 if the corresponding entry (i, 7, k) is observed.
Here I and J refer to the dimension size of the data in the horizontal direction, while K
represents the depth number. Symbol ® denotes the Hadamard product. The observation
tensor Y € R*7*K collects noisy and limited SSF samples, i.e., Y, is the sampled sound
speed value if O, ,, = 1, and otherwise equals to zero. The Frobenius norm | - ||p is
utilized to quantify the error between the reconstructed and the observed data. Given the
measurements Y, we aim to reconstruct the ground-truth SSF X.

Since problem (1) is an ill-posed inverse problem due to the limited measurements, prior
information should be incorporated by adding multiple regularization terms to the objective
function. Our first postulate is that the reconstructed SSF tensor should have a low tensor
rank. Hence, we use a regularization term that is based on the tensor nuclear norm,*

denoted as ||X||«, to promote this property. The low tensor rank modeling of SSFs makes

9
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sense, as there are clear correlations along different modes of the SSF tensor. The low
tensor rank property of SSFs was observed in recent papers®’, but in this work we use a
different low tensor rank promoter that is based on the so-called t-SVD?* for computational

efficiency—as we will see later.

The low tensor rank model is often considered a more “global” prior that describes the
overall correlations—it does not capture detailed local variations of the SSF data. Therefore,
we also include a data-driven regularizer that characterizes the fine-grained details of the

SSE data. We denote this regularizer as ®(X’) and will explain its form in the next section.

With these two regularization terms, the reconstruction problem can be reformulated as
II‘%HH);_O@XH%‘F/\l”XHT*+/\2(I)(X), (2)

where A\; and A, are the regularization parameters that control the balance between the data
fidelity term ||y — O ® X||% and two regularization terms. Tensor nuclear norm || X7, is
defined as Zszl 12 (:,:, k)|, where X is the Fourier transformation of X along the third

mode.??

B. Reconstruction as A Series of Denoising

At first glance, the reconstruction problem defined in Eq. (2) seems unrelated to the
denoising problem. However, by implementing the classical ADMM optimization framework,
the reconstruction problem can be transformed into a series of denoising problems.*!

10
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Specifically, following the standard ADMM procedure, two auxiliary variables are intro-

duced, denoted by {Z, W}, and the reconstruction problem is recast as follows:

min —O® X%+ MW 1e + XP(2),
X,Z,W”y & + A[[W]re + 22P(Z)

st. W=XZ=X. (3)
The augmented Lagrangian for this problem is then expressed as:

1Y — O @ X7 + M[W|lr. + (E1, X — W)+

U1 - W+ h(2) + (€0 X - 2) 4 D2 - 2| (1

where £; and &€, denote the Lagrangian multipliers, and [ is a nonnegative penalty param-
eter.

Based on Eq. (4), problem (3) can be solved by tackling the following sequence of sub-
problems.
B Updating W: First, we tackle the subproblem regarding Y. The subproblem for W
can be obtained by minimizing the augmented Lagrangian in Eq. (4) with other variables

fixed, and can be formulated as:
!
%IA1|\wy|T*+<gl1,xl_w>+§\|xl_wug, (5)

where the superscript [ represents the iteration number. Using basic algebra, this problem

can be equivalently simplified as:

1 2

min [Wlr. + o+
w

3y W — (X’ + g—ll) (6)

ﬁl

F

Note that problem (6) can be interpreted as a regularized additive white Gaussian noise

l
(AWGN) denoising problem by treating the term X' + % as noisy observations and W as

11
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the signal to recovery, see more details in Appendix A. The regularization term is modeled

by the tensor nuclear norm (i.e., || W||1.) to encode the low-rank of W.

Denote the denoiser based on tensor nuclear norm as Dr,(-). Then, the solution to the

81)

denoising problem defined in (6) can be represented as D, (X" + 5)-

B Updating Z: Similarly, we can express the Z-subproblem as follows:

1112
)(l—ZJré

min ®(2) + i 5

Z 2Xy

(7)

F

This problem can also be viewed as an AWGN denoising problem. The prior information
utilized in this step is captured by the regularizer function ®(Z). We can represent the

l

solution to problem (7) as Dy (X' + %), where Dg(+) denotes the denoiser based on ¢(Z).

Additionally, it is worth noting that (7) is a non-blind denoising problem, of which the
objective is to recover Z from noisy observations X' + 'g—l; under AWGN with power %
Therefore, the assumed noise power adapts to the value of Ay. However, the assumed noise
power may differ from the ground-truth noise power, leading to a modeling mismatch in

problem (7). This type of mismatch cannot be eliminated, but empirically it does not

significantly affect the results, see the experimental results in Sec. V.

B Updating X: The X-subproblem is formulated as:

win |1V —-O0®X|p+ (E, X — W) + (&), x — Z2)

l ﬁl
51 = W+ Sl — 2, (8)

which is a least square problem and has a closed-form solution.

12
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B Updating Lagrangian Multipliers: Finally, the multipliers £; and £, are updated as

follows:
gllJrl _ gll + Bl(lerl _ WlJrl)’

812-1—1 _ glz + ﬁl(xl—i—l . ZZ—H),

and the penalty parameter 3 is updated by

g =g, (10)

where t is a hyper-parameter, and its value can be determined based on the difficulty of solv-
ing the subproblems in each iteration.?* In our experiments, we have empirically determined
that t € (1.0,1.5) is appropriate. The rationale is twofold: 1) Choosing ¢ > 1 ensures that
[ increases, driving the iterates towards feasibility. 2) Keeping ¢ < 1.5 prevents excessively
rapid increases that could lead to convergence issues or oscillatory behavior.

The ADMM algorithm for solving the SSF reconstruction problem is summarized in
Algorithm 1, highlighting the fact that the SSF reconstruction problem can be viewed as

a sequence of denoising problems based on the aforementioned procedures.

III. PLUG-AND-PLAY APPROACH

In the previous section, the SSF reconstruction problem was formulated and connected
with a series of denoising problems. Deriving the ADMM algorithm is a standard practice,
but how to choose problem-tailored regularization terms and how to solve the denoising
steps are often an art. In the following subsections, the mathematical forms of the denoisers
Dr.(-) and Dg(-) used in the denoising steps are specified.

13



Algorithm 1: ADMM Algorithm for 3D Ocean SSF Reconstruction

Input: Y, O, maximum iteration number L.
Initialize: [ < 0, X, W, Z, €1, €2, %, A1, Xo.
While | < L or not converged do

l

WHL « Dy, (X + %), [Denoising Step]
I+1 1, E .

Z7 «— Dg(X' + B—?), [Denoising Step]

Update X by solving (8),

Update € via (9),

Update 8 via (10),

[+ 1+1,

end while

Return X'

175 A. Closed-form Tensor Nuclear Norm Denoiser

As we mentioned, using the tensor nuclear norm ||- ||, to promote low tensor rank leads to
computationally efficient updates. To see this, note that Ref. [23] showed that the denoising

problem with respect to the tensor nuclear norm has a closed-form solution. Specifically, let

l
the t-SVD of tensor X' + % be expressed as
gl
x%E}:u*s*vT. (11)

14
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Then, the solution to the denoising problem can be expressed as W' = U « SVT(8) * VT,
where SVT(-) represents the singular value thresholding operator in the Fourier domain. It
is defined as SVT(S) = IFT(max{S(i, i, k) — %, 0}), with IFT(-) representing the inverse

Fourier transform along the third dimension. Therefore, the mathematical form of denoiser

Dr.(-) can be expressed as

l
Do, (X' + %) —U+SVT(S) + V7. (12)

The above solution only consists of fast inverse Fourier transform and matrix SVD, which
can be carried out very efficiently. On the contrary, if one chooses other low-rank tensor

models (e.g., the Tucker model as in Ref. [6]), the denoising step becomes an NP-hard

optimization problem, and no elegant and semi-analytical optimal solutions like (12) exist.

B. Pre-trained Deep Image Denoiser

Dealing with the denoiser Dg(-) is more challenging. The denoiser is associated with an
ideally data-driven regularizer. So far, we have not even introduced the explicit representa-
tion of the regularizer—optimizing (7) seems intractable.

A data-driven way to tackle (7) is to make ® implicit and to view Dg(-) as a neural net-
work. Ideally, the neural network is designed to map noisy SSF's to their clean counterparts.
If such a neural network can be trained using SSF data, it naturally incorporates character-
istic information of SSF data and serves for SSF denoising. However, training such a neural
network can be quite challenging in practice, if not outright impossible. This is because
training a denoising neural network designated to SSF may need a massive amount of SSF

15
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data. For example, the denoiser trained for natural images in Ref. [25] used ImageNet*® and
Waterloo Exploration Database’’ training samples. However, acquiring such an amount of

high-quality training samples in the domain of SSF analysis is a daunting challenge.

To address this issue, as illustrated in Fig. 3, we can leverage the similarity between the
denoising processes of natural images and SSF's, and use a pre-trained deep image denoiser
instead. This “zero-shot” approach avoids the need for extensive SSF historical data and
neural network training. The pre-trained deep image denoiser can be straightforwardly
applied to the SSF denoising task and then be plugged into the ADMM algorithm to aid the

reconstruction task.

The next step is to select a deep image denoiser suitable for our task. As shown in Algo-
rithm 1, the deep denoiser should be capable of removing noise with different variances, as
the noise variance changes due to the variation of 5. In this paper, we consider FFDNet,*’
a high-performance and flexible deep denoiser that primarily consists of convolutional lay-
ers with batch normalization and ReLLU activation. The FFDNet has been pre-trained on
various high-quality image datasets, including the Berkeley Segmentation Dataset (BSD),*
Waterloo Exploration Database,?” and ImageNet?® dataset. The extensive pre-training en-
ables FFDNet to achieve superior denoising performance, ultimately enhancing the overall
reconstruction performance. Besides, as a non-blind denoiser, it can handle denoising prob-
lems with a wide range of noise levels via a single network. Moreover, it is worth noting
that since FFDNet is specifically designed as a denoiser and the subproblem is a denoising
problem, we utilize the output of FFDNet instead of its intermediate layers.

16
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FIG. 4. Tlustration of the folding and unfolding operations.

Using FFDNet, we can specify Dg(-) as follows:

I l
Do(X' + %) = Fold[FFDNet (Unfold(X' + %), )], (13)

where n! = \/W is the noise variance in the [th iteration. Note that FFDNet is an image
denoiser designed to handle data with one or three channels. However, in our case, the SSF
data has multiple channels. To address the dimension mismatch issue, we use the unfolded
SSF data as input and fold the denoising result back to the original 3D structure. The
folding and unfolding operations are illustrated in Fig. 4. For more in-depth information
and detailed explanations, readers can refer to Appendix A of Ref. [6]. Additionally, it
is important to mention that the unfolded SSF data may have different spatial sizes com-
pared to the training images. However, this does not pose a problem as FFDNet is a fully
convolutional neural network composed of multiple convolutional layers. The convolution
operations in these layers are applied across the entire input data, regardless of its size.
Furthermore, FFDNet is a non-blind denoiser that effectively utilizes the noise variance as
an input, resulting in an improved solution for problem (7).

It is worth noting that instead of explicitly formulating the regularizer ®(-), we leverage

a deep denoiser that implicitly specifies ®(-). This approach allows the incorporation of

17



225

226

227

228

229

230

231

232

234

236

238

239

240

241

242

243

244

245

data-driven prior information and yields enhanced reconstruction performance, as will be
demonstrated by the experimental results in the next section.

In this paper, we employ FFDNet as the denoiser due to its state-of-the-art performance
in denoising. However, it is important to mention that other pre-trained image denoisers

can also be plugged into the ADMM framework.

C. Algorithm Summary

After “plugging” in the deep image denoiser, the ADMM framework can “play” with it by
incorporating it into the denoising step. This technique is known as “plug-and-play (PnP)”
in the deep learning literature and has recently been widely used in various tasks.'®?!%
However, PnP was mostly applied to domains like medical imaging,?” remote sensing®’ and
optical tomographic imaging®!. These domains are fairly far away from SSF reconstruction
as the problems are still within the image processing domains. SSF reconstruction deals
with a very different type of data that is a physical acoustics-environmental field. It has
been unclear whether or not denoisers trained for natural images are useful for denoising
SSF.

This paper represents the first attempt to harness the power of the PnP method in this
area. Although images and SSFs have distinct data distributions, it is important to note
that they share certain fundamental “structural” characteristics that differentiate them from
noise. Notably, both images and SSFs demonstrate approximate low-rank properties and
exhibit strong spatial correlations, as demonstrated in Ref. [8]. These shared properties

establish a meaningful connection between the denoising processes of images and SSFs,
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Algorithm 2: PnP Deep Tensor Algorithm for Zero-Shot 3D Ocean SSF

Reconstruction

Input: Y, O, maximum iteration number L.

Initialize: [ «+ 0, X, W, Z, €1, €2, 8% A1, Aa.

While [ < L or not converged do
Xl—i—%ll:Ll*S*VT,

WHL U« SVT(S) * VT,

Z"*1 « FFDNet(X! + %;2,77’), where 7! = /Aa/B!

Update X by solving (8),

Update € via (9),

Update f via (10),

I+ 1+1,

end while

Return X'

despite the variations in their data distributions. Additionally, the integration of tensor
t-SVD-based low-rank regularization is essential in fostering global coherency, particularly
in scenarios with highly sparse measurements. Through our ablation study in Sec. V, we

confirm that the combination of tSVD and deep denoiser provides a compelling blend of
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global and detailed prior information for SSF. The proposed algorithm, based on the for-
mulations described above, is summarized in Algorithm 2. Note that in Algorithm 1 is
a general algorithm while Algorithm 2 explicitly details the denoising steps using tensor
SVD and the deep denoiser.

Remark 1(Computational Complezity): As shown in Algorithm 2, the method com-
prises three main steps, with the first two steps being the most computationally intensive.
Specifically, The first step involves solving a t-SVD problem, which has a computational
complexity of O(Kmin(IJ? I1*J) + [JK log(K)). The second step is the denoising process,
which primarily entails convolution operations. The computational complexity of pass-
ing through the neural network can be expressed as O(/JKnsnny), where ny represents
the number of features, n; represents the number of layers, and n; represents the kernel
size. Hence, the total computational complexity in one iteration of our method is given by
O(Kmin(IJ? I*J) + IJK log(K) + I.JKnsnn;). More discussions about the running time

can be found in Appendix C.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical results based on 3D ocean SSF data are reported to demonstrate

the effectiveness of the proposed PnP deep tensor approach (labeled as PnP).

A. Experimental Settings

3D SSF Data: In this paper, we analyze the Philippines SSF data denoted as X €
R100x100x10 “The data are derived from the hybrid coordinate ocean model (HYCOM) and
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cover the geographical region of 17°N-21°N and 123°E-131°E, with a time stamp of 11:00 on
June 6, 2022. Spanning an area of 440 km x 879 km x 180 m, the data exhibit a latitude
resolution of 4.40 km, a longitude resolution of 8.79 km, and a vertical resolution of 20 m.

The depth of the data ranges from 0 m to 180 m.

Sampling Scenarios: This paper mainly focuses on challenging scenarios where multiple
CTD chains and PIES are deployed over an area, leading to a sparse and fiber-wise sampling
of sound speeds, as illustrated in Fig. 5. Furthermore, the paper investigates the impact of
sensor placement, whether random or regular, on the reconstruction performance of different
methods. In the case of regular sampling patterns, the measurements are evenly spaced

horizontally, whereas random patterns do not adhere to such regularity.

In all scenarios, the data is assumed to be corrupted by i.i.d. Gaussian noise with a zero

Zi,j’k oi,j,k

e, which

mean and standard deviation of ¢. The sampling ratio is defined as p =
measures the ratio of observed entries to the total number of unknown entries.
Implementation: The pre-trained FFDNet model used in the experiments is the Matlab
version. All experiments were conducted on a computer equipped with a 3.7 GHz 4-Core
Intel i3 CPU and 16GB memory. The running environment is Matlab 2021, which also
serves as the programming language.
Performance Measure: The metric that assesses the reconstruction performance of

different methods is the root mean squared error (RMSE), defined as

1 ~
_ _ 2
RMSE = \/UKHX X2, (14)

where X is the ground-truth and X is the reconstructed SSF.
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results. The RMSEs are shown above the denoising results.

B. Deep Image Denoiser for SSF Denoising

Sec. II has established the connection between the reconstruction and denoising prob-
lems, highlighting the importance of successful denoising in improving SSF reconstruction
performance. In this subsection, we empirically demonstrate that a pre-trained deep image
denoiser, specifically the FFDNet, can effectively mitigate noises from SSF data.
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Particularly, consider an AWGN denoising problem

P=X+N, (15)

where P is the observed noisy SSF data and A is a noise tensor with each element following
N(0,0?). To test the denoising performance of FFDNet on SSF data, we use P as the input
of FFDNet and calculate the RMSE between the output of FEFDNet and the ground-truth
data. The denoising results under different noise standard deviations (o) are presented in
Fig. 6. Additional denosing results under much larger noise powers (¢ > 1) are given in
Appendix C.

Fig. 6 demonstrates that the FFDNet, despite not being trained on SSF data, effectively
removes the noises with varying o and restores the fine-grained details of SSF. This result lays

the foundation of the encouraging reconstruction results presented in the next subsection.

C. Comparisons with SOTA Methods

In this subsection, we assess the reconstruction performance of the proposed PnP deep
tensor approach under different sampling scenarios and compare it with the SOTA methods.

SOTA Methods: The SOTA methods compared in this paper include: 1) matrix-based
methods, represented by the recently proposed graph-guided Bayesian matrix completion
(BMCG);® 2) tensor-based methods, including the low-rank tensor completion (LRTC),*
LRTC with total variation (LRTC-TV),** and the recently proposed tensor neural network-
based method (TensorNN):? 3) nonparametric statistical learning-based methods, repre-
sented by the Gaussian process regression (GPR).**?
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Model Settings: The kernel of GPR is the widely used radial basis function (RBF),
with the hyper-parameters being learned via evidence optimization.*® In BMCG, the graph
Laplacian matrix is constructed using the same kernel. The tensor rank surrogate function
used in LRTC is the tensor nuclear norm. TensorNN has three layers, with dimensions being
(20, 20, 2), (50, 50, 5), and (100, 100, 10), respectively. Further details about the number

of parameters in different models are presented in Appendix B.

1. Random Fiber-wise Sampling

We begin by evaluating the reconstruction performance of various methods under random
fiber-wise sampling scenarios. We consider this scenario for two reasons: First, sampling the
SSF as vertical line array is the most realistic setting if sensors like multiple CTD chains
and PIES are used; see Fig. 1. Second, the random fiber sampling appears to present a more
challenging inverse problem compared to random entry sampling (see Refs. [37, 38]), as many
fibers are completely unobserved under the former. Table I shows the averaged RMSEs of
different methods under various sampling ratios and noise powers. It is evident that the
proposed PnP approach outperforms all other methods in terms of reconstruction quality.
Moreover, we provide visual inspections of the reconstructed SSFs under different settings
in Fig. 7 to Fig. 8. And the error surfaces are depicted in Fig. 9. Based on these figures
and the table, discussions are provided below to gain further insights into the performance
of different methods.

Among the methods we evaluated, LRTC, which only utilizes a hand-crafted low-rank
tensor regularizer, gives the worst reconstruction results in all scenarios. It can only provide
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TABLE I. The averaged RMSEs over three Monte-Carlo trials of different algorithms under different

sampling ratios and noise powers.

P o BMCG GPR LRTC LRTC-TV TensorNN PnP
0.1 0.46 0.35 1.59 1.08 0.64 0.33

0.05 0.3 0.47 0.40 1.60 1.09 0.64 0.38
0.5 0.51 0.44 1.61 1.12 0.65 0.43

0.1 0.31 0.25 1.07 0.46 0.47 0.20

0.10 0.3 0.35 0.31 1.10 0.51 0.48 0.25
0.5 0.39 0.37 1.13 0.57 0.48 0.31

0.1 0.26 0.21 0.69 0.31 0.24 0.16

0.15 0.3 0.31 0.27 0.74 0.38 0.26 0.22
0.5 0.36 0.33 0.81 0.45 0.31 0.28

0.1 0.22 0.18 0.46 0.26 0.26 0.13

0.20 0.3 0.26 0.24 0.54 0.33 0.28 0.20
0.5 0.32 0.30 0.64 0.42 0.31 0.26

;2 the mean value of the SSF under very sparse sampling (e.g., p = 0.05, as shown in Fig. 8),
;3 and loses all the sound speed variation details. This suggests that in very sparse and fiber-

;4 wise sampling scenarios, the low-rank tensor regularizer, which only enforces global coher-
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FIG. 7. Visual effects of the reconstructed SSFs under p = 0.15 and ¢ = 0.1 in one single Monte-

Carlo trial. The RMSEs of different methods are shown above the subfigures in the top row.

LRTC LRTC-TV BMCG GPR TensorNN PnP
RMSE: 1.14 RMSE:0.51 RMSE: 0.45 RMSE: 0.65
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A S | ook v
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FIG. 8. Visual effects of the reconstructed SSFs under p = 0.05 and ¢ = 0.5 in one single Monte-

Carlo trial. The RMSEs of different methods are shown above the subfigures in the top row.

135 ence, is insufficient for successfully reconstructing the fine-grained SSF variations. Although
16 augmenting the TV regularizer can improve the performance, the reconstruction results of
ssv. LRTC-TV are still unsatisfactory, as shown in Fig. 7 and Fig. 8. These results demonstrate
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FIG. 9. Visual effects of the error surface in one single Monte-Carlo trial of different methods

under p = 0.15 and ¢ = 0.1. The RMSEs are shown above the subfigures in the top row.

that without data-driven regularizers, commonly-used hand-crafted ones cannot rescue the

SSF' reconstruction under challenging fiber-wise sampling scenarios.

TensorNN, although showing encouraging reconstruction performance in the randomly
sampled scenario, fails to provide excellent reconstruction results in fiber-wise sampling
scenarios. The reason for this is that the backbone of TensorNN still relies on low-rank tensor
computations, despite incorporating several non-linear activation functions. Therefore, when
a large portion of the 3D area is missing, the learning problem for model parameters becomes

ill-posed, thus significantly degrading the reconstruction results.

The matrix-based method BMCG recovers the 3D SSF slice by slice. Therefore, fiber-wise
sampling has no effect on its performance. Additionally, the graph structure characterized
by the RBF kernel enables it to reconstruct smooth SSFs even under very sparse samples.®
Consequently, BMCG achieves the third-best reconstruction performance in this challenging

scenario, even without exploiting the 3D structure of the SSF.
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Unlike the parametric model discussed above, GPR is a non-parametric statistical method
that aims to model the functionals of SSF variations. Although no research work has formally
discussed its application in SSF reconstruction, we still consider it a potent competitor
for comparison with our proposed method. It is apparent that with the RBF kernel and
evidence-maximization-based hyper-parameter optimization, GPR achieves the second-best
performance in almost all scenarios. However, constrained by the RBF kernel, which can
only model smoothness, GPR cannot recover the fine-grained SSF variation details as our
proposed PnP method does, see Fig. 9. The performance of GPR can be further improved
via the development of a data-driven deep kernel,® and its notorious high computational
cost®V can also be reduced through recent advances in machine learning. However, these

aspects are beyond the scope of this paper.

It can be seen from Fig. 9 that the proposed PnP method outperforms other methods
in restoring these fine-scale and sharp details, as highlighted by the red boxes. This can be
attributed to the effectiveness of FFDNet in removing noise from complex natural images
that contain numerous intricate details. Consequently, it is reasonable that these CNN de-
noisers can effectively denoise SSF data that exhibit similar sharp patterns. Furthermore,
the utilization of the plug-and-play technique enables the proposed method to simultane-
ously exploit the hand-crafted prior information (i.e., low-rankness) and the data-driven
prior information (encoded in the deep denoiser), thus achieving the best reconstruction

performance in all scenarios.
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FIG. 10. Samples collected from the two regular sampling patterns considered in our experiments.

2. Regular Fiber-wise Sampling

Next, we examine the sampling scenarios where multiple CTD chains and PIES are
deployed regularly. Specifically, we study two regular patterns denoted as Regulari and
Regular2, which are illustrated in Fig. 10. For ease of comparison, both of these patterns
have a sampling ratio of p = 0.1. Experimental results under different sampling ratios can
be found in Appendix C. Such regular sampling patterns often happen when the sensors are

equipped on ships, and thus the scenarios are of great interest.

Table II shows the RMSEs of different methods under different sampling patterns and
noise standard deviations, and the visual inspections are depicted in Fig. 11 and Fig. 12.
To facilitate comparison, we have included the results of random sampling in Table II. It is
evident that the proposed PnP method achieves the highest reconstruction accuracies in all

instances. Additionally, the following conclusions can be drawn.

Random sampling outperforms reqular sampling for reconstruction: The results presented
in Table II demonstrate that the reconstruction RMSEs are significantly higher for regular
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TABLE II. RMSEs of different algorithms under different sampling patterns and noise powers.

Pattern o BMCG GPR LRTC LRTC-TV TensorNN PnP
0.1 0.31 0.25 1.07 0.46 0.47 0.20
Random 0.3 0.35 0.31 1.10 0.51 0.48 0.25
0.5 0.39 0.37 1.13 0.57 0.48 0.31
0.1 0.59 0.70 1.67 1.28 0.50 0.35
Regulari 0.3 0.52 0.52 1.67 1.29 0.51 0.37
0.5 0.51 0.47 1.68 1.30 0.52 0.40
0.1 0.81 0.70 1.59 1.32 0.61 0.44
Regular2 0.3 0.56 0.47 1.59 1.33 0.62 0.45
0.5 0.52 0.48 1.60 1.36 0.66 0.47

sampling scenarios compared to random sampling scenarios, when the number of samples is
the same. Therefore, deploying a fixed number of sensors randomly offers distinct advantages

for reconstructing SSF's.

Supervised data-driven reqularization does matter: Low-rank-based methods, including
LRTC and LRTC-TV, give poor reconstruction results because the hand-crafted low-rank
regularizer is not informative enough in the challenging regular sampling scenarios. On the
other hand, TensorNN, although with unsupervised data-driven prior, still fails to capture
the detailed variations of SSF from such limited data samples. Nevertheless, with the assis-
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FIG. 11. Visual effects of the reconstructed SSFs under Regular! sampling pattern. The noise
standard deviation ¢ = 0.1. The RMSEs of different methods are shown above the subfigures in

the top row.

tance of the supervised data-driven prior information, the proposed PnP method still gives
satisfactory results, demonstrating the importance of the supervised data-driven regularizer

in such scenarios.

Challenging optimization of scale parameters under reqular sampling: In regular sampling
scenarios, BMCG and GPR perform worse with a higher signal-to-noise ratio (SNR). The
reason is that their reconstruction performances are affected not only by the noise vari-
ance but also by the learned hyperparameters. These hyperparameters, such as the scale
parameter in GPR and the rank parameter in BMCG, are automatically learned from the
data using evidence maximization-based hyperparameter learning. Note that the evidence
maximization-based hyper-parameter learning problem is typically non-convex. The quality
of the obtained solution can vary depending on factors such as the noise variance and the
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sampling pattern. In cases of regular sampling with sparse measurements (e.g., p = 0.1)
and high SNR (e.g., 0 = 0.1), the limited samples fail to capture the global coherence across
the field, while the high SNR leads to an “over-confidence” in the model. Consequently, the
scale parameter of GPR is underestimated, resulting in drastic variations in the reconstruc-
tion results, which are visible as artifacts and lead to high RMSE values (see Fig. 11 and
Fig. 12). However, as the noise variance increases, the over-confidence diminishes, allowing

for larger scale parameters and improved reconstruction performance.

3. Ablation Study: Contributions of Two Regularizers

As discussed in Sec. I, two regularizers are employed to enhance the reconstruction

performance. In this subsection, we conduct experiments to demonstrate the contributions
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TABLE III. RMSEs of different methods under different sampling ratio p. The noise standard

deviation o = 0.3.

p LRTC DPTC PnP
0.05 1.60 0.44 0.38
0.10 1.10 0.29 0.24
0.20 0.54 0.24 0.20

of these different terms. Specifically, we consider two cases: 1) utilizing only the tensor
nuclear norm regularizer, and 2) utilizing only the data-driven regularizer. In the first case,
the model is identical to LRTC. In the second case, we set A\; = 0 in Eq.(2) and refer to the
model as deep prior-aided tensor completion (DPTC). The reconstruction RMSEs of various

methods under different sampling ratios are presented in Table I1I.

It is evident that PnP, which incorporates both regularizers, outperforms the other two
methods, each using a single regularizer, in all scenarios. This indicates that both of these
regularizers contribute to the improvement in performance. Additionally, the impact of
the TNN regularizer is more significant at lower sampling ratios. Notably, DPTC outper-
forms LRTC in all scenarios, highlighting the importance of incorporating the data-driven
regularizer in challenging fiber-wise sampling scenarios. In Appendix B, the ablation stud-
ies concerning the impact and tuning of the regularization parameters, A; and Ay, on the
reconstruction performance are presented.
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V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed a plug-and-play ADMM approach for accurately reconstruct-
ing ocean 3D SSF's in a zero-shot manner, that is, without requiring access to any historical
SSF training data. Our method leverages a deep image denoiser (specifically, FFDNet),
which was pre-trained on natural image datasets, and a low tensor rank prior. These two
key ingredients are incorporated into an ADMM-based SSF reconstruction process. Our
proposed method demonstrates promising SSF reconstruction results, particularly in chal-
lenging scenarios involving very sparse and fiber-wise sampling. Experimental evaluations
using real-world SSF data have confirmed the favorable performance of our plug-and-play
method, outperforming other SOTA techniques. This highlights the effectiveness of incor-
porating supervised data-driven prior information derived from a pre-trained deep image
denoiser. Our algorithm construction and experiment results also for the first time—to our
best knowledge—showed that image denoising and SSF denoising share similar characteris-
tics, despite the two types of data being very different. Our discovery may open many doors
for exploiting the wide availability of image data to come up with data-driven solutions that

can be transferred to the SSF processing domain.

This study explores the use of FFDNet as a denoiser within the PnP framework. In
future research, it would be valuable to explore alternative denoisers to further improve
the reconstruction performance. For example, investigating the potential of using the dif-
fusion model as a denoiser holds promise and deserves further investigation. Furthermore,

the hyperparameters of the proposed model in our experiments have not been optimized.
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Exploring methods to optimize hyperparameters from limited samples is also an intriguing

area of research.
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w63 APPENDIX A: AWGN DENOISING PROBLEM

Consider the AWGN problem

P=W+WN. (A1)

where each element of N follows a Gaussian distribution, i.e., N jx ~ N(0,02). Then the
likelihood function can be expressed as p(P; ;x| Wi k) = N (Wi ik, 0?). Thus the maximum

a posteriori (MAP) estimation problem of W can be expressed as

e log p(P|W) + log p(W) (A2)
1
=maxlozp(W) = o 51IW = Pl (A3)
1
Assuming that the prior distribution p(W) o exp(—||[W)||r.). Let P = X' + % and the

noise variance o? = % Then, the MAP estimation problem can be formulated as

l gl
_ _ = _ T U I 1
%c W] s 2)\1||1/V (X + Bl) %, (A4)

w4 which is mathematically equivalent to the denoising problem in Eq. (6).

s APPENDIX B: ADDITIONAL MODEL DETAILS

466 The number of parameters and hyper-parameters of different models are presented in
w7 Table IV. Specifically, BMCG is a Bayesian matrix completion method, and its parameters
w8 consist of the factor matrices. GPR is a non-parametric method, meaning it does not involve
wo specific parameters. LRTC is a low-rank tensor completion method, and its parameters en-
a0 compass the entire data tensor. LRTC-TV is an LRTC method incorporating total variation
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(TV) regularization, which introduces an additional regularization hyper-parameter. Ten-
sorNN is a hierarchical tensor decomposition model with non-linear activation functions,

and its parameters encompass the core tensor and factor matrices.

Regarding optimizing the hyperparameters, we ensure a fair comparison by employing
either hyperparameter optimization methods or adopting empirically recommended hyper-
parameter values from the original papers of the state-of-the-art methods. Specifically, for
GPR, the model evidence (or the marginal distribution of the measurements) is maximized
with respect to the kernel parameters, by which the hyperparameters are optimized. De-
tailed descriptions of this approach can be found in Ref. [34]. For the models BMCG, LRTC,
LRTC-TV, and TensorNN, we adopt the recommended hyperparameter values provided in
the original papers. These values have been determined through extensive experimentation

and analysis in their respective studies, ensuring a reliable and fair comparison.

For our proposed model, the hyperparameters are set via trial and error. To be specific, we
test a range of hyperparameters offline and visually observe the reconstruction results. Our
observation is that the reconstruction result is not sensitive to the hyperparameters within
certain ranges; see the ablation study in Fig. 13. In our experiments, we manually select
a hyperparameter from the range (without optimizing). Despite the absence of additional
optimization, our approach consistently yields excellent reconstruction results.

37



08 :
0.7t
L
26
o
——9
05f ]
04 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 08 1

RMSE

0.45

0.4

0351

0.25 1

0.2

0.15

0.5

1.5

FIG. 13. Ablation studies of the regularization parameters A\; and s.

TABLE IV. The number of parameters and hyper-parameters of different models. Note that GPR

is a nonparametric model.

Model # Parameters # Hyper-parameters
BMCG 12000 2
GPR - 2
LRTC 100000 1
LRTC-TV 100000 2
TensorNN 12860 1
PnP 100000 2
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APPENDIX C: ADDITIONAL EXPERIMENTAL RESULTS

1. SSF Denoising

Fig. 14 presents the denoising results under different noise powers, demonstrating the
effectiveness of FFDNet in SSF denoising. The visual effects of the denoising results are

shown in Fig.15.

FIG. 14. The RMSEs of the denoised results with respect to different values of the noise variances.

2. Reconstruction under regular sampling

The RMSEs of different methods under different sampling ratios in the Regular2 sampling
pattern are presented in Table V. It can be seen that the proposed method consistently
achieves the lowest reconstruction RMSEs across different sampling densities.
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FIG. 15. Visual effects of the denoising results under different noise standard deviations . The
first column is the ground-truth SSF data, followed by noisy data with different o and denoising

results. The RMSEs are shown above the denoising results.

408 3. Running time and memory requirements

499 The running time of the PnP method on a computer equipped with an Intel i3 CPU
so0 with 4 cores is approximately 341 seconds. In our experiments, we observe that denoising
so0  with pre-trained image denoiser is the most time-consuming process. There are a couple
s2  of strategies that can be employed to expedite the running time. One option is to use
s03 a more advanced CPU with higher computational capabilities, which can speed up the
sos computation. Alternatively, utilizing a GPU for the denoising step can significantly reduce
sos the running time since GPUs are well-suited for parallel processing tasks like convolutions.

so These strategies can effectively enhance the overall efficiency of the PnP method.

507 The memory requirements of the proposed method primarily depend on the size of the pre-
sos trained network and the memory needed during computation. According to our experiments,
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TABLE V. RMSEs of different algorithms under different sampling ratios (Regular?2 sampling

pattern, o = 0.3).

P BMCG GPR LRTC LRTC-TV TensorNN PnP
0.15 0.35 0.32 1.49 1.05 0.47 0.27
0.21 0.29 0.27 1.38 0.78 0.35 0.22

we have found that a personal laptop equipped with 8GB of RAM is sufficient to meet these

requirements and ensure the smooth execution of the method.
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