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Reconstructing a three-dimensional ocean sound speed field (SSF) from limited and1

noisy measurements presents an ill-posed and challenging inverse problem. Exist-2

ing methods used a number of pre-specified priors (e.g., low-rank tensor and tensor3

neural network structures) to address this issue. However, the SSFs are often too4

complex to be accurately described by these pre-defined priors. While utilizing neu-5

ral network-based priors trained on historical SSF data may be a viable workaround,6

acquiring SSF data remains a nontrivial task. This work starts with a key observa-7

tion: Although natural images and SSFs admit fairly different characteristics, their8

denoising processes appear to share similar traits—as both remove random com-9

ponents from more structured signals. This observation allows us to incorporate10

deep denoisers trained using extensive natural images to realize zero-shot SSF recon-11

struction, without any extra training or network modifications. To implement this12

idea, an alternating direction method of multipliers (ADMM) algorithm using such13

a deep denoiser is proposed, which is reminiscent of the plug-and-play (PnP) scheme14

from medical imaging. Our PnP framework is tailored for SSF recovery such that15

the learned denoiser can be simultaneously used with other handcrafted SSF pri-16

ors. Extensive numerical studies show that the new framework largely outperforms17

state-of-the-art baselines, especially under widely recognized challenging scenarios,18

e.g., when the SSF samples are taken as tensor fibers. The code is available at19

https://github.com/OceanSTARLab/DeepPnP.20
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I. INTRODUCTION21

Three-dimensional (3D) sound speed field (SSF) reconstruction is crucial in various22

ocean acoustic applications, including underwater target localization,1 object tracking,2 and23

acoustic communications.3 From a signal processing perspective, this task poses significant24

challenges—as only limited and noisy measurements are available. For instance, when mul-25

tiple conductivity, temperature, and depth (CTD) chains and/or pressure inverted echo26

sounders (PIES) are deployed over an area,4,5 a significant portion of the SSF remains un-27

observed; see Fig. 1. Despite recent advancements in high-dimensional 3D data (e.g., SSF,28

radio map and hyperspectral image) reconstruction (see, e.g., Refs. [6–11]), existing meth-29

ods still struggle to attain reasonable SSF reconstruction under challenging scenarios, e.g.,30

when the target SSF exhibits complex dynamics.31

To tackle the SSF reconstruction problem—which is an ill-posed inverse problem—it is32

essential to integrate a wealth of prior information into the reconstruction process. This often33

leads to reconstruction formulations incorporating multiple regularization terms.12 These34

regularizers can either be hand-crafted or data-driven. Hand-crafted regularizers are based35

on relatively simple hypotheses of the structures of the SSFs (e.g., sparsity,7 low rank,836

and local smoothness9) that can be expressed using analytical functions. Hand-crafted37

priors make a lot of sense, as they are analytical summaries of the empirical observations.38

However, hand-crafted priors often struggle to provide detailed information on fine-grained39

sound speed variations. In contrast, the machine learning and vision literature recently40

advocated a class of new priors, namely, data-driven learned priors13–17. These priors make41
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FIG. 1. A graphical illustration of multiple randomly deployed conductivity, temperature, and

depth (CTD) chains and pressure inverted echo sounders (PIES), resulting in sparse and fiber-wise

sampling.

use of information learned from data (normally through a carefully designed neural network).42

Compared to hand-crafted priors, data-driven priors are usually more flexible and adaptable43

in capturing detailed characteristics of data acquired under complex scenarios of interest.44

Roughly speaking, in machine learning, there are two types of data-driven learned priors,45

i.e., supervised priors and unsupervised priors. Supervised data-driven priors utilize the46

knowledge acquired from training SSF data. The incorporation of (often a large amount47

of) training data enables such priors to provide a precise characterization of specific sound48

speed details.6,7,18 Nonetheless, in the application of SSF reconstruction, obtaining high-49

quality training SSF data for prior training is a highly nontrivial task. Another caveat of50

using supervised priors lies in the difficulty of generalization under distribution drift. That51

is, when the testing data has different characteristics from the training data, using such52

learned priors may cause undesirable results (see, e.g., Fig. 14 in Ref. [6]).53
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Due to the difficulties of acquiring SSF training data, recent advances in SSF reconstruc-54

tion primarily relied on unsupervised data-driven priors,9,19,20 which are reminiscent of the55

deep image prior from computer vision.17 This type of priors is not trained over data, but56

leverages neural structures to represent the intricate generating processes of complex data.57

If the neural structures are properly chosen, then such unsupervised/untrained priors can58

capture rich detail of the SSF data while using no training data—see Ref. [9] for an ex-59

ample using tensor neural network-based untrained prior to tackle the SSF reconstruction60

problem. Nonetheless, the challenge of using untrained deep prior is that the choices of61

neural structures seem to be overly abundant—and there has been no metric to measure62

the “optimality” of such choices. The untrained priors are also prone to overfit to noise,1763

which may require multiple heuristics (e.g., early stopping) to intervene.64

This work puts forth an alternative framework for deep prior-based SSF reconstruction.65

Instead of using trained or untrained priors as regularization terms in the SSF reconstruction66

criteria, we propose to employ neural denoisers that are trained over a massive amount of67

natural images in SSF recovery. The rationale is that although natural images and SSFs68

have fairly different characteristics/data distributions (see the illustration in Fig. 2(a)), the69

denoising process of both types of data share similar traits—both aim to remove relatively70

random components from more structured “signal” components. Fig. 2(b) presents the71

ocean SSF reconstruction results obtained using a state-of-the-art deep generative model72

(diffusion model) that has been pre-trained using natural images. The deviation between73

the reconstructed SSF and the ground-truth SSF showcases the limitations of employing pre-74

trained deep image priors for SSF reconstruction. The advantage of using the natural image75
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denoisers is that the training data can be easily acquired. The idea, illustrated in Fig. 3, is76

reminiscent of the deep plug-and-play (PnP) framework in computational imaging.15,16,21,2277

However, several challenges need to be addressed in order to adapt the PnP approach to78

3D ocean SSF reconstruction. Specifically, deep denoisers are primarily designed for gray79

or color images, which typically have one or three channels. In contrast, 3D SSFs typically80

consist of multiple channels (or, equivalently, depths). To address this dimension mismatch81

issue, by noticing that the image denoiser can effectively remove the noise of the 2D SSFs82

at different depths (see Fig. 6 in Sec. IV), we unfold the 3D SSFs along one horizontal axis83

and denoise the unfolded matrix using a gray image denoiser. Furthermore, to preserve the84

spatial correlations across the three dimensions, we incorporate a tensor t-SVD-based low-85

rank prior into our approach. This prior promotes global coherency in the reconstructed86

SSFs while ensuring computational efficiency. Experimental results using real-life ocean87

SSFs demonstrate the superior performance of our method over state-of-the-art (SOTA)88

methods, particularly in realistic settings, e.g., fiber-wise sampling scenarios.89

The remainder of this paper is organized as follows. In Sec. II, we formulate the re-90

construction problem and show its connection with the denoising problem. In Sec. III, we91

propose to plug the pre-trained image denoiser into the reconstruction process and propose92

a zero-shot PnP deep tensor-based reconstruction algorithm. Experiments using real-life93

SSF data are reported in Sec. IV, followed by the conclusions in Sec. V.94

Notations: Lower- and uppercase bold letters (e.g., x and X) are used to denote the95

vectors and matrices. Higher-order tensors (order three or higher) are denoted by upper-case96

bold calligraphic letters. The tensor t-product is denoted by ∗. The Kronecker product is97
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FIG. 2. (a) Illustration of the unsuitability of pre-trained deep image priors trained on natural

images for ocean sound speed field (SSF) reconstruction, which highlights the evident differences

in data distributions between natural images and SSF data. (b) Illustration of the ocean SSF

reconstruction results obtained using a state-of-the-art deep generative model (diffusion model)

that has been pre-trained using natural images. The deviation between the reconstructed SSF and

the ground-truth SSF showcases the limitations of employing pre-trained deep image priors for

SSF reconstruction.

denoted by ⊗. The Hadamard product is denoted by ~. ‖ · ‖F stands for the Frobenius98

7



Noisy SSFs Clean SSFs

Deep SSF Denoiser≈
Noisy Images Clean Images

Deep Image Denoiser

SSF Measurements Reconstructed SSF

The Proposed 

Plug-and-Play

Approach

Plug

FIG. 3. This illustration depicts the rationale behind the proposed approach, which utilizes a pre-

trained deep image denoiser to realize zero-shot ocean SSF reconstruction. The adopted pre-trained

denoiser is capable of capturing shared characteristics between natural images and ocean sound

speed fields that are distinct from noise, including explicit features like continuous variations, as

well as implicit deep features. By leveraging this powerful data-driven regularizer, the accuracy of

the reconstructed SSF can be significantly enhanced.

norm. ‖ · ‖∗ stands for the matrix nuclear norm and ‖ · ‖T∗ stands for the tensor nuclear99

norm. 〈·, ·〉 denotes the tensor inner product. X T denotes the transpose of X . R is the100

field of real numbers. The folding and unfolding operations are denoted as Fold(X) and101

Unfold(X ), respectively.102
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II. RECONSTRUCTION AND CONNECTIONS TO DENOISING103

This section presents the mathematical formulation of the 3D SSF reconstruction prob-104

lem, followed by a discussion of its connection with the denoising problem.105

A. Reconstruction Problem Formulation106

The 3D SSF reconstruction problem aims to estimate the unknown 3D SSF from the

limited and noisy measurements. Specifically, we seek to solve the optimization problem:

min
X
‖Y −O ~X‖2F, (1)

where X ∈ R
I×J×K is the optimization variable (or SSF to be reconstructed) and O is107

a binary indicator tensor with Oi,j,k = 1 if the corresponding entry (i, j, k) is observed.108

Here I and J refer to the dimension size of the data in the horizontal direction, while K109

represents the depth number. Symbol ~ denotes the Hadamard product. The observation110

tensor Y ∈ R
I×J×K collects noisy and limited SSF samples, i.e., Y i,j,k is the sampled sound111

speed value if Oi,j,k = 1, and otherwise equals to zero. The Frobenius norm ‖ · ‖F is112

utilized to quantify the error between the reconstructed and the observed data. Given the113

measurements Y , we aim to reconstruct the ground-truth SSF X .114

Since problem (1) is an ill-posed inverse problem due to the limited measurements, prior115

information should be incorporated by adding multiple regularization terms to the objective116

function. Our first postulate is that the reconstructed SSF tensor should have a low tensor117

rank. Hence, we use a regularization term that is based on the tensor nuclear norm,23118

denoted as ‖X‖T∗, to promote this property. The low tensor rank modeling of SSFs makes119
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sense, as there are clear correlations along different modes of the SSF tensor. The low120

tensor rank property of SSFs was observed in recent papers6,7, but in this work we use a121

different low tensor rank promoter that is based on the so-called t-SVD23 for computational122

efficiency—as we will see later.123

The low tensor rank model is often considered a more “global” prior that describes the124

overall correlations—it does not capture detailed local variations of the SSF data. Therefore,125

we also include a data-driven regularizer that characterizes the fine-grained details of the126

SSF data. We denote this regularizer as Φ(X ) and will explain its form in the next section.127

With these two regularization terms, the reconstruction problem can be reformulated as

min
X
‖Y −O ~X‖2F + λ1‖X‖T∗ + λ2Φ(X ), (2)

where λ1 and λ2 are the regularization parameters that control the balance between the data128

fidelity term ‖Y −O ~X‖2F and two regularization terms. Tensor nuclear norm ‖X‖T∗ is129

defined as
∑K

k=1 ‖X̃ (:, :, k)‖∗, where X̃ is the Fourier transformation of X along the third130

mode.23131

B. Reconstruction as A Series of Denoising132

At first glance, the reconstruction problem defined in Eq. (2) seems unrelated to the133

denoising problem. However, by implementing the classical ADMM optimization framework,134

the reconstruction problem can be transformed into a series of denoising problems.21135
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Specifically, following the standard ADMM procedure, two auxiliary variables are intro-

duced, denoted by {Z ,W}, and the reconstruction problem is recast as follows:

min
X ,Z ,W

‖Y −O ~X‖2F + λ1‖W‖T∗ + λ2Φ(Z),

s.t. W = X ,Z = X . (3)

The augmented Lagrangian for this problem is then expressed as:

‖Y −O ~X‖2F + λ1‖W‖T∗ + 〈E1,X −W〉+

β

2
‖X −W‖2F + λ2Φ(Z) + 〈E2,X −Z〉+

β

2
‖X −Z‖2F, (4)

where E1 and E2 denote the Lagrangian multipliers, and β is a nonnegative penalty param-136

eter.137

Based on Eq. (4), problem (3) can be solved by tackling the following sequence of sub-138

problems.139

� Updating W: First, we tackle the subproblem regarding W . The subproblem for W140

can be obtained by minimizing the augmented Lagrangian in Eq. (4) with other variables141

fixed, and can be formulated as:142

min
W

λ1‖W‖T∗ + 〈E
l
1,X

l −W〉+
βl

2
‖X l −W‖2F, (5)

where the superscript l represents the iteration number. Using basic algebra, this problem143

can be equivalently simplified as:144

min
W
‖W‖T∗ +

βl

2λ1

∥∥∥∥W −

(
X l +

E l
1

βl

)∥∥∥∥
2

F

. (6)

Note that problem (6) can be interpreted as a regularized additive white Gaussian noise145

(AWGN) denoising problem by treating the term X l + E l

1

βl as noisy observations and W as146
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the signal to recovery, see more details in Appendix A. The regularization term is modeled147

by the tensor nuclear norm (i.e., ‖W‖T∗) to encode the low-rank of W .148

Denote the denoiser based on tensor nuclear norm as DT∗(·). Then, the solution to the149

denoising problem defined in (6) can be represented as DT∗(X
l + E l

1

βl ).150

� Updating Z: Similarly, we can express the Z-subproblem as follows:

min
Z

Φ(Z) +
βl

2λ2

∥∥∥∥X
l −Z +

E l
2

βl

∥∥∥∥
2

F

. (7)

This problem can also be viewed as an AWGN denoising problem. The prior information151

utilized in this step is captured by the regularizer function Φ(Z). We can represent the152

solution to problem (7) as DΦ(X
l + E l

2

βl ), where DΦ(·) denotes the denoiser based on Φ(Z).153

Additionally, it is worth noting that (7) is a non-blind denoising problem, of which the154

objective is to recover Z from noisy observations X l + E l

2

βl under AWGN with power λ2

βl .155

Therefore, the assumed noise power adapts to the value of λ2. However, the assumed noise156

power may differ from the ground-truth noise power, leading to a modeling mismatch in157

problem (7). This type of mismatch cannot be eliminated, but empirically it does not158

significantly affect the results, see the experimental results in Sec. IV.159

� Updating X : The X -subproblem is formulated as:

min
X
‖Y −O ~X‖2F + 〈E l

1,X −W l+1〉+ 〈E l
2,X −Z l+1〉

+
βl

2
‖X −W l+1‖2F +

βl

2
‖X −Z l+1‖2F, (8)

which is a least square problem and has a closed-form solution.160
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� Updating Lagrangian Multipliers: Finally, the multipliers E1 and E2 are updated as

follows:




E l+1
1 = E l

1 + βl(X l+1 −W l+1),

E l+1
2 = E l

2 + βl(X l+1 −Z l+1),

(9)

and the penalty parameter β is updated by

βl+1 = tβl, (10)

where t is a hyper-parameter, and its value can be determined based on the difficulty of solv-161

ing the subproblems in each iteration.24 In our experiments, we have empirically determined162

that t ∈ (1.0, 1.5) is appropriate. The rationale is twofold: 1) Choosing t > 1 ensures that163

β increases, driving the iterates towards feasibility. 2) Keeping t < 1.5 prevents excessively164

rapid increases that could lead to convergence issues or oscillatory behavior.165

The ADMM algorithm for solving the SSF reconstruction problem is summarized in166

Algorithm 1, highlighting the fact that the SSF reconstruction problem can be viewed as167

a sequence of denoising problems based on the aforementioned procedures.168

III. PLUG-AND-PLAY APPROACH169

In the previous section, the SSF reconstruction problem was formulated and connected170

with a series of denoising problems. Deriving the ADMM algorithm is a standard practice,171

but how to choose problem-tailored regularization terms and how to solve the denoising172

steps are often an art. In the following subsections, the mathematical forms of the denoisers173

DT∗(·) and DΦ(·) used in the denoising steps are specified.174
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Algorithm 1: ADMM Algorithm for 3D Ocean SSF Reconstruction

Input: Y , O, maximum iteration number L.

Initialize: l← 0, X , W , Z, E1, E2, β
0, λ1, λ2.

While l < L or not converged do

W l+1 ← DT∗(X
l + E l

1

βl ), [Denoising Step]

Z l+1 ← DΦ(X
l + E l

2

βl ), [Denoising Step]

Update X by solving (8),

Update E via (9),

Update β via (10),

l← l + 1,

end while

Return X l.

A. Closed-form Tensor Nuclear Norm Denoiser175

As we mentioned, using the tensor nuclear norm ‖·‖T∗ to promote low tensor rank leads to

computationally efficient updates. To see this, note that Ref. [23] showed that the denoising

problem with respect to the tensor nuclear norm has a closed-form solution. Specifically, let

the t-SVD of tensor X l + E l

1

βl be expressed as

X l +
E l

1

βl
= U ∗ S ∗ VT . (11)
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Then, the solution to the denoising problem can be expressed as W l+1 = U ∗ SVT(S) ∗VT ,

where SVT(·) represents the singular value thresholding operator in the Fourier domain. It

is defined as SVT(S) = IFT(max{S̃(i, i, k) − λ1

βl , 0}), with IFT(·) representing the inverse

Fourier transform along the third dimension. Therefore, the mathematical form of denoiser

DT∗(·) can be expressed as

DT∗(X
l +

E l
1

βl
) = U ∗ SVT(S) ∗ VT . (12)

The above solution only consists of fast inverse Fourier transform and matrix SVD, which176

can be carried out very efficiently. On the contrary, if one chooses other low-rank tensor177

models (e.g., the Tucker model as in Ref. [6]), the denoising step becomes an NP-hard178

optimization problem, and no elegant and semi-analytical optimal solutions like (12) exist.179

B. Pre-trained Deep Image Denoiser180

Dealing with the denoiser DΦ(·) is more challenging. The denoiser is associated with an181

ideally data-driven regularizer. So far, we have not even introduced the explicit representa-182

tion of the regularizer—optimizing (7) seems intractable.183

A data-driven way to tackle (7) is to make Φ implicit and to view DΦ(·) as a neural net-184

work. Ideally, the neural network is designed to map noisy SSFs to their clean counterparts.185

If such a neural network can be trained using SSF data, it naturally incorporates character-186

istic information of SSF data and serves for SSF denoising. However, training such a neural187

network can be quite challenging in practice, if not outright impossible. This is because188

training a denoising neural network designated to SSF may need a massive amount of SSF189
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data. For example, the denoiser trained for natural images in Ref. [25] used ImageNet26 and190

Waterloo Exploration Database27 training samples. However, acquiring such an amount of191

high-quality training samples in the domain of SSF analysis is a daunting challenge.192

To address this issue, as illustrated in Fig. 3, we can leverage the similarity between the193

denoising processes of natural images and SSFs, and use a pre-trained deep image denoiser194

instead. This “zero-shot” approach avoids the need for extensive SSF historical data and195

neural network training. The pre-trained deep image denoiser can be straightforwardly196

applied to the SSF denoising task and then be plugged into the ADMM algorithm to aid the197

reconstruction task.198

The next step is to select a deep image denoiser suitable for our task. As shown in Algo-199

rithm 1, the deep denoiser should be capable of removing noise with different variances, as200

the noise variance changes due to the variation of β. In this paper, we consider FFDNet,25201

a high-performance and flexible deep denoiser that primarily consists of convolutional lay-202

ers with batch normalization and ReLU activation. The FFDNet has been pre-trained on203

various high-quality image datasets, including the Berkeley Segmentation Dataset (BSD),28204

Waterloo Exploration Database,27 and ImageNet26 dataset. The extensive pre-training en-205

ables FFDNet to achieve superior denoising performance, ultimately enhancing the overall206

reconstruction performance. Besides, as a non-blind denoiser, it can handle denoising prob-207

lems with a wide range of noise levels via a single network. Moreover, it is worth noting208

that since FFDNet is specifically designed as a denoiser and the subproblem is a denoising209

problem, we utilize the output of FFDNet instead of its intermediate layers.210
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Using FFDNet, we can specify DΦ(·) as follows:

DΦ(X
l +

E l
2

βl
) = Fold[FFDNet(Unfold(X l +

E l
2

βl
), ηl)], (13)

where ηl =
√

λ2/βl is the noise variance in the lth iteration. Note that FFDNet is an image211

denoiser designed to handle data with one or three channels. However, in our case, the SSF212

data has multiple channels. To address the dimension mismatch issue, we use the unfolded213

SSF data as input and fold the denoising result back to the original 3D structure. The214

folding and unfolding operations are illustrated in Fig. 4. For more in-depth information215

and detailed explanations, readers can refer to Appendix A of Ref. [6]. Additionally, it216

is important to mention that the unfolded SSF data may have different spatial sizes com-217

pared to the training images. However, this does not pose a problem as FFDNet is a fully218

convolutional neural network composed of multiple convolutional layers. The convolution219

operations in these layers are applied across the entire input data, regardless of its size.220

Furthermore, FFDNet is a non-blind denoiser that effectively utilizes the noise variance as221

an input, resulting in an improved solution for problem (7).222

It is worth noting that instead of explicitly formulating the regularizer Φ(·), we leverage223

a deep denoiser that implicitly specifies Φ(·). This approach allows the incorporation of224
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data-driven prior information and yields enhanced reconstruction performance, as will be225

demonstrated by the experimental results in the next section.226

In this paper, we employ FFDNet as the denoiser due to its state-of-the-art performance227

in denoising. However, it is important to mention that other pre-trained image denoisers228

can also be plugged into the ADMM framework.229

C. Algorithm Summary230

After “plugging” in the deep image denoiser, the ADMM framework can “play” with it by231

incorporating it into the denoising step. This technique is known as “plug-and-play (PnP)”232

in the deep learning literature and has recently been widely used in various tasks.15,21,22233

However, PnP was mostly applied to domains like medical imaging,29 remote sensing30 and234

optical tomographic imaging31. These domains are fairly far away from SSF reconstruction235

as the problems are still within the image processing domains. SSF reconstruction deals236

with a very different type of data that is a physical acoustics-environmental field. It has237

been unclear whether or not denoisers trained for natural images are useful for denoising238

SSF.239

This paper represents the first attempt to harness the power of the PnP method in this240

area. Although images and SSFs have distinct data distributions, it is important to note241

that they share certain fundamental “structural” characteristics that differentiate them from242

noise. Notably, both images and SSFs demonstrate approximate low-rank properties and243

exhibit strong spatial correlations, as demonstrated in Ref. [8]. These shared properties244

establish a meaningful connection between the denoising processes of images and SSFs,245
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Algorithm 2: PnP Deep Tensor Algorithm for Zero-Shot 3D Ocean SSF

Reconstruction

Input: Y , O, maximum iteration number L.

Initialize: l← 0, X , W , Z, E1, E2, β
0, λ1, λ2.

While l < L or not converged do

X l + E l

1

βl = U ∗ S ∗ VT ,

W l+1 ← U ∗ SVT(S) ∗ VT ,

Z l+1 ← FFDNet(X l + E l

2

βl , η
l), where ηl =

√
λ2/βl

Update X by solving (8),

Update E via (9),

Update β via (10),

l← l + 1,

end while

Return X l.

despite the variations in their data distributions. Additionally, the integration of tensor246

t-SVD-based low-rank regularization is essential in fostering global coherency, particularly247

in scenarios with highly sparse measurements. Through our ablation study in Sec. V, we248

confirm that the combination of tSVD and deep denoiser provides a compelling blend of249
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global and detailed prior information for SSF. The proposed algorithm, based on the for-250

mulations described above, is summarized in Algorithm 2. Note that in Algorithm 1 is251

a general algorithm while Algorithm 2 explicitly details the denoising steps using tensor252

SVD and the deep denoiser.253

Remark 1(Computational Complexity): As shown in Algorithm 2, the method com-254

prises three main steps, with the first two steps being the most computationally intensive.255

Specifically, The first step involves solving a t-SVD problem, which has a computational256

complexity of O(Kmin(IJ2, I2J) + IJK log(K)). The second step is the denoising process,257

which primarily entails convolution operations. The computational complexity of pass-258

ing through the neural network can be expressed as O(IJKnfnlnk), where nf represents259

the number of features, nl represents the number of layers, and nk represents the kernel260

size. Hence, the total computational complexity in one iteration of our method is given by261

O(Kmin(IJ2, I2J) + IJK log(K) + IJKnfnlnk). More discussions about the running time262

can be found in Appendix C.263

IV. NUMERICAL RESULTS AND DISCUSSIONS264

In this section, numerical results based on 3D ocean SSF data are reported to demonstrate265

the effectiveness of the proposed PnP deep tensor approach (labeled as PnP).266

A. Experimental Settings267

3D SSF Data: In this paper, we analyze the Philippines SSF data denoted as X ∈268

R
100×100×10. The data are derived from the hybrid coordinate ocean model (HYCOM) and269

20



cover the geographical region of 17◦N-21◦N and 123◦E-131◦E, with a time stamp of 11:00 on270

June 6, 2022. Spanning an area of 440 km × 879 km × 180 m, the data exhibit a latitude271

resolution of 4.40 km, a longitude resolution of 8.79 km, and a vertical resolution of 20 m.272

The depth of the data ranges from 0 m to 180 m.273

Sampling Scenarios: This paper mainly focuses on challenging scenarios where multiple274

CTD chains and PIES are deployed over an area, leading to a sparse and fiber-wise sampling275

of sound speeds, as illustrated in Fig. 5. Furthermore, the paper investigates the impact of276

sensor placement, whether random or regular, on the reconstruction performance of different277

methods. In the case of regular sampling patterns, the measurements are evenly spaced278

horizontally, whereas random patterns do not adhere to such regularity.279

In all scenarios, the data is assumed to be corrupted by i.i.d. Gaussian noise with a zero280

mean and standard deviation of σ. The sampling ratio is defined as ρ =
∑

i,j,kOi,j,k

IJK
, which281

measures the ratio of observed entries to the total number of unknown entries.282

Implementation: The pre-trained FFDNet model used in the experiments is the Matlab283

version. All experiments were conducted on a computer equipped with a 3.7 GHz 4-Core284

Intel i3 CPU and 16GB memory. The running environment is Matlab 2021, which also285

serves as the programming language.286

Performance Measure: The metric that assesses the reconstruction performance of

different methods is the root mean squared error (RMSE), defined as

RMSE =

√
1

IJK
‖X̂ −X‖2F, (14)

where X is the ground-truth and X̂ is the reconstructed SSF.287
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FIG. 5. Illustration of the sparse and fiber-wise sampling.
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FIG. 6. Visual effects of the denoising results under different noise standard deviations σ. The

first column is the ground-truth SSF data, followed by noisy data with different σ and the denoising

results. The RMSEs are shown above the denoising results.

B. Deep Image Denoiser for SSF Denoising288

Sec. II has established the connection between the reconstruction and denoising prob-289

lems, highlighting the importance of successful denoising in improving SSF reconstruction290

performance. In this subsection, we empirically demonstrate that a pre-trained deep image291

denoiser, specifically the FFDNet, can effectively mitigate noises from SSF data.292
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Particularly, consider an AWGN denoising problem

P = X +N , (15)

where P is the observed noisy SSF data and N is a noise tensor with each element following293

N (0, σ2). To test the denoising performance of FFDNet on SSF data, we use P as the input294

of FFDNet and calculate the RMSE between the output of FFDNet and the ground-truth295

data. The denoising results under different noise standard deviations (σ) are presented in296

Fig. 6. Additional denosing results under much larger noise powers (σ > 1) are given in297

Appendix C.298

Fig. 6 demonstrates that the FFDNet, despite not being trained on SSF data, effectively299

removes the noises with varying σ and restores the fine-grained details of SSF. This result lays300

the foundation of the encouraging reconstruction results presented in the next subsection.301

C. Comparisons with SOTA Methods302

In this subsection, we assess the reconstruction performance of the proposed PnP deep303

tensor approach under different sampling scenarios and compare it with the SOTA methods.304

SOTA Methods: The SOTA methods compared in this paper include: 1) matrix-based305

methods, represented by the recently proposed graph-guided Bayesian matrix completion306

(BMCG);8 2) tensor-based methods, including the low-rank tensor completion (LRTC),32307

LRTC with total variation (LRTC-TV),33 and the recently proposed tensor neural network-308

based method (TensorNN);9 3) nonparametric statistical learning-based methods, repre-309

sented by the Gaussian process regression (GPR).34,35310
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Model Settings: The kernel of GPR is the widely used radial basis function (RBF),311

with the hyper-parameters being learned via evidence optimization.36 In BMCG, the graph312

Laplacian matrix is constructed using the same kernel. The tensor rank surrogate function313

used in LRTC is the tensor nuclear norm. TensorNN has three layers, with dimensions being314

(20, 20, 2), (50, 50, 5), and (100, 100, 10), respectively. Further details about the number315

of parameters in different models are presented in Appendix B.316

1. Random Fiber-wise Sampling317

We begin by evaluating the reconstruction performance of various methods under random318

fiber-wise sampling scenarios. We consider this scenario for two reasons: First, sampling the319

SSF as vertical line array is the most realistic setting if sensors like multiple CTD chains320

and PIES are used; see Fig. 1. Second, the random fiber sampling appears to present a more321

challenging inverse problem compared to random entry sampling (see Refs. [37, 38]), as many322

fibers are completely unobserved under the former. Table I shows the averaged RMSEs of323

different methods under various sampling ratios and noise powers. It is evident that the324

proposed PnP approach outperforms all other methods in terms of reconstruction quality.325

Moreover, we provide visual inspections of the reconstructed SSFs under different settings326

in Fig. 7 to Fig. 8. And the error surfaces are depicted in Fig. 9. Based on these figures327

and the table, discussions are provided below to gain further insights into the performance328

of different methods.329

Among the methods we evaluated, LRTC, which only utilizes a hand-crafted low-rank330

tensor regularizer, gives the worst reconstruction results in all scenarios. It can only provide331
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TABLE I. The averaged RMSEs over three Monte-Carlo trials of different algorithms under different

sampling ratios and noise powers.

ρ σ BMCG GPR LRTC LRTC-TV TensorNN PnP

0.05

0.1 0.46 0.35 1.59 1.08 0.64 0.33

0.3 0.47 0.40 1.60 1.09 0.64 0.38

0.5 0.51 0.44 1.61 1.12 0.65 0.43

0.10

0.1 0.31 0.25 1.07 0.46 0.47 0.20

0.3 0.35 0.31 1.10 0.51 0.48 0.25

0.5 0.39 0.37 1.13 0.57 0.48 0.31

0.15

0.1 0.26 0.21 0.69 0.31 0.24 0.16

0.3 0.31 0.27 0.74 0.38 0.26 0.22

0.5 0.36 0.33 0.81 0.45 0.31 0.28

0.20

0.1 0.22 0.18 0.46 0.26 0.26 0.13

0.3 0.26 0.24 0.54 0.33 0.28 0.20

0.5 0.32 0.30 0.64 0.42 0.31 0.26

the mean value of the SSF under very sparse sampling (e.g., ρ = 0.05, as shown in Fig. 8),332

and loses all the sound speed variation details. This suggests that in very sparse and fiber-333

wise sampling scenarios, the low-rank tensor regularizer, which only enforces global coher-334

25



Ground-truth
GPR

RMSE: 0.21

PnP

RMSE: 0.16

0m

100m

180m

m/s

m/s

1548

1546

1544

1542

m/s

1550

1548

1546

1544

1542

1550

1548

1546

1544

1542

1540

BMCG

RMSE:0.26

TensorNN

RMSE: 0.24

LRTC-TV

RMSE: 0.33

LRTC

RMSE: 0.68

FIG. 7. Visual effects of the reconstructed SSFs under ρ = 0.15 and σ = 0.1 in one single Monte-

Carlo trial. The RMSEs of different methods are shown above the subfigures in the top row.
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FIG. 8. Visual effects of the reconstructed SSFs under ρ = 0.05 and σ = 0.5 in one single Monte-

Carlo trial. The RMSEs of different methods are shown above the subfigures in the top row.

ence, is insufficient for successfully reconstructing the fine-grained SSF variations. Although335

augmenting the TV regularizer can improve the performance, the reconstruction results of336

LRTC-TV are still unsatisfactory, as shown in Fig. 7 and Fig. 8. These results demonstrate337
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FIG. 9. Visual effects of the error surface in one single Monte-Carlo trial of different methods

under ρ = 0.15 and σ = 0.1. The RMSEs are shown above the subfigures in the top row.

that without data-driven regularizers, commonly-used hand-crafted ones cannot rescue the338

SSF reconstruction under challenging fiber-wise sampling scenarios.339

TensorNN, although showing encouraging reconstruction performance in the randomly340

sampled scenario, fails to provide excellent reconstruction results in fiber-wise sampling341

scenarios. The reason for this is that the backbone of TensorNN still relies on low-rank tensor342

computations, despite incorporating several non-linear activation functions. Therefore, when343

a large portion of the 3D area is missing, the learning problem for model parameters becomes344

ill-posed, thus significantly degrading the reconstruction results.345

The matrix-based method BMCG recovers the 3D SSF slice by slice. Therefore, fiber-wise346

sampling has no effect on its performance. Additionally, the graph structure characterized347

by the RBF kernel enables it to reconstruct smooth SSFs even under very sparse samples.8348

Consequently, BMCG achieves the third-best reconstruction performance in this challenging349

scenario, even without exploiting the 3D structure of the SSF.350
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Unlike the parametric model discussed above, GPR is a non-parametric statistical method351

that aims to model the functionals of SSF variations. Although no research work has formally352

discussed its application in SSF reconstruction, we still consider it a potent competitor353

for comparison with our proposed method. It is apparent that with the RBF kernel and354

evidence-maximization-based hyper-parameter optimization, GPR achieves the second-best355

performance in almost all scenarios. However, constrained by the RBF kernel, which can356

only model smoothness, GPR cannot recover the fine-grained SSF variation details as our357

proposed PnP method does, see Fig. 9. The performance of GPR can be further improved358

via the development of a data-driven deep kernel,39 and its notorious high computational359

cost8,40 can also be reduced through recent advances in machine learning. However, these360

aspects are beyond the scope of this paper.361

It can be seen from Fig. 9 that the proposed PnP method outperforms other methods362

in restoring these fine-scale and sharp details, as highlighted by the red boxes. This can be363

attributed to the effectiveness of FFDNet in removing noise from complex natural images364

that contain numerous intricate details. Consequently, it is reasonable that these CNN de-365

noisers can effectively denoise SSF data that exhibit similar sharp patterns. Furthermore,366

the utilization of the plug-and-play technique enables the proposed method to simultane-367

ously exploit the hand-crafted prior information (i.e., low-rankness) and the data-driven368

prior information (encoded in the deep denoiser), thus achieving the best reconstruction369

performance in all scenarios.370
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FIG. 10. Samples collected from the two regular sampling patterns considered in our experiments.

2. Regular Fiber-wise Sampling371

Next, we examine the sampling scenarios where multiple CTD chains and PIES are372

deployed regularly. Specifically, we study two regular patterns denoted as Regular1 and373

Regular2, which are illustrated in Fig. 10. For ease of comparison, both of these patterns374

have a sampling ratio of ρ = 0.1. Experimental results under different sampling ratios can375

be found in Appendix C. Such regular sampling patterns often happen when the sensors are376

equipped on ships, and thus the scenarios are of great interest.377

Table II shows the RMSEs of different methods under different sampling patterns and378

noise standard deviations, and the visual inspections are depicted in Fig. 11 and Fig. 12.379

To facilitate comparison, we have included the results of random sampling in Table II. It is380

evident that the proposed PnP method achieves the highest reconstruction accuracies in all381

instances. Additionally, the following conclusions can be drawn.382

Random sampling outperforms regular sampling for reconstruction: The results presented383

in Table II demonstrate that the reconstruction RMSEs are significantly higher for regular384
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TABLE II. RMSEs of different algorithms under different sampling patterns and noise powers.

Pattern σ BMCG GPR LRTC LRTC-TV TensorNN PnP

Random

0.1 0.31 0.25 1.07 0.46 0.47 0.20

0.3 0.35 0.31 1.10 0.51 0.48 0.25

0.5 0.39 0.37 1.13 0.57 0.48 0.31

Regular1

0.1 0.59 0.70 1.67 1.28 0.50 0.35

0.3 0.52 0.52 1.67 1.29 0.51 0.37

0.5 0.51 0.47 1.68 1.30 0.52 0.40

Regular2

0.1 0.81 0.70 1.59 1.32 0.61 0.44

0.3 0.56 0.47 1.59 1.33 0.62 0.45

0.5 0.52 0.48 1.60 1.36 0.66 0.47

sampling scenarios compared to random sampling scenarios, when the number of samples is385

the same. Therefore, deploying a fixed number of sensors randomly offers distinct advantages386

for reconstructing SSFs.387

Supervised data-driven regularization does matter: Low-rank-based methods, including388

LRTC and LRTC-TV, give poor reconstruction results because the hand-crafted low-rank389

regularizer is not informative enough in the challenging regular sampling scenarios. On the390

other hand, TensorNN, although with unsupervised data-driven prior, still fails to capture391

the detailed variations of SSF from such limited data samples. Nevertheless, with the assis-392
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FIG. 11. Visual effects of the reconstructed SSFs under Regular1 sampling pattern. The noise

standard deviation σ = 0.1. The RMSEs of different methods are shown above the subfigures in

the top row.

tance of the supervised data-driven prior information, the proposed PnP method still gives393

satisfactory results, demonstrating the importance of the supervised data-driven regularizer394

in such scenarios.395

Challenging optimization of scale parameters under regular sampling: In regular sampling396

scenarios, BMCG and GPR perform worse with a higher signal-to-noise ratio (SNR). The397

reason is that their reconstruction performances are affected not only by the noise vari-398

ance but also by the learned hyperparameters. These hyperparameters, such as the scale399

parameter in GPR and the rank parameter in BMCG, are automatically learned from the400

data using evidence maximization-based hyperparameter learning. Note that the evidence401

maximization-based hyper-parameter learning problem is typically non-convex. The quality402

of the obtained solution can vary depending on factors such as the noise variance and the403
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sampling pattern. In cases of regular sampling with sparse measurements (e.g., ρ = 0.1)404

and high SNR (e.g., σ = 0.1), the limited samples fail to capture the global coherence across405

the field, while the high SNR leads to an “over-confidence” in the model. Consequently, the406

scale parameter of GPR is underestimated, resulting in drastic variations in the reconstruc-407

tion results, which are visible as artifacts and lead to high RMSE values (see Fig. 11 and408

Fig. 12). However, as the noise variance increases, the over-confidence diminishes, allowing409

for larger scale parameters and improved reconstruction performance.410

3. Ablation Study: Contributions of Two Regularizers411

As discussed in Sec. II, two regularizers are employed to enhance the reconstruction412

performance. In this subsection, we conduct experiments to demonstrate the contributions413
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TABLE III. RMSEs of different methods under different sampling ratio ρ. The noise standard

deviation σ = 0.3.

ρ LRTC DPTC PnP

0.05 1.60 0.44 0.38

0.10 1.10 0.29 0.24

0.20 0.54 0.24 0.20

of these different terms. Specifically, we consider two cases: 1) utilizing only the tensor414

nuclear norm regularizer, and 2) utilizing only the data-driven regularizer. In the first case,415

the model is identical to LRTC. In the second case, we set λ1 = 0 in Eq.(2) and refer to the416

model as deep prior-aided tensor completion (DPTC). The reconstruction RMSEs of various417

methods under different sampling ratios are presented in Table III.418

It is evident that PnP, which incorporates both regularizers, outperforms the other two419

methods, each using a single regularizer, in all scenarios. This indicates that both of these420

regularizers contribute to the improvement in performance. Additionally, the impact of421

the TNN regularizer is more significant at lower sampling ratios. Notably, DPTC outper-422

forms LRTC in all scenarios, highlighting the importance of incorporating the data-driven423

regularizer in challenging fiber-wise sampling scenarios. In Appendix B, the ablation stud-424

ies concerning the impact and tuning of the regularization parameters, λ1 and λ2, on the425

reconstruction performance are presented.426
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V. CONCLUSIONS AND FUTURE DIRECTIONS427

In this paper, we proposed a plug-and-play ADMM approach for accurately reconstruct-428

ing ocean 3D SSFs in a zero-shot manner, that is, without requiring access to any historical429

SSF training data. Our method leverages a deep image denoiser (specifically, FFDNet),430

which was pre-trained on natural image datasets, and a low tensor rank prior. These two431

key ingredients are incorporated into an ADMM-based SSF reconstruction process. Our432

proposed method demonstrates promising SSF reconstruction results, particularly in chal-433

lenging scenarios involving very sparse and fiber-wise sampling. Experimental evaluations434

using real-world SSF data have confirmed the favorable performance of our plug-and-play435

method, outperforming other SOTA techniques. This highlights the effectiveness of incor-436

porating supervised data-driven prior information derived from a pre-trained deep image437

denoiser. Our algorithm construction and experiment results also for the first time—to our438

best knowledge—showed that image denoising and SSF denoising share similar characteris-439

tics, despite the two types of data being very different. Our discovery may open many doors440

for exploiting the wide availability of image data to come up with data-driven solutions that441

can be transferred to the SSF processing domain.442

This study explores the use of FFDNet as a denoiser within the PnP framework. In443

future research, it would be valuable to explore alternative denoisers to further improve444

the reconstruction performance. For example, investigating the potential of using the dif-445

fusion model as a denoiser holds promise and deserves further investigation. Furthermore,446

the hyperparameters of the proposed model in our experiments have not been optimized.447
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Exploring methods to optimize hyperparameters from limited samples is also an intriguing448

area of research.449
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APPENDIX A: AWGN DENOISING PROBLEM463

Consider the AWGN problem

P = W +N . (A1)

where each element of N follows a Gaussian distribution, i.e., N i,j,k ∼ N (0, σ2). Then the

likelihood function can be expressed as p(P i,j,k|W i,j,k) = N (W i,j,k, σ
2). Thus the maximum

a posteriori (MAP) estimation problem of W can be expressed as

max
W

log p(P |W) + log p(W) (A2)

=max
W

log p(W)−
1

2σ2
‖W −P‖2F. (A3)

Assuming that the prior distribution p(W) ∝ exp(−||W ||T∗). Let P = X l + E
l

1

βl and the

noise variance σ2 = λ1

βl . Then, the MAP estimation problem can be formulated as

max
W

−‖W‖T∗ −
βl

2λ1

‖W −

(

X l +
E l

1

βl

)

‖2F, (A4)

which is mathematically equivalent to the denoising problem in Eq. (6).464

APPENDIX B: ADDITIONAL MODEL DETAILS465

The number of parameters and hyper-parameters of different models are presented in466

Table IV. Specifically, BMCG is a Bayesian matrix completion method, and its parameters467

consist of the factor matrices. GPR is a non-parametric method, meaning it does not involve468

specific parameters. LRTC is a low-rank tensor completion method, and its parameters en-469

compass the entire data tensor. LRTC-TV is an LRTC method incorporating total variation470
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(TV) regularization, which introduces an additional regularization hyper-parameter. Ten-471

sorNN is a hierarchical tensor decomposition model with non-linear activation functions,472

and its parameters encompass the core tensor and factor matrices.473

Regarding optimizing the hyperparameters, we ensure a fair comparison by employing474

either hyperparameter optimization methods or adopting empirically recommended hyper-475

parameter values from the original papers of the state-of-the-art methods. Specifically, for476

GPR, the model evidence (or the marginal distribution of the measurements) is maximized477

with respect to the kernel parameters, by which the hyperparameters are optimized. De-478

tailed descriptions of this approach can be found in Ref. [34]. For the models BMCG, LRTC,479

LRTC-TV, and TensorNN, we adopt the recommended hyperparameter values provided in480

the original papers. These values have been determined through extensive experimentation481

and analysis in their respective studies, ensuring a reliable and fair comparison.482

For our proposed model, the hyperparameters are set via trial and error. To be specific, we483

test a range of hyperparameters offline and visually observe the reconstruction results. Our484

observation is that the reconstruction result is not sensitive to the hyperparameters within485

certain ranges; see the ablation study in Fig. 13. In our experiments, we manually select486

a hyperparameter from the range (without optimizing). Despite the absence of additional487

optimization, our approach consistently yields excellent reconstruction results.488
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FIG. 13. Ablation studies of the regularization parameters λ1 and λ2.

TABLE IV. The number of parameters and hyper-parameters of different models. Note that GPR

is a nonparametric model.

Model # Parameters # Hyper-parameters

BMCG 12000 2

GPR - 2

LRTC 100000 1

LRTC-TV 100000 2

TensorNN 12860 1

PnP 100000 2
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APPENDIX C: ADDITIONAL EXPERIMENTAL RESULTS489

1. SSF Denoising490

Fig. 14 presents the denoising results under different noise powers, demonstrating the491

effectiveness of FFDNet in SSF denoising. The visual effects of the denoising results are492

shown in Fig.15.493
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FIG. 14. The RMSEs of the denoised results with respect to different values of the noise variances.

2. Reconstruction under regular sampling494

The RMSEs of different methods under different sampling ratios in the Regular2 sampling495

pattern are presented in Table V. It can be seen that the proposed method consistently496

achieves the lowest reconstruction RMSEs across different sampling densities.497

39



Ground-truth RMSE: 0.33 RMSE: 0.40 RMSE: 0.52

0m

100m

180m

m/s

� = 2 � = 3 � = 5
m/s

1548

1546

1544

1542

m/s
1550

1548

1546

1544

1542

1550

1548

1546

1544

1542

1540

FIG. 15. Visual effects of the denoising results under different noise standard deviations σ. The

first column is the ground-truth SSF data, followed by noisy data with different σ and denoising

results. The RMSEs are shown above the denoising results.

3. Running time and memory requirements498

The running time of the PnP method on a computer equipped with an Intel i3 CPU499

with 4 cores is approximately 341 seconds. In our experiments, we observe that denoising500

with pre-trained image denoiser is the most time-consuming process. There are a couple501

of strategies that can be employed to expedite the running time. One option is to use502

a more advanced CPU with higher computational capabilities, which can speed up the503

computation. Alternatively, utilizing a GPU for the denoising step can significantly reduce504

the running time since GPUs are well-suited for parallel processing tasks like convolutions.505

These strategies can effectively enhance the overall efficiency of the PnP method.506

The memory requirements of the proposed method primarily depend on the size of the pre-507

trained network and the memory needed during computation. According to our experiments,508
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TABLE V. RMSEs of different algorithms under different sampling ratios (Regular2 sampling

pattern, σ = 0.3).

ρ BMCG GPR LRTC LRTC-TV TensorNN PnP

0.15 0.35 0.32 1.49 1.05 0.47 0.27

0.21 0.29 0.27 1.38 0.78 0.35 0.22

we have found that a personal laptop equipped with 8GB of RAM is sufficient to meet these509

requirements and ensure the smooth execution of the method.510
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