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Abstract—Autism Spectrum Disorder (ASD) is a heterogeneous
disorder in children, and the current clinical diagnosis is accom-
plished using behavioral, cognitive, developmental, and language
metrics. These clinical metrics can be imperfect measures as
they are subject to high test-retest variability, and are influenced
by assessment factors such as environment, social structure, or
comorbid disorders. Advances in neuroimaging coupled with
machine-learning provides an opportunity to develop methods
that are more quantifiable, and reliable than existing clinical
techniques. In this paper, we design and develop a deep-learning
model that operates on functional magnetic resonance imaging
(fMRI) data, and can classify between ASD and neurotypical
brains. We introduce a novel strategy to transform time-series
data extracted from fMRI signals into Gramian Angular Field
(GAF) while locking in the temporal and spatial patterns in the
data. Our motivation is to design and develop a novel framework
that could encode the time-series, acquired from fMRI data, into
images that can be used by deep-learning architectures that have
been successful in computer vision. In our proposed framework
called ASD-GResTM, we used a Convolutional Neural Network
(CNN) to extract useful features from GAF images. We then used
a Long Short-Term Memory (LSTM) layer to learn the activities
between the regions. Finally, the output representations of the
last LSTM layer are applied to a single-layer perceptron (SPL)
to get the final classification. Our extensive experimentation
demonstrates high accuracy across 4 centers, and outperforms
state-of-the-art models on two centers with an increase in the
accuracy of 17.58% and 6.7%, respectively as compared to the
state of the art. Our model achieved the maximum accuracy
of 81.78% with high degree of sensitivity and specificity. All
training, validation, and testing was accomplished using openly
available ABIDE-I benchmarking dataset.

Index Terms—ASD, GAF, ResNet, LSTM, deep learning

I. INTRODUCTION

Autism spectrum disorder (ASD) is a heterogeneous disor-
der, and the current diagnosis relies on behavioral observations
in different settings (e.g., home and school), which might
result in misdiagnosis [1] or delayed diagnosis [2]. Reliable
and fast diagnosis of ASD remains challenging, and may lack
specificity, and sensitivity [3] or the rigor required for other

This material is based upon work supported by the National Institutes of
Health (NIH) grant number R01GM134384 and partly by National Science
Foundation (NSF) grant NSF TI-2213951. The content is solely the respon-
sibility of the authors and does not necessarily represent the official views of
the National Institutes of Health (NIH) or the National Science Foundation
(NSF).

diseases such as diabetes. Currently, the ASD diagnosis is
performed by a clinician with tools such as Autism Diagnostic
Interview-Revised (ADI-R) [4] – a standardized care-giver
interview, and other tools such as Autism Diagnostic Sched-
ule (ADOS-2) [5] which is semi-structured observations for
individuals (mostly kids) suspected of ASD. In addition to
being a time-consuming and laborious process, the diagnosis
is unreliable and inconsistent when performed in different
settings or different health practitioners [1]. Recognizing the
benefits of early diagnosis and intervention [6], there is a
pressing demand for biomarkers that can facilitate timely
identification of ASD [7].

Resting state functional magnetic resonance imaging (rs-
fMRI) – is a noninvasive and fast technique to record func-
tional activities in brain networks. In this data modality, the
brain is represented by small cubic voxels where each voxel
registers blood-oxygen-level-dependent (BOLD) volumes in
the brain. Since fMRI can capture fine-grained data, the brain
is parcellated into regions of interest (ROIs), and the BOLD
volume of each region is the average brain activity (correlated
with the brain oxygen level) of all voxels in that region. At
the end of such an imaging process, the fMRI scan consists
of a time series of BOLD volumes for each ROI. In recent
years, there has been an increasing interest in using fMRI data
for classifying mental disorders such as ASD, and Attention-
deficit/hyperactivity disorder (ADHD) ([8] [9]) using biomark-
ers extracted using advance computational methods. While
multiple machine-learning models have been proposed uptill
date [10], [11], relatively little work has explored feature
extraction and learning for time series data from fMRI scans,
and current deep learning architectures. Our motivation is to
design and develop a novel framework that could encode the
time-series, acquired from fMRI data, into images that can be
used by deep-learning architectures that have been successful
in computer vision. Ideally such deep-learning structures will
learn features and identify specific ASD and health biomarkers
leading to effective diagnostic classification method. We assert
that melfrequency cepstral coefficients (MFCCs) or perceptual
linear predictive coefficient (PLPs) used for acoustic or speech
data will not be useful in transforming and extracting the
biomarkers from fMRI data.

In this paper, we designed and developed a comprehensive
machine-learning pipeline that transforms the fMRI data into
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Gramian Angular Field (GAF) to encode the time series of
fMRI data to images which are then fed into our model. The
GAF uses polar coordinates to encode each time series of each
ROI as an image, and these transformed images are passed to a
Residual Network (ResNet) model to extract features specific
to ASD. The output from ResNet is then fed into the Bidirec-
tional Long Short-Term Memory (BiLSTM) layer to extract
the temporal and spatial patterns, and correlations between
different ROIs. The learned vector space in BiLSTM is then
used by a single perceptron layer (SPL) for final classification.
We report our classification results using openly available
ABIDE-I benchmark, and demonstrate that our classification
performance is competitive with the state of the art ASD-
DiagNet [12] model. Our experimentation also demonstrates
that our method works better for shorter fMRI data sets (which
leads to shorter time series data) as compared to traditional
CNN based methods. In this paper, we provide an in-depth
analysis in terms of the duality between time series from
fMRI data and generated GAF images used for our machine-
learning training and validation. Our extensive experimentation
demonstrates high accuracy across 4 centers, and outperforms
state-of-the-art models on two centers with an increase in the
accuracy of 17.58% and 6.7%, respectively as compared to the
state of the art. Our model achieved the maximum accuracy
of 81.78% with high degree of sensitivity and specificity.
The structure of the paper starts by showing related work in
Section II. Section IV describes the proposed GAF algorithm.
In Section V, we present the proposed framework. Section VI
presents the results of the ASD-GResTM framework. Sec-
tion VII presents conclusions and future work.

II. RELATED WORK

In recent years, numerous published papers have utilized
fMRI data from ABIDE-I to identify biomarkers related to
ASD brains vs. neurotypical (NT) brains ([13][14][15]). Most
published research utilize Pearson’s correlations to calculate
the correlation of individual regions. As a result, the input vec-
tor for each subject is a representation of the brain’s functional
connectivity. Given that there are N regions within the brain,
the resulting input vector will have a size of n× (n−1)/2. In
such scenarios, various methods employ deep learning tech-
niques for the purpose of feature reduction. Examples of these
techniques include the utilization of Autoencoders (AE) and
Sparse Autoencoders (SAE). Guo et al. [13] developed a deep
neural network (DNN) consisting of several stacked sparse
autoencoders for feature extraction followed by a softmax
regression (SR) layer for classification. They achieved 86.36%
accuracy using only the data collected from the UM site from
the ABIDE-I dataset. Zhang et al. [15] proposed an F-score
feature selection technique for feature reduction, and a deep
learning model for classification, and achieved an average of
64.53% on intra-site datasets. Heinsfeld et al.[16] implemented
a method involving two stacked denoising autoencoders to
extract features, which were then fed into a multi-layer
classifier. This approach was employed separately on each
site, yielding an average accuracy of 52%. ASD-DiagNet[12]

adopted a tied autoencoder, where the same weights were
utilized for both the encoding and decoding stages. A singular
perceptron layer was employed for classification, resulting in
an average accuracy of 63.8% across different sites. In the case
of ASD-SAENet [17], a sparse autoencoder was employed
for feature extraction, followed by a deep neural network for
classification. The reported average accuracy across each site
stood at 64.6%. In this paper, we transform the time series data
extracted from fMRI data into spatio- and temporal-invariant
images which can then be used for training and validation
of computer vision models such as ResNet [18]. We assert
that transforming the time series into images – such that such
transformation can capture the biomarkers specific to the ASD
– will lead to development of machine-learning models that
have been successfully used in various image processing and
computer vision solutions. However, the image conversion
must conserve the spatial and temporal patterns specific to
ASD which is not possible using trivial image conversions.
While not used in brain imaging, such works include Barra et
al [19] who applied the GAF algorithm to encode time series
to images for financial forecasting. A study by Vidal et al.
[20] used the GAF technique to transform the time series of
gold prices into images, and used a combination of LSTM
and VGG to predict the future volatility of gold. To the best
of our knowledge, GAF i.e. time-series to image conversion
has not been exploited for diagnostic classification of ASD to
neurotypical using fMRI data.

III. PROBLEM STATEMENT

We are given a labeled dataset of N fMRI scans X =
{(xi, yi) |i = 1, . . . , N} and each scan consists of a time
series of BOLD volumes v for each ROI r. Each subject
xi = {vir|r = 1, . . . ,M}, where M is the number of
ROIs, and vr ∈ Rti where ti is the length of the time
series of subject i. Each sample is associated with a label
yi ∈ {ASD,NT}. Our strategy is to transform the time series
of xi into GAF images. Therefore, M GAF images of size
ti× ti are generated for each subject i in the dataset. The goal
is to use a combination of a pretrained ResNet50 model on
ImageNet and an LSTM layer to extract useful representations
of the data that will assist to perform well on classifying ASD
subjects from neurotypical (NT) subjects.

IV. ENCODING THE TIME SERIES

To date, various classification methods have been developed
and introduced using only the Pearson’s correlation between
regions. In this study, we consider encoding the time series
into images to allow the use of massive innovative computer
vision models such as ResNet and VGG. We used the Gramian
Angular Field (GAF) which was prepared according to the
procedure of Wang et al. [21]. GAF encodes a time series
into images using polar coordinates, preserving the temporal
correlation. It does not modify the data of fMRI scans, but
instead transforms the representations into images that show
the temporal correlation of the time series. Let X be the time
series X = x1, x2, . . . xn where n is the number of time points
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in the time series, which is first normalized to be between
[−1, 1]. The time series must be scaled to allow calculating
the arccos value of each time point. The normalization can be
calculated using the following equation:

x̂ =
(xi −max(X) + (xi +min(X))

max(X)−min(X)
(1)

Then, the normalized time series will be represented in polar
coordinates, where the value is the angular cosine and the
radius is the time stamp:{

θ = arccos(x̂i), −1 ≤ x̂i ≤ 1,x̂i ∈ X̂

r = ti
N , ti ∈ N

(2)

The above equation represents the angular cosine to one
and only one value in the polar coordinates, which makes it
possible to retrieve the raw time series. A Gramian matrix
is computed using the polar coordinate system, where each
element in the matrix is a trigonometric sum of each angle.
The GAF matrix is defined as follows:

G =


cos(θ1 + θ1) . . . cos(θ1 + θn)
cos(θ2 + θ1) . . . cos(θ2 + θn)

...
. . .

...
cos(θn + θ1) . . . cos(θn + θn)

 (3)

= X̂ ′ · X̂ −
√
I − X̂2

′

·
√

I − X̂2 (4)

In equation 4, I represents the unit row vector [1, 1, 1. . . 1].
The size of the GAF matrix is n × n where n is the length
of the time series. In our dataset, each subject has 200 time
series where each time series represents the BOLD volumes
of each region. Using GAF, we generated 200 images for each
subject where each image represents one region of the brain.
These images will be used in our deep learning model, ASD-
GResTM, to distinguish subjects with ASD from neurotypical
subjects. In the dataset, time-series lengths ranged from 78
to 316 time points. Therefore, the dimensions of the GAF
images are based on the length of the time series. In this case,
the dimensions range from 78 × 78 to 316 × 316. Because
of the requirement when using a pretrained ResNet50, the
dimensions of the images must be at least 224 × 224. In this
case, we used the entire time series to generate the GAFs, and
then resized the images to 224 × 224. Fig. 1 illustrates the
process for generating GAFs.

V. DEEP LEARNING MODEL

Owing to the extensive use of deep learning models in com-
puter vision, we used the GAF framework to encode the BOLD
time series into images. The GAF preserves the temporal
nature of a region’s activities over time. ASD-GResTM frame-
work combines three parts. First, we used a Convolutional
Neural Network (CNN) to extract useful features from GAF
images. We then used a Long Short-Term Memory (LSTM)
layer to learn the activities between the regions. Finally, the
output representations of the last LSTM layer are applied
to a single-layer perceptron (SPL). In the CNN model, we

Fig. 1. Illustration of how to generate GAF images for each subject.

employed a pretrained ResNet50 which had been trained on
the extensive ImageNet dataset. This choice was motivated by
the fact that ImageNet comprises an extensive collection of
images (with 1000 samples per 1000 classes) in contrast to our
dataset. As a result, utilizing a pretrained model allowed us to
initialize the model with the high-level performance achieved
by ImageNet and then fine-tune it using our dataset. This
approach aimed to capture valuable features without training
from scratch on our relatively small dataset.

To facilitate this, we kept the ResNet50 layers frozen, except
for the last linear layer. This strategy enables to extract relevant
features based on the generated GAF images. To tailor the
architecture to our needs, we adjusted the output vector size
of the ResNet50 to consist of 512 neurons.

hi = f(xi) = ResNet(xi) (5)

In the LSTM block, we use a two-layer Bidirectional LSTM
(BiLSTM) with an input size and hidden size of 512 and
256, respectively. Because it is a BiLSTM, the output of the
last layer has a vector size of 512, which consists of 256 in
each direction. For the classifier, once a ReLU nonlinearity is
applied, a vector space with a dimensionality of 512 is fed into
a single linear layer with two neurons, each corresponding to a
distinct class. This computation is represented by the following
equation:

zi = g(hi) = W (3)σ(W (2)hi) (6)

where σ denotes the ReLU function. The probability for
each class is determined through the utilization of a Softmax
function. Subsequently, the Cross-Entropy loss function is
applied to compute the classification loss, thereby optimizing
the performance of our model. These sequential steps are
demonstrated by the following equations:

f(zi) =
ezi∑N
j=1 e

zj
(7)

LCE = −
N∑
i=1

yi log(f(zi)) (8)

where yi represents the true label, and f(zi) represents the
softmax probability of the ith class.
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The framework was developed using PyTorch-Lighting, a
lightweight framework for flexibility and reproducibility built
on top of PyTorch. Fig 2 shows the proposed framework.

VI. EXPERIMENTS AND RESULTS

A. Datasets

In this study, we use the Autism Brain Imaging Data
Exchange I (ABIDE-I) dataset which is publicly available
at (http://preprocessed-connectomes-project.org/abide/). The
dataset consists of 1035 resting-state functional magnetic
resonance imaging (rs-fMRI) scans derived from a diverse
cohort of 505 subjects with Autism Spectrum Disorder (ASD)
and 530 subjects with neurotypical (NT). These scans were
collected from 17 distict sites across the United States. To
extract the BOLD volumes, the scans must undergo metic-
ulous preprocessing steps that require intensive execution
time and effort. This dataset was pre-processed using sev-
eral pipelines [22]. In this study, we used preprocessed data
from a Configurable Pipeline for the Analysis of Connec-
tomes (C-PAC). This pipeline applied several techniques to
extract BOLD volumes, including skull stripping, surface re-
construction, slice-timing correction, head motion correction,
and noise signal removal. More details of the preprocess-
ing steps can be found at (http://preprocessed-connectomes-
project.org/abide/cpac.html). Because the brain is divided into
small cubics (4 mm × 4 mm × 4 mm), we used Crad-
dock 200 (CC200), which parcellates the brain into 200 re-
gions [23]. Most ASD classification frameworks, such as ASD-
DiagNet [12] and ASD-SAENet [17] use Pearson’s correlation
between the regions, which transforms the input of each
subject into a vector of n× (n− 1)/2, where n is the number
of regions in the brain. In this study, we encoded the data
into 200 GAF images for each participant. The scarcity of
sufficient training samples per center adds to the complexity
of the study. To conduct our evaluation, we selected four
sites from the ABIDE-I dataset: Stanford, San Diego State
University (SDSU), Social Brain Lab (SBL), and California
Institute of Technology (Caltech). The distribution of classes
for each individual site is outlined in Table I.

TABLE I
THE CLASS MEMBERSHIP OF EACH SITE.

Center ASD Neurotypical (NT)
Stanford 19 20
SDSU 14 22
SBL 15 15

Caltech 19 18

B. Computational Pipeline

We formulated a deep learning architecture capable of
receiving sequential image data as input, and subsequently
predicting the class of images. The ResNet50 model pre-
trained on ImageNet was used to extract useful representations
from the GAF images. The ResNet’s layers were frozen except
for the last linear layer, which was fine-tuned for the GAF
images. The output representations of each image were then

passed to the BiLSTM for further sequence-related extraction.
The features of the last layer of the BiLSTM were passed to
a single preceptron to predict the final class. In this study,
we used the dataset of each center to train, validate, and test
the model. For each center run, the data were split into 5-
fold croos validation. For each fold, the data was divided
into 80% for the training set and 20% for the testing set. We
extracted 10% of the training data for the validation set. The
validation set was used to fine-tune the hyper-parameters of
the model and determine the best model during the training
phase to evaluate the final performance of the model using the
untouched testing set. For training, the Adam optimizer was
used to optimize the weight of the model. The learning rate
was set to 0.0001 and the weight decay was 0.01. The model
was trained for 25 epochs and the best model performance
on the validation set was used for testing. The reported
performance in this study is the average of the 5-fold cross
validation.

C. Classification performance

To evaluate our framework, we use 5-fold cross validation.
We computed the average of all folds to obtain the final
accuracy, sensitivity, and specificity for each center. Table II
shows the average accuracy, sensitivity, and specificity of
each center. We compared our framework with state-of-the-
art methods ([17] [12] [16]), where all frameworks used
functional connectivity of the regions and a deep learning
model for classification. Table III presents a performance
comparison of different methods. We evaluated the perfor-
mance of the model’s diagnostic test by analyzing its Receiver
Operating Characteristic (ROC) curves for each center. The
Area Under the ROC Curve (AUC) measures the model’s
ability to distinguish between individuals with autism spectrum
disorder (ASD) and neurotypical based on different thresholds.
A higher AUC value indicates that the model is more effective
in distinguishing between ASD and neurotypical subjects.
Fig. 3 shows the ROC curves for each center. Our framework
performed better on two of the sites compared to state-of-the-
art methods. As the results show, encoding data from time
series to images will open a wide space for applying many
more deep learning models for feature extraction and clas-
sification. In this study, we twisted predesigned components
to illustrate the benefits of the GAF method and confirm the
exploration of the topic by designing a deep learning model
that deals specifically with GAF images generated from fMRI
data.

TABLE II
THE ACCURACY, SENSITIVITY, AND SPECIFICITY OF OUR

MODEL ASD-GRESTM FOR EACH CENTER.

Center Accuracy Sensitivity Specificity
Stanford 81.78 83.33 80
SDSU 61.42 36.66 77
SBL 63.3 66.66 60

Caltech 51.42 46.66 55
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Fig. 2. Overall classification framework for ASD-GResTM. 1) The time series of BOLD volumes are extracted using extensive preprocessing steps which
output (in our case) 200 time series of 200 regions. 2) Each region’s time series is scaled to be between [-1, 1], and then converted to GAF images, as shown
on the right. 3) Our deep learning architecture starts with a pretrained ResNet50 on ImageNet and finetunes the last linear layer for GAF-specific learning.
The outputs of all the GAF images are stacked together to form a sequence vector of size 200 × 512. This sequence is then passed to a BiLSTM to capture
useful representations, and the last output representations are passed to a single-layer perceptron to classify the probability of each class.

Fig. 3. The ROC curves for each center show how our model, ASD-GResTM,
can distinguish between ASD and NT individuals using different threshold
values, particularly for the Stanford center.

To demonstrate the effectiveness of the selection of brain
parcellations, we tested ASD-GResTM on two other brain
atlases, Automated Anatomical Labeling (AAL) [24] and
Dosenbach 160 (DOS160) [25] which divide the brain into
116 and 160 regions of interest (ROIs) respectively. Table IV
and Table V present the average accuracy, sensitivity, and
specificity for each brain parcellation.

D. Interpretability and explainability of the model

To illustrate the findings of our proposed framework and the
unique features of the GAF images used for the classification,
we used Saliency Maps, which have been utilized for CNN
models by Simonyan et al.. al. [26]. The purpose of the
saliency method is to show the most noticeable locations of

TABLE III
THE ACCURACY COMPARISON OF OUR MODEL ASD-GRESTM AND THE

STATE-OF-THE-ART. THE HIGHEST ACCURACY IS INDICATED IN BOLD.

Center Method Accuracy
Stanford ASD-SAENet [17] 53.2

ASD-DiagNet [12] 64.2
Heinsfeld et al. [16] 48.5

ASD-GResTM 81.78
SDSU ASD-SAENet [17] 64.2

ASD-DiagNet [12] 63
Heinsfeld et al. [16] 63.6

ASD-GResTM 61.42
SBL ASD-SAENet [17] 56.6

ASD-DiagNet [12] 51.6
Heinsfeld et al. [16] 46.6

ASD-GResTM 63.3
Caltech ASD-SAENet [17] 56.7

ASD-DiagNet [12] 52.8
Heinsfeld et al. [16] 52.3

ASD-GResTM 51.42

TABLE IV
THE ACCURACY, SENSITIVITY, AND SPECIFICITY FOR EACH CENTER

USING AAL ATLAS USING OUR MODEL ASD-GRESTM.

Center Accuracy Sensitivity Specificity
Stanford 76.42 65 85
SDSU 55.35 20 76
SBL 56.66 46.66 66.66

Caltech 51.42 40 60

the images, which are used to differentiate between classes in
the downstream task. In this section, we show different use
cases in which the model can correctly classify ASD and neu-
rotypical subjects in the testing phase. Two different regions
are illustrated to visualize the GAF of different ROIs and the
manner in which the model is capable of detecting discrete
features of independent ROIs. Fig. 4 shows the GAF image of
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TABLE V
THE ACCURACY, SENSITIVITY, AND SPECIFICITY FOR EACH CENTER

USING DOS160 ATLAS USING OUR MODEL ASD-GRESTM.

Center Accuracy Sensitivity Specificity
Stanford 74.64 73.33 75
SDSU 55.35 26 72
SBL 43.33 33.33 53.33

Caltech 48.57 46.66 55

a specific region of interest (ROI) for two correctly classified
subjects (top is an ASD subject and bottom is a neurotypical
subject). The image was accompanied by a corresponding
saliency map generated after passing the region of interest
(ROI) image through the model. To further demonstrate our
approach, we provide another ROI for the same use case,
as shown in Fig. 5. In ASD GAF images, useful represen-
tations are typically centralized in one area in the image, as
annotated by a red rectangle, whereas in neurotypical GAF
images, useful representations are scattered throughout the
entire image as highlighted with a red rectangle. We present a
neurotypical subject who was misclassified, and it can be seen
that the representations resemble ASD patterns, but the subject
is a neurotypical (NT), as depicted in Fig. 6. This situation
highlights the need for more interpretable techniques and the
examination of additional subjects in both groups to determine
whether there are any common patterns within the classes that
need to be disregarded, or if they indicate that the subjects are
more likely to be found in between the two classes. As ASD
is a spectrum disorder, it is important to consider the potential
for greater variability in symptoms and behaviors.

Fig. 4. On the left, we present a GAF image of a specific region of interest
(ROI), and we present the output of the saliency method (the top is an ASD
subject and the bottom is a neurotypical subject). These two subjects were
classified correctly, and it can be seen that the formation of the represenations
of the two subjects are varied with an open eye. This variation shows how the
GAF representations can carry the spatial and temporal patterns of the time
series, and that our downstream task can be learned to capture class-specific
representations.

Fig. 5. GAF images’ representations of another region of interest (ROI)
for two correctly classified subjects (top is an ASD subject and bottom is
a neurotypical subject). On the left, we show the GAF images of the ROI
and their corresponding saliency method outputs on the right side. ASD
representations on the top right are more centerized compared to the bottom
right NT representations, which are scattered throughout the image.

Fig. 6. The GAF image on the right is of a neurotypical subject, where it
was misclassified as ASD. The saliency method output on the right shows that
the representations of the input image are very similar to the ASD patterns,
which are more centralized in one region of the image.

E. Scalability of the model

Our model ASD-GResTM is executable and scalable in
terms of time and hardware resources. To illustrate how the
execution time varies with sample size, we varied the sample
size from 100 to 1000 subjects. It is worth noting that we
set the batch size to 4 while training our model because of
the size of the inputs in our case. The running time of our
model ranges from 12 mins (100 subjects) up to 1.38 hours
(1000 subjects). These times are comparable with the state-of-
the-art methods, as the running time needed for each method
is as follows: 41 mins by ASD-DaigNet [12], 52 mins by
ASD-SAENet [17], and 6 hours by Heinsfeld et al. [16] Our
proposed model can be trained and tested on 1K subjects
within a reasonable time frame (1.38 hours) compared to
most deep learning models, especially in the field of computer
vision. Training was performed for only one data split: 80%
for training and 20% for testing. The time reported was the
time after the models were trained and tested. To execute our
model, we used a Linux cluster node running Ubuntu 20.04
LTS contains two Intel Xeon Gold 5215, each having 10 cores
with a total of 128 GBs of RAM. The node has an NVIDIA
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RTX A6000 with 40 GBs of memory.

VII. CONCLUSION AND DISCUSSION

In this paper, we designed and developed a machine-
learning framework called ASD-GResTM, which can be used
as a classification method for autism spectrum disorder (ASD)
using non-invasive fMRI data. We introduce a novel strategy
to transform time-series data extracted from fMRI signals into
Gramian Angular Field (GAF) which conserves the temporal
and spatial patterns in the data. Our motivation was to encode
the time-series, acquired from fMRI data, into images that
can be used by deep-learning architectures that have been
successful in computer vision. For ASD-GResTM framework,
we used a Convolutional Neural Network (CNN) to extract
useful features from GAF images. We then used a Long Short-
Term Memory (LSTM) layer to learn the activities between
the regions. Finally, the output representations of the last
LSTM layer are applied to a single-layer perceptron (SPL)
to get the final classification. Our extensive experimentation
demonstrated that ASD-GResTM outperforms the state-of-art
in two sites with a high accuracy of 81.78% in one of the
centers while also exhibiting high sensitivity and specificity.
Our preliminary results demonstrated in this paper opens
new directions of encoding fMRI based time-series data into
unique representation (in our case images) which can capture
spatial and temporal patterns specific to ASD. Further research
is needed to investigate data wrangling and transformation
techniques that can be used to help ML models learn neural
signatures that are specific to ASD and NT. The initial results
being reported in this paper show exceptional potential for
future research in this direction.
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