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Abstract

We introduce a symmetric (log-)epiperimetric inequality, generalizing the standard epiperi-
metric inequality, and we show that it implies a growth-decay for the associated energy:
as the radius increases energy decays while negative and grows while positive. One can
view the symmetric epiperimetric inequality as giving a log-convexity of energy, analogous
to the 3-annulus lemma or frequency formula. We establish the symmetric epiperimetric
inequality for some free-boundary problems and almost-minimizing currents, and give some
applications including a “propagation of graphicality” estimate, uniqueness of blow-downs
at infinity, and a local Liouville-type theorem.

Mathematics Subject Classification 35R35 - 49Q05 - 35J60 - 35120

1 Introdution

We consider the decay-growth properties of certain functions u defined on R”. Typically
when u solves (or almost solves) a second-order elliptic PDE, u will admit a Fourier-type
decomposition and/or a monotone frequency function and/or a 3-annulus-type lemma. Any
of these imply a decay-growth estimate for a suitably scaled u, := r~"u(r-) (or, often, the
scale-invariant radial derivative r 0, u, ): there is a threshold r( so that, as the radius r increases,
the norm ||uy|[12¢5p,) Will exhibit polynomial or logarithmic decay in r while r < ro, and
polynomial or logarithmic growth in » while r > r.
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In this paper we introduce a symmetric (log-)epiperimetric inequality for an energy func-
tional £ : H'(B) — R, which encompasses both the usual epiperimetric inequality and a
new “reverse”’ epiperimetric inequality. We show that when u and & satisfy the symmetric
epiperimetric inequality and a fairly universal monotonicity-type formula, then both & (u,)
and rd,u, exhibit a decay-growth estimate as above. In fact we will characterize the threshold
radius rg as the radius at which the associated energy £ (u,) changes sign.

As an application, we prove the symmetric epiperimetric inequality for some free-
boundary-type variational problems and for almost-minimizing currents. The main con-
sequence is a “quantitative uniqueness of tangent cone” which allows one to propagate
graphicality or closeness near a smooth cone in regions where the energy stays close (see
Theorems 3.1, 4.3, 5.2, and Example 1.2). This implies uniqueness of blow-ups and blow-
downs, but is particularly useful in blow-up arguments to control transition regions between
scales. For example, using our estimates we can prove some “local Liouville” theorems for
minimizers of the Alt—Caffarelli functional and almost-minimizing currents (Theorems 3.5,
5.4).

Epiperimetric-type inequalities have already found extensive use in free-boundary type
problems [4, 12, 25, 26, 28] and minimal surface theory [11, 20, 27, 30] to prove unique-
ness of blow up and decay estimates near singularities. A key advantage of the symmetric
epiperimetric inequality is that it can be applied in an annulus without a priori knowledge of
the singular behavior (compare [9, Appendix 1]).

We observe here that many solutions u € H'(Bg C R") to variational problems involving
an energy € : H'(By) — [—1, 1] satisfy the following two properties:

(1) Monotonicity: writing u, (x) = r~™u(rx) and z, for the m-homogenous extension of u,,
then for a.e. r € (p, R):

d CE CE _
S8 = =€) = E) + —/ 2 |8yu, ) PdH"! (1.1)
r r r 9B

for some fixed cp > 0,m € (2 —n, 00), p € [0, R].
(2) Symmetric log-epiperimetric inequality: for a.e. r € (p, R):

Euy) < Ezp) — €l€@)IT, (1.2)
for some y € [0, 1), € € (0, 1].

When £(z,) > 0, then (1.2) reduces to the usual (log-)epiperimetric inequality. However,
unlike standard (log-)epiperimetric, because of the absolute values, (1.2) can control £(u,)
even when £(z,) < 0. We call (1.2) “symmetric” because it does not care about the sign of
E(z,), or the direction of r (increasing or decreasing). For comparison, we might call (1.2)
with (—&(z,)) in place of |E(z,)| a “reverse” epiperimetric-type inequality.

We show in Theorem 2.2 that the above two properties guarantee a decay-growth estimate,
which stated informally says the following.

Theorem 1.1 In the notation of the above, as r increases from p to R, then € (u,) is increasing,
and both E(uy) and ||royur||;2(yp,) polynomially/logarithmically decay while E(u,) < 0,
and polynomially/logarithmically grow while £(u,) > 0. The nature of growth (polynomial
or logarithmic) depends on whether y = 0 ory > 0 (resp.).

If p = 0 (resp. R = 00), then u, has an L*(3By) limitasr — O (resp. r — 00). If p = 0
and R = oo, then 0,u, = 0.
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Let us illustrate with an example. In many free-boundary-type problems the associated
energy of interest is a modification of the following Weiss-type energy

W6”(u):/ |Du|2—m/ u?, ueHY(B). (1.3)
By 0B

It is a now-standard computation due to Weiss [29] that if u,(x) = r " u(rx), then r —
Wé" (u,) is absolutely continuous in r € (0, 1], and

d __ . n—+2m-—2 1 5 5
— Wy (uy) = ——(Wo(zr) — Woluy)) + - ro|0pur|”, (1.4
dr r r Jap,

where z,(x) = |x|™u,(x/|x]) is the m-homogenous extension of u,.

Example 1.2 We consider here the Alt—Caffarelli funtional J defined on an open set U by
J(u,U) =/ |Dul?dx + |{u > 0}, ue H'\(U). (1.5)
U

We say that a nonnegative function u € H'(U) minimizes J if J(u, U) < J(v, U) for
allu —v € Hj(U), and u € H} _(U) locally-minimizes J if J(u, W) < J(v, W) for all
Uu—ve HOI(W) forsome W CC U.If U = By we simply write J (u).

The functional J was introduced by [1], who proved existence, compactness, and regularity
properties of minimizers and their free-boundaries d{u# > 0} N U. Minimizers u are known to
be locally-Lipschitz, and (from additional work of [18, 29]) the free-boundary d{u > 0} N U
is known to be analytic away from a singular set of dimension at most n — d*, for some
critical dimension (as yet unknown) d* € {5, 6, 7}.

The natural scaling for J is 1-homogeneous, so let us write in this Example u,(x) =
r=lu(rx) and & (x) = r~1E(rx). It follows from the Weiss monotonicity (1.6) that any
blow-up (or blow-down) ug is 1-homogenous. [1] proved a regularity theory that shows
d{u > 0} is regular at points where the blow-up is ug(x) = (x - )4+ for some unit vector
e. [12] used a log-epiperimetric inequality to prove uniqueness of blow-ups u( with isolated
singularities (such as in dimension d*).

Let us fix in this Example a 1-homogenous minimizer u of J which is regular away from
0. We shall demonstrate the nature and use of the symmetric log-eperimetric inequality for
minimizers near ug, which is covered in more detail in Sect. 3. To study the behavior of u
near a 1-homogenous ug, the natural energy to consider is a normalized Weiss energy

E) = W) — W), W)= Wi )+ |{u>0}NBl,

where WOl as in (1.3). The Weiss monotonicity (1.4) and the coarea formula imply that for
any u € HY(B)), r — E®u,) is absolutely continuous on r € (0, 1) and satisfies

d n 1 2 2
—Euy) = —(E@zr) —EWwp)) + = ro|oyuy|” fora.er € (0, 1), (1.6)
dr r r Jap,

where z,(x) = |x|u,(x/|x|) is the 1-homogenous extension of u,. Note in particular if

u € H'(B)) minimizes J, then r — & (u,) is increasing on [0, 1].

Write ug(x = rf) =ro(0), 2 ={o > 0} C By, and CQ2 = {up > 0}, and v(x) for the
outer normal of @ C Bj. Given & : 92 — R, with [|§]|co sufficiently small depending only
on 2, we can define a new domain ¢ as a perturbation of €2, with boundary given by

0Q2¢ = {cos(£(0))0 +sin(§(0))v(0) : 0 € 9L2}.
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If£: QN Ag,, — R, then we define conical graph
Gea@)NAR, =U{rQg :r € (p, R)}.

Here Ag ,(x) = Bgr(x) \ B,(x). Write )LiQ for the Dirichlet eigenvalues of €2, and qbl.Q for
the corresponding L2(£2)-ON eigenfunctions. We prove in Sect. 3 the following. Recall that
Ew) =Wu) — Wy =Ww) — Wo).

Theorem 1.3 (Symmetric log-epi for Alt—Caffarelli near smooth cones) There are constants
8(0),e(0) >0, y(o) € [0, 1), so that the following holds.
Let& € C**(3Q), z € HY'(3By), be such that {z > 0} = Q¢ and

2= ollmiony <8 |l <. (1.7)
Then there is an h € H'(By) with hlyB, = z, so that
E(h) — E(rz) < —€lEr2) |7 (1.8)

Theorem 1.3 implies thatif u € H 1(B}) minimizes J and satisfies

sup |luy —uollgryp,y) <9, and (1.9
re(p,l)
oMu>0yNA1,=Gea®) NAiy,  sup |&]creq) <6, (1.10)

re(p.1)

for some p € [0, 1/2], then
Eur) < E@z) — €l€@HI™Y Vr e (p, D). (L.1T)

So for a.e. r € (p, 1), E(u,) satisfies both a monotonicity formula (1.6) like (1.1) and a
symmetric log-epiperimetric inequality (1.11) like (1.2). Our growth-decay Theorem 2.2
immediately implies:

Theorem 1.4 (Growth—Decay estimates near smooth cones) There are c(0), B(o) > 0 so
that ifu € HY(By) minimizes J and satisfies (1.9), (1.10) for some p € [0, 1/2] (and §, y as
in Theorem 1.3), and p' € [p, 1] is chosen so that £(u,) < 0 forr € [p, p'] and E(u,) > 0
forr € [p/, 1], then we have the decay-growth estimates

y—1
2

max{r,p’}
c(lE(
/ opurllp2omydr < | CLEDH]
max{s,p’} c [5(1)4.]2 r

min{r,p’} rl 1771/ —1
/ ’ 10t 295,y dr < [C([g(p)‘]lz Hﬂylog“/") T r=0 0 )
c[e)-]? o/} y =0

forevery p <s <r <1, and hence we have the Dini estimate

1—
Toylog(1/n) ™)'y >0
B )
2 y =0

(1.12)

mins, p'}

1y I—y
2

1 -

/ o208, dr < c([E)-] 7 +[€)+] 7). (1.14)
P

A key point is that no sign of £ is assumed anywhere, and so no a priori assumptions
on the singular set in B, are required, but on the other hand one may have both decay and
growth in r depending on the sign of £. (1.12), (1.13) recover the uniqueness of blow-ups
with isolated singularities as proven by [12], and also establish uniqueness of the same kinds
of blow-downs (Corollary 3.3). Additionally, when combined with the e-regularity of [1],
(1.14) implies u stays close to uo while the energy |€| stays small. Precisely, in Theorem 3.1,
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we show that if u satisfies (1.9), (1.10) with p = 1/2 and (¢, o) sufficiently small, and we
have

|E,)| < 8(e,0) Vre (p”/2,1)

for some p” € [0, 1/2], then we can deduce (1.9), (1.10) holds with p” in place of p and €
in place of §. In Theorem 3.5 we show how this “propogation of closeness” can be used in
blow-up arguments to prove local structure from global rigidity properties.

In Sect. 2 we prove an abstract decay-growth estimate, which shows how the monotonicity
formula (1.1) and the symmetric epiperimetric inequality (1.2) imply a differential inequality
for £. In Sect.4 we explain how to prove and apply the symmetric epiperimetric inequality
to the obstacle problem, and in Sect.5 we adapt the symmetric epiperimetric inequality to
almost-minimizing currents. The setups and applications are similar to the Example above,
but we want to highlight that we can additionally handle almost-minimizing currents defined
only in an annulus (Sect.5.7), similar to the situation considered in [19].

2 An abstract decay-growth theorem

In this section we prove that the symmetric (log-)epiperimetric inequality, combined with a
monotonicity formula, implies a decay/growth estimate. We allow errors which polynomially
grow or decay.

We shall work in R”. Fix m € (2 — n, 00). Take r{ < r3,and u € HI(B,3). Forr <r;
define the m-homogenously rescaled u, (x) = r "u(rx) € H! (B1), and for a.e. r € (0, r3)
define z,(x) = |x|"u,(x/|x]) € H'(B)) to be the m-homogenous extension of u,.

We shall assume, throughout this section, that the following assumptions hold.

Assumptions 2.1 There are constants A+ > 0, o, cg, € € (0, 1], y € [0, 1), and an energy
functional £ : H'(B;) — [—1, 1], so that the following hold:

(1) Almost-monotonicity: r — E(u,) is a BV}, function on (r2, r3), and satisfies

d
S &) = L) -+ £ f P2\ dpu PdH T = AT — AT
r r r

dB]
2.1
fora.e.r € (r1, r3).
(2) Symmetric (log-)epipimetric + almost-minimizing: for a.e. r € (r2, r3) we have
Eur) < Er) — el€@'"™ + Ar® + Ar® 22)

Our main Theorem is the following decay-growth estimate for rd,u,, which in turn (see
Remark 2.3) controls the differences |[u, — us|lz2(5p,)-

Theorem 2.2 (Decay-growth of rd,u,) Under the assumptions (2.1), (2.2), and provided
max{A r§, A_r; %} < 1, if we define

G(r)=Eu,) +3a ' Apr® =30 'A_r (2.3)
then the following holds.

(1) G isincreasing, and for a.e. r € (r1, r3) satisfies
G' = (§/rIG|"7, (24)
for§ =68(cg, €, y, o).
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2 Page6of29 N. Edelen et al.

(2) We have the Dini estimate

r3 d I-y 1-y
/ ||r3rur||L2(3B|)7r <c([GrD-]7 +[Gra)4] ), (2.5

1

where v4 = max{v, 0}, v— = —min{v, 0}, and ¢ = c(cg, €, y, @).
) Ifry € [r1, 3] is chosen so that G < 0 on [r1, r2] and G > 0 on [r2, 3], then for any
r <s <r <r3wehave

" 4 1 e
/ 13rur 2y dr < § G037 oyloats/r) =y =0 6
s cG(r3)2(r/r3)? y=0

while for any riy <s <r < ry we have

P _ r=1
/ 8010 1129 dr < c((—G(rl))l v +5§/ log(s/r1) ¥ y >0 7
s c(=G(r1))z(r1/s)z y=0

where ¢ = c(cg, €, Y, o).

Remark 2.3 Tt is useful to note the elementary inequality:

,
[lu, — ”S”LZ(BBI) = (/ f o,u,dr
dB] |Js

Remark 2.4 Monotonicity (2.1) by itself only controls the square of the L? norm:

2 172 r
d@) < / 0l 1205, dr- 2.8)
K

3 2 dr -1
it By < e (Gs) = GO,

r
which is insufficient to control the behavior of u across many scales.

Remark 2.5 1f one allows the energy £ (u,) to take values outside [—1, 1], then in place of
(2.4) one has the ODE

G > (8/r) min{|G|'*7, |G|} a.e.r € (r1,13). 2.9
Combining Theorem 2.2 and Remark 2.3, we obtain directly the following.

Corollary 2.6 (Uniqueness at 0 and co) Under the same hypotheses as Theorem 2.2, ifr; = 0
(and so, necessarily A_ = 0), then there is a limit ug € L>(dB1) so that

—1
clog(r3/r)yz7 y >0

5 Vr < r3. (2.10)
c(r/r3)? y =0

Nur —uoll2p) < {

where ¢, 8 > 0 both depend on (cg, €, y, ).
On the other hand if r3 = 0o (and so A+ = 0), then there is a limit us, € Lz(aBl) SO
that
y=1
clog(r/ri) > y >0
c(ri/r)? y=0

If both r1 = 0 and r3 = 00, then d,u, = 0.

||Mr_uoo||L2(8Bl)§ { Vr>r1. (211)
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Proof of Corollary 2.6 To prove the first statement, by Theorem 2.2 it suffices to show that
G(r) = 0. Otherwise, if we had G(r2) < 0, then for all 0 < r < r, we would have either

—G(r2) < (=G ()Y + 8y log(ra/r) ™7 < c(8, y) log(ra/r)~ /¥
or (recalling that |E(u,)| < 1)
—G(r2) < (r/r)*(=G(r)) < A+ TrH)(r/r)°,

which is a contradiction for sufficiently small . The second statement follows by a similar
argument. The third statement follows from the first two, and (2.1). ]

Proof of Theorem 2.2 For shorthand we write E(r) = E(u,), F(r) = E(z,), A(r) = Ayr® +
A_r~%, and we remark that (2.2) implies

E—L<F, E >(cg/r)(F—E)—M\r. (2.12)
We first claim there is a 8’ (cg, €) > 0 so that
E' > &' /r)|E — A" — 2/ (2.13)
for a.e. r € (r1, r3). To prove this, we break into four cases.
(1) F>0and E — A > 0: Then

E' > (cp/r)(F — E) —AJr > (cg/r)(€F"™Y — 1) —a/r
> (cpe/r)|E — A" — 2/r)a.

(2) F>0and E — Ar* <0: Then

E' > (cg/r)(—E) — A > (cg/r)|E — A — (2/r)x
> (cg/30)|E — M"Y — (2/r)A.

(3) F<0and |F| <|E — A|/2: Since A < 0, we have:
E'> (cp/r)(F — (E = 1) — 2/r)A = (cg/2r)|E — Al = (2/r)A
> (ce/6r)|E — A" — (2/r)i.
(4) F<0and |F|> |E — A/2: Then
E' > (cpe/r)|FI" — Q/r)n = (cpe/4r)|E — A'"TY — 2/r)h.

This proves our claim.
Fix 8" = min{8’, 277 (1 4+ 3/a)~'77}. Recalling that max{A r§, A_r{%} < 1,y €
[0, 1),and '+ = 3A 4 /a, we compute:
G = (8"/r)G — (A +3/a)Apr® — (1 =3/a)A_r " 4 2A /% 2ot
> 277 /OIGITY — (Ar)'"Y = (A_r)"YY e 4 2A 0 2N !
> (8”277 /n|G|'HY .

In the second line we used the inequality |a — b|'TY > 27V |a|'*¥ — |b|!+¥. This proves
(2.4), with § = §"/2.
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2 Page8of29 N. Edelen et al.

We work towards proving (2.5). For shorthand write |[v|| = [[v[[12(y p,)- We first compute,
noting that G’ = E" + (3/r)A,

r 2 r
(/ ||8rur||dr> < log(r/s)/ / rlarur|2d9dr
s K JdB

< ;' log(r/s) / "B+ @/
< ¢ log(r/$)(G(r) = G(5)) (2.14)

Assume for the moment that ¥ > 0. For a.e. r € (2, r3) we have G’ > (§/r)G!17.
Therefore, for every r, < s <r < r3 we have

(—1/¥)G(r) 7 = G(s)7") = log(r/s),
and hence
G(s) < (G(r)™7 + 8y log(r/s)~"/7. (2.15)
Combining (2.14), (2.15), we get

.
f 0,ulldr < ¢ log(r/$)/*(G(r3) ™7 + 8y log(rs/r))~"/?
N

i . .
Lets; = e r3. Choose i < i’ sothatsy > r > siyq ands; > s > s;11. Then we

estimate
/ I ur||dr<2/ 8,
max{s; 41,72}

< chog(s]/s]H)l/z(G(m) Y + 8y log(r3/sj))”~ 12y
]_l

l
<c )Y eP(G(ra) T +8yel)y
j=i’
< c(G(r3) ™ +8ye )=/
< c(cp, 8, y)(G(r3)7Y + 8y log(rs/r) Y~ VI, (2.16)

In the penultimate line we used the inequality
o0
Y e+ e <cpya+eHIPR
j=i'
forany 8 > 1,a > 0,i’ > 0.
Similarly, if instead r; < s < r < rp, then we have

~G(r) < (=G(5) ™ + 8y log(r/s) ™"

and hence
/ 3, lldr < ¢z log(r/s)' /2 (=G (s)!/?

< ' log(r/s) 2 (=G (r1)) ™7 + 8y log(s/r)~/*7.
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. i
Therefore, taking now s; = ¢ r; we can argue as above to get

f ' durlldr < c(cg, v, 8)(=G(r1) 7Y + 8y log(s/r) ¥ ~D/% (2.17)

Together, combining (2.16), (2.17) gives the Dini estimate (2.5), (2.6) in the case when y > 0.
Assume now y = 0. Then (2.4) becomes G’ > (§/r)|G|. If r <5 < r < r3, then we
have

G(s) < (s/r)°G(r),

and hence, arguing as before but with s; = e~ir3, we have

r
[ 1artar = ctee. )60 2 ra”.
N
If instead r1 < s < r < rp, then we have

~G(r) < (s/r)*(=G(s)),

and (arguing as before but with s; = e'ry)

/ ' 18yurlldr < c(cg, 8)(—=G(r))*(r1/5)"/2.

This proves (2.5), (2.6) when y = 0. ]

3 Minimizers of the Alt-Caffarelli functional

We consider here the Alt—Caffarelli functional J as defined in Example 1.2. We shall use the
same notation as Example 1.2, and in particular

(1HM) for the duration of this Section we fix a 1-homogenous minimizer ug(x = rf) =
ro (0) which is regular away from 0.

Recall that as outlined in Example 1.2 the key point is that if u € H'(Bj) is a minimizer
for J and satisfies (1.9), (1.10), then for all » € (p, 1) we have the monotonicity

i£<ur> = 2@ — Ew) +1/ 2 (8u,|? 3.1)
dr r r Jap,

and (by Theorem 1.3) the symmetric log-epiperimetric inequality
Euy) < E(z) — €l€@)"TY Vr e (p. 1), (3.2)

for £(u) = W (u) — W(uo), W (u) = Wy (u) + [{u > 0} N By, and z, (x) = |x|u,(x/|x|) the
1-homogenous extension of u,. (3.1), (3.2) together with Theorem 2.2 gives a decay-growth
estimates (1.12), (1.13) and the Dini estimate

1y I—y
2

1 -y
/ 191l 208, dr < e([E()-] 7 +[EM] 7). (3.3)
P
In Sect. 3.6 we prove the symmetric log-epiperimetric inequality (Theorem 1.3). In the
remainder of this Section we highlight and prove several applications. The first and primary
consequence is that regularity and graphicality propogate both outward and inward while the

density remains close to constant.
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2 Page100f29 N. Edelen et al.

Theorem 3.1 (Small density drop implies graphical + estimates) Given n > 0, there are
S(uo, n), €(uo) > 0, y(ug) € [0, 1) so that the following holds. Let u € H'(By) minimize
J, and suppose there is a 1/4 > p > 0 so that

min{||lu — uoll 258,y 1p/2 — uoll 23y} <6, 34
and
W) < Wo) +8, Wup2) = Wug) — 3. (3.5)
Then we have
e llony 0 ey ol S0 69

andwe canfinda & : CQN Ay, — Rso that

Mu > 01N Ay, =Geal) N A, sup |l& llc2ecanay ) =n- B
re[2p,1/2]

Moreover, we have the Dini estimate
1/2
f 10,1711 1233,y dr < €(ug)8! 72, (3.8)
P

Proof Assume that ||u — ug| 123B,) < 9. The other case is essentially the same. Let p. be
the least radius so that (3.6), (3.7), (3.8) hold with p, in place of p. By Lemma 3.2, ensuring
8(n, up) is sufficiently small, we can assume that p, < max{p, 1/4}. Moreover, ensuring
8(n’, up) is small, Lemma 3.2 implies we can assume that

llur/2 — uollr2m) <1 (3.9

Since there is no loss in generality in assuming 7 (ug) is small, by (3.1) and (3.2) we can
apply Theorem 2.2 with £(v) = W(v) — W(ug) and A = 0 to deduce that

12
f 8rte 1120 dr < ()87,
.

s

From (3.9) and (2.8) we get
ey — woll2p,) <0+ co)s 2 Vp, <r <1/2.

If p, > p, then provided n’(n, ug), 8(ug, n’, n) are small we can use Lemma 3.2 to deduce
a contradiction. ]

Lemma 3.2 Given € > 0, there is a §(ug,€) > 0 so that the following holds. Suppose
u € HY(By) minimizes J, and satisfies

min{||u — uollp2amyys 1luys — u0||L2(331)} <3, (3.10)
Wiu) < Wuo) +35, Wuig) = Wuog) — 8. (3.11)
Then
sup |[ur — uol| g <€ |lu—uollg <, (3.12)
rell/d1/2] r H'(0B1) HY'(A1)2,1/4)
Mu > 0}NArp/a = Geal®) NA21/4. lEllczacanapy =€ (B.13)
Proof Straightforward argument by contradiction, similar to [12, Lemma 4.1]. O

@ Springer



The symmetric (log-)epiperimetric inequality and... Page 110f29 2

Combining Theorems 3.1, 2.2 gives directly uniqueness at at 0 and oo. We state here only
the uniqueness at oco; uniqueness at 0 was first proven in [12].

Corollary 3.3 (Uniqueness atinfinity) Letu € Hllo (R") be an entire minimizer of J. Suppose,
for some r; — o0, uy, — ug in leoc' Then there are constants y (ug) € [0, 1), §(ug) > 0,
C(u), so that

—1
Clog(r) ™ y >0

||Mr _u0||L2(BBl) < {C Vr > 1.

ro2 y =0
Here y as in Theorem 1.3.

A less obvious corollary is the following one-sided perturbation theorem. [8] have classi-
fied entire minimizers to J which lie to one side of u¢ as fitting inside a Hardt—Simon-type
foliation. Specifically, they have shown

Theorem 3.4 [8] There exist regular, entire minimizers u < ug < uU € HILL,(R”) to J,
asymptotic to uo at infinity, with the property that ifu € Hlloc (R™) is an entire minimizerto J
and u < ug (resp. u > uy), then either u = Uy, (resp. u = uyy) for somet > 0, or u = uy.

By arguing analogously to [9], the following local version of Theorem 3.4 holds.

Theorem 3.5 (Local Liouville-type theorem) Given € > 0, there is a §(ug, €) > 0 so that
the following holds. Let u € H'(B1) minimize J, and suppose that

llu —uollp2(p;y =8, u < uo. (3.14)
Then either u = ug, or thereis a 0 < t < € so that
ltr —w, ) ll2gay,p) =€ VE<r <1 (3.15)

In particular, either 0{u > 0} = d{ug > 0} N By, or d{u > 0} N By, is regular, and a small
analytic perturbation ofa{gl/l > 0} N By ).
If one assumes u > uy, then the same conclusion holds with u in place of u.

Proof We show there is a 0 < t < € so that (3.15) holds, where we formally interpret
U)o = uo. If + = 0 then u = ugp follows by the strong maximum principle ( [13], or [8]).
Suppose, towards a contradiction, this failed: there is a sequence §; — 0, u; € H 1(B1),
so that (3.14) holds with u;, §; in place of u, §, but (3.15) fails every u; and for every
0 <t < e. By standard compactness for minimizers of J, we can assume that u; — ug in
H}\,.(B) N C}, . (BY).

For 8’ > 0 to be determined later, let p; be the least radius so that

[W((ui)r) — Wuo)| < 8" Vpi <r <9/10.

By our convergence u; — ug, we have p; — 0. By Theorem 3.1, provided we ensure
8 (ug, €) sufficiently small, we have

i)r —uollz2a,, ) <€/2<€ V2p <r <1 (3.16)

If p; = 0, then we obtain a contradiction, so we must have p; > 0 for all ;.
Define u: = (u;)p;- Then for every R > 1 and i >> 1, we have

L =inf{p: [W((u}),) — W(uo)| <8 V¥p <r <R} (3.17)
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Passing to a subsequence, we can assume that u; — u' in HIIOC(R") N CIOOC(R”), for some

minimizer u” of J. Since every u; < ug, we have u’ < ug, and therefore by Theorem 3.4
either u’ = ug oru’ = uy,, for some t > 0.

If u’ = uo, then by our convergence u; — u’ and the monotonicity of » — W ((u}),), for
i >> 1 we would have

IW((u;)r) — W(uo)|l =8'/2 Vr e (1/2,2),

which contradicts (3.17). Therefore u’ = u, Jt for some ¢ > 0.
From (3.17) we have W(gz/t) # 0, and so t < to for some 79 depending only on u.
Therefore, since u is asymptotic to ug at infinity, there is an Rg(u, €) so that

ity = w011 204,10 < €/2 Vr = Ro. (3.18)
On the other hand, by our convergence u: — Uy, We have
@) =ty ) 1124y, S € Y2 <1 <2Ro (3.19)

provided i >> 1.
Defining #; = tp;, we deduce from (3.16), (3.18), (3.19) that

N@ir =ty ll2ga;,) =€ Vi <r =1

when i >> 1. This is a contradiction, and finishes the proof of the Theorem. O

3.6 Proof of symmetric log-epiperimetric

We prove in this Section the symmetric log-epiperimetric inequality of Theorem 1.3 for Alt—
Caffarelli functional (1.5). The proof is in principle a minor modification of the proof of the
standard log-epiperimetric of [12]. However, we choose to give the full proof of Theorem
1.3 here, partly because there are subtleties involving the choice of constants which are non-
obvious even in the original proof, and partly because we can give a more streamlined proof
synthesizing both the standard and the “reverse” epiperimetric inequalities.

Theorem 1.3 is a largely direct consequence of the following two Lemmas, which deal
with the “outer” variation and “inner” variation separately. The first is verbatim to [25], and
the latter is our modified variant of [12].

Lemma 3.7 [25, Lemmas 2.5, 2.6] Let Q' be a fixed, Lipschitz domain in d By, and let ¢; be

eigenfunctions of ', with eigenvalues ); satisfying .; — (n — 1) > n > 0 for everyi > 2

and some 1 > 0. There are numbers p(n, n), €(n,n) € (0, 1) so that the following holds.
Let 71 € H'(3B)) take the form z4 = Y o2, ci¢i. Define hy = 20, ¢;r% ¢ to be the

harmonic extension of z to the cone over @', and let Y (r) be the harmonic function in Ay ,

such that Y (r = 1) = 1, Y (r = p) = 0. Then Yyhy € H'(By) satisfies Yhilpp, = 24+ and

Wo(Yhy) — Wolrz4) < —eWo(rzy) = —€|Wolrz4)l.

Lemma 3.8 There are constants §(o),e(o) > 0, y(o) € [0, 1), so that the following holds.

Take & € C2*(3), z1 € H' (3 By) such that

llzt —oll2gp) =6, ll§ll2a =46, (3.20)

and assume additionally 7, takes the form z7; = 01¢IQ§. Then we can find an hy € H'(By)
satisfying hilyp, = z1, so that

W(hy) — W(rz1) < —e|W(rz1) — W(ro)|'H7. (3.21)
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Proof of Theorem 1.3 given Lemmas 3.7, 3.8 Since 1 = n — 1 and € is connected (see for
instance [13, Theorem 2.3]), we have A? > n — 1. Therefore, provided (o) is sufficiently

small, we have k;zé —(n—1)>¢y(0) >0.
Write

Qe Qs
z=c1¢; +Zci¢i =171 +24.
i>2

By our hypotheses and our previous discussion, we can apply Lemma 3.7 to z to obtain an
Yhy, p, and apply Lemma 3.8 to z; to obtain an /.
Define A to be the competitor

rzi+vhye p < x| <1
h =
« {phl(x/m 0<Ixl<p

By construction, i € HY(B)), and hlyp, = z and hlaB,J = pz1. By orthogonality of the ¢;,
the facts that {z > 0} = {z; > 0} and {h4+ > 0} C {rz; > 0}, and the scaling of W, it’s
straightforward to verify that

W(rz) = W(rz1) + Wo(rz4+), and
W(h) = W(rz) < p"(W(hy) — W(rz1) + Wo(Why) — Wo(rzy).

Since by (1.7) Wo(rz+) < c(0), we can therefore use Lemmas 3.7, 3.8 to estimate

W(h) — W(rz) < —p"e|W(rzi) — Wro)|'V — ea|Wo(rz4)
< —p"e|W(rz1) — Wro)|'™ — (e2/c)|[Wo(rz)|'TY
< 27"V min{p"€1, €2/c(0)}|W(rz) — W(ra)|' 7.
This proves Theorem 1.3. O

Proof of Lemma 3.8 The proof is similar to [12], except to allow for G to be negative we
must modify both positive and negative modes (i.e. £1), and be slightly more careful in our
treatment of the zero modes (i.e. £7). We shall use heavily the notation from [12]. In this
proof €(0), b(o, €), 5 (o, €) are small positive constants < 1 which we shall choose as we go
along, but can a posteriori be fixed. Letters c¢(o), ¢’(o) represent large constants > 1 which
may increase from line to line.

Recall by [12, Lemma 3.6], if v(r,0) € H'([0, 1] x 3By), then rv(r,0) € Hl(Bl)
satisfies

1 1
W (rv) =f Ws(v(r))r”_ldr—i-/ 0,v) 2" aodr, (3.22)
0 0 JoB;

where Ws : H'(3B;) — R is defined by

Ws(w) = / IVw|> — (n — Dw?do + H" ' ({w > 0}).
9B

Our competitor A1, like in [12], will take the form hi(r,0) = r/c(r)qb?g(” for some
suitable flows «(r), g(r, #). To this end, we recall the functional introduced by [12] G :
C2%(3) x R — R given by

G, 5) = (2407 == 1) +H Q) — HHQ).
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As shown in [12, Lemma 2.3], provided ||¢ ]2, < 8(o) is sufficiently small, G is well-
defined, analytic, satisfies

G(0,0) =0, 8G(0,0)=0, 8G(0,0[(,r), (1, s5)]=258G(0,0[(,0), (1,0)].

The operator 8260, 0)[(¢,0), (n,0)] is a self-adjoint bilinear form on HY2(3), with
eigenvalues A; — oo, and an L%(3$2)-ON basis of smooth eigenfunctions ¢;. Writing
K = span{¢; : A; = 0}, then the kernel of §2G(0, 0) is K @ R.

Write Py for the L?(92)-orthogonal projection to K, and Py for the projection onto
span{¢; : +2; > 0}. Note that since $2G(0, 0) has finite index and kernel, we have the
bounds

1Pk fll2,e + 1| P+ fll2,e +11P- fll2,0 < c(@)Ifll2,a

forany f € C>*(3Q).

Let Y : (K@®R)NU — K* be the Lyapunov-Schmidt map, defined in a suit-
able (C22(3Q) @ R)-neighborhood U of (0, 0). Y is analytic, and satisfies Y (0, 0) = 0,
8Y(0,0) = 0.

[12, (2.8), Section A.5] have shown that

12G(g. 9)[(€. 0), (£, 0)] — 82G(0, 0)[(Z., 0), (€. DI < (@(/[8l2.0) + c(@)s)IE|[3,1/2-
(3.23)

for some continuous, increasing function w : [0, co) — [0, co) with w(0) = 0. There is no
loss in assuming that w(t) > 7. From [12, Section A] and [6, Lemma 2.8], we have

182G(0, 0)[(Z, 0, (£, 0] < c(@)IZ]21)2, (3.24)
while from [12, (A13), (A14)] we have the opposite inequality

2
NEllge =

n
— (182600, 0)[(¢, 0), (¢, 0 +f ’H. de). 3.25
Y — <| GO.01. 0. €0l + | ¢*Hig (3.25)

As is well-known (see [13, Theorem 2.3]), since ro is a 1-homogenous minimizer of
(1.5), )\? =n—1, Qisconnected, and 0 = Kq)fz for k chosen so that 9,0 = —1. From [12,
(2.7)], we have

Q
ey — &Pl 20,y < c@NIZ 1200
and therefore, combined with (3.20), we deduce |c; —k| < ¢(0)8. Fix 59 so that ¢7 = x?+s3,
and note that |so| < c¢(0)8'/3.
Expand
£ = [Pc(®)+Y(E 50+ [ PEE) — V(& 50) | = €7 + 67,
and write

Er =P P = e

Write Pxé = Z;”zl ,ué;j, for ¢; spanning K, and write g = (,u(l), coig) € R
Define G : R" x R — R by G(i, s) = Q(Z;":l wei+ Y(Z?’:1 /¢, s)). As shown in
[12], there is a §'(o) > O so that provided |(u, s)| < &', G is well-defined, analytic, and
(therefore) satisfies the Lojasiewicz-Simon inequality

1G (i, )" < c(0)| DG (1, 5)|,
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for some S € (0, 1/2]. o is integrable if and only if 8 = 1/2 if and only if G = 0. Note also
that DG (w, s) = 0 implies G (i, s) = 0.
Since G (0, 0) = 0, we have

|G, s)| < c(a)|(u, s)].

By construction we have ol < c(o)[[€]12¢p,) < c(0)d, and |so| < c(0)8'/3. Therefore,
by ensuring §(o) is sufficiently small, we can assume
max{|(to, 50)1, 1G (1o, s0)|' 7} < ¢(0)8'/® < min{s'/4, x> /4). (3.26)

If G(no, so) = 0 define (u(t), s(t)) = (1o, so). Otherwise, let (wu(¢), s(t)) solve the
ODE

_ DG s)
DG (. )

The solutions (u(t), s(¢)) exists smoothly on some positive, maximal time interval [0, z,),
where either t,, = oo, or lim;_., |((¢), s(t)| = &', or lim,—.,, G(u(t), s(¢)) = 0. Since

W@, s'®) = (1(0), 5(0)) = (1o, s0)-

(@), 5(1) = (ro, s0)| <2, (o, 50)| = &'/4,

we can assume that either 7, > §'/2 or lim,—,,, G(u(), s(t)) = 0. Note also that

d
EG(M(I),S(I)) = —|DG(u(),s())| <0,

and so G (u(t), s(t)) is decreasing.
If G(1o, o) = 0,seth = 0and n(r) = 0 = b|G (1o, s0)|*F (1 —r).
If G(uo, so) < 0, then £, > 8'/2. Let n(r) = b|G (1o, 50)|'#(1 — r). By our choice of

8 above we have |n(r)| < 8'/2 for r € [0, 1], and so u(n(r)), s(u(r)) are well-defined on
[0, 1]. We have the bounds

n(r)
G(un(r)), s(n(r))) — G(uo, s0) < —/0 IDG(u(1), s(1))ldt

< -(1/0) /OW) G (), s Far
< —(1/0)G ko, s0)' P (r)
< —(b/0)|G(po.50) PP (1 = 1) Vrel0,1].
If G(po, so) > 0, we break into two cases. Define
11 = sup{r € [0,8"/2] : G(u(1), s(1)) = G(po, s0)/2}.
If 11 > bG (o, so)' P, then define n(r) = bG (1o, so)' P (1 — r) as before, and estimate

n(r)
G(um(r)),s(n(r))) — G(uo, s0) < —(1/0)/0 IG (), s Par

< —(1/20)|G (o, so)' P n(r)
< —(b/O)|G (o, 0)> (1 —r) ¥rel0,1].

Ity < bG (o, 50)1 78, then take n(r) : [0,1] — R to be a smooth, decreasing function
satisfying

no,21=t, n(1)=0, || <3n.
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In this case we estimate (recalling that 2 — 28 > l and b < 1)

G(u(n(r)), s((r))) — G0, s0) = —G (1o, 50)/2
< —(b/2)|G (1o, s0)* (1 —r) Vrelo,1/2].

Observe that, however we defined 1, we have the bounds |1’ (r)| < 3b|G (10, so)|'~# and

G(u(n(r)), s((r))) — G(uo, s0) <0 ¥r € [0, 1], (3.27)
G(u(n(r), s(m(r))) — G(1o, s0) < — (/)G (o, s0)* (1 —r) ¥r e0,1/2].
(3.28)

Moreover, by (3.26) and our definition of 7(r) we have the bounds

(), s < c(@)8'® vr e 0, 1]. (3.29)

Define n_(r) =1+ a(1 —r)e. Then

+ c(n)a’e® > 4e/n

: 2 n—1 a
/0 (m—(r)* = Dr dr:in(n—l—l)

provided a(n) is chosen sufficiently large, and €(n) sufficiently small. Fix a to be thus.
Similarly, define n4(r) = 1 — a’(1 — r)e, and then
—2d’e

nn+1)

provided we choose and fix a’(n) large, and ensure € (n) is small.
We define our competitor as follows. First we define

+ c(n)a’?e? < —4e/n.

1
/ (140 = Dr"~dr =
0

gr.0) = | Y NG +Y [ Y 1! (r))g. s(n(r)) +[n—(r)$f+n+(r)§i]
J J

=g (r.0) +g>(r.0),
and then set
hi(x =r0) = rl((r)d)?g(') ©), for «x(r)?=k>+snr)’.

From (3.22) and the form of &1, we have
1
W(h1) — W(rz) :fo (G(g(r), s(m(r)) — G&, so)r"'dr (3.30)

1
+ / / @ (hy(r)/r)*r" T dedr. (3.31)
0 dBy
Provided § (o) is sufficiently small, we have

(3-8)% < c@) ' (N* +c(@)e(1EX(r, ) + |EL(r, )],

KK (r)? < e(o) ' (r)]?
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and therefore, using [12, (2.7)], we deduce

/ (0, (h1(r)/r))2d6 < 2’ () + 26 () f $¢¢ " [9,5(r)])2do
By By

< (@) ()P + c@)e (10,8 (17255,

< c(@)b*|G (o, 50) 72 + c(@)1EM 1725, (3.32)
We work towards estimating the first term in (3.31). Write

G(g(r),s((r))) —G(&, so)
=[G (), s(n(r)) = G(u(n(r)), s(n(r)))) = (G(&, s0) — G (1o, 50)]
+[G((n(r), s(n(r)) — G(D)]
= E*(r) + ET(r).

Expand £+ = it = Z;H&g a;&j.
By considering the Taylor expansion of

1 GeT () +1gt(r), s((r))),

we deduce there is a T € (0, 1) so that, provided § (o) is sufficiently small:
G(g(r),s(n(r))) — G(un)), s(n(r)))
=8G(g" (r)I(g (). 0] + %62g<gT(r> + g )T (). 0), (g (1), 0)]
= 3870667 () + g (DIE ), 0), (), )
= %52g<o>[(g%r>, 0). (g (1), O] £ (@218 2.a) + c(@)sEN1g-()[7,1)2

=n_(17/2 ) hia} + 00 ()72 ) hia £ (@(c8'%) + ()8 A)IEH 17,1

xi<0 Ai>0
=—n-(M/2 ) Ihiled + 0 ()22 ) [hilef 20 )EH 3.
5\1'<0 Xl'>0

In the third line we used [12, (B4)], the fourth we used [12, (2.8), Section A5], and in the
fifth line we used (3.29) to estimate

lg(Ml2e < (@)@ + c(@)Ell2e < c(0)8/°.

Similarly, again taking § (o) is small we can estimate

G(E, 50) — G(po, 50) = —(1/2) Y hile + (1/2) Y [Ailef £ 208 DIIEM 1,10

Xl'<0 X,‘>0
(3.33)
Recalling our choice of n_(r), n4(r), we deduce
1
/ EL(yrldr < —@e/m) Y ila? + c@)w@DIIE . (3.34)
0

7i 70
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Combining (3.28), (3.32), (3.34), and ensuring b(o) is sufficiently small, we deduce
W) — W(rz) < =(b/0)|G (1o, 50)* > + cb?|G (o, 50) P~

— e/m) Y hilaf + (o) + ce)IEH 13
i #0

< —(b/20)|G (no. s0)*"F = (e/n) Y |hile}
i
+ (@' + ce® — e/OIEH 10, (3.35)
for ¢ = c¢(o). In the second inequality we additionally used (3.25) to estimate

_ 1+ ming g |4
> lhile} = %(wzg(o, OIE™, 0), G, 011 + [1E1]172)

\Y

\

> (1/c(oNIEX 310
Recall from (3.33) that we have (ensuring § (o) is small):
n(W(rz) — W(ro)) = G(&, so) — G(ro, s0) + G(1o, 50)
= (1/2) Y hief + G(uo. s0) 20 DIE G2 (336)

1
If G(o, so) = 0, then we can combine (3.35), (3.36), to estimate
W(h) — W(rz) < —€|W(rz) — W(ro)| + (co"7) + ce® — e/o)IET 13,1, (3.37)
< —€|W(rz) — W(ro)| (3.38)

provided € (o) is small, and (o, €) is small.
Suppose G (uo,so) # 0. Using (3.24), (3.36), and the inequality |a — bty >
277 |a|'*Y — b)Y for any a, b € R, we get

|G (1o, 50)/nI'"Y > 277 |W(rz) — W(ro) 'Y

I+y
—172m) Y " hia? £ 206 1EG, (3.39)
> 277 |W(rz) — Wro)|" — c(o)IE5 113,12 (3.40)

and therefore, writing ¢’ = ¢'(o),

W(hy) — W(rz) < (=b/)|W(rz) — W(ro)|'T" (341)
+ ([ w@y + b+ e —e/)ET, (3.42)
< (=b/)|W(rz) — W(ro)|'Y (3.43)
provided € (o) is small, and (o, €) is small, and b(o, €) is small. ]

4 Obstacle and thin-obstacle problem

Similar results to the ones presented in the previous sections hold for almost minimizers of
the obstacle problem and of the thin-obstacle problem. Since the modification for the thin-

@ Springer



The symmetric (log-)epiperimetric inequality and... Page 190f29 2

obstacle problem are essentially already contained in [5], we present here only the statements
and proofs for almost minimizers of the obstacle problem.

4.1 Results for almost minimizers of the obstacle problem

In this section we follow the notations and arguments of [5]. Let By be the unit ball in R”
and consider the functional

1
Fopu, W) := f/ |Vu|2a’x+/ udx,
2 Jw W

where we will drop the dependence on the set if W = By, and the set of admissible functions

Kos == {u € H'(By) u>0in By}.

Definition 4.1.1 A functionu € Ky isa (A, a, ro) almost minimizer of the obstacle problem
in B] if

Fop, W) < (1 4+ Ar®) Fou(v, W) Vv e Ky 4.1)
forall W CcC B,(x) C U with0 < r < ry.

The relevant energy is given by the Weiss’ boundary adjusted energy

E(u) = Wg(u) +/ max{u, 0} — max{o, 0},
B B
where o is a 2-homogeneous global minimizer of the energy. In particular we will assume o
to belong to the following class:

B:={04:RY > R: Q4(x) =x-Ax, A symmetric non-negative with trA = 1/4}.

It is a simple computation to see that £ satisfies the almost monotonicity 2.1 (1) when u is
rescaled as u,(x) = u(rx)/ r2 (see for instance [5]); for more details on the properties of the
almost-minimizers of the obstacle and the thin-obstacle problems we refer for instance to [2,
15-17]. So in order to apply Theorem 2.2 we only need to check the symmetric epiperimetric
inequality. This follows as a minor modification of [5, Proposition 3.1], which we outline in
the next section for the reader’s convenience.

Proposition 4.2 (Symmetric epiperimetric inequality for the obstacle problem) Let o € B.
There are constants 6(o), E(o) > 0, y (o) € [0, 1), so that the following holds.
Let z € H'(dB1) N K be such that

Iz = nll 20, <8 and | Fop(rz) — Fop(0)] < E.
Then there is an h € Hl(Bl) with h|yp, = z, so that
E(h) — E(r’z) < —elE )M, (4.2)

Using Proposition 4.2 and the monotonicity of £, we can apply once again Theorem 2.2 to
the energy £ (u,) = Wa(u,) to obtain the following uniqueness of blow-ups and blow-down
at singular points. We remark that the uniqueness for blow ups with logarithmic decay had
already been established in [4].
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Corollary 4.3 (Uniqueness of blow-downs for almost minimizers of obstacle problem) Let
u € H! (R") bean entire almost minimizer of Foy. Suppose, for some r; — 00, u, >oeB

loc
in L120c- Then there are constants y (o) € [0, 1), (o) > 0, C(0), so that

—1
Clog(r)VTV y >0
8

||Mr—M0||L2(aBI)§{C vr > 1.

r-2 y =0

Here y as in Proposition 4.2.

4.4 Proof of the symmetric epiperimetric inequality Proposition 4.5

The symmetric epiperimetric inequality of Propostion 4.2 follows from the following general
proposition, analogous to [5, Proposition 3.1]. We fix H = L2(8 B1), K C 'H a convex cone,
W = H*OB)).

Proposition 4.5 Let G be a functional satisfying assumptions (SL) and (FL) of Proposition
3.1 in [5), while assumption (ES)" is replaced by

(LS’) F has the constrained Lojasiewicz property, that is there are constants y €10, 1/2],
Cr > 0,6, >0and Ep > 0, depending on v € WNK a critical point of F in IC, such that
for every critical point ¢ € S the following inequality holds

|Fw) = F@)|' " < CLIVFW)Ix, (4.3)

foreveryu € KNW such that |\u — ¢|| <, and |F(u) — F(p)| < Ef.
Then there are constants §g > 0 and E > 0, depending only on the dimension and ,
such that: if c € H (3 By) N K satisfies

lle = Wll2pp) <00 and  |F(e) — F@)| < E,

then there exists a functionh = h(r,0) € H'(B)) satisfying h(r, -) € IKC, foreveryr € (0, 1],
and

G(h) — G($) < (G(2) — G(9)) — €|G(z) — G(P)I*™> 4.4)

where ¢(r, 0) == rkIﬁ(O), 2(r, 0) := rkc(0), € > 0is a universal constant and y > 0is the
exponent from (LS).

Proof The proof is the same as that of [5, Proposition 3.1], where one replaces the choice of
€ in equation (3.5) with

|F(uo) — F()| < 2|.7-'(u(t)) — }'(W))I forevery 0 <t < e, 4.5)

and in the last string of inequalities in page 16 one uses (4.3) to replace F(u(t)) — F(¥)
with | F(u(t)) — F(p)l. .

Proof of Proposition 4.2 The proof follows if we can verify the assumptions of Proposition
4.5. To this aim, we observe that properties (SL) and (£ L) hold when we set

Gi=Foy and F@ = [ (Vi -2d6) ar
0B

1 Property (LS) is the same as (LS”) without the absolute value in the left hand side of (4.3).
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as explained in the proof of [5, Theorem 1.10]. So we only need to show that property (LS’)
holds for . Even though this property is stronger than property (LS), its proof is similar to
that of [5, Proposition 4.4]. So following the reasoning there we let ¢ € S be such that

lu—ell2 < 25.

Notice that u — ¢ can be uniquely decomposed in Fourier seriesas u — ¢ = Q_ + Qo + 1,
where Q_ contains only lower eigenmodes (corresponding to eigenvalues < 2d), Qo is a
2d-eigenfunction and

Ny =Y. cjpix),
{j:hj>2d)
which contains only higher eigenmodes (corresponding to eigenvalues > 2d). Thus,
u=Q0-+Qo+¢+n and Q|2 Qol2 Inl2 < 26.

‘We now consider
M = 2%{—2Q—(X) — Qo(x) —p(x)}

and suppose that the maximum is realized at a point x3; € M. Notice that since Q_ + Qg
is a finite sum of (smooth) eigenfunctions, there is a constant C > 0 (depending onnly on
the dimension) such that |Q_ + Qg < C3§. Thus, if M > 0, then x3; € {¢ < C§} and

M < C§. We now choose § such that 10C§ < ¢4 := (2d)_% and we claim that the function
- 2M
”=2Q—+QO+¢+Z(Cd—‘/))

is non-negative. Indeed, it is sufficient to consider the following two cases:

e on the set {¢ > 2C4§}, we have that
- 1 1 2M
u=\20_-+Qo+z¢|+2M+¢|-——|] =0,
2 2

since each of the three terms is non-negative;
e on the set {¢ < 2C4§}, we have that

. oM
uzzQ_+Qo+go+c—(cd—2ca)32Q_+Qo+ga+Mzo.
d

Next, using the fact that c; — ¢ is a 2d-eigenfunction (notice that the integral of ¢; — ¢
on d B vanishes, due to the fact that 2d > 0), we calculate

—@ —u)-VFu) :/

dB

=/ (= Au—2du+1) (n— Q) dH'™!
9B

(= Au—2du+1) (—Qf—l—n—zc—M(cd—(p)) dH4!
d

_ faB (= AQ-+ Qo +m) —2d(0- + Qo+ 1) (n— Q) dH'™!
1

= [ -y it = [ (0o - 202) ane!
JB JB
—2(F ) - F(Q-).
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Notice that since the set of eigenvalues is discrete, there is a (spectral gap) constant G (d) > 0
such that |1 ; — 2d| > G()), whenever |A; — 2d| > 0. In particular, we have the inequalities

2Fa) = Y A0y —2d) =GR Y. d=GMnli3

Jihj>2d Jihj>h
“2F(Q ) == Y GGj-2)=GR) Y G=GWI0-I3
Jihj<2d Jihj>2d

Thus, we get by definition of || - ||x,
—(i — u) - VF(u) 2(F () — F(Q-))
VFOIe = = = Mg, — gl t b + 1215
2(F () - F(Q-))
M2 (lleallz + I9ll) + RQGGIF))? + (~2G (M) F(Q-))?
F(n) = F(Q-)
M +3(FG) — F(Q_)?

where C is a constant depending only on the dimension.
Now, in order to get (4.3), it only remains to estimate M and put together (4.6) and (4.7).
We notice that:

%

(4.6)

>C

e 20_+ Qop+¢isa(finite) linear combination of (orthonormal and smooth) eigenfunctions
corresponding to eigenvalues < 2d;
e the L2 norm of 2Q_ + Qg + ¢ is bounded by a universal constant.

As a consequence, there is a universal (Lipschitz) constant L, depending only on the
dimension, such that |[V(20Q_ + Qo + @)llrem) < L. Thus, since the negative part
Y = —inf{(20_ + Qo + ¢), 0} is such that supyy = M is small enough (bounded by
a dimensional constant, as already mentioned above), we get that there is a constant C
(depending on the dimension) such that

11725, = CL™ M = CL™ VI8,

Since u > 0 on d By, we have that ¥ < n — Q_ and so,
d

M2 <L (Ind + 110-113) < CG(A)

(Fm) —F(Q-)),
. . . . . 1
which, together with (4.6) and (4.7), implies that, if we set y = T3 then
IVF@)lx = C (Fin) — F(Q-N'"7.
Using that, by orthogonality, it holds
[Fu) — F@)| =|Fm) +F(Q-)| <Fm) —F(Q-), 4.7

we conclude (4.3). O

5 Almost-minimizing currents

We are interested here in the regularity properties of almost minimizing currents. Given
o >0, A >0,and ro > 0, an integral n-current 7 in an open subset U C R i called
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(A, a, rg)-almost minimizing in U if
ITI(W) < IT + 0R||(W) + Ar"*® (5.1

forx € sptT, W CC B,(x) C U withr < rg, and all integral (n+ 1)-currents R supported in
W. The same definition carries over in the obvious way to integral n-currents in a Riemannian
manifold N+,

Analogous to varifolds with bounded mean-curvature, there is a monotonicity formula
(5.2), an Allard-type regularity theorem [3], and a compactness theorem (Lemma 5.6) for
almost-minimizing currents. Recall that the density ratios of T are given by

T N(Br(x))
- wpr®

Or(x,r):

Following the computations of [7], we have the inequality

nA nA 1 I (v — )2
[em, r) + r“] - [er(x, 5) + s“} > [ LI dIITII ()
Wy Wy 200 JB, (o\Bs(x) 1Y — X]

(5.2)

for all Bs(x) C B,(x) C U. In particular r — 6r(x,r) + &—Aar“ is increasing.

We remark that A scales like » ~*, in the following sense: if (1, ) T is the pushforward of
T under the translation/dilation map 1y, ,(y) := (y —x)/p, then (1x ,):T is (Ap%, a, ro/p)-
almost minimizing in 1y, ,(U). So for the purposes of regularity there is often no loss of
generality in assuming A is small.

Let us also remark that the general compactness/regularity theory of almost-minimizing
currents in N"*¥ is essentially the same as in R"**. For, if g is a C? Riemannian metric
on By C Rk, satisfying |g — Zeuct|c2 < 6, then (provided 8(n) is sufficiently small) we
have (1 — 8)|x — y| < dg(x,y) < (14 8)|x — y|, and B_s)-(x) C Bf (x) C B(14s)r(x),
and for every B,(x) C Bj_1os there is a normal change of coordinates ¢, : Bfl—}—ﬁ)r (x) —>
Bfl+a)r (x), in which the metric satisfies [(¢}g)(2) — Seuct| < c(n)8]z — x|?. By working in
these normal coordinates (different for each ball one is considering in the almost-minimizing
condition (5.1)), and by using the monotonicity (5.2), it is straightforward to verify that if T
is (A, a, rg)-almost-minimizing in (B1, g), then T is (A + C§, min{c, 2}, (1 — 6)rp)-almost-
minimizing in (B1—10s, geuct), for C a constant depending on n, A, ||T||(B1).

Alog-epiperimetric inequality for smooth, minimizing cones was established by [11], who
used it to prove uniqueness of smooth, multiplicity-one tangent cones for almost-minimizing
currents. We outline here the symmetric log-epiperimetric inequality for smooth cones — the
details are essentially the same as in Sect. 3.

Take C"* C R™* a minimal cone with smooth cross section =. If u : & — X+ or
h:CNAR,— C*1, define the spherical graphing functions

[ o+u®
Gs(u) = {7|9 T u@)] 0 E} , (5.3)
_ X+ h(x)

For ease of notation write G¢(h) = G¢(h) N Ay . Recall that we defined Ag ,(x) =
Br(x)\B,(x), and Ag o(x) = Br(x)\{0}.

By a straightforward adaption of the proof in Sect.3, one can prove the following sym-
metric log-epiperimetric inequality. We remark that the epiperimetric inequality as stated in
[11] used the C1® norm, but it is not hard to see that it suffices to consider only the C ! horm.
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Theorem 5.1 (Symmetric log-epiperimetric inequality for smooth minimal cones) Let C* C
R (for n > 2) be a smooth, minimal cone, with cross section ¥ = C N 3 By. There exist
€(C, k), 8(C, k) positive, and a y (C, k) € [0, 1) so that the following holds.

Letu : ¥ — S+ be such that || c1 < 8. Then there is a function h € cl(CnB\{0},ChH)
satisfying

hlcnos, =, |x|7 1Al +1VA] < (S, )lul 5772, (5.5)
so that
H"(Ge(h) < H'(Ge(@) — e[H"(Ge(@) — H' (GO, (5.6)

where z(x) = |x|u(x/|x|) is the 1-homogenous extension of u. If C is integrable,* then one
can take y = 0.

Let T be a (A, o, 1)-almost-minimizing n-current in By C R*** satisfying 87 = 0 and
TLAy, = [Ge@) N A1), x| ul +Vul <8,

for C a smooth minimizing cone in R"** and some p € [0, 1/2]. Provided 8(C, k) is suffi-
ciently small, the coarea formula, the computation [7, (2.5)], and the Hardt—Simon inequality
(see e.g. [23, (11)]) imply that

d n 1
—0r0,r) > —(071,(0,r) —67(0,r)) +
2r 4,

/r2|arur|2—z\rcH Vr e (p. 1),
dr nr Js

(5.7)

where 7, is the cone over d(TLB,), and u, (x) = r~lu(rx).
On the other hand, from Theorem 5.1 we get the symmetric epiperimetric inequality

070, 7) < 07,0, ) — €|07,(0, r) — 6c(0)["*7 + Ar® Vr € (p. 1), (5.8)

where 7, denotes the cone over d(7TLB;).
Ensuring A, |67(0, 1) —6¢c(0)], |67 (0, p) — 6¢c(0)]| are sufficiently small (depending only
on n, &), we have by (3.1) that

107(0,r) —0c(O)| =1, Vre(p, D).

One can then prove an exact analogue of Theorem 2.2, with X in place of d B and 67 (0, r) —
0c(0) in place of £(u,) and 07, (0, r) — 6¢c(0) in place of £(z,), to deduce the function

G(r) =070, r) — 0c(0) + 3o ' Ar®

satisfies G’ > (8'/r)|G|'*7 as in (2.4), and to deduce the Dini estimate

/ 19y /)l
CﬂAl,p
< ¢(C,a)(|67(0, 1) — 6 (0)| =172

+ 1670, p) — (0|72 4 AU/, (5.9

A direct application is the following analogue of Theorem 3.1 for almost-minimizing currents,
which says that graphicality propagates as long as the density stays close to the density of
the cone (c.f. [21, Theorem 13.1]).

2 Asin [11], integrable means that every 1-homogenous Jacobi field on C can be realized by a 1-parameter
family of smooth, minimal cones.
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Theorem 5.2 Let C" C R" be a smooth, minimal cone. Given €, > 0, there are
A(C, €, a, k), §(C, €, a, k) positive so that the following holds.

Let T be (A, «, 1)-almost-minimizing in By C Rk with 9T = 0, and let p >0, such
that

sptT NA112 =Gew) N A2, |ulcr <6 (5.10)
071(0,1) <0c(0)+48, 6r(0,p/2) = 6c(0) — 8. (5.1

Then sptT N Ay, = Ge(u) N Ay p, with x|~ Yu| + |Vu| < €. Moreover, u admits the
Dini-type estimate

[ 10, (u/P)|r' " < e. (5.12)
CﬂAl_p

Proof Same as Theorem 3.1, using the Dini estimate (5.9), and Lemma 5.3 in place of Lemma
3.2. O

Lemma5.3 Let C" C R"™ be a smooth minimal cone. Given ¢,a > 0, there are
A(C, €, a, k), 8(C, €, a, k) positive so that the following holds.
Let T be (A, o, 1)-minimizing integral n-current in T with 0T = 0, and suppose that

sptT N Ay 12 = Gc(u) N Ar1)2, lulcr <6, (5.13)
0r(0,1) <0c(0)+48, 67(0,1/8) = 6c(0) —34. (5.14)

Then sptT N Aq174 = Ge(u) N Ay 14, with |u|c1 < €.

Proof Follows by a straightforward contradiction argument, using Lemma 5.6, [3] and taking
A,6 — 0. O

Since the other ingredients involved (monotonicity, compactness, partial regularity)
already have direct analogues for the case of almost-minimizers, most of the results in [9]
carry over to almost-minimizers. For example, we have:

Theorem 5.4 (Almost-minimizers near Simons’ cones) Let C* C R"*! be a minimizing
quadratic hypercone, and let {S,}, be the associated Hardt-Simon foliation (see [10] for
notation). Given €, @ > 0, there is a §(C, €, «) > 0 so that the following holds.

Let T be a (8, a, 1)-almost-minimizing n-current in By with 0T = 0, and suppose that

du(sptT N B, CN By) <68, (1/2)0c(0) <67(0,1/2), 67(0,1) < (3/2)6c(0).

(5.15)
Then we can find ana € R" L € R, g € SO(n + 1), satisfying
la| + g — Id| + |A]| <€, (5.16)
and a C! Sfunctionu : (a + q(S5)) N Byp(a) — Sk so that
sptT N Byjg = grapha_‘_q(sk)(u) N Bijg, |x— a|71|u| + |Vu| <e. (5.17)

If C" C R™ is a general smooth (away from 0) area-minimizing hypercone, and one
additionally assumes sptT lies to one side of C, then the same conclusion holds with a =
0,q = Id. Moreover, if T is in fact mass-minimizing, then either sptT = C N By or A # 0.
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Proof Same as in [9, Theorem 2.8], except with Theorem 5.2 in place of [9, Theorem 13.1],
and Lemma 5.6, [3] in place of Allard’s varifold compactness, regularity. If sptT lies to one
side of C, then since T is assumed to be (almost-)minimizing, one can use the Liouville
theorem of [14] in place of [24], and thereby assume only that C is minimizing. The very
last statment, that spt7 = C when T is minimizing and A = 0, follows from (5.17) and the
strong maximum principle [22]. O

Theorem 5.5 (Finite diffeotypes of almost-minimizers) Ler (N"T!, g) be a closed Rieman-
nian manifold of dimension n + 1 < 8. Given any A,I" > 0, a,r > 0, there is a constant
C(N,g,N,a,r,T) so if T is any (A, «, r)-almost-minimizing n-current in (N, g), with
oT = 0 and having mass ||T||(N) < T, then singT is discrete (if n = 7)/ empty (if n < 6),
regT fits into one of C diffeomorphism classes, and sptT fits into one of C bi-Lipschitz
equivalence classes.

Proof Same as [9, Theorem 2.4]. O

The following compactness theorem for almost-minimizing currents should be standard,
but we were not able to find a reference.

Lemma 5.6 Let T; be a sequence of (A, o, ro)-almost-minimizing n-currents in U C RuHk,
Suppose that

sup [|T;[|(W) + [[T;[|[(W) < o0 VW CC U.
i

Then after passing to a subsequence, we can find a (A, «, ro)-almost-minimizing n-current
T so that T; — T as currents and ||T;|| — ||T|| as Radon measures.

Proof The proof that T is (A, «, ro)-almost-minimizing is the same as the proof for 7;, T
being mass-minimizing (see e.g. [21, Chapter 7, Theorem 2.4]). We highlight here how to
show convergence ||T;|| — ||T||. Passing to a subsequence i’, we can assume that || T}/ || — 2,
for some Radon measure A. Lower-semi-continuity of mass implies ||7||[(W) < A(W) for
alwccU.

Given x € sptT N U, then by the monotonicity formula (5.2) we have 07 (B, (x)) > 1/2
for all r sufficiently small. Arguing as in [21], we have for a.e. r small the inequality

AM(B-(x)) < IT[I(Br(x)) + A" < (1 + c(n) Ar®)||T||(B,(x)).
which in turn implies
, NT1(Br(x))
= 11m ————F—
=0 (B, (x)
for A-a.e. x. Since ||T'|| << A, the Radon-Nikodyn theorem implies A = ||T||. O

5.7 Currents in an annulus

Lastly we comment on integral n-currents 7 which may only be defined in an annulus. The
point of this section is that actually no knowledge of T is required inside a small ball to
get good decay-growth estimates in an annulus, provided 7 still satisfies some reasonable
minimization-type condition. Situations of this kind arise in obstacle minimizing problems
like in [19], and indeed our exposition here gives an alternate approach [19]’s “mesoscale
flatness” theory. Most of the computations and technical details in this section are very similar
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to or the same as the previous section, so here we will give more a brief sketch of the main
ideas and formulas.

We take T to be an integral n-currents in A; , C R"t* for some p € (0,1/2], with
0T =0in Ay, and which are (A, o, 1)-almost-minimizing in A; ,. T need only be defined
in Ay, and we shall interpret ||T[(B,) = [|T||(A,.,). In particular 67 (0, r) = T14r.0)

We shall additionally assume 7 satisfies the following “global” almost-minimizinng prop-
erty:

{ T(B) < |IS||(B,) + Ar"*¥ for any integral n-current S in B (5.18)

with 9§ = 0in By and spt(S —T) C A, ,

The comparison principle (5.18) arises naturally in obstacle problems like in [19].

By standard slicing theory [21, Section 6.4], fora.e.r € (p, 1) the cone T, over d(TLA, )
(taking the boundary in A1 ,) is an integral n-current in B, with 07, = 0(TLA, ;). By the
deformation lemma [21, Section 6.5], we can find an integral n-current S, supported in d B,
with 0S8, = 9(T,LB)) and |[S,[|(dBy) < co(n, T |1(Bp) = cop"r " |T:||(By).

From assumption (5.18) we deduce that for a.e. r € (M p, 1) we have

T1I(Br) < (1+cop"r ITN(By) + Ar"™ < 2||T,||(B;) + Ar"™®

provided we ensure M (n, k) is suficiently large. By repeating a similar computation to (5.2),
we deduce that

L 2
[M+"Ara}_[m+ﬂsa} > [ L i,
Ar.s

1+copr™"  wuo 1+cops™  wua ~ 4w, |x|t2

for all Mp < s < r < 1. In particular, given any ¢ > O then provided
M, k, o, e)_l, A(n, k, o, €) are sufficiently small, we have

0r(0,Mp) —€ <6r(0,r) <67(0,1) +€ Vre(Mp,1). (5.19)
Suppose T additionally satisfies
TLA L mp =[Ge) N AL ppl. x| ul + |Vul < 6.

Now for every r € (Mp, 1), we note that ||7,||(B,) < c¢i(C, k)r" provided §(C, k) is suffi-
ciently small, and therefore we can argue as in the previous section to deduce the monotonicity

dQ(O ) >
- ) =
drT

;—rwn (0,r) =670, 1)) + / P218up P —e1p"r T — Are!
z

4wy, r

v

;(Gﬂ 0,r)—670,r)) + / r2|0pur > — ey MO perm e ApeT]
r T

4wy, r
and epiperimetric inequality
07(0,7) < 07,0, 7) — €l67,(0, ) — Oc(O) 'Y + i M p*r =% + Ar®.

Noting that M p%r==1 < ¢y M, then provided M~YC, a, k), A(C, &, k) are
sufficiently small and 07 (0, 1) < 6¢c(0) + 1/2, 67(0, M p) > 6¢c(0) — 1/2, we can prove the
analogue of Theorem 2.2 with 0B = X, E(u,) = 07,,(0,r) —0c(0), E(z,) = 01, (0, 1) —
0c(0), AL = A, A_ = c1M* " p*, to deduce that the function

G(r) =070, r) —0c©) + 3 ' Ar® — 3a ey MO por ¢
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satisfies the ODE G’ > (8'/r)|G|'*” as in (2.4), and to deduce the Dini estimate
/ 10, (u/r)|r' ™" < e(C. k, @)(107,,(0. Mp) — 6c(0)| 1772
CﬂAlyMp

+167,(0. 1) = 6c(0) 17772
+c(C k) (A2 g Amn/Z) (5.20)
We obtain the following variant of Theorem 5.2. Theorem 5.8 below is a “minimizing”

version of [9, Theorem 6.3], and gives an alternate approach to the “mesoscale flatness” of
[19, Theorem 1.9].

Theorem 5.8 Let C* C R"* pe a smooth minimal cone. Given €, > 0 there is a
8(C, k, €, o) positive so that the following holds. Let p > 0, and let T be (8, a, 1)-almost-
minimizing in Ay s, with 8T = 0, and satisfying the global comparison property (5.18), and
for which
T A1 = [Gecw) N A1) luler <6
6r(0.1) < 6c(0) +8, 07(0. p/2) > Oc(0) — 5.

Then T A1, = [Gc(u) N Ay p] with lx|7Yu| + |Vu| < €. Morevoer, u admits the Dini

estimate
/ 10, (u/r)|r' ™" <e.
CﬁAl,p

Proof Same as Theorem 5.2, using Lemma 5.9, (5.19), (5.20). O

Lemma 5.9 LerC" C R"* pe a smoothminimal cone. Givene, a > 0, there isad(C, e, a, k)
positive so that the following holds. Let T be (8, a, 1)-almost-minimizing integral n-current
in Ay s with oT = 0, and suppose that

T LA 12 = [Gew) N AL 2) luler <36,
67(0,1) < 0c(0) +38, 6r(0,1/8) = 6c(0) — 8.

Then
T A1 =[Gcu) N Ay 14, luler S e
Proof Same as Lemma 5.3. ]
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