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Abstract
We introduce a symmetric (log-)epiperimetric inequality, generalizing the standard epiperi-
metric inequality, and we show that it implies a growth-decay for the associated energy:
as the radius increases energy decays while negative and grows while positive. One can
view the symmetric epiperimetric inequality as giving a log-convexity of energy, analogous
to the 3-annulus lemma or frequency formula. We establish the symmetric epiperimetric
inequality for some free-boundary problems and almost-minimizing currents, and give some
applications including a “propagation of graphicality” estimate, uniqueness of blow-downs
at infinity, and a local Liouville-type theorem.

Mathematics Subject Classification 35R35 · 49Q05 · 35J60 · 35J20

1 Introdution

We consider the decay-growth properties of certain functions u defined on R
n . Typically

when u solves (or almost solves) a second-order elliptic PDE, u will admit a Fourier-type
decomposition and/or a monotone frequency function and/or a 3-annulus-type lemma. Any
of these imply a decay-growth estimate for a suitably scaled ur := r−mu(r ·) (or, often, the
scale-invariant radial derivative r∂r ur ): there is a threshold r0 so that, as the radius r increases,
the norm ||ur ||L2(∂ B1)

will exhibit polynomial or logarithmic decay in r while r ≤ r0, and
polynomial or logarithmic growth in r while r ≥ r0.
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In this paper we introduce a symmetric (log-)epiperimetric inequality for an energy func-
tional E : H1(B1) → R, which encompasses both the usual epiperimetric inequality and a
new “reverse” epiperimetric inequality. We show that when u and E satisfy the symmetric
epiperimetric inequality and a fairly universal monotonicity-type formula, then both E(ur )

and r∂r ur exhibit a decay-growth estimate as above. In fact wewill characterize the threshold
radius r0 as the radius at which the associated energy E(ur ) changes sign.

As an application, we prove the symmetric epiperimetric inequality for some free-
boundary-type variational problems and for almost-minimizing currents. The main con-
sequence is a “quantitative uniqueness of tangent cone” which allows one to propagate
graphicality or closeness near a smooth cone in regions where the energy stays close (see
Theorems 3.1, 4.3, 5.2, and Example 1.2). This implies uniqueness of blow-ups and blow-
downs, but is particularly useful in blow-up arguments to control transition regions between
scales. For example, using our estimates we can prove some “local Liouville” theorems for
minimizers of the Alt–Caffarelli functional and almost-minimizing currents (Theorems 3.5,
5.4).

Epiperimetric-type inequalities have already found extensive use in free-boundary type
problems [4, 12, 25, 26, 28] and minimal surface theory [11, 20, 27, 30] to prove unique-
ness of blow up and decay estimates near singularities. A key advantage of the symmetric
epiperimetric inequality is that it can be applied in an annulus without a priori knowledge of
the singular behavior (compare [9, Appendix 1]).

We observe here that many solutions u ∈ H1(BR ⊂ R
n) to variational problems involving

an energy E : H1(B1) → [−1, 1] satisfy the following two properties:

(1) Monotonicity: writing ur (x) = r−mu(r x) and zr for the m-homogenous extension of ur ,
then for a.e. r ∈ (ρ, R):

d

dr
E(ur ) ≥ cE

r
(E(zr ) − E(ur )) + cE

r

∫
∂ B1

r2|∂r ur |2dHn−1 (1.1)

for some fixed cE > 0, m ∈ (2 − n,∞), ρ ∈ [0, R].
(2) Symmetric log-epiperimetric inequality: for a.e. r ∈ (ρ, R):

E(ur ) ≤ E(zr ) − ε|E(zr )|1+γ , (1.2)

for some γ ∈ [0, 1), ε ∈ (0, 1].
When E(zr ) ≥ 0, then (1.2) reduces to the usual (log-)epiperimetric inequality. However,
unlike standard (log-)epiperimetric, because of the absolute values, (1.2) can control E(ur )

even when E(zr ) ≤ 0. We call (1.2) “symmetric” because it does not care about the sign of
E(zr ), or the direction of r (increasing or decreasing). For comparison, we might call (1.2)
with (−E(zr )) in place of |E(zr )| a “reverse” epiperimetric-type inequality.

We show in Theorem 2.2 that the above two properties guarantee a decay-growth estimate,
which stated informally says the following.

Theorem 1.1 In the notation of the above, as r increases from ρ to R, then E(ur ) is increasing,
and both E(ur ) and ||r∂r ur ||L2(∂ B1)

polynomially/logarithmically decay while E(ur ) ≤ 0,
and polynomially/logarithmically grow while E(ur ) ≥ 0. The nature of growth (polynomial
or logarithmic) depends on whether γ = 0 or γ > 0 (resp.).

If ρ = 0 (resp. R = ∞), then ur has an L2(∂ B1) limit as r → 0 (resp. r → ∞). If ρ = 0
and R = ∞, then ∂r ur ≡ 0.
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Let us illustrate with an example. In many free-boundary-type problems the associated
energy of interest is a modification of the following Weiss-type energy

W m
0 (u) =

∫
B1

|Du|2 − m
∫

∂ B1

u2, u ∈ H1(B1). (1.3)

It is a now-standard computation due to Weiss [29] that if ur (x) = r−mu(r x), then r 	→
W m

0 (ur ) is absolutely continuous in r ∈ (0, 1], and
d

dr
W m

0 (ur ) = n + 2m − 2

r
(W0(zr ) − W0(ur )) + 1

r

∫
∂ B1

r2|∂r ur |2, (1.4)

where zr (x) = |x |mur (x/|x |) is the m-homogenous extension of ur .

Example 1.2 We consider here the Alt–Caffarelli funtional J defined on an open set U by

J (u, U ) =
∫

U
|Du|2dx + |{u > 0}|, u ∈ H1(U ). (1.5)

We say that a nonnegative function u ∈ H1(U ) minimizes J if J (u, U ) ≤ J (v, U ) for
all u − v ∈ H1

0 (U ), and u ∈ H1
loc(U ) locally-minimizes J if J (u, W ) ≤ J (v, W ) for all

u − v ∈ H1
0 (W ) for some W ⊂⊂ U . If U = B1 we simply write J (u).

The functional J was introducedby [1],whoproved existence, compactness, and regularity
properties of minimizers and their free-boundaries ∂{u > 0}∩U . Minimizers u are known to
be locally-Lipschitz, and (from additional work of [18, 29]) the free-boundary ∂{u > 0}∩U
is known to be analytic away from a singular set of dimension at most n − d∗, for some
critical dimension (as yet unknown) d∗ ∈ {5, 6, 7}.

The natural scaling for J is 1-homogeneous, so let us write in this Example ur (x) =
r−1u(r x) and ξr (x) = r−1ξ(r x). It follows from the Weiss monotonicity (1.6) that any
blow-up (or blow-down) u0 is 1-homogenous. [1] proved a regularity theory that shows
∂{u > 0} is regular at points where the blow-up is u0(x) = (x · e)+ for some unit vector
e. [12] used a log-epiperimetric inequality to prove uniqueness of blow-ups u0 with isolated
singularities (such as in dimension d∗).

Let us fix in this Example a 1-homogenous minimizer u0 of J which is regular away from
0. We shall demonstrate the nature and use of the symmetric log-eperimetric inequality for
minimizers near u0, which is covered in more detail in Sect. 3. To study the behavior of u
near a 1-homogenous u0, the natural energy to consider is a normalized Weiss energy

E(u) = W (u) − W (u0), W (u) = W 1
0 (u) + |{u > 0} ∩ B1|,

where W 1
0 as in (1.3). The Weiss monotonicity (1.4) and the coarea formula imply that for

any u ∈ H1(B1), r 	→ E(ur ) is absolutely continuous on r ∈ (0, 1) and satisfies

d

dr
E(ur ) = n

r
(E(zr ) − E(ur )) + 1

r

∫
∂ B1

r2|∂r ur |2 for a.e.r ∈ (0, 1), (1.6)

where zr (x) = |x |ur (x/|x |) is the 1-homogenous extension of ur . Note in particular if
u ∈ H1(B1) minimizes J , then r 	→ E(ur ) is increasing on [0, 1].

Write u0(x = rθ) = rσ(θ), 	 = {σ > 0} ⊂ B1, and C	 = {u0 > 0}, and ν(x) for the
outer normal of 	 ⊂ B1. Given ξ : ∂	 → R, with ||ξ ||C0 sufficiently small depending only
on 	, we can define a new domain 	ξ as a perturbation of 	, with boundary given by

∂	ξ = {cos(ξ(θ))θ + sin(ξ(θ))ν(θ) : θ ∈ ∂	}.
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If ξ : 	 ∩ AR,ρ → R, then we define conical graph

GC	(ξ) ∩ AR,ρ = ∪{r	ξr : r ∈ (ρ, R)}.
Here AR,ρ(x) = BR(x) \ Bρ(x). Write λ	

i for the Dirichlet eigenvalues of 	, and φ	
i for

the corresponding L2(	)-ON eigenfunctions. We prove in Sect. 3 the following. Recall that
E(u) = W (u) − W (u0) ≡ W (u) − W (rσ).

Theorem 1.3 (Symmetric log-epi for Alt–Caffarelli near smooth cones) There are constants
δ(σ ), ε(σ ) > 0, γ (σ ) ∈ [0, 1), so that the following holds.

Let ξ ∈ C2,α(∂	), z ∈ H1(∂ B1), be such that {z > 0} = 	ξ and

||z − σ ||H1(∂ B1)
< δ, ||ξ ||2,α < δ. (1.7)

Then there is an h ∈ H1(B1) with h|∂ B1 = z, so that

E(h) − E(r z) ≤ −ε|E(r z)|1+γ . (1.8)

Theorem 1.3 implies that if u ∈ H1(B1) minimizes J and satisfies

sup
r∈(ρ,1)

||ur − u0||H1(∂ B1)
≤ δ, and (1.9)

∂{u > 0} ∩ A1,ρ = GC	(ξ) ∩ A1,ρ, sup
r∈(ρ,1)

||ξr ||C2,α(	) ≤ δ, (1.10)

for some ρ ∈ [0, 1/2], then
E(ur ) ≤ E(zr ) − ε|E(zr )|1+γ ∀r ∈ (ρ, 1). (1.11)

So for a.e. r ∈ (ρ, 1), E(ur ) satisfies both a monotonicity formula (1.6) like (1.1) and a
symmetric log-epiperimetric inequality (1.11) like (1.2). Our growth-decay Theorem 2.2
immediately implies:

Theorem 1.4 (Growth–Decay estimates near smooth cones) There are c(σ ), β(σ ) > 0 so
that if u ∈ H1(B1) minimizes J and satisfies (1.9), (1.10) for some ρ ∈ [0, 1/2] (and δ, γ as
in Theorem 1.3), and ρ′ ∈ [ρ, 1] is chosen so that E(ur ) ≤ 0 for r ∈ [ρ, ρ′] and E(ur ) ≥ 0
for r ∈ [ρ′, 1], then we have the decay-growth estimates

∫ max{r ,ρ′}

max{s,ρ′}
||∂r ur ||L2(∂ B1)

dr ≤
{

c(
[E(1)+

] γ−1
2 + δγ log(1/r)

1−γ
2γ )−1 γ > 0

c
[E(1)+

] 1
2 r

β
2 γ = 0

, (1.12)

∫ min{r ,ρ′}

min{s,ρ′}
||∂r ur ||L2(∂ B1)

dr ≤
{

c(
[E(ρ)−

] γ−1
2 + δγ log(s/ρ)

1−γ
2γ )−1 γ > 0

c
[E(ρ)−

] 1
2 (ρ/s)

β
2 γ = 0

, (1.13)

for every ρ ≤ s < r ≤ 1, and hence we have the Dini estimate
∫ 1

ρ

||∂r ur ||L2(∂ B1)
dr ≤ c(

[E(ρ)−
] 1−γ

2 + [E(1)+
] 1−γ

2 ). (1.14)

A key point is that no sign of E is assumed anywhere, and so no a priori assumptions
on the singular set in Bρ are required, but on the other hand one may have both decay and
growth in r depending on the sign of E . (1.12), (1.13) recover the uniqueness of blow-ups
with isolated singularities as proven by [12], and also establish uniqueness of the same kinds
of blow-downs (Corollary 3.3). Additionally, when combined with the ε-regularity of [1],
(1.14) implies u stays close to u0 while the energy |E| stays small. Precisely, in Theorem 3.1,
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we show that if u satisfies (1.9), (1.10) with ρ = 1/2 and δ(ε, σ ) sufficiently small, and we
have

|E(ur )| ≤ δ(ε, σ ) ∀r ∈ (ρ′′/2, 1)

for some ρ′′ ∈ [0, 1/2], then we can deduce (1.9), (1.10) holds with ρ′′ in place of ρ and ε

in place of δ. In Theorem 3.5 we show how this “propogation of closeness” can be used in
blow-up arguments to prove local structure from global rigidity properties.

In Sect. 2 we prove an abstract decay-growth estimate, which shows how themonotonicity
formula (1.1) and the symmetric epiperimetric inequality (1.2) imply a differential inequality
for E . In Sect. 4 we explain how to prove and apply the symmetric epiperimetric inequality
to the obstacle problem, and in Sect. 5 we adapt the symmetric epiperimetric inequality to
almost-minimizing currents. The setups and applications are similar to the Example above,
but we want to highlight that we can additionally handle almost-minimizing currents defined
only in an annulus (Sect. 5.7), similar to the situation considered in [19].

2 An abstract decay-growth theorem

In this section we prove that the symmetric (log-)epiperimetric inequality, combined with a
monotonicity formula, implies a decay/growth estimate.We allow errors which polynomially
grow or decay.

We shall work in R
n . Fix m ∈ (2 − n,∞). Take r1 < r3, and u ∈ H1(Br3). For r ≤ r3

define the m-homogenously rescaled ur (x) = r−mu(r x) ∈ H1(B1), and for a.e. r ∈ (0, r3)
define zr (x) = |x |mur (x/|x |) ∈ H1(B1) to be the m-homogenous extension of ur .

We shall assume, throughout this section, that the following assumptions hold.

Assumptions 2.1 There are constants �± ≥ 0, α, cE , ε ∈ (0, 1], γ ∈ [0, 1), and an energy
functional E : H1(B1) → [−1, 1], so that the following hold:

(1) Almost-monotonicity: r 	→ E(ur ) is a BVloc function on (r2, r3), and satisfies

d

dr
E(ur ) ≥ cE

r
(E(zr ) − E(ur )) + cE

r

∫
∂ B1

r2|∂r ur |2dHn−1 − �+rα−1 − �−r−α−1

(2.1)

for a.e. r ∈ (r1, r3).
(2) Symmetric (log-)epipimetric + almost-minimizing: for a.e. r ∈ (r2, r3) we have

E(ur ) ≤ E(zr ) − ε|E(zr )|1+γ + �+rα + �−r−α (2.2)

Our main Theorem is the following decay-growth estimate for r∂r ur , which in turn (see
Remark 2.3) controls the differences ||ur − us ||L2(∂ B1)

.

Theorem 2.2 (Decay-growth of r∂r ur ) Under the assumptions (2.1), (2.2), and provided
max{�+rα

3 ,�−r−α
1 } ≤ 1, if we define

G(r) = E(ur ) + 3α−1�+rα − 3α−1�−r−α (2.3)

then the following holds.

(1) G is increasing, and for a.e. r ∈ (r1, r3) satisfies

G ′ ≥ (δ/r)|G|1+γ , (2.4)

for δ = δ(cE , ε, γ, α).
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(2) We have the Dini estimate
∫ r3

r1
||r∂r ur ||L2(∂ B1)

dr

r
≤ c(

[
G(r1)−

] 1−γ
2 + [

G(r3)+
] 1−γ

2 ), (2.5)

where v+ = max{v, 0}, v− = −min{v, 0}, and c = c(cE , ε, γ, α).
(3) If r2 ∈ [r1, r3] is chosen so that G ≤ 0 on [r1, r2] and G ≥ 0 on [r2, r3], then for any

r2 ≤ s ≤ r ≤ r3 we have

∫ r

s
||∂r ur ||L2(∂ B1)

dr ≤
{

c(G(r3)−γ + δγ log(r3/r))
γ−1
2γ γ > 0

cG(r3)
1
2 (r/r3)

δ
2 γ = 0

, (2.6)

while for any r1 ≤ s ≤ r ≤ r2 we have

∫ r

s
||∂r ur ||L2(∂ B1)

dr ≤
{

c((−G(r1))−γ + δγ log(s/r1))
γ−1
2γ γ > 0

c(−G(r1))
1
2 (r1/s)

δ
2 γ = 0

, (2.7)

where c = c(cE , ε, γ, α).

Remark 2.3 It is useful to note the elementary inequality:

||ur − us ||L2(∂ B1)
=

(∫
∂ B1

∣∣∣∣
∫ r

s
∂r ur dr

∣∣∣∣
2

dθ

)1/2

≤
∫ r

s
||∂r ur ||L2(∂ B1)

dr . (2.8)

Remark 2.4 Monotonicity (2.1) by itself only controls the square of the L2 norm:
∫ r3

r1
||r∂r ur ||2L2(∂ B1)

dr

r
≤ c−1

E (G(r3) − G(r1)),

which is insufficient to control the behavior of u across many scales.

Remark 2.5 If one allows the energy E(ur ) to take values outside [−1, 1], then in place of
(2.4) one has the ODE

G ′ ≥ (δ/r)min{|G|1+γ , |G|} a.e.r ∈ (r1, r3). (2.9)

Combining Theorem 2.2 and Remark 2.3, we obtain directly the following.

Corollary 2.6 (Uniqueness at 0 and∞)Under the same hypotheses as Theorem 2.2, if r1 = 0
(and so, necessarily �− = 0), then there is a limit u0 ∈ L2(∂ B1) so that

||ur − u0||L2(∂ B1)
≤

{
c log(r3/r)

γ−1
2γ γ > 0

c(r/r3)
δ
2 γ = 0

∀r < r3. (2.10)

where c, δ > 0 both depend on (cE , ε, γ, α).
On the other hand if r3 = ∞ (and so �+ = 0), then there is a limit u∞ ∈ L2(∂ B1) so

that

||ur − u∞||L2(∂ B1)
≤

{
c log(r/r1)

γ−1
2γ γ > 0

c(r1/r)
δ
2 γ = 0

∀r > r1. (2.11)

If both r1 = 0 and r3 = ∞, then ∂r ur ≡ 0.

123



The symmetric (log-)epiperimetric inequality and… Page 7 of 29 2

Proof of Corollary 2.6 To prove the first statement, by Theorem 2.2 it suffices to show that
G(r) ≥ 0. Otherwise, if we had G(r2) < 0, then for all 0 < r < r2 we would have either

−G(r2) ≤ ((−G(r))−γ + δγ log(r2/r))−1/γ ≤ c(δ, γ ) log(r2/r)−1/γ

or (recalling that |E(ur )| ≤ 1)

−G(r2) ≤ (r/r2)
δ(−G(r)) ≤ (1 + �rα

2 )(r/r2)
δ,

which is a contradiction for sufficiently small r . The second statement follows by a similar
argument. The third statement follows from the first two, and (2.1). ��

Proof of Theorem 2.2 For shorthand we write E(r) = E(ur ), F(r) = E(zr ), λ(r) = �+rα +
�−r−α , and we remark that (2.2) implies

E − λ ≤ F, E ′ ≥ (cE/r)(F − E) − λ/r . (2.12)

We first claim there is a δ′(cE , ε) > 0 so that

E ′ ≥ (δ′/r)|E − λ|1+γ − (2/r)λ (2.13)

for a.e. r ∈ (r1, r3). To prove this, we break into four cases.

(1) F ≥ 0 and E − λ ≥ 0: Then

E ′ ≥ (cE/r)(F − E) − λ/r ≥ (cE/r)(εF1+γ − λ) − λ/r

≥ (cEε/r)|E − λ|1+γ − (2/r)λ.

(2) F ≥ 0 and E − �rα ≤ 0: Then

E ′ ≥ (cE/r)(−E) − λ ≥ (cE/r)|E − λ| − (2/r)λ

≥ (cE/3r)|E − λ|1+γ − (2/r)λ.

(3) F ≤ 0 and |F | ≤ |E − λ|/2: Since λ ≤ 0, we have:

E ′ ≥ (cE/r)(F − (E − λ)) − (2/r)λ ≥ (cE/2r)|E − λ| − (2/r)λ

≥ (cE/6r)|E − λ|1+γ − (2/r)λ.

(4) F ≤ 0 and |F | ≥ |E − λ/2: Then

E ′ ≥ (cEε/r)|F |1+γ − (2/r)λ ≥ (cEε/4r)|E − λ|1+γ − (2/r)λ.

This proves our claim.
Fix δ′′ = min{δ′, 2−γ (1 + 3/α)−1−γ }. Recalling that max{�+rα

3 ,�−r−α
1 } ≤ 1, γ ∈

[0, 1), and �± = 3�±/α, we compute:

G ′ ≥ (δ′′/r)|G − (1 + 3/α)�+rα − (1 − 3/α)�−r−α|1+γ + 2�+rα−1 + 2�−r−α−1

≥ (δ′′2−γ /r)|G|1+γ − (�+rα)1+γ /r − (�−rα)1+γ /r + 2�+rα−1 + 2�−r−α−1

≥ (δ′′2−γ /r)|G|1+γ .

In the second line we used the inequality |a − b|1+γ ≥ 2−γ |a|1+γ − |b|1+γ . This proves
(2.4), with δ = δ′′/2.
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Wework towards proving (2.5). For shorthandwrite ||v|| = ||v||L2(∂ B1)
.We first compute,

noting that G ′ = E ′ + (3/r)λ,
(∫ r

s
||∂r ur ||dr

)2

≤ log(r/s)
∫ r

s

∫
∂ B1

r |∂r ur |2dθdr

≤ c−1
E log(r/s)

∫ r

s
(E ′ + (2/r)λ)dr

≤ c−1
E log(r/s)(G(r) − G(s)) (2.14)

Assume for the moment that γ > 0. For a.e. r ∈ (r2, r3) we have G ′ ≥ (δ/r)G1+γ .
Therefore, for every r2 ≤ s ≤ r < r3 we have

(−1/γ )(G(r)−γ − G(s)−γ ) ≥ δ log(r/s),

and hence

G(s) ≤ (G(r)−γ + δγ log(r/s))−1/γ . (2.15)

Combining (2.14), (2.15), we get∫ r

s
||∂r ur ||dr ≤ c−1/2

E log(r/s)1/2(G(r3)
−γ + δγ log(r3/r))−1/2γ

Let si = e−ei
r3. Choose i ≤ i ′ so that si ′ ≥ r ≥ si ′+1 and si ≥ s ≥ si+1. Then we

estimate
∫ r

s
||∂r ur ||dr ≤

i∑
j=i ′

∫ s j

max{s j+1,r2}
||∂r ur ||dr

≤ c
i∑

j=i ′
log(s j/s j+1)

1/2(G(r3)
−γ + δγ log(r3/s j ))

−1/2γ

≤ c
i∑

j=i ′
e j/2(G(r3)

−γ + δγ e j )−1/2γ

≤ c(G(r3)
−γ + δγ ei ′)(γ−1)/2γ

≤ c(cE , δ, γ )(G(r3)
−γ + δγ log(r3/r))(γ−1)/2γ . (2.16)

In the penultimate line we used the inequality

∞∑
j=i ′

e j/2(a + e j )−β/2 ≤ c(β)(a + ei ′)(1−β)/2

for any β > 1, a ≥ 0, i ′ ≥ 0.
Similarly, if instead r1 < s ≤ r ≤ r2, then we have

−G(r) ≤ ((−G(s))−γ + δγ log(r/s))−1/γ

and hence ∫ r

s
||∂r ur ||dr ≤ c−1

E log(r/s)1/2(−G(s))1/2

≤ c−1
E log(r/s)1/2((−G(r1))

−γ + δγ log(s/r1))
−1/2γ .
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Therefore, taking now si = eei
r1 we can argue as above to get∫ r

s
||∂r ur ||dr ≤ c(cE , γ, δ)((−G(r1))

−γ + δγ log(s/r1))
(γ−1)/2γ . (2.17)

Together, combining (2.16), (2.17) gives theDini estimate (2.5), (2.6) in the casewhen γ > 0.
Assume now γ = 0. Then (2.4) becomes G ′ ≥ (δ/r)|G|. If r2 ≤ s < r < r3, then we

have

G(s) ≤ (s/r)δG(r),

and hence, arguing as before but with si = e−i r3, we have∫ r

s
||∂r ur ||dr ≤ c(cE , δ)G(r3)

1/2(r/r3)
δ/2.

If instead r1 < s < r ≤ r2, then we have

−G(r) ≤ (s/r)δ(−G(s)),

and (arguing as before but with si = eir1)∫ r

s
||∂r ur ||dr ≤ c(cE , δ)(−G(r1))

δ/2(r1/s)δ/2.

This proves (2.5), (2.6) when γ = 0. ��

3 Minimizers of the Alt–Caffarelli functional

We consider here the Alt–Caffarelli functional J as defined in Example 1.2. We shall use the
same notation as Example 1.2, and in particular

(1HM) for the duration of this Section we fix a 1-homogenous minimizer u0(x = rθ) =
rσ(θ) which is regular away from 0.

Recall that as outlined in Example 1.2 the key point is that if u ∈ H1(B1) is a minimizer
for J and satisfies (1.9), (1.10), then for all r ∈ (ρ, 1) we have the monotonicity

d

dr
E(ur ) = n

r
(E(zr ) − E(ur )) + 1

r

∫
∂ B1

r2|∂r ur |2 (3.1)

and (by Theorem 1.3) the symmetric log-epiperimetric inequality

E(ur ) ≤ E(zr ) − ε|E(zr )|1+γ ∀r ∈ (ρ, 1), (3.2)

for E(u) = W (u)− W (u0), W (u) = W 1
0 (u)+ |{u > 0} ∩ B1|, and zr (x) = |x |ur (x/|x |) the

1-homogenous extension of ur . (3.1), (3.2) together with Theorem 2.2 gives a decay-growth
estimates (1.12), (1.13) and the Dini estimate

∫ 1

ρ

||∂r ur ||L2(∂ B1)
dr ≤ c(

[E(ρ)−
] 1−γ

2 + [E(1)+
] 1−γ

2 ). (3.3)

In Sect. 3.6 we prove the symmetric log-epiperimetric inequality (Theorem 1.3). In the
remainder of this Section we highlight and prove several applications. The first and primary
consequence is that regularity and graphicality propogate both outward and inward while the
density remains close to constant.
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Theorem 3.1 (Small density drop implies graphical + estimates) Given η > 0, there are
δ(u0, η), ε(u0) > 0, γ (u0) ∈ [0, 1) so that the following holds. Let u ∈ H1(B1) minimize
J , and suppose there is a 1/4 ≥ ρ ≥ 0 so that

min{||u − u0||L2(∂ B1)
, ||uρ/2 − u0||L2(∂ B1)

} ≤ δ, (3.4)

and

W (u) ≤ W (u0) + δ, W (uρ/2) ≥ W (u0) − δ. (3.5)

Then we have

sup
r∈[ρ,1/2]

||ur − u0||H1(∂ B1)
≤ η, sup

r∈[2ρ,1/2]
||ur − u0||H1(A1,1/2)

≤ η, (3.6)

and we can find a ξ : C	 ∩ A1/2,ρ → R so that

∂{u > 0} ∩ A1/2,ρ = GC	(ξ) ∩ A1/2,ρ, sup
r∈[2ρ,1/2]

||ξr ||C2,α(C	∩A1,1/2)
≤ η. (3.7)

Moreover, we have the Dini estimate
∫ 1/2

ρ

||∂r ur ||L2(∂ B1)
dr ≤ c(u0)δ

(1−γ )/2. (3.8)

Proof Assume that ||u − u0||L2(∂ B1)
≤ δ. The other case is essentially the same. Let ρ∗ be

the least radius so that (3.6), (3.7), (3.8) hold with ρ∗ in place of ρ. By Lemma 3.2, ensuring
δ(η, u0) is sufficiently small, we can assume that ρ∗ ≤ max{ρ, 1/4}. Moreover, ensuring
δ(η′, u0) is small, Lemma 3.2 implies we can assume that

||u1/2 − u0||L2(∂ B1)
≤ η′. (3.9)

Since there is no loss in generality in assuming η(u0) is small, by (3.1) and (3.2) we can
apply Theorem 2.2 with E(v) = W (v) − W (u0) and � = 0 to deduce that

∫ 1/2

ρ∗
||∂r ur ||L2(∂ B1)

dr ≤ c(u0)δ
(1−γ )/2.

From (3.9) and (2.8) we get

||ur − u0||L2(∂ B1)
≤ η′ + c(u0)δ

(1−γ )/2 ∀ρ∗ ≤ r ≤ 1/2.

If ρ∗ > ρ, then provided η′(η, u0), δ(u0, η
′, η) are small we can use Lemma 3.2 to deduce

a contradiction. ��
Lemma 3.2 Given ε > 0, there is a δ(u0, ε) > 0 so that the following holds. Suppose
u ∈ H1(B1) minimizes J , and satisfies

min{||u − u0||L2(∂ B1)
, ||u1/8 − u0||L2(∂ B1)

} ≤ δ, (3.10)

W (u) ≤ W (u0) + δ, W (u1/8) ≥ W (u0) − δ. (3.11)

Then

sup
r∈[1/4,1/2]

||ur − u0||H1(∂ B1)
≤ ε, ||u − u0||H1(A1/2,1/4)

≤ η, (3.12)

∂{u > 0} ∩ A1/2,1/4 = GC	(ξ) ∩ A1/2,1/4, ||ξ ||C2,α(C	∩A1/2,1/4)
≤ ε. (3.13)

Proof Straightforward argument by contradiction, similar to [12, Lemma 4.1]. ��
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Combining Theorems 3.1, 2.2 gives directly uniqueness at at 0 and ∞. We state here only
the uniqueness at ∞; uniqueness at 0 was first proven in [12].

Corollary 3.3 (Uniqueness at infinity)Let u ∈ H1
loc(R

n) be an entire minimizer of J . Suppose,
for some ri → ∞, uri → u0 in L2

loc. Then there are constants γ (u0) ∈ [0, 1), δ(u0) > 0,
C(u), so that

||ur − u0||L2(∂ B1)
≤

{
C log(r)

γ−1
2γ γ > 0

Cr− δ
2 γ = 0

∀r > 1.

Here γ as in Theorem 1.3.

A less obvious corollary is the following one-sided perturbation theorem. [8] have classi-
fied entire minimizers to J which lie to one side of u0 as fitting inside a Hardt–Simon-type
foliation. Specifically, they have shown

Theorem 3.4 [8] There exist regular, entire minimizers u ≤ u0 ≤ u ∈ H1
loc(R

n) to J ,
asymptotic to u0 at infinity, with the property that if u ∈ H1

loc(R
n) is an entire minimizer to J

and u ≤ u0 (resp. u ≥ u0), then either u = u1/t (resp. u = u1/t ) for some t > 0, or u = u0.

By arguing analogously to [9], the following local version of Theorem 3.4 holds.

Theorem 3.5 (Local Liouville-type theorem) Given ε > 0, there is a δ(u0, ε) > 0 so that
the following holds. Let u ∈ H1(B1) minimize J , and suppose that

||u − u0||L2(B1)
≤ δ, u ≤ u0. (3.14)

Then either u = u0, or there is a 0 < t ≤ ε so that

||ur − ur/t ||L2(A1,1/2)
≤ ε ∀t < r ≤ 1. (3.15)

In particular, either ∂{u > 0} = ∂{u0 > 0} ∩ B1, or ∂{u > 0} ∩ B1/2 is regular, and a small
analytic perturbation of ∂{u1/t > 0} ∩ B1/2.

If one assumes u ≥ u0, then the same conclusion holds with u in place of u.

Proof We show there is a 0 ≤ t ≤ ε so that (3.15) holds, where we formally interpret
ur/0 ≡ u0. If t = 0 then u = u0 follows by the strong maximum principle ( [13], or [8]).

Suppose, towards a contradiction, this failed: there is a sequence δi → 0, ui ∈ H1(B1),
so that (3.14) holds with ui , δi in place of u, δ, but (3.15) fails every ui and for every
0 ≤ t ≤ ε. By standard compactness for minimizers of J , we can assume that ui → u0 in
H1

loc(B1) ∩ C0
loc(B1).

For δ′ > 0 to be determined later, let ρi be the least radius so that

|W ((ui )r ) − W (u0)| ≤ δ′ ∀ρi < r < 9/10.

By our convergence ui → u0, we have ρi → 0. By Theorem 3.1, provided we ensure
δ′(u0, ε) sufficiently small, we have

||(ui )r − u0||L2(A1,1/2)
≤ ε/2 ≤ ε ∀2ρi ≤ r ≤ 1. (3.16)

If ρi = 0, then we obtain a contradiction, so we must have ρi > 0 for all i .
Define u′

i = (ui )ρi . Then for every R > 1 and i >> 1, we have

1 = inf{ρ : |W ((u′
i )r ) − W (u0)| ≤ δ′ ∀ρ < r < R}. (3.17)
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Passing to a subsequence, we can assume that u′
i → u′ in H1

loc(R
n) ∩ C0

loc(R
n), for some

minimizer u′ of J . Since every ui ≤ u0, we have u′ ≤ u0, and therefore by Theorem 3.4
either u′ = u0 or u′ = u1/t for some t > 0.

If u′ = u0, then by our convergence u′
i → u′ and the monotonicity of r 	→ W ((u′

i )r ), for
i >> 1 we would have

|W ((u′
i )r ) − W (u0)| ≤ δ′/2 ∀r ∈ (1/2, 2),

which contradicts (3.17). Therefore u′ = u1/t for some t > 0.
From (3.17) we have W (u2/t ) �= 0, and so t ≤ t0 for some t0 depending only on u0.

Therefore, since u is asymptotic to u0 at infinity, there is an R0(u0, ε) so that

||ur/t − u0||L2(A1,1/2)
≤ ε/2 ∀r ≥ R0. (3.18)

On the other hand, by our convergence u′
i → u1/t , we have

||(u′
i )r − ur/t ||L2(A1,1/2)

≤ ε ∀t < r < 2R0 (3.19)

provided i >> 1.
Defining ti = tρi , we deduce from (3.16), (3.18), (3.19) that

||(ui )r − ur/ti ||L2(A1,1/2)
≤ ε ∀ti < r ≤ 1

when i >> 1. This is a contradiction, and finishes the proof of the Theorem. ��

3.6 Proof of symmetric log-epiperimetric

We prove in this Section the symmetric log-epiperimetric inequality of Theorem 1.3 for Alt–
Caffarelli functional (1.5). The proof is in principle a minor modification of the proof of the
standard log-epiperimetric of [12]. However, we choose to give the full proof of Theorem
1.3 here, partly because there are subtleties involving the choice of constants which are non-
obvious even in the original proof, and partly because we can give a more streamlined proof
synthesizing both the standard and the “reverse” epiperimetric inequalities.

Theorem 1.3 is a largely direct consequence of the following two Lemmas, which deal
with the “outer” variation and “inner” variation separately. The first is verbatim to [25], and
the latter is our modified variant of [12].

Lemma 3.7 [25, Lemmas 2.5, 2.6] Let 	′ be a fixed, Lipschitz domain in ∂ B1, and let φi be
eigenfunctions of 	′, with eigenvalues λi satisfying λi − (n − 1) ≥ η > 0 for every i ≥ 2
and some η > 0. There are numbers ρ(n, η), ε(n, η) ∈ (0, 1) so that the following holds.

Let z+ ∈ H1(∂ B1) take the form z+ = ∑∞
i=2 ciφi . Define h+ = ∑∞

i=2 cirαi φi to be the
harmonic extension of z+ to the cone over 	′, and let ψ(r) be the harmonic function in A1,ρ

such that ψ(r = 1) = 1, ψ(r = ρ) = 0. Then ψh+ ∈ H1(B1) satisfies ψh+|∂ B1 = z+ and

W0(ψh+) − W0(r z+) ≤ −εW0(r z+) = −ε|W0(r z+)|.
Lemma 3.8 There are constants δ(σ ), ε(σ ) > 0, γ (σ ) ∈ [0, 1), so that the following holds.

Take ξ ∈ C2,α(∂	), z1 ∈ H1(∂ B1) such that

||z1 − σ ||L2(∂ B1)
≤ δ, ||ξ ||2,α ≤ δ, (3.20)

and assume additionally z1 takes the form z1 = c1φ
	ξ

1 . Then we can find an h1 ∈ H1(B1)

satisfying h1|∂ B1 = z1, so that

W (h1) − W (r z1) ≤ −ε|W (r z1) − W (rσ)|1+γ . (3.21)
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Proof of Theorem 1.3 given Lemmas 3.7, 3.8 Since λ	
1 = n − 1 and 	 is connected (see for

instance [13, Theorem 2.3]), we have λ	
2 > n − 1. Therefore, provided δ(σ ) is sufficiently

small, we have λ
	ξ

2 − (n − 1) ≥ ε0(σ ) > 0.
Write

z = c1φ
	ξ

1 +
∑
i≥2

ciφ
	ξ

i =: z1 + z+.

By our hypotheses and our previous discussion, we can apply Lemma 3.7 to z+ to obtain an
ψh+, ρ, and apply Lemma 3.8 to z1 to obtain an h1.

Define h to be the competitor

h(x) =
{

r z1 + ψh+ ρ ≤ |x | ≤ 1
ρh1(x/ρ) 0 < |x | ≤ ρ

By construction, h ∈ H1(B1), and h|∂ B1 = z and h|∂ Bρ = ρz1. By orthogonality of the φi ,
the facts that {z > 0} = {z1 > 0} and {h+ > 0} ⊂ {r z1 > 0}, and the scaling of W , it’s
straightforward to verify that

W (r z) = W (r z1) + W0(r z+), and

W (h) − W (r z) ≤ ρn(W (h1) − W (r z1)) + W0(ψh+) − W0(r z+).

Since by (1.7) W0(r z+) ≤ c(σ ), we can therefore use Lemmas 3.7, 3.8 to estimate

W (h) − W (r z) ≤ −ρnε1|W (r z1) − W (rσ)|1+γ − ε2|W0(r z+)|
≤ −ρnε1|W (r z1) − W (rσ)|1+γ − (ε2/c)|W0(r z+)|1+γ

≤ −2−1−γ min{ρnε1, ε2/c(σ )}|W (r z) − W (rσ)|1+γ .

This proves Theorem 1.3. ��
Proof of Lemma 3.8 The proof is similar to [12], except to allow for G to be negative we
must modify both positive and negative modes (i.e. ξ⊥± ), and be slightly more careful in our
treatment of the zero modes (i.e. ξ T ). We shall use heavily the notation from [12]. In this
proof ε(σ ), b(σ, ε), δ(σ, ε) are small positive constants ≤ 1 which we shall choose as we go
along, but can a posteriori be fixed. Letters c(σ ), c′(σ ) represent large constants ≥ 1 which
may increase from line to line.

Recall by [12, Lemma 3.6], if v(r , θ) ∈ H1([0, 1] × ∂ B1), then rv(r , θ) ∈ H1(B1)

satisfies

W (rv) =
∫ 1

0
WS(v(r))rn−1dr +

∫ 1

0

∫
∂ B1

(∂rv)2rn+1dθdr , (3.22)

where WS : H1(∂ B1) → R is defined by

WS(w) =
∫

∂ B1

|∇w|2 − (n − 1)w2dθ + Hn−1({w > 0}).

Our competitor h1, like in [12], will take the form h1(r , θ) = rκ(r)φ
	g(r)

1 for some
suitable flows κ(r), g(r , θ). To this end, we recall the functional introduced by [12] G :
C2,α(∂	) × R → R given by

G(ζ, s) = (κ2 + s3)(λ
	ζ

1 − (n − 1)) + Hn−1(	ζ ) − Hn−1(	).
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As shown in [12, Lemma 2.3], provided ||ζ ||2,α ≤ δ(σ ) is sufficiently small, G is well-
defined, analytic, satisfies

G(0, 0) = 0, δG(0, 0) = 0, δ2G(0, 0)[(ζ, r), (η, s)] = δ2G(0, 0)[(ζ, 0), (η, 0)].
The operator δ2G(0, 0)[(ζ, 0), (η, 0)] is a self-adjoint bilinear form on H1/2(∂	), with
eigenvalues λ̄i → ∞, and an L2(∂	)-ON basis of smooth eigenfunctions ζi . Writing
K = span{ζi : λ̄i = 0}, then the kernel of δ2G(0, 0) is K ⊕ R.

Write PK for the L2(∂	)-orthogonal projection to K , and P± for the projection onto
span{ζi : ±λ̄i > 0}. Note that since δ2G(0, 0) has finite index and kernel, we have the
bounds

||PK f ||2,α + ||P+ f ||2,α + ||P− f ||2,α ≤ c(σ )|| f ||2,α
for any f ∈ C2,α(∂	).

Let Y : (K ⊕ R) ∩ U → K ⊥ be the Lyapunov-Schmidt map, defined in a suit-
able (C2,α(∂	) ⊕ R)-neighborhood U of (0, 0). Y is analytic, and satisfies Y (0, 0) = 0,
δY (0, 0) = 0.

[12, (2.8), Section A.5] have shown that

|δ2G(g, s)[(ζ, 0), (ζ, 0)] − δ2G(0, 0)[(ζ, 0), (ζ, 0)]| ≤ (ω(||g||2,α) + c(σ )s3)||ξ ||2H1/2 ,

(3.23)

for some continuous, increasing function ω : [0,∞) → [0,∞) with ω(0) = 0. There is no
loss in assuming that ω(τ) ≥ τ . From [12, Section A] and [6, Lemma 2.8], we have

|δ2G(0, 0)[(ζ, 0), (ζ, 0)| ≤ c(σ )||ζ ||2H1/2 , (3.24)

while from [12, (A13), (A14)] we have the opposite inequality

||ζ ||2H1/2 ≤ n

λ	
2 − (n − 1)

(
|δ2G(0, 0)[(ζ, 0), (ζ, 0)]| +

∫
∂	

ζ 2H∂	dθ

)
. (3.25)

As is well-known (see [13, Theorem 2.3]), since rσ is a 1-homogenous minimizer of
(1.5), λ	

1 = n − 1, 	 is connected, and σ = κφ	
1 for κ chosen so that ∂νσ = −1. From [12,

(2.7)], we have

||φ	ζ

1 − φ	
1 ||L2(∂ B1)

≤ c(σ )||ζ ||L2(∂	),

and therefore, combinedwith (3.20), we deduce |c1−κ| ≤ c(σ )δ. Fix s0 so that c21 = κ2+s30 ,
and note that |s0| ≤ c(σ )δ1/3.

Expand

ξ = [PK (ξ) + Y (ξ, s0)] +
[

P⊥
K (ξ) − Y (ξ, s0)

]
=: ξ T + ξ⊥,

and write

ξ⊥ = P+ξ⊥ + P−ξ⊥ =: ξ⊥+ + ξ⊥− .

Write PK ξ = ∑m
j=1 μ

j
0ζ j , for ζ j spanning K , and write μ0 = (μ1

0, . . . , μ
m
0 ) ∈ R

m .

Define G : Rm × R → R by G(μ, s) = G(
∑m

j=1 μ jζ j + Y (
∑m

j=1 μ jζ j , s)). As shown in
[12], there is a δ′(σ ) > 0 so that provided |(μ, s)| ≤ δ′, G is well-defined, analytic, and
(therefore) satisfies the Łojasiewicz-Simon inequality

|G(μ, s)|1−β ≤ c(σ )|DG(μ, s)|,
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for some β ∈ (0, 1/2]. σ is integrable if and only if β = 1/2 if and only if G ≡ 0. Note also
that DG(μ, s) = 0 implies G(μ, s) = 0.

Since G(0, 0) = 0, we have

|G(μ, s)| ≤ c(σ )|(μ, s)|.
By construction we have |μ0| ≤ c(σ )||ξ ||L2(∂ B1)

≤ c(σ )δ, and |s0| ≤ c(σ )δ1/3. Therefore,
by ensuring δ(σ ) is sufficiently small, we can assume

max{|(μ0, s0)|, |G(μ0, s0)|1−β} ≤ c(σ )δ1/6 ≤ min{δ′/4, κ2/4}. (3.26)

If G(μ0, s0) = 0 define (μ(t), s(t)) ≡ (μ0, s0). Otherwise, let (μ(t), s(t)) solve the
ODE

(μ′(t), s′(t)) = − DG(μ, s)

|DG(μ, s)| , (μ(0), s(0)) = (μ0, s0).

The solutions (μ(t), s(t)) exists smoothly on some positive, maximal time interval [0, t∗),
where either t∗ = ∞, or limt→t∗ |(μ(t), s(t)| = δ′, or limt→t∗ G(μ(t), s(t)) = 0. Since

|(μ(t), s(t)) − (μ0, s0)| ≤ t, |(μ0, s0)| ≤ δ′/4,

we can assume that either t∗ ≥ δ′/2 or limt→t∗ G(μ(t), s(t)) = 0. Note also that

d

dt
G(μ(t), s(t)) = −|DG(μ(t), s(t))| < 0,

and so G(μ(t), s(t)) is decreasing.
If G(μ0, s0) = 0, set b = 0 and η(r) ≡ 0 ≡ b|G(μ0, s0)|1−β(1 − r).
If G(μ0, s0) < 0, then t∗ ≥ δ′/2. Let η(r) = b|G(μ0, s0)|1−β(1 − r). By our choice of

δ above we have |η(r)| ≤ δ′/2 for r ∈ [0, 1], and so μ(η(r)), s(μ(r)) are well-defined on
[0, 1]. We have the bounds

G(μ(η(r)), s(η(r))) − G(μ0, s0) ≤ −
∫ η(r)

0
|DG(μ(t), s(t))|dt

≤ −(1/c)
∫ η(r)

0
|G(μ(t), s(t))|1−βdt

≤ −(1/c)|G(μ0, s0)|1−βη(r)

≤ −(b/c)|G(μ0, s0)|2−2β(1 − r) ∀r ∈ [0, 1].
If G(μ0, s0) > 0, we break into two cases. Define

t1 = sup{t ∈ [0, δ′/2] : G(μ(t), s(t)) ≥ G(μ0, s0)/2}.
If t1 ≥ bG(μ0, s0)1−β , then define η(r) = bG(μ0, s0)1−β(1 − r) as before, and estimate

G(μ(η(r)), s(η(r))) − G(μ0, s0) ≤ −(1/c)
∫ η(r)

0
|G(μ(t), s(t))|1−βdt

≤ −(1/2c)|G(μ0, s0)|1−βη(r)

≤ −(b/c)|G(μ0, s0)|2−2β(1 − r) ∀r ∈ [0, 1].
If t1 < bG(μ0, s0)1−β , then take η(r) : [0, 1] → R to be a smooth, decreasing function
satisfying

η|[0,1/2] = t1, η(1) = 0, |η′| ≤ 3t1.
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In this case we estimate (recalling that 2 − 2β ≥ 1 and b ≤ 1)

G(μ(η(r)), s(η(r))) − G(μ0, s0) = −G(μ0, s0)/2

≤ −(b/2)|G(μ0, s0)|2−2β(1 − r) ∀r ∈ [0, 1/2].

Observe that, however we defined η, we have the bounds |η′(r)| ≤ 3b|G(μ0, s0)|1−β and

G(μ(η(r)), s(η(r))) − G(μ0, s0) ≤ 0 ∀r ∈ [0, 1], (3.27)

G(μ(η(r)), s(η(r))) − G(μ0, s0) ≤ −(b/c)|G(μ0, s0)|2−2β(1 − r) ∀r ∈ [0, 1/2].
(3.28)

Moreover, by (3.26) and our definition of η(r) we have the bounds

|(μ(η(r)), s(η(r)))| ≤ c(σ )δ1/6 ∀r ∈ [0, 1]. (3.29)

Define η−(r) = 1 + a(1 − r)ε. Then

∫ 1

0
(η−(r)2 − 1)rn−1dr = 2aε

n(n + 1)
± c(n)a2ε2 ≥ 4ε/n

provided a(n) is chosen sufficiently large, and ε(n) sufficiently small. Fix a to be thus.
Similarly, define η+(r) = 1 − a′(1 − r)ε, and then

∫ 1

0
(η+(r)2 − 1)rn−1dr = −2a′ε

n(n + 1)
± c(n)a′2ε2 ≤ −4ε/n.

provided we choose and fix a′(n) large, and ensure ε(n) is small.
We define our competitor as follows. First we define

g(r , θ) =
⎡
⎣∑

j

μ j (η(r))ζ j + Y

⎛
⎝∑

j

μ j (η(r))ζ j , s(η(r))

⎞
⎠

⎤
⎦ +

[
η−(r)ξ⊥− + η+(r)ξ⊥+

]

=: gT (r , θ) + g⊥(r , θ),

and then set

h1(x = rθ) = rκ(r)φ
	g(r)

1 (θ), for κ(r)2 = κ2 + s(η(r))3.

From (3.22) and the form of h1, we have

W (h1) − W (r z) =
∫ 1

0
(G(g(r), s(η(r))) − G(ξ, s0))r

n−1dr (3.30)

+
∫ 1

0

∫
∂ B1

(∂r (h1(r)/r))2rn+1dθdr . (3.31)

Provided δ(σ ) is sufficiently small, we have

(∂r g)2 ≤ c(σ )|η′(r)|2 + c(σ )ε2(|ξ⊥− (r , θ)|2 + |ξ⊥+ (r , θ)|2),
κ ′(r)2 ≤ c(σ )|η′(r)|2
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and therefore, using [12, (2.7)], we deduce
∫

∂ B1

(∂r (h1(r)/r))2dθ ≤ 2κ ′(r)2 + 2κ(r)2
∫

∂ B1

(δφ
g(r)
1 [∂r g(r)])2dθ

≤ c(σ )|η′(r)|2 + c(σ )κ(r)2||∂r g(r)||2L2(∂ B1)

≤ c(σ )b2|G(μ0, s0)|2−2β + c(σ )ε2||ξ⊥||2L2(∂ B1)
. (3.32)

We work towards estimating the first term in (3.31). Write

G(g(r), s(η(r))) − G(ξ, s0)

= [(G(g(r), s(η(r))) − G(μ(η(r)), s(η(r)))) − (G(ξ, s0) − G(μ0, s0)]

+ [G(μ(η(r)), s(η(r))) − G(1)]

=: E⊥(r) + ET (r).

Expand ξ⊥ = ∑
i αiζi ≡ ∑

λ̄i �=0 αiζi .
By considering the Taylor expansion of

t 	→ G(gT (r) + tg⊥(r), s(η(r))),

we deduce there is a τ ∈ (0, 1) so that, provided δ(σ ) is sufficiently small:

G(g(r), s(η(r))) − G(μ(η(r)), s(η(r)))

= δG(gT (r))[(g⊥(r), 0)] + 1

2
δ2G(gT (r) + τg⊥(r))[(g⊥(r), 0), (g⊥(r), 0)]

= 1

2
δ2G(gT (r) + τg⊥(r))[(g⊥(r), 0), (g⊥(r), 0)]

= 1

2
δ2G(0)[(g⊥(r), 0), (g⊥(r), 0)] ± (ω(2||g(r)||2,α) + c(σ )s(η(r))3)||g⊥(r)||2H1/2

= η−(r)2/2
∑
λ̄i <0

λ̄iα
2
i + η+(r)2/2

∑
λ̄i >0

λ̄iα
2
i ± (ω(cδ1/6) + c(σ )δ1/2)||ξ⊥||2H1/2

= −η−(r)2/2
∑
λ̄i <0

|λ̄i |α2
i + η+(r)2/2

∑
λ̄i >0

|λ̄i |α2
i ± 2ω(δ1/7)||ξ⊥||2H1/2 .

In the third line we used [12, (B4)], the fourth we used [12, (2.8), Section A5], and in the
fifth line we used (3.29) to estimate

||g(r)||2,α ≤ c(σ )|μ(η(r))| + c(σ )||ξ ||2,α ≤ c(σ )δ1/6.

Similarly, again taking δ(σ ) is small we can estimate

G(ξ, s0) − G(μ0, s0) = −(1/2)
∑
λ̄i <0

|λ̄i |α2
i + (1/2)

∑
λ̄i >0

|λ̄i |α2
i ± 2ω(δ1/7)||ξ⊥||2H1/2 .

(3.33)

Recalling our choice of η−(r), η+(r), we deduce

∫ 1

0
E⊥(r)rn−1dr ≤ −(2ε/n)

∑
λ̄i �=0

|λ̄i |α2
i + c(σ )ω(δ1/7)||ξ⊥||2H1/2 . (3.34)
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Combining (3.28), (3.32), (3.34), and ensuring b(σ ) is sufficiently small, we deduce

W (h1) − W (r z) ≤ −(b/c)|G(μ0, s0)|2−2β + cb2|G(μ0, s0)|2−2β

− (2ε/n)
∑
λ̄i �=0

|λ̄i |α2
i + (cω(δ1/7) + cε2)||ξ⊥||2H1/2

≤ −(b/2c)|G(μ0, s0)|2−2β − (ε/n)
∑

i

|λ̄i |α2
i

+ (cω(δ1/7) + cε2 − ε/c)||ξ⊥||2H1/2 , (3.35)

for c = c(σ ). In the second inequality we additionally used (3.25) to estimate

∑
i

|λ̄i |α2
i ≥ 1 + minλ̄i �=0 |λ̄i |

2
(|δ2G(0, 0)[(ξ⊥, 0), (ξ⊥, 0)]| + ||ξ⊥||2L2)

≥ (1/c(σ ))||ξ⊥||2H1/2 .

Recall from (3.33) that we have (ensuring δ(σ ) is small):

n(W (r z) − W (rσ)) = G(ξ, s0) − G(μ0, s0) + G(μ0, s0)

= (1/2)
∑

i

λ̄iα
2
i + G(μ0, s0) ± 2ω(δ1/7)||ξ⊥||2H1/2 . (3.36)

If G(μ0, s0) = 0, then we can combine (3.35), (3.36), to estimate

W (h1) − W (r z) ≤ −ε|W (r z) − W (rσ)| + (cω(δ1/7) + cε2 − ε/c)||ξ⊥||2H1/2 (3.37)

≤ −ε|W (r z) − W (rσ)| (3.38)

provided ε(σ ) is small, and δ(σ, ε) is small.
Suppose G(μ0, s0) �= 0. Using (3.24), (3.36), and the inequality |a − b|1+γ ≥

2−γ |a|1+γ − |b|1+γ for any a, b ∈ R, we get

|G(μ0, s0)/n|1+γ ≥ 2−γ |W (r z) − W (rσ)|1+γ

−
∣∣∣∣∣(1/2n)

∑
i

λ̄iα
2
i ± 2ω(δ1/7)||ξ⊥||2H1/2

∣∣∣∣∣
1+γ

(3.39)

≥ 2−γ |W (r z) − W (rσ)|1+γ − c(σ )||ξ⊥||2H1/2 (3.40)

and therefore, writing c′ = c′(σ ),

W (h1) − W (r z) ≤ (−b/c′)|W (r z) − W (rσ)|1+γ (3.41)

+ (c′ω(δ1/7) + c′b + c′ε2 − ε/c′)||ξ⊥||2H1/2 (3.42)

≤ (−b/c′)|W (r z) − W (rσ)|1+γ (3.43)

provided ε(σ ) is small, and δ(σ, ε) is small, and b(σ, ε) is small. ��

4 Obstacle and thin-obstacle problem

Similar results to the ones presented in the previous sections hold for almost minimizers of
the obstacle problem and of the thin-obstacle problem. Since the modification for the thin-
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obstacle problem are essentially already contained in [5], we present here only the statements
and proofs for almost minimizers of the obstacle problem.

4.1 Results for almost minimizers of the obstacle problem

In this section we follow the notations and arguments of [5]. Let B1 be the unit ball in R
n

and consider the functional

Fob(u, W ) := 1

2

∫
W

|∇u|2 dx +
∫

W
u dx,

where we will drop the dependence on the set if W = B1, and the set of admissible functions

Kob := {
u ∈ H1(B1) u ≥ 0 in B1

}
.

Definition 4.1.1 A function u ∈ Kob is a (�, α, r0) almost minimizer of the obstacle problem
in B1 if

Fob(u, W ) ≤ (1 + � rα)Fob(v, W ) ∀v ∈ Kob (4.1)

for all W ⊂⊂ Br (x) ⊂ U with 0 < r < r0.

The relevant energy is given by the Weiss’ boundary adjusted energy

E(u) = W 2
0 (u) +

∫
B1

max{u, 0} −
∫

B1

max{σ, 0},

where σ is a 2-homogeneous global minimizer of the energy. In particular we will assume σ

to belong to the following class:

B := {Q A : Rd → R : Q A(x) = x · Ax, A symmetric non-negative with trA = 1/4}.
It is a simple computation to see that E satisfies the almost monotonicity 2.1 (1) when u is
rescaled as ur (x) = u(r x)/r2 (see for instance [5]); for more details on the properties of the
almost-minimizers of the obstacle and the thin-obstacle problems we refer for instance to [2,
15–17]. So in order to apply Theorem 2.2 we only need to check the symmetric epiperimetric
inequality. This follows as a minor modification of [5, Proposition 3.1], which we outline in
the next section for the reader’s convenience.

Proposition 4.2 (Symmetric epiperimetric inequality for the obstacle problem) Let σ ∈ B.
There are constants δ(σ ), E(σ ) > 0, γ (σ ) ∈ [0, 1), so that the following holds.

Let z ∈ H1(∂ B1) ∩ K be such that

‖z − η‖L2(∂ B1)
≤ δ and |Fob(r z) − Fob(σ )| ≤ E .

Then there is an h ∈ H1(B1) with h|∂ B1 = z, so that

E(h) − E(r2z) ≤ −ε|E(r2z)|1+γ . (4.2)

Using Proposition 4.2 and the monotonicity of E , we can apply once again Theorem 2.2 to
the energy E(ur ) = W2(ur ) to obtain the following uniqueness of blow-ups and blow-down
at singular points. We remark that the uniqueness for blow ups with logarithmic decay had
already been established in [4].
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Corollary 4.3 (Uniqueness of blow-downs for almost minimizers of obstacle problem) Let
u ∈ H1

loc(R
n)be an entire almost minimizer ofFob. Suppose, for someri → ∞, uri → σ ∈ B

in L2
loc. Then there are constants γ (σ ) ∈ [0, 1), δ(σ ) > 0, C(σ ), so that

||ur − u0||L2(∂ B1)
≤

{
C log(r)

γ−1
2γ γ > 0

Cr− δ
2 γ = 0

∀r > 1.

Here γ as in Proposition 4.2.

4.4 Proof of the symmetric epiperimetric inequality Proposition 4.5

The symmetric epiperimetric inequality of Propostion 4.2 follows from the following general
proposition, analogous to [5, Proposition 3.1]. We fixH = L2(∂ B1), K ⊂ H a convex cone,
W = H2(∂ B1).

Proposition 4.5 Let G be a functional satisfying assumptions (SL) and (FL) of Proposition
3.1 in [5], while assumption (ŁS)1 is replaced by

(ŁS’) F has the constrained Łojasiewicz property, that is there are constants γ ∈ ]0, 1/2],
CL > 0, δL > 0 and EL > 0, depending on ψ ∈ W ∩K a critical point of F in K, such that
for every critical point ϕ ∈ S the following inequality holds

∣∣F(u) − F(ψ)
∣∣1−γ ≤ CL‖∇F(u)‖K, (4.3)

for every u ∈ K ∩ W such that ‖u − ϕ‖ ≤ δL and |F(u) − F(ϕ)| ≤ EL .
Then there are constants δ0 > 0 and E > 0, depending only on the dimension and ψ ,

such that: if c ∈ H1(∂ B1) ∩ K satisfies

‖c − ψ‖L2(∂ B1)
≤ δ0 and |F(c) − F(ψ)| ≤ E,

then there exists a function h = h(r , θ) ∈ H1(B1) satisfying h(r , ·) ∈ K, for every r ∈ (0, 1],
and

G(h) − G(φ) ≤ (G(z) − G(φ)) − ε |G(z) − G(φ)|2−2γ (4.4)

where φ(r , θ) := rkψ(θ), z(r , θ) := rkc(θ), ε > 0 is a universal constant and γ > 0 is the
exponent from (ŁS).

Proof The proof is the same as that of [5, Proposition 3.1], where one replaces the choice of
ε2 in equation (3.5) with

|F(u0) − F(ψ)| ≤ 2
∣∣F(u(t)) − F(ψ)

)| for every 0 < t ≤ ε2, (4.5)

and in the last string of inequalities in page 16 one uses (4.3) to replace F(u(t)) − F(ψ)

with |F(u(t)) − F(ψ)|. ��
Proof of Proposition 4.2 The proof follows if we can verify the assumptions of Proposition
4.5. To this aim, we observe that properties (SL) and (F L) hold when we set

G := Fob and F(φ) :=
∫

∂ B1

(|∇θφ|2 − 2d φ2) dHn−1,

1 Property (ŁS) is the same as (ŁS’) without the absolute value in the left hand side of (4.3).
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as explained in the proof of [5, Theorem 1.10]. So we only need to show that property (ŁS’)
holds for F . Even though this property is stronger than property (ŁS), its proof is similar to
that of [5, Proposition 4.4]. So following the reasoning there we let ϕ ∈ S be such that

‖u − ϕ‖2 ≤ 2δ.

Notice that u − ϕ can be uniquely decomposed in Fourier series as u − ϕ = Q− + Q0 + η,
where Q− contains only lower eigenmodes (corresponding to eigenvalues < 2d), Q0 is a
2d-eigenfunction and

η(x) =
∑

{ j :λ j >2d}
c jφ j (x),

which contains only higher eigenmodes (corresponding to eigenvalues > 2d). Thus,

u = Q− + Q0 + ϕ + η and ‖Q−‖2, ‖Q0‖2, ‖η‖2 ≤ 2δ.

We now consider

M := max
x∈M{−2Q−(x) − Q0(x) − ϕ(x)}

and suppose that the maximum is realized at a point xM ∈ M. Notice that since Q− + Q0

is a finite sum of (smooth) eigenfunctions, there is a constant C > 0 (depending onnly on
the dimension) such that ‖Q− + Q0‖L∞ ≤ Cδ. Thus, if M > 0, then xM ∈ {ϕ < Cδ} and
M ≤ Cδ. We now choose δ such that 10Cδ < cd := (2d)− 1

2 and we claim that the function

ũ = 2Q− + Q0 + ϕ + 2M

cd

(
cd − ϕ

)

is non-negative. Indeed, it is sufficient to consider the following two cases:
• on the set {ϕ ≥ 2Cδ}, we have that

ũ =
(
2Q− + Q0 + 1

2
ϕ

)
+ 2M + ϕ

(
1

2
− 2M

cd

)
≥ 0,

since each of the three terms is non-negative;
• on the set {ϕ ≤ 2Cδ}, we have that

ũ ≥ 2Q− + Q0 + ϕ + 2M

cd

(
cd − 2Cδ

) ≥ 2Q− + Q0 + ϕ + M ≥ 0.

Next, using the fact that cd − ϕ is a 2d-eigenfunction (notice that the integral of cd − ϕ

on ∂ B1 vanishes, due to the fact that 2d > 0), we calculate

−(ũ − u) · ∇F(u) =
∫

∂ B1

( − �u − 2du + 1
) (

−Q− + η − 2M

cd
(cd − ϕ)

)
dHd−1

=
∫

∂ B1

( − �u − 2du + 1
)

(η − Q−) dHd−1

=
∫

∂ B1

( − �(Q− + Q0 + η) − 2d(Q− + Q0 + η)
)

(η − Q−) dHd−1

=
∫

∂ B1

(|∇η|2 − λη2
)

dHd−1 −
∫

∂ B1

(|Q−η|2 − λQ2−
)

dHd−1

= 2 (F(η) − F(Q−)) .
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Notice that since the set of eigenvalues is discrete, there is a (spectral gap) constant G(d) > 0
such that |λ j − 2d| ≥ G(λ), whenever |λ j − 2d| > 0. In particular, we have the inequalities

2F(η) =
∑

j :λ j >2d

c2j (λ j − 2d) ≥ G(λ)
∑

j :λ j >λ

c2j = G(λ)‖η‖22

−2F(Q−) = −
∑

j :λ j <2d

c2j (λ j − 2d) ≥ G(λ)
∑

j :λ j >2d

c2j = G(λ)‖Q−‖22

Thus, we get by definition of ‖ · ‖K,

‖∇F(u)‖K ≥ −(ũ − u) · ∇F(u)

‖u − ũ‖2 ≥ 2(F(η) − F(Q−))

2M
cλ

‖cλ − ϕ‖2 + ‖η‖2 + ‖Q−‖2
≥ 2(F(η) − F(Q−))

M 2
cd

(‖cd‖2 + ‖ϕ‖2) + (2G(λ)F(η))
1
2 + (−2G(λ)F(Q−))

1
2

≥ C
F(η) − F(Q−)

M + 3 (F(η) − F(Q−))
1
2

,

(4.6)

where C is a constant depending only on the dimension.
Now, in order to get (4.3), it only remains to estimate M and put together (4.6) and (4.7).

We notice that:

• 2Q−+Q0+ϕ is a (finite) linear combination of (orthonormal and smooth) eigenfunctions
corresponding to eigenvalues ≤ 2d;

• the L2 norm of 2Q− + Q0 + ϕ is bounded by a universal constant.

As a consequence, there is a universal (Lipschitz) constant L , depending only on the
dimension, such that ‖∇(2Q− + Q0 + ϕ)‖L∞(M) ≤ L . Thus, since the negative part
ψ := − inf{(2Q− + Q0 + ϕ), 0} is such that supψ = M is small enough (bounded by
a dimensional constant, as already mentioned above), we get that there is a constant C
(depending on the dimension) such that

‖ψ‖2L2(∂ B1)
≥ C L−d Md+2 = C L−d‖ψ‖d+2

L∞(∂ B1)
.

Since u ≥ 0 on ∂ B1, we have that ψ ≤ η − Q− and so,

Md+2 ≤ C−1Ld (‖η‖22 + ‖Q−‖22
) ≤ 2Ld

CG(λ)
(F(η) − F(Q−)) ,

which, together with (4.6) and (4.7), implies that, if we set γ = 1
d+2 , then

‖∇F(u)‖K ≥ C (F(η) − F(Q−))1−γ .

Using that, by orthogonality, it holds

|F(u) − F(ϕ)| = |F(η) + F(Q−)| ≤ F(η) − F(Q−) , (4.7)

we conclude (4.3). ��

5 Almost-minimizing currents

We are interested here in the regularity properties of almost minimizing currents. Given
α > 0, � ≥ 0, and r0 > 0, an integral n-current T in an open subset U ⊂ R

n+k is called
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(�, α, r0)-almost minimizing in U if

||T ||(W ) ≤ ||T + ∂ R||(W ) + �rn+α (5.1)

for x ∈ sptT , W ⊂⊂ Br (x) ⊂ U with r < r0, and all integral (n+1)-currents R supported in
W . The same definition carries over in the obvious way to integral n-currents in a Riemannian
manifold N n+k .

Analogous to varifolds with bounded mean-curvature, there is a monotonicity formula
(5.2), an Allard-type regularity theorem [3], and a compactness theorem (Lemma 5.6) for
almost-minimizing currents. Recall that the density ratios of T are given by

θT (x, r) := ||T ||(Br (x))

ωnrn
.

Following the computations of [7], we have the inequality
[
θT (x, r) + n�

ωnα
rα

]
−

[
θT (x, s) + n�

ωnα
sα

]
≥ 1

2ωn

∫
Br (x)\Bs (x)

|π⊥
T (y − x)|2

|y − x |n+2 d||T ||(y)

(5.2)

for all Bs(x) ⊂ Br (x) ⊂ U . In particular r 	→ θT (x, r) + n�
ωnα

rα is increasing.
We remark that� scales like r−α , in the following sense: if (ηx,ρ)�T is the pushforward of

T under the translation/dilation map ηx,ρ(y) := (y − x)/ρ, then (ηx,ρ)�T is (�ρα, α, r0/ρ)-
almost minimizing in ηx,ρ(U ). So for the purposes of regularity there is often no loss of
generality in assuming � is small.

Let us also remark that the general compactness/regularity theory of almost-minimizing
currents in N n+k is essentially the same as in R

n+k . For, if g is a C2 Riemannian metric
on B1 ⊂ R

n+k , satisfying |g − geucl |C2 ≤ δ, then (provided δ(n) is sufficiently small) we
have (1 − δ)|x − y| ≤ dg(x, y) ≤ (1 + δ)|x − y|, and B(1−δ)r (x) ⊂ Bg

r (x) ⊂ B(1+δ)r (x),
and for every Br (x) ⊂ B1−10δ there is a normal change of coordinates φx : Bg

(1+δ)r (x) →
Bg

(1+δ)r (x), in which the metric satisfies |(φ∗
x g)(z) − geucl | ≤ c(n)δ|z − x |2. By working in

these normal coordinates (different for each ball one is considering in the almost-minimizing
condition (5.1)), and by using the monotonicity (5.2), it is straightforward to verify that if T
is (�, α, r0)-almost-minimizing in (B1, g), then T is (�+Cδ,min{α, 2}, (1−δ)r0)-almost-
minimizing in (B1−10δ, geucl), for C a constant depending on n,�, ||T ||(B1).

A log-epiperimetric inequality for smooth,minimizing coneswas established by [11], who
used it to prove uniqueness of smooth, multiplicity-one tangent cones for almost-minimizing
currents. We outline here the symmetric log-epiperimetric inequality for smooth cones – the
details are essentially the same as in Sect. 3.

Take Cn ⊂ R
n+k a minimal cone with smooth cross section �. If u : � → �⊥ or

h : C ∩ AR,ρ → C⊥, define the spherical graphing functions

G�(u) =
{

θ + u(θ)

|θ + u(θ)| : θ ∈ �

}
, (5.3)

GC(h) ∩ AR,ρ =
{
|x | x + h(x)

|x + h(x)| : x ∈ C ∩ AR,ρ

}
. (5.4)

For ease of notation write GC(h) = GC(h) ∩ A1,0. Recall that we defined AR,ρ(x) =
BR(x)\Bρ(x), and AR,0(x) = BR(x)\{0}.

By a straightforward adaption of the proof in Sect. 3, one can prove the following sym-
metric log-epiperimetric inequality. We remark that the epiperimetric inequality as stated in
[11] used the C1,α norm, but it is not hard to see that it suffices to consider only the C1 norm.

123



2 Page 24 of 29 N. Edelen et al.

Theorem 5.1 (Symmetric log-epiperimetric inequality for smooth minimal cones) Let Cn ⊂
R

n+k (for n ≥ 2) be a smooth, minimal cone, with cross section � = C ∩ ∂ B1. There exist
ε(C, k), δ(C, k) positive, and a γ (C, k) ∈ [0, 1) so that the following holds.

Let u : � → �⊥ be such that |u|C1 < δ. Then there is a function h ∈ C1(C∩B1\{0},C⊥)

satisfying

h|C∩∂ B1 = u, |x |−1|h| + |∇h| ≤ c(�, k)|u|(1+γ )/2
C1 , (5.5)

so that

Hn(GC(h)) ≤ Hn(GC(z)) − ε|Hn(GC(z)) − Hn(GC(0))|1+γ , (5.6)

where z(x) = |x |u(x/|x |) is the 1-homogenous extension of u. If C is integrable,2 then one
can take γ = 0.

Let T be a (�, α, 1)-almost-minimizing n-current in B1 ⊂ R
n+k satisfying ∂T = 0 and

T �A1,ρ = [GC(u) ∩ A1,ρ], |x |−1|u| + |∇u| ≤ δ,

for C a smooth minimizing cone in R
n+k and some ρ ∈ [0, 1/2]. Provided δ(C, k) is suffi-

ciently small, the coarea formula, the computation [7, (2.5)], and the Hardt–Simon inequality
(see e.g. [23, (11)]) imply that

d

dr
θT (0, r) ≥ n

2r
(θTr (0, r) − θT (0, r)) + 1

4ωnr

∫
�

r2|∂r ur |2 − �rα−1 ∀r ∈ (ρ, 1),

(5.7)

where Tr is the cone over ∂(T �Br ), and ur (x) = r−1u(r x).
On the other hand, from Theorem 5.1 we get the symmetric epiperimetric inequality

θT (0, r) ≤ θTr (0, r) − ε|θTr (0, r) − θC(0)|1+γ + �rα ∀r ∈ (ρ, 1), (5.8)

where Tr denotes the cone over ∂(T �Br ).
Ensuring�, |θT (0, 1)− θC(0)|, |θT (0, ρ)− θC(0)| are sufficiently small (depending only

on n, α), we have by (3.1) that

|θT (0, r) − θC(0)| ≤ 1, ∀r ∈ (ρ, 1).

One can then prove an exact analogue of Theorem 2.2, with� in place of ∂ B1 and θT (0, r)−
θC(0) in place of E(ur ) and θTr (0, r) − θC(0) in place of E(zr ), to deduce the function

G(r) = θT (0, r) − θC(0) + 3α−1�rα

satisfies G ′ ≥ (δ′/r)|G|1+γ as in (2.4), and to deduce the Dini estimate∫
C∩A1,ρ

|∂r (u/r)|r1−n

≤ c(C, α)(|θT (0, 1) − θC(0)|(1−γ )/2

+ |θT (0, ρ) − θC(0)|(1−γ )/2 + �(1−γ )/2). (5.9)

Adirect application is the following analogue ofTheorem3.1 for almost-minimizing currents,
which says that graphicality propagates as long as the density stays close to the density of
the cone (c.f. [21, Theorem 13.1]).

2 As in [11], integrable means that every 1-homogenous Jacobi field on C can be realized by a 1-parameter
family of smooth, minimal cones.
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Theorem 5.2 Let Cn ⊂ R
n+k be a smooth, minimal cone. Given ε, α > 0, there are

�(C, ε, α, k), δ(C, ε, α, k) positive so that the following holds.
Let T be (�, α, 1)-almost-minimizing in B1 ⊂ R

n+k with ∂T = 0, and let ρ ≥ 0, such
that

sptT ∩ A1,1/2 = GC(u) ∩ A1,1/2, |u|C1 ≤ δ (5.10)

θT (0, 1) ≤ θC(0) + δ, θT (0, ρ/2) ≥ θC(0) − δ. (5.11)

Then sptT ∩ A1,ρ = GC(u) ∩ A1,ρ , with |x |−1|u| + |∇u| ≤ ε. Moreover, u admits the
Dini-type estimate

∫
C∩A1,ρ

|∂r (u/r)|r1−n ≤ ε. (5.12)

Proof Same as Theorem 3.1, using theDini estimate (5.9), and Lemma 5.3 in place of Lemma
3.2. ��
Lemma 5.3 Let Cn ⊂ R

n+k be a smooth minimal cone. Given ε, α > 0, there are
�(C, ε, α, k), δ(C, ε, α, k) positive so that the following holds.

Let T be (�, α, 1)-minimizing integral n-current in T with ∂T = 0, and suppose that

sptT ∩ A1,1/2 = GC(u) ∩ A1,1/2, |u|C1 ≤ δ, (5.13)

θT (0, 1) ≤ θC(0) + δ, θT (0, 1/8) ≥ θC(0) − δ. (5.14)

Then sptT ∩ A1,1/4 = GC(u) ∩ A1,1/4, with |u|C1 ≤ ε.

Proof Follows by a straightforward contradiction argument, using Lemma 5.6, [3] and taking
�, δ → 0. ��

Since the other ingredients involved (monotonicity, compactness, partial regularity)
already have direct analogues for the case of almost-minimizers, most of the results in [9]
carry over to almost-minimizers. For example, we have:

Theorem 5.4 (Almost-minimizers near Simons’ cones) Let Cn ⊂ R
n+1 be a minimizing

quadratic hypercone, and let {Sλ}λ be the associated Hardt–Simon foliation (see [10] for
notation). Given ε, α > 0, there is a δ(C, ε, α) > 0 so that the following holds.

Let T be a (δ, α, 1)-almost-minimizing n-current in B1 with ∂T = 0, and suppose that

dH (sptT ∩ B1,C ∩ B1) ≤ δ, (1/2)θC(0) ≤ θT (0, 1/2), θT (0, 1) ≤ (3/2)θC(0).

(5.15)

Then we can find an a ∈ R
n+1, λ ∈ R, q ∈ SO(n + 1), satisfying

|a| + |q − I d| + |λ| ≤ ε, (5.16)

and a C1 function u : (a + q(Sλ)) ∩ B1/2(a) → S⊥
λ , so that

sptT ∩ B1/4 = grapha+q(Sλ)(u) ∩ B1/4, |x − a|−1|u| + |∇u| ≤ ε. (5.17)

If Cn ⊂ R
n+1 is a general smooth (away from 0) area-minimizing hypercone, and one

additionally assumes sptT lies to one side of C, then the same conclusion holds with a =
0, q = I d. Moreover, if T is in fact mass-minimizing, then either sptT = C ∩ B1 or λ �= 0.
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Proof Same as in [9, Theorem 2.8], except with Theorem 5.2 in place of [9, Theorem 13.1],
and Lemma 5.6, [3] in place of Allard’s varifold compactness, regularity. If sptT lies to one
side of C, then since T is assumed to be (almost-)minimizing, one can use the Liouville
theorem of [14] in place of [24], and thereby assume only that C is minimizing. The very
last statment, that sptT = C when T is minimizing and λ = 0, follows from (5.17) and the
strong maximum principle [22]. ��
Theorem 5.5 (Finite diffeotypes of almost-minimizers) Let (N n+1, g) be a closed Rieman-
nian manifold of dimension n + 1 ≤ 8. Given any �,� ≥ 0, α, r > 0, there is a constant
C(N , g,�, α, r , �) so if T is any (�, α, r)-almost-minimizing n-current in (N , g), with
∂T = 0 and having mass ||T ||(N ) ≤ �, then singT is discrete (if n = 7)/ empty (if n ≤ 6),
regT fits into one of C diffeomorphism classes, and sptT fits into one of C bi-Lipschitz
equivalence classes.

Proof Same as [9, Theorem 2.4]. ��
The following compactness theorem for almost-minimizing currents should be standard,

but we were not able to find a reference.

Lemma 5.6 Let Ti be a sequence of (�, α, r0)-almost-minimizing n-currents in U ⊂ R
n+k .

Suppose that

sup
i

||Ti ||(W ) + ||∂Ti ||(W ) < ∞ ∀W ⊂⊂ U .

Then after passing to a subsequence, we can find a (�, α, r0)-almost-minimizing n-current
T so that Ti → T as currents and ||Ti || → ||T || as Radon measures.

Proof The proof that T is (�, α, r0)-almost-minimizing is the same as the proof for Ti , T
being mass-minimizing (see e.g. [21, Chapter 7, Theorem 2.4]). We highlight here how to
showconvergence ||Ti || → ||T ||. Passing to a subsequence i ′, we can assume that ||Ti ′ || → λ,
for some Radon measure λ. Lower-semi-continuity of mass implies ||T ||(W ) ≤ λ(W ) for
all W ⊂⊂ U .

Given x ∈ sptT ∩ U , then by the monotonicity formula (5.2) we have θT (Br (x)) ≥ 1/2
for all r sufficiently small. Arguing as in [21], we have for a.e. r small the inequality

λ(Br (x)) ≤ ||T ||(Br (x)) + �rn+α ≤ (1 + c(n)�rα)||T ||(Br (x)),

which in turn implies

1 = lim
r→0

||T ||(Br (x))

λ(Br (x))

for λ-a.e. x . Since ||T || << λ, the Radon-Nikodyn theorem implies λ = ||T ||. ��

5.7 Currents in an annulus

Lastly we comment on integral n-currents T which may only be defined in an annulus. The
point of this section is that actually no knowledge of T is required inside a small ball to
get good decay-growth estimates in an annulus, provided T still satisfies some reasonable
minimization-type condition. Situations of this kind arise in obstacle minimizing problems
like in [19], and indeed our exposition here gives an alternate approach [19]’s “mesoscale
flatness” theory.Most of the computations and technical details in this section are very similar
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to or the same as the previous section, so here we will give more a brief sketch of the main
ideas and formulas.

We take T to be an integral n-currents in A1,ρ ⊂ R
n+k , for some ρ ∈ (0, 1/2], with

∂T = 0 in A1,ρ and which are (�, α, 1)-almost-minimizing in A1,ρ . T need only be defined

in A1,ρ , and we shall interpret ||T ||(Br ) ≡ ||T ||(Ar ,ρ). In particular θT (0, r) ≡ ||T ||(Ar,ρ )

ωnrn .
We shall additionally assume T satisfies the following “global” almost-minimizing prop-

erty:
{ ||T ||(Br ) ≤ ||S||(Br ) + �rn+α for any integral n-current S in B1

with ∂S = 0 in B1 and spt(S − T ) ⊂ Ar ,ρ
(5.18)

The comparison principle (5.18) arises naturally in obstacle problems like in [19].
By standard slicing theory [21, Section 6.4], for a.e. r ∈ (ρ, 1) the cone Tr over ∂(T �Ar ,ρ)

(taking the boundary in A1,ρ) is an integral n-current in Br with ∂Tr = ∂(T �Ar ,ρ). By the
deformation lemma [21, Section 6.5], we can find an integral n-current Sr supported in ∂ Bρ

with ∂Sr = ∂(Tr�Bρ) and ||Sr ||(∂ Bρ) ≤ c0(n, k)||Tr ||(Bρ) = c0ρnr−n ||Tr ||(Br ).
From assumption (5.18) we deduce that for a.e. r ∈ (Mρ, 1) we have

||T ||(Br ) ≤ (1 + c0ρ
nr−n)||Tr ||(Br ) + �rn+α ≤ 2||Tr ||(Br ) + �rn+α

provided we ensure M(n, k) is suficiently large. By repeating a similar computation to (5.2),
we deduce that
[

θT (0, r)

1 + c0ρnr−n
+ n�

ωnα
rα

]
−

[
θT (0, s)

1 + c0ρns−n
+ n�

ωnα
sα

]
≥ 1

4ωn

∫
Ar,s

|π⊥
T (x)|2

|x |n+2 d||T ||(x).

for all Mρ < s < r < 1. In particular, given any ε > 0 then provided
M(n, k, α, ε)−1,�(n, k, α, ε) are sufficiently small, we have

θT (0, Mρ) − ε ≤ θT (0, r) ≤ θT (0, 1) + ε ∀r ∈ (Mρ, 1). (5.19)

Suppose T additionally satisfies

T �A1,Mρ = [GC(u) ∩ A1,Mρ], |x |−1|u| + |∇u| < δ.

Now for every r ∈ (Mρ, 1), we note that ||Tr ||(Br ) ≤ c1(C, k)rn provided δ(C, k) is suffi-
ciently small, and thereforewe can argue as in the previous section to deduce themonotonicity

d

dr
θT (0, r) ≥ n

2r
(θTr (0, r) − θT (0, r)) + 1

4ωnr

∫
�

r2|∂r ur |2 − c1ρ
nr−n−1 − �rα−1

≥ n

2r
(θTr (0, r) − θT (0, r)) + 1

4ωnr

∫
�

r2|∂r ur |2 − c1Mα−nραr−α−1 − �rα−1

and epiperimetric inequality

θT (0, r) ≤ θTr (0, r) − ε|θTr (0, r) − θC(0)|1+γ + c1Mα−nραr−α + �rα.

Noting that c1Mα−nραr−α−1 ≤ c1M−n , then provided M−1(C, α, k), �(C, α, k) are
sufficiently small and θT (0, 1) ≤ θC(0) + 1/2, θT (0, Mρ) ≥ θC(0) − 1/2, we can prove the
analogue of Theorem 2.2 with ∂ B1 ≡ �, E(ur ) ≡ θT ,ρ(0, r)− θC(0), E(zr ) ≡ θTr ,ρ(0, r)−
θC(0), �+ = �, �− = c1Mα−nρα , to deduce that the function

G(r) = θT (0, r) − θC(0) + 3α−1�rα − 3α−1c1Mα−nραr−α
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satisfies the ODE G ′ ≥ (δ′/r)|G|1+γ as in (2.4), and to deduce the Dini estimate∫
C∩A1,Mρ

|∂r (u/r)|r1−n ≤ c(C, k, α)(|θT ,ρ(0, Mρ) − θC(0)|(1−γ )/2

+ |θT ,ρ(0, 1) − θC(0)|(1−γ )/2)

+ c(C, k, α)(�(1−γ )/2 + M−n(1−γ )/2). (5.20)

We obtain the following variant of Theorem 5.2. Theorem 5.8 below is a “minimizing”
version of [9, Theorem 6.3], and gives an alternate approach to the “mesoscale flatness” of
[19, Theorem 1.9].

Theorem 5.8 Let Cn ⊂ R
n+k be a smooth minimal cone. Given ε, α > 0 there is a

δ(C, k, ε, α) positive so that the following holds. Let ρ ≥ 0, and let T be (δ, α, 1)-almost-
minimizing in A1,δρ with ∂T = 0, and satisfying the global comparison property (5.18), and
for which

T �A1,1/2 = [GC(u) ∩ A1,1/2], |u|C1 ≤ δ

θT (0, 1) ≤ θC(0) + δ, θT (0, ρ/2) ≥ θC(0) − δ.

Then T �A1,ρ = [GC(u) ∩ A1,ρ] with |x |−1|u| + |∇u| ≤ ε. Morevoer, u admits the Dini
estimate ∫

C∩A1,ρ

|∂r (u/r)|r1−n ≤ ε.

Proof Same as Theorem 5.2, using Lemma 5.9, (5.19), (5.20). ��
Lemma 5.9 LetCn ⊂ R

n+k be a smooth minimal cone. Given ε, α > 0, there is a δ(C, ε, α, k)

positive so that the following holds. Let T be (δ, α, 1)-almost-minimizing integral n-current
in A1,δ with ∂T = 0, and suppose that

T �A1,1/2 = [GC(u) ∩ A1,1/2], |u|C1 ≤ δ,

θT (0, 1) ≤ θC(0) + δ, θT (0, 1/8) ≥ θC(0) − δ.

Then

T �A1,1/4 = [GC(u) ∩ A1,1/4], |u|C1 ≤ ε.

Proof Same as Lemma 5.3. ��
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