The Einstein Toolkit Tutorial Server

Steven R. Brandt
Center for Computation and Technology
Louisiana State University
Baton Rouge, LA, USA
0000-0002-7979-2906

Roland Haas
National Center for Supercomputing Applications
University of Illinois
Urbana, IL, USA
0000-0003-1424-6178

Abstract—The Einstein Toolkit is a complex software system
for numerical general relativity, a science domain that includes
colliding black holes, neutron stars, supernovae, etc.

As might be expected for a framework of this size and age
(parts of it are over 20 years old), there is a significant learning
curve to building it, running it, writing new modules for it, etc.
Over the years, the Einstein Toolkit maintainers have given a
number of tutorials for new users.

In recent years, we have created a tutorial server which allows
us to streamline the teaching/learning process through the use of
Jupyter notebooks and docker images. In this paper we describe
the special considerations and adaptations required by the image
and the notebook server that enable us to (1) easily make logins
and manage accounts which streamlines both the classroom and
the independent study experiences, (2) create a simplified but
natural user experience for compiling and developing a complex
C++ application, (3) scale to increasing class sizes.

I. INTRODUCTION

The Einstein Toolkit [1] is a community-driven software
platform of core computational tools to advance and support
research in relativistic astrophysics and gravitational physics.
The Einstein Toolkit comprises several larger sub- projects
which include a self-contained 1D self-force code, two large
scale numerical astrophysics codes based on the Cactus Com-
putational Toolkit (based on the traditional “Carpet” and
the new and experimental “CarpetX” driver), and the Kuibit
analysis and visualization framework. The suite of numerical
astrophysics codes has historically been the major focus of the
toolkit and remains one of the major areas of activity and the
most commonly used component.

Typically, the Einstein Toolkit has two workshops each year
(one in the US and one in Europe) in which training is offered
for students or faculty that have not used the toolkit before.
Basic lessons in compiling, running, and visualizing, as well
as lessons in writing modules for the toolkit are provided. In
addition to these official training events, the toolkit provides
a “Tutorial Server” which students can access year-round.

Over the years, this system has evolved to become a
flexible installation that can run in one of three ways: as a
standalone Jupyter notebook for offline usage, as a JupyterHub
configuration that uses CILogon for authentication for use by

the Tutorial Server, and as a JupyterHub that uses our “Create-
Your-Own-Login” server for workshops or classroom settings
(i.e. the Workshop Server). This latter option has been recently
upgraded to run inside a Docker Swarm to accommodate the
larger class sizes we have experienced since the COVID-19
pandemic (the virtual workshops attracted larger numbers of
students).
We will describe each configuration in detail.

II. THE STANDALONE SERVER

Currently, the tutorial server is stored at https://github.com/
einsteintoolkit/jupyter-et in the tutorial-server directory. For
convenience, it is organized into a set of docker images that
build upon each other.

The base.docker file is the lowest level of the docker
files, installing all the required packages for compiling and
running the toolkit.

In addition, it creates a precompiled build of the toolkit
itself which users can copy into their home directories, thereby
streamlining the compilation and installation phases. This is
the most computationally expensive docker build. By factoring
out this layer of the image, we separate the science layer from
the gateway layers of the infrastructure.

The notebook.docker file adds the basic commands
needed to launch a notebook.

The start-notebook. sh script sets the secret token for
authenticating to the notebook and prints it to the console. Stu-
dents can run this image on their laptop or desktop computers
without need to create a login to the official tutorial server.

III. THE CILOGON SERVER (THE TUTORIAL SERVER)

ClILogon [2] is a federated identity and access management
platform that allows researchers to access cyberinfrastructure
using their home institutions’ credentials. This provides advan-
tages to both users and service providers. For users it avoids
the need to create a dedicated username-password pair and
provides them will a well designed, familiar login interface.
If the home institutions uses dual factor logins, it also adds
a level of security beyond plaintext passwords. For service
providers, CILogon provides a standardized interface to all



identity providers which include universities and also ORCID.
Institutional accounts provide a higher level of trust in the
user’s identity, avoiding creation of accounts on our tutorial
server for anonymous users. ORCID, while only providing
basic identity verification, nevertheless allows for manual
vetting of accounts by inspecting publication records and
possible institutional affiliations.

The CILogon plugin was configured to make it as easy as
possible to administer user accounts on the Tutorial Server.
While CILogon is helpful for managing login credentials, we
did not wish to allow access to just anyone that CILogon can
authenticate (which includes anonymous gmail addresses), so
we built a system to verify and approve CILogon accounts.

In the first step, users attempt to login to our server and get
a custom error page with a link to a PHP form on our main
website (https://einsteintoolkit.org). This form has the user’s
name, email, and institution email prefilled with the correct
values (as CILogon understands them). The user is then asked
to fill out a short essay question describing why they want
access to our server.

The PHP form then notifies the Einstein Toolkit maintainers
of the pending account request via email to a dedicated mailing
list that is monitored by the maintainers. This email contains
all information provided in the PHP form. Maintainers then
vet the request and, if needed, contact the user via email to
obtain more information.

To enable the login, any of our maintainers can add an entry
to a text file served by our main website, which our tutorial
server checks during login. Each entry is a base64 encoding of
an md5 encoding of a lower-case version of the user’s email
address. If this entry is present in the list on our main server,
and the CILogon credentials validate, the user is authorized
and an account is created for the user upon login.

This system enables any of our maintainers, including those
who can’t login to the physical machine hosting the tutorial
server, to grant access to new users.

Typically, the Tutorial Server only needs to provide re-
sources for two or three concurrent users (at most).

IV. THE CREATE-YOUR-OWN-LOGIN SERVER (THE
WORKSHOP SERVER)

For a classroom setting, it is not practical to use the
CILogon system and validate a classroom full of new users
(though we have tried). For a typical class of 30 to 40 users,
this would use up about a half an hour of class time.

Another procedure we have attempted is the tried-and-true
method of handing out slips of paper from a set of pregener-
ated usernames and passwords. Although we always stressed
that the tutorials would not work if students shared accounts,
they invariably did so. Even physics graduate students were
unable to follow this particular instruction. Between this and
problems copying the text from the paper to the screen and
subsequent requests for help we, again, invariably lost about
half an hour of each class time to the process of setting up
accounts.

Finally, we developed the Create-Your-Own-Login authen-
ticator (CYOL) [3] to provide access in a different way. Users

create both a login and a password, and (in addition) must
provide a special code that is only available in the classroom
(written on a whiteboard or chalkboard at the front of the
room). This code can (and should) be changed every day
of class. The CYOL authenticator was previously described
here [4].

This mechanism allows us to onboard an entire room of
students in parallel. Typically, everyone gets logged in within
5 minutes or so.

In response to increased classroom sizes (in part, due to
virtual workshops conducted during the COVID-19 pandemic),
we found the need to expand our server for workshops. Our
local hardware supports 48 cores and 256 GB of ram, but it
has proved inadequate for classes that have sometimes been
as large as 60 students.

Our new system runs on four nodes of our local hard-
ware (but could be configured to use more) which we make
accessible with Docker Swarm [5]. With this setup, one
node serves as head node, and the other three serve as
compute nodes. The source for this setup is available at
stevenrbrandt/swarm-cluster on github (based on
a fork of rcanvil/swarm-cluster).

V. JUPYTER NOTEBOOKS

The Tutorial Server and Workshop Server use Jupyter
notebooks to present users with the steps to download, set
up, compile the Einstein Toolkit, as well as run and analyze a
simulation. Over the years we have experimented with multiple
different formats before settling on Jupyter notebooks, includ-
ing, but not limited to, PDF documents with copy & paste
parts, plain HTML pages, and life-coding, Software-Carpentry
style [6] presentations. PDF, while allowing for mixing text,
images and math, regularly lead to issues when code text could
not be copy & pasted due to the authoring software replacing
input characters with typographical alternatives, for example
replacing two dashes “—-" with a long-dash “~”. HTML on
is severely limited in mixing math and typically cannot be
delivered as a single file. Neither one allows for output of
user input to be dynamically revealed as the users progress
in their tutorial, resulting in output that does not quite match
their input, e.g., showing a different user name or directory
location. Finally any life-coding attempts invariably run into
issues with students falling behind the displayed material or
mistyping commands shown by the instructor. These issues
typically require at least an extra person present to serve as
a helper and even then lead to frustration on the part of the
users who eventually “give up” on the tutorial.

Jupyter notebooks present an elegant solution to these issues
since they allow mixing of command cells with textual and
graphical instruction cells. Most of the commands entered by
students are shell commands, and while Jupyter supports bash
kernels, we require Python kernels to display results of plots
and rendered images. Our notebooks thus make heavy use of
%$%bash cell magic to execute shell commands. In order to
simulate a life terminal we customized $%bash to not buffer
output and added custom Jupyter code [7] to follow output
of long running commands. Instead of relying on external



editors we use Jupyter’s $$writefile magic to create and
modify input parameter files for simulations. A small amount
of precomputed simulation result data is (lossy) encoded in the
notebook and is used to plot student’s results over the expected
results thus providing better and more direct feedback than
static plot would provide.

Together these changes let students create and explore a
simulation inside of the Jupyter notebooks, while using the
same commands used on high-performance clusters in a shell
terminal. The notebooks also serve as a handy reference for
common tasks and thus provide value past the end of the
tutorial.

VI. CLASSES HELD

The Tutorial Server and Workshop Server have been in
use by the Einstein Toolkit community since at least 2017.
Instances have been set up for approximately 2 workshops
per year (one in the US, one in Europe), as well as for year-
round training. Features and capabilities have been evolving
over the years in our effort to streamline training of new users.

The first workshop this year was held at the Universidade de
Aveiro in Portugal, June 19-23; and the second will be held
at the Rochester Institute of Technology in New York, July
17-23.

The Portugal workshop was the first test of the Docker
Swarm described in this paper. In previous years, the tutorials
required helpers to go around the room (or chat online) and
assist students in dealing with technical problems. This year,
for the first time, the helpers remained idle. The system simply
worked. From the standpoint of the instructors, this was the
most effective configuration we have used.

Monitoring tools showed that despite having over fifty
interactive users running jobs at the system, the computational
resources were not overwhelmed, though some slowdown was
observed. In Fig. 1 you see the CPU usage by time of day for
both the head node and the most-used compute node. Each
student ran jobs that used 2 cores. Since we had 144 cores in
total, our CPU resources were more than adequate.

Of the 17 students to respond to the survey, none of
the respondees had technical problems that caused them to
abandon the tutorial server, and only a few (5) reported having
problems of any kind.

A survey conducted after the first workshop made it clear
that most students prefer lectures with embedded hands-on
material (58.8%), while a substantial number prefer lectures
followed by hands-on exercises (35.3%). Only a few (5.9%)
did not appreciate the hands-on exercises.

We also received guidance on which tutorials were more
effective, so we know which ones need tweaking for the
second workshop.

Students particularly appreciated how easy it was to login
(13), that no local software installation was needed (14), and
the ability to scroll back and forth through the notebook cells
(10).

Overall, student satisfaction was high (Fig. 2).

CPU

100 16k

75 12k

ZHW

4k

0 0

06/19/2023, 06/19/2023, 06/19/2023, 06/19/2023, 06/19/2023,
3:00:00 60000 9:00°0( 12:00:00
AM AM AM PM PM

— Ready for etkl ~— Usage for etk — Usage in MHz

CPU

100 40k

50 20k

25 10k
N Awll_k PYAN o

2023 06/19/2023,

ZHWN

06/19/2023, 06/19/2023, 06/19/2023,

6:00:00 9:00°0C 12°:00°00 3:00°00
AM AM AM PM PM

— Ready for etk2 — Usage for etk2 — Usage in MHz

Fig. 1. The usage for the head node (etkl), and the most-used compute node
(etk2).

@ not satisfied at all
@ somewhat satisfied
neither satisfied not disappointed
@ mostly satisfied
@ fully satisfied

Nz

Fig. 2. The level of satisfaction of students who used the tutorial server.

VII. LOAD TESTING

From time to time we have had technical difficulties during
tutorials. Usually, these arise from heavy load. During one
tutorial, a class of 40 students tried to run an OpenMPI job
at the same time. It was only during this exercise that we
discovered that the newly installed OpenMPI was binding
each job to core zero (a new and unexpected behavior of the
software compared to previous years). Even though we had an
80-core machine for this event, only one student could run a
job at a time.

In another class, we had mysterious file issues that caused
compiler failures for a large set of students. For some tutorials,
we attempted a load test where a group of instructors all
logged in to the system and tried to do things at the same
time. However, we were never able to test at the scale of the
classroom and therefore missed many issues.

However, the key realization was that we don’t need to
interact with the Jupyter GUI to test the load on the system.



We can simply run nbconvert in parallel for however
many users we want. We can then measure correctness on
the generated outputs and keep track of how long commands
take to run.

Testing with nbconvert has identified potential problems
with too many students creating and interacting with too many
kernels at the same time. The ZMQ infrastructure underlying
JupyterHub reuses ports and causes random failures. While we
have some ideas of how to handle this problem, at the time
of this writing we are unable to prevent it.

One obvious workaround for this problem would be to
provide replicas of a the JupyterHub frontend. For technical
reasons, we were not able to do this prior to the Portugal
workshop, but the ZMQ port problem was not reported by
any student.

VIII. CONCLUSION

The Einstein Toolkit Community has been running and
maintaining a training portal or Science Gateway since ap-
proximately 2014. This Workshop Server has been refined and
updated through the years to enable live, hands-on training at
each of our two annual events (and some of the adhoc in-
between events). The Tutorial Server has also been offered
for free to any students wishing to make use of it throughout
the year.

The Tutorial Server or Workshop Server typically needs to
provide resources for each student to perform a significant
computation (i.e. a low-resolution evolution of a Tolman-
Oppenheimer-Volkoff star [8], [9]). Providing a streamlined
way to enable students to come to understand the physics
as well as the underlying computational infrastructure has
provided an ongoing challenge.

Future work will focus on improving the scalability and
reliability of this framework as well as increasing the quantity
of lessons (i.e. notebooks).

IX. ACKNOWLEDGEMENTS

The authors would like to acknowledge NSF grants OAC
2004157, 2004879, 2103680, and 1238993 for financial sup-
port. They further express thanks to the Center for Compu-
tation and Technology (CCT) for the use of its virtualized
hardware system and helpful conversations as well as support
provided by Louisiana State University’s HPC consulting ser-
vices. In particular, we extend special thanks to Sai Pinnepalli
at CCT and Phillip Marr at HPC.

REFERENCES

[1] Leonardo Werneck, Samuel Cupp, Thiago Assumpg¢ao, Steven R. Brandt,
Cheng-Hsin Cheng, Peter Diener, Jake Doherty, Zachariah Etienne,
Roland Haas, Terrence Pierre Jacques, Beyhan Karakas, Konrad Topol-
ski, Bing-Jyun Tsao, Miguel Alcubierre, Daniela Alic, Gabrielle Allen,
Marcus Ansorg, Maria Babiuc-Hamilton, Luca Baiotti, Werner Benger,
Eloisa Bentivegna, Sebastiano Bernuzzi, Tanja Bode, Gabriele Bozzola,
Brockton Brendal, Bernd Bruegmann, Manuela Campanelli, Federico
Cipolletta, Giovanni Corvino, Roberto De Pietri, Alexandru Dima, Harry
Dimmelmeier, Rion Dooley, Nils Dorband, Matthew Elley, Yaakoub El
Khamra, Joshua Faber, Giuseppe Ficarra, Toni Font, Joachim Frieben,
Bruno Giacomazzo, Tom Goodale, Carsten Gundlach, Ian Hawke, Scott
Hawley, Ian Hinder, E. A. Huerta, Sascha Husa, Taishi Ikeda, Sai Iyer,
Liwei Ji, Daniel Johnson, Abhishek V. Joshi, Hrishikesh Kalyanaraman,

(2]

(3]
(4]

(5]
(6]

(71
(8]
(91

Anuj Kankani, Wolfgang Kastaun, Thorsten Kellermann, Andrew Knapp,
Michael Koppitz, Nadine Kuo, Pablo Laguna, Gerd Lanferman, Paul
Lasky, Lisa Leung, Frank Loffler, Hayley Macpherson, Joan Masso, Lars
Menger, Andre Merzky, Jonah Maxwell Miller, Mark Miller, Philipp
Moesta, Pedro Montero, Bruno Mundim, Patrick Nelson, Andrea Nerozzi,
Scott C. Noble, Christian Ott, Ludwig Jens Papenfort, Ravi Paruchuri,
Denis Pollney, Daniel Price, David Radice, Thomas Radke, Christian
Reisswig, Luciano Rezzolla, Chloe B. Richards, David Rideout, Matei
Ripeanu, Lorenzo Sala, Jascha A Schewtschenko, Erik Schnetter, Bernard
Schutz, Ed Seidel, Eric Seidel, John Shalf, Ken Sible, Ulrich Sperhake,
Nikolaos Stergioulas, Wai-Mo Suen, Bela Szilagyi, Ryoji Takahashi,
Michael Thomas, Jonathan Thornburg, Chi Tian, Malcolm Tobias, Aaryn
Tonita, Samuel Tootle, Paul Walker, Mew-Bing Wan, Barry Wardell,
Allen Wen, Helvi Witek, Miguel Zilhdo, Burkhard Zink, and Yosef
Zlochower. The einstein toolkit, May 2023. To find out more, visit
http://einsteintoolkit.org.

Jim Basney, Heather Flanagan, Terry Fleury, Jeff Gaynor, Scott Koranda,
and Benn Oshrin. Cilogon: Enabling federated identity and access man-
agement for scientific collaborations. Proceedings of Science, 351:031,
2019.

Steven R. Brandt. Cyolauthenticator: Create your own login authenticator.
https://github.com/stevenrbrandt/cyolauthenticator, 2019.

Patrick Diehl and Steven R Brandt. Interactive c++ code development
using c++ explorer and github classroom for educational purposes.
Concurrency and Computation: Practice and Experience, page €6893,
2020.

Docker swarm, 2014.

Greg Wilson. Software carpentry: Getting scientists to write better code
by making them more productive. Computing in Science & Engineering,
November-December 2006. Summarizes the what and why of Version 3
of the course.

Steven R. Brandt. scrolldown: Keep long running notebook in jupyter
scrolled to the bottom. https://pypi.org/project/scrolldown/, 2019.
Richard C Tolman. Effect of inhomogeneity on cosmological models.
Proceedings of the National Academy of Sciences, 20(3):169-176, 1934.
J. R. Oppenheimer and G. M. Volkoff. On massive neutron cores. Phys.
Rev., 55:374-381, Feb 1939.



