
1

The Einstein Toolkit Tutorial Server
Steven R. Brandt

Center for Computation and Technology

Louisiana State University

Baton Rouge, LA, USA

0000-0002-7979-2906

Roland Haas

National Center for Supercomputing Applications

University of Illinois

Urbana, IL, USA

0000-0003-1424-6178

Abstract—The Einstein Toolkit is a complex software system
for numerical general relativity, a science domain that includes
colliding black holes, neutron stars, supernovae, etc.

As might be expected for a framework of this size and age
(parts of it are over 20 years old), there is a significant learning
curve to building it, running it, writing new modules for it, etc.
Over the years, the Einstein Toolkit maintainers have given a
number of tutorials for new users.

In recent years, we have created a tutorial server which allows
us to streamline the teaching/learning process through the use of
Jupyter notebooks and docker images. In this paper we describe
the special considerations and adaptations required by the image
and the notebook server that enable us to (1) easily make logins
and manage accounts which streamlines both the classroom and
the independent study experiences, (2) create a simplified but
natural user experience for compiling and developing a complex
C++ application, (3) scale to increasing class sizes.

I. INTRODUCTION

The Einstein Toolkit [1] is a community-driven software

platform of core computational tools to advance and support

research in relativistic astrophysics and gravitational physics.

The Einstein Toolkit comprises several larger sub- projects

which include a self-contained 1D self-force code, two large

scale numerical astrophysics codes based on the Cactus Com-

putational Toolkit (based on the traditional “Carpet” and

the new and experimental “CarpetX” driver), and the Kuibit

analysis and visualization framework. The suite of numerical

astrophysics codes has historically been the major focus of the

toolkit and remains one of the major areas of activity and the

most commonly used component.

Typically, the Einstein Toolkit has two workshops each year

(one in the US and one in Europe) in which training is offered

for students or faculty that have not used the toolkit before.

Basic lessons in compiling, running, and visualizing, as well

as lessons in writing modules for the toolkit are provided. In

addition to these official training events, the toolkit provides

a “Tutorial Server” which students can access year-round.

Over the years, this system has evolved to become a

flexible installation that can run in one of three ways: as a

standalone Jupyter notebook for offline usage, as a JupyterHub

configuration that uses CILogon for authentication for use by

the Tutorial Server, and as a JupyterHub that uses our “Create-

Your-Own-Login” server for workshops or classroom settings

(i.e. the Workshop Server). This latter option has been recently

upgraded to run inside a Docker Swarm to accommodate the

larger class sizes we have experienced since the COVID-19

pandemic (the virtual workshops attracted larger numbers of

students).

We will describe each configuration in detail.

II. THE STANDALONE SERVER

Currently, the tutorial server is stored at https://github.com/

einsteintoolkit/jupyter-et in the tutorial-server directory. For

convenience, it is organized into a set of docker images that

build upon each other.

The base.docker file is the lowest level of the docker

files, installing all the required packages for compiling and

running the toolkit.

In addition, it creates a precompiled build of the toolkit

itself which users can copy into their home directories, thereby

streamlining the compilation and installation phases. This is

the most computationally expensive docker build. By factoring

out this layer of the image, we separate the science layer from

the gateway layers of the infrastructure.

The notebook.docker file adds the basic commands

needed to launch a notebook.

The start-notebook.sh script sets the secret token for

authenticating to the notebook and prints it to the console. Stu-

dents can run this image on their laptop or desktop computers

without need to create a login to the official tutorial server.

III. THE CILOGON SERVER (THE TUTORIAL SERVER)

CILogon [2] is a federated identity and access management

platform that allows researchers to access cyberinfrastructure

using their home institutions’ credentials. This provides advan-

tages to both users and service providers. For users it avoids

the need to create a dedicated username-password pair and

provides them will a well designed, familiar login interface.

If the home institutions uses dual factor logins, it also adds

a level of security beyond plaintext passwords. For service

providers, CILogon provides a standardized interface to all



2

identity providers which include universities and also ORCID.

Institutional accounts provide a higher level of trust in the

user’s identity, avoiding creation of accounts on our tutorial

server for anonymous users. ORCID, while only providing

basic identity verification, nevertheless allows for manual

vetting of accounts by inspecting publication records and

possible institutional affiliations.

The CILogon plugin was configured to make it as easy as

possible to administer user accounts on the Tutorial Server.

While CILogon is helpful for managing login credentials, we

did not wish to allow access to just anyone that CILogon can

authenticate (which includes anonymous gmail addresses), so

we built a system to verify and approve CILogon accounts.

In the first step, users attempt to login to our server and get

a custom error page with a link to a PHP form on our main

website (https://einsteintoolkit.org). This form has the user’s

name, email, and institution email prefilled with the correct

values (as CILogon understands them). The user is then asked

to fill out a short essay question describing why they want

access to our server.

The PHP form then notifies the Einstein Toolkit maintainers

of the pending account request via email to a dedicated mailing

list that is monitored by the maintainers. This email contains

all information provided in the PHP form. Maintainers then

vet the request and, if needed, contact the user via email to

obtain more information.

To enable the login, any of our maintainers can add an entry

to a text file served by our main website, which our tutorial

server checks during login. Each entry is a base64 encoding of

an md5 encoding of a lower-case version of the user’s email

address. If this entry is present in the list on our main server,

and the CILogon credentials validate, the user is authorized

and an account is created for the user upon login.

This system enables any of our maintainers, including those

who can’t login to the physical machine hosting the tutorial

server, to grant access to new users.

Typically, the Tutorial Server only needs to provide re-

sources for two or three concurrent users (at most).

IV. THE CREATE-YOUR-OWN-LOGIN SERVER (THE

WORKSHOP SERVER)

For a classroom setting, it is not practical to use the

CILogon system and validate a classroom full of new users

(though we have tried). For a typical class of 30 to 40 users,

this would use up about a half an hour of class time.

Another procedure we have attempted is the tried-and-true

method of handing out slips of paper from a set of pregener-

ated usernames and passwords. Although we always stressed

that the tutorials would not work if students shared accounts,

they invariably did so. Even physics graduate students were

unable to follow this particular instruction. Between this and

problems copying the text from the paper to the screen and

subsequent requests for help we, again, invariably lost about

half an hour of each class time to the process of setting up

accounts.

Finally, we developed the Create-Your-Own-Login authen-

ticator (CYOL) [3] to provide access in a different way. Users

create both a login and a password, and (in addition) must

provide a special code that is only available in the classroom

(written on a whiteboard or chalkboard at the front of the

room). This code can (and should) be changed every day

of class. The CYOL authenticator was previously described

here [4].

This mechanism allows us to onboard an entire room of

students in parallel. Typically, everyone gets logged in within

5 minutes or so.

In response to increased classroom sizes (in part, due to

virtual workshops conducted during the COVID-19 pandemic),

we found the need to expand our server for workshops. Our

local hardware supports 48 cores and 256 GB of ram, but it

has proved inadequate for classes that have sometimes been

as large as 60 students.

Our new system runs on four nodes of our local hard-

ware (but could be configured to use more) which we make

accessible with Docker Swarm [5]. With this setup, one

node serves as head node, and the other three serve as

compute nodes. The source for this setup is available at

stevenrbrandt/swarm-cluster on github (based on

a fork of rcanvil/swarm-cluster).

V. JUPYTER NOTEBOOKS

The Tutorial Server and Workshop Server use Jupyter

notebooks to present users with the steps to download, set

up, compile the Einstein Toolkit, as well as run and analyze a

simulation. Over the years we have experimented with multiple

different formats before settling on Jupyter notebooks, includ-

ing, but not limited to, PDF documents with copy & paste

parts, plain HTML pages, and life-coding, Software-Carpentry

style [6] presentations. PDF, while allowing for mixing text,

images and math, regularly lead to issues when code text could

not be copy & pasted due to the authoring software replacing

input characters with typographical alternatives, for example

replacing two dashes “--” with a long-dash “–”. HTML on

is severely limited in mixing math and typically cannot be

delivered as a single file. Neither one allows for output of

user input to be dynamically revealed as the users progress

in their tutorial, resulting in output that does not quite match

their input, e.g., showing a different user name or directory

location. Finally any life-coding attempts invariably run into

issues with students falling behind the displayed material or

mistyping commands shown by the instructor. These issues

typically require at least an extra person present to serve as

a helper and even then lead to frustration on the part of the

users who eventually “give up” on the tutorial.

Jupyter notebooks present an elegant solution to these issues

since they allow mixing of command cells with textual and

graphical instruction cells. Most of the commands entered by

students are shell commands, and while Jupyter supports bash

kernels, we require Python kernels to display results of plots

and rendered images. Our notebooks thus make heavy use of

%%bash cell magic to execute shell commands. In order to

simulate a life terminal we customized %%bash to not buffer

output and added custom Jupyter code [7] to follow output

of long running commands. Instead of relying on external





4

We can simply run nbconvert in parallel for however

many users we want. We can then measure correctness on

the generated outputs and keep track of how long commands

take to run.

Testing with nbconvert has identified potential problems

with too many students creating and interacting with too many

kernels at the same time. The ZMQ infrastructure underlying

JupyterHub reuses ports and causes random failures. While we

have some ideas of how to handle this problem, at the time

of this writing we are unable to prevent it.

One obvious workaround for this problem would be to

provide replicas of a the JupyterHub frontend. For technical

reasons, we were not able to do this prior to the Portugal

workshop, but the ZMQ port problem was not reported by

any student.

VIII. CONCLUSION

The Einstein Toolkit Community has been running and

maintaining a training portal or Science Gateway since ap-

proximately 2014. This Workshop Server has been refined and

updated through the years to enable live, hands-on training at

each of our two annual events (and some of the adhoc in-

between events). The Tutorial Server has also been offered

for free to any students wishing to make use of it throughout

the year.

The Tutorial Server or Workshop Server typically needs to

provide resources for each student to perform a significant

computation (i.e. a low-resolution evolution of a Tolman-

Oppenheimer-Volkoff star [8], [9]). Providing a streamlined

way to enable students to come to understand the physics

as well as the underlying computational infrastructure has

provided an ongoing challenge.

Future work will focus on improving the scalability and

reliability of this framework as well as increasing the quantity

of lessons (i.e. notebooks).

IX. ACKNOWLEDGEMENTS

The authors would like to acknowledge NSF grants OAC

2004157, 2004879, 2103680, and 1238993 for financial sup-

port. They further express thanks to the Center for Compu-

tation and Technology (CCT) for the use of its virtualized

hardware system and helpful conversations as well as support

provided by Louisiana State University’s HPC consulting ser-

vices. In particular, we extend special thanks to Sai Pinnepalli

at CCT and Phillip Marr at HPC.

REFERENCES

[1] Leonardo Werneck, Samuel Cupp, Thiago Assumpção, Steven R. Brandt,
Cheng-Hsin Cheng, Peter Diener, Jake Doherty, Zachariah Etienne,
Roland Haas, Terrence Pierre Jacques, Beyhan Karakaş, Konrad Topol-
ski, Bing-Jyun Tsao, Miguel Alcubierre, Daniela Alic, Gabrielle Allen,
Marcus Ansorg, Maria Babiuc-Hamilton, Luca Baiotti, Werner Benger,
Eloisa Bentivegna, Sebastiano Bernuzzi, Tanja Bode, Gabriele Bozzola,
Brockton Brendal, Bernd Bruegmann, Manuela Campanelli, Federico
Cipolletta, Giovanni Corvino, Roberto De Pietri, Alexandru Dima, Harry
Dimmelmeier, Rion Dooley, Nils Dorband, Matthew Elley, Yaakoub El
Khamra, Joshua Faber, Giuseppe Ficarra, Toni Font, Joachim Frieben,
Bruno Giacomazzo, Tom Goodale, Carsten Gundlach, Ian Hawke, Scott
Hawley, Ian Hinder, E. A. Huerta, Sascha Husa, Taishi Ikeda, Sai Iyer,
Liwei Ji, Daniel Johnson, Abhishek V. Joshi, Hrishikesh Kalyanaraman,

Anuj Kankani, Wolfgang Kastaun, Thorsten Kellermann, Andrew Knapp,
Michael Koppitz, Nadine Kuo, Pablo Laguna, Gerd Lanferman, Paul
Lasky, Lisa Leung, Frank Löffler, Hayley Macpherson, Joan Masso, Lars
Menger, Andre Merzky, Jonah Maxwell Miller, Mark Miller, Philipp
Moesta, Pedro Montero, Bruno Mundim, Patrick Nelson, Andrea Nerozzi,
Scott C. Noble, Christian Ott, Ludwig Jens Papenfort, Ravi Paruchuri,
Denis Pollney, Daniel Price, David Radice, Thomas Radke, Christian
Reisswig, Luciano Rezzolla, Chloe B. Richards, David Rideout, Matei
Ripeanu, Lorenzo Sala, Jascha A Schewtschenko, Erik Schnetter, Bernard
Schutz, Ed Seidel, Eric Seidel, John Shalf, Ken Sible, Ulrich Sperhake,
Nikolaos Stergioulas, Wai-Mo Suen, Bela Szilagyi, Ryoji Takahashi,
Michael Thomas, Jonathan Thornburg, Chi Tian, Malcolm Tobias, Aaryn
Tonita, Samuel Tootle, Paul Walker, Mew-Bing Wan, Barry Wardell,
Allen Wen, Helvi Witek, Miguel Zilhão, Burkhard Zink, and Yosef
Zlochower. The einstein toolkit, May 2023. To find out more, visit
http://einsteintoolkit.org.

[2] Jim Basney, Heather Flanagan, Terry Fleury, Jeff Gaynor, Scott Koranda,
and Benn Oshrin. Cilogon: Enabling federated identity and access man-
agement for scientific collaborations. Proceedings of Science, 351:031,
2019.

[3] Steven R. Brandt. Cyolauthenticator: Create your own login authenticator.
https://github.com/stevenrbrandt/cyolauthenticator, 2019.

[4] Patrick Diehl and Steven R Brandt. Interactive c++ code development
using c++ explorer and github classroom for educational purposes.
Concurrency and Computation: Practice and Experience, page e6893,
2020.

[5] Docker swarm, 2014.
[6] Greg Wilson. Software carpentry: Getting scientists to write better code

by making them more productive. Computing in Science & Engineering,
November–December 2006. Summarizes the what and why of Version 3
of the course.

[7] Steven R. Brandt. scrolldown: Keep long running notebook in jupyter
scrolled to the bottom. https://pypi.org/project/scrolldown/, 2019.

[8] Richard C Tolman. Effect of inhomogeneity on cosmological models.
Proceedings of the National Academy of Sciences, 20(3):169–176, 1934.

[9] J. R. Oppenheimer and G. M. Volkoff. On massive neutron cores. Phys.

Rev., 55:374–381, Feb 1939.


