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Abstract—Missing or low-quality data regions usually happen
to weather radars. One of the most common situations is beam
blockage or partial beam blockage. Therefore, correction of
weather radar observations that are partially or fully blocked
is an indispensable step in radar data quality control and sub-
sequent quantitative applications, especially in complex terrain
environments such as the western United States. In this article,
we propose a deep learning framework based on generative
adversarial networks (GANSs) for restoring partial beam blockage
regions in polarimetric radar observations using local and global
contextual information. Due to the diverse precipitation types,
blockage conditions, and ground information in different areas,
two radars deployed in two different regions characterized by
different precipitation types are used to demonstrate the proposed
methodology. Both are S-band operational Weather Surveillance
Radar - 1988 Doppler (WSR-88D): KFWS located in Fort Worth,
northern Texas, and KDAX located in Davis, northern California.
For training the GAN model, this article simulates the partial
beam blockage situations by manually cropping observation
sectors of both KDAX and KFWS radar data. The trained
models were tested using independent precipitation events in
Texas and California to demonstrate the model effectiveness in
inpainting “missing” data. In addition, this paper cross-tested
the data with different precipitation features to examine the
generalization capacity of the beam blockage correction models.
The beam blockage correction performance is also compared
with a traditional linear interpolation approach. The results
show that for both domains the continuity of precipitation
observations is greatly improved after applying the deep learning-
based inpainting approach. For the KFWS test data, some visible
discrepancies exist between the results from models trained based
on convective and stratiform precipitation events in Texas and
California, respectively, yet both models outperform the tradi-
tional interpolation method. For the KDAX test data, both the
model trained using the KFWS data from convective precipitation
events in Texas and the model trained using KDAX data from
stratiform precipitation events in California render a similar
performance. Although ground truth is not available for the real
blocked radar data, the repaired observations demonstrated a
great potential for improved quantitative applications.

Index Terms—Radar data inpainting, deep learning, beam
blockage, weather radar.

I. INTRODUCTION

EATHER radar is an indispensable tool for monitoring
precipitation patterns, storm movements, and extreme
weather events such as tornadoes. The information gathered
by weather radar is the most intuitive way to describe various
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weather phenomena. Recent years have also seen advances
in weather radar technology, allowing for the collection of
more detailed and accurate atmospheric conditions. In practice,
however, radar signals are often of low quality or missing due
to physical occlusion and/or radio frequency interference. To
minimize the impact of these problems and other data quality
issues, the radar system employs various techniques such as
adaptive signal processing, advanced calibration methods, and
attenuation correction algorithms.

Nevertheless, a number of radar data problems still exist
even after applying advanced radar processing techniques. The
most common of these is beam blockage or partial beam
blockage (PBB) [1], which is caused by the presence of
physical objects such as tall buildings or mountains within
the radar beam, thus creating a wedge-shaped blind spot at
the back end of the signal beam which can lead to low-
quality application products and inaccurate weather forecasts
and warnings [2]. To mitigate radar beam blockage, weather
radar systems are often placed at elevated locations, such as
on top of hills or high buildings, to reduce the beam blockage
effect. In addition, radar networks are often designed to ensure
that precipitation is detected from multiple angles [3][4][5],
thus improving overlapped coverage areas from multiple radars
and reducing the chances of missing major weather echoes.
Despite these strategies, radar beam blockage can still occur
in some cases, such as when a thunderstorm or tornado
approaches a radar station (i.e., not observed by other radars
in the network environment). In such cases, meteorologists
rely on other sources of weather information, such as ground-
based observations, satellite imagery, or traditional radar image
restoration methods [6]. This article aims to offer a new
strategy for beam blockage correction in weather radar data.

On the other hand, image correction has long been a
research area in the field of computer vision and image
processing. It is a technique used to fill in missing or corrupted
parts of an image by synthesizing new pixels based on the
surrounding pixels. For radar image restoration, many different
approaches have been applied, including traditional interpola-
tion and statistical methods. While interpolation[7] and statisti-
cal methods [8]can be effective for image inpainting, they also
have some limitations and disadvantages. Since interpolation
methods rely on smoothness assumptions and may not be able
to capture the texture and structure information in the image,
they may produce blurry or unrealistic results, especially
when the missing region is large or complex. In addition,
interpolation methods may not work well when the missing
pixels are located at the edges or corners of the image, as they
may introduce artifacts or distortions in the image. Statistical
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methods may not work well when the missing pixels are part of
complex or high-frequency structures, as they may not be able
to capture the details and textures of the image. Also, statistical
methods may require prior knowledge or assumptions about
the image content, which may not always be available or
accurate[9].

In recent years, owing to the latest breakthroughs in deep
learning in the computer vision field, there have been different
advances in image recognition, image classification, image
segmentation, as well as image inpainting [10]. Deep learning-
based image inpainting is a rapidly developing field that
has shown great promise in restoring damaged or missing
image information. Most of the earliest deep learning-based
image inpainting methods were based on autoencoders, which
could learn the low-dimensional representation of images and
then modify the encoded low-dimensional vectors for image
restoration. However, these methods were limited in their
ability to capture the global structure and texture information
of images, and the results were often unsatisfactory. Elad and
Aharon developed a convolutional neural network (CNN) to
learn the mapping from the masked image to the restored
image for image inpainting [11], which achieved promising
results in generating high-quality restored images for simple
images, but it was not able to handle complex image structures
and texture information. Since the introduction of generative
adversarial networks (GANs) [12], GANs are widely used in
various applications including image inpainting. Essentially,
GANs use two deep neural networks: a generator network
and a discriminator network [12]. The generator network could
generate the restored image, while the discriminator network
would evaluate the quality of the restored image and provide
feedback, enabling the generator network to generate a more
realistic restored image. However, one of the limitations is
that the traditional GANs can be unstable and can potentially
produce artifacts in the restored images [13].

CGAN offers several advantages over GAN, primarily the
ability to generate images based on additional input informa-
tion, such as the presence and location of radar beam blockage.
This allows for more accurate and realistic image generation
that takes into account specific input features. In contrast,
GAN only generates images based on random noise input.
Additionally, CGAN is better equipped to handle imbalanced
data distributions that may be present in radar beam blockage
correction tasks. GAN may have difficulty generating high-
quality samples for the minority class i.e., blocked areas,
resulting in a bias towards the majority class i.e., unblocked
areas, and inaccurate correction results. The conditional input
used in CGAN helps to balance the data distribution, ensuring
that both blocked and unblocked areas are equally represented
in the generated output. This article aims to build a conditional
GAN (CGAN) framework for weather radar beam blockage
correction. This CGAN model can more accurately restore the
structure and texture information of images while reducing ar-
tifacts and blur in the restored images, thus is more suitable for
complex weather radar data processing. A specialized model
adapted to the variations of the radar operation environment
is designed to address the unique characteristics of radar data.
The model is trained and tested using weather data collected

from two S-band operational Weather Surveillance Radar —
1988 Doppler (WSR-88D) systems deployed in two different
precipitation regimes: KFWS radar in northern Texas which
is characterized by convective precipitation, and KDAX radar
in northern California, which is typically featured by shal-
low stratiform precipitation. In addition, this paper performs
multifarious blockage simulations to solve beam blockage
correction problems with diverse blockage sizes.

The structure of the remaining sections of this article is as
follows. Section II describes the research domain, dataset, and
data preprocessing before training the deep learning model.
Section III details the Unet++ and CGAN-based deep learning
architecture for radar beam blockage correction. Section IV
analyzes and evaluates the results obtained from different
models. In Section V, a thorough discussion of the correction
model is provided, and Section VI summarized the main
findings of this study.

II. STUDY DOMAIN AND DATASETS

As mentioned, to improve the accuracy and robustness
of the correction model, study domains characterized by
different precipitation features, i.e., convective and stratiform
precipitation, will be selected so as to enrich the radar data
characteristics and enhance the model inpainting capability.
This article selects two distinct regions as study domains.
The first of these is Northern California, characterized by a
Mediterranean climate featuring damp winters and parched
summers. The primary source of precipitation in this region is
derived from Pacific Ocean storms, which frequently generate
stratiform precipitation that is evenly dispersed across a broad
area [14]. In contrast, northern Texas experiences a humid
subtropical climate characterized by hot summers and mild
winters. This arid climate fosters the development of more
powerful, localized storms that generate typical convective
precipitation, which may result in thunderstorms and heavy
downpours [3][4]. Two National Weather Service (NWS)
Weather Surveillance Radar—1988 Doppler (WSR-88D)
radar systems were chosen within the selected study domains,
namely, KDAX radar deployed in Davis near Sacramento
in Northern California, and KFWS radar deployed in the
Dallas-Fort Worth area in northern Texas. Both KDAX
and KFWS are Doppler weather radars that can detect the
velocity and direction of weather objects, including the
location and intensity of the precipitation. Their maximum
detection radius spans approximately 460 km for reflectivity
measurements and 230 km for Doppler measurements
(https://nap.nationalacademies.org/read/10394/chapter/11).
Due to beam broadening and elevated beam height as the
distance from the radar increases [15], only radar data within
the 230 km coverage range are considered in this study. The
range and azimuth angle resolution are 0.25 km and 0.5
degrees, respectively, resulting in a data matrix with a size of
920 x 720 for a full surveillance scan (see Fig. 1a).

It has been determined that the vast majority of deep
learning algorithms demand a substantial quantity of data for
practical training, coupled with the high-resolution nature of
radar imagery that necessitates significant computational re-
sources and time for complete processing, and the challenging
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Fig. 1. Example of the KFWS radar observations at 0555UTC,
March 1, 2018: (a) original reflectivity measurement; (b)
preprocessed reflectivity for a selected subdomain.

task of collecting measurement data free of noise and inter-
ference, we have opted to preprocess the raw data. Initially,
to incorporate more comprehensive precipitation information,
we utilized the KFWS and KDAX radar data from May to
September during 2019-2021 as the training set[16]. During
this stage, a sequence of steps is employed to prepare the
data for further analysis. First, high precipitation information
exceeding 25 dBZ, with a continuous length of 8 km or
more and within a 15-degree range, would be selected for
further analysis. Subsequently, to minimize data uncertainty
and blank or low-quality data included, we have chosen to
crop the original data size to a new subdomain with the
size of 448 (range) x 192 (azimuth), as depicted in Fig.
1(b), which has been sized for facilitating the convolution
operation at a later stage. To enhance the model’s robustness,
we have rotated and flipped the selected subdomain within the
same precipitation event to create pseudo radar observations.
Therein, to focus the algorithm more intently on important data
features and guarantee the PBB simulated area encompasses
uninterrupted precipitation., we assigned that the probability
distribution characterizing the location of the selection center
corresponds to the magnitude distribution of the reflectivity
data contained within the precipitation information during
rotation. After preprocessing, the complete dataset will be
arranged in descending order according to the cumulative
reflectivity information. We extracted the first 10,000 cases
of data from each of the two radars from the preprocessed
dataset as the final dataset. The first 80% of this data will be
allocated for training purposes, and the remaining 20% will
be used for testing.

To expedite the convergence of the training data, decrease
the possibility of overfitting, and simplify the simulation of
PBB masks in the precipitation data, we normalized the
preprocessed precipitation data to conform to the target range
of -1 to 1 using the following normalization equation [17].

o 1.5 x (z —min) 0.5 (1a)

max — min

2z <= —05] = —1 (1b)

zlz>1]=1 (Ic)

Note that the reflectivity values in the raw precipitation data
range between -10 and 60 dBZ. However, we have established
the minimum and maximum limits (i.e., min and max) in
equation (la) as 0 and 60 dBZ, respectively. Consequently,
reflectivity data are linearly scaled to fall within the range
of [-0.5, 1.0], whereas any reflectivity values below 0 dBZ
would be normalized to -1 using (1b), which is because
the convolution operation and edge-filling approach tend to
smooth out image edges, including cloud edges in radar data,
resulting in irregular artifacts in the output feature maps at
the edge locations, which can negatively impact the model’s
training during CNN training [18]. As a result, all precipitation
data that falls below -0.5 was treated as clear day data with
a value of -1 in Eq. 1b. This 0.5 difference will emphasize
the clouds while enabling the model to obtain more effective
gradient information at the edge locations. Finally, Eq. lc
applied a truncated normalization process to incorporate the
dataset’s rare high-reflectivity data outside the normal range.

III. METHODOLOGY

In this section, we will manually simulate the partial beam
blockage for the preprocessed data, followed by an explanation
of the network layer structure and internal data processing
methods. Finally, we will post-process the output data to obtain
the results.

A. PBB Simulation

This subsection outlines the manual creation of beam block-
age conditions for convective and stratiform precipitation data,
wherein specific radial profiles are rendered blank. During the
preprocessing stage, the image center locations are determined
based on the reflectivity scaling probabilities. To create the
PBB mask, a specific region in the center of the image ranging
from 4-16 degrees azimuth and starting position in the range 0-
248 are designated. This PBB mask region is assigned a value
of 1, while the remainder of the data is set to 0. Following this,
the normalized data undergo blockage simulation based on the
prescribed equation as shown in Eq. 2, allowing the neural
network to learn and predict precipitation patterns under these
simulated blockage conditions.

Tmasked = T X (1 —mask) — mask )

Fig. 2 illustrates the manual process of simulating beam
blockage and the variations in the data boundary conditions.
The original data is depicted in (a), where reflectivity informa-
tion is used as an example. A randomly sized mask is shown
in (b). As mentioned earlier, the region corrected by the neural
network often contains artifacts at the edges. To preserve the
details of this portion and prevent unwanted noise, a buffer is
added for smoothing with a range value of 1-5 degrees, i.e., the
portion between the mask and the blank area in the figure. By
fusing Eq. (2), a new image after manual simulation of beam
blockage is obtained, as depicted in (c). This image contains
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Fig. 2. Illustration of PBB simulation process: (a) reflectivity data, i.e., x in Eq. 2; (b) PBB mask i.e., mask in Eq. 2; (c)

simulated data with beam blockage, i.e., T,askeq in EqQ. 2.
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Fig. 3. CGAN-based deep learning framework for weather
radar beam blockage correction.

the original image x, ranging from -1 to 1 at the periphery,
and the simulated mask as clear air minimum data.

Moreover, in conjunction with the reflectivity data exem-
plified earlier, we incorporated two additional radar parame-
ters, namely Doppler velocity and spectrum width, commonly
employed in radar applications. These parameters underwent
similar preprocessing, normalization, and masking procedures
as the reflectivity data, and their details are not enumerated
here. Currently, the model’s input layers entail three data
dimensions ranging from -1 to 1 and a mask dimension ranging
from O to 1, collectively constituting four dimensions.

B. Deep Learning Model Architecture

The workflow of the proposed deep learning model for
weather radar beam blockage correction is shown in Fig.
3. The gray arrows represent the input, the orange arrows
represent the output, and the blue arrows represent the feed-
back layer. As previously stated, the reflectivity, Doppler
velocity, and spectrum width data procured from KDAX and

KFWS radar, which will be fed into the network as the
data layer, undergoes a standardization process, followed by
a PBB simulation as shown in Section II and Section III-
A. To enhance the model’s robustness and generalizability by
enabling it to learn from diverse noises and anomalies during
training, we introduce a Conditional Generative Adversarial
Network (CGAN) as our network architecture [19], necessi-
tating a conditional supervising input layer. In this instance,
we utilize Gaussian distributed data with a mean of 0 and a
standard deviation of 0.5, which is input into the network at
the same size as the radar data, concomitant with the data
layer. Subsequently, the simulated input images and random
seeds undergo several convolution and deconvolution layers
within the generator to extract and generate features from the
input. To this end, we utilize the Unet-based network layer
as the generator, which exhibits commendable performance
in feature extraction and upsampling, which will be detailed
in Section III-B1. The images generated by the generator
subsequently enter the discriminator along with the ground
truth values, which are normalized but not simulated by beam
blockage. Within the discriminator, the image and ground
truth values undergo a sequence of convolution and pooling
operations to extract the final features. These features are then
transformed into binary outputs (i.e., true or false) via a final
fully connected layer to complete the discrimination process,
which is elaborated in Section III-B2. Notably, the discrimi-
nator’s classification results are fed back to the generator to
optimize the loss function via back-propagation, enabling the
generator to generate more realistic images. This adversarial
process continuously improves the model’s performance, as
the generator and discriminator confront each other in this
manner.

1) Generator: As previously stated, the four layers of
data simulated by the PBB are initially inputted into the
generator. To enhance its nonlinearity and interpretability, a
multi-channel convolution process is employed on the input
data within the generator, as illustrated in Fig. 4.

In this process, the input data is a tensor with a size of 448
x 192 x 4, which includes three layers of data representing
reflectivity, Doppler velocity, and spectrum width, along with
one layer of random seed. Initially, a convolution kernel of
size 3 x 3 x 4 with a SAME boundary padding and stride of
1 is utilized for convolution in the horizontal direction. The 4-
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Fig. 4. Multi-channel convolution of input data layers.

dimensional convolution kernel slides across each dimension
of the input image, computes the convolution value for each
position, and generates a 448 x 192 x 4 feature map. The
convolution operation results are summed arithmetically for
these four dimensions to obtain a 448 x 192 x 1 feature
map. Then, ten different convolution kernels are applied in
parallel to extract various features. This process is repeated
ten times to produce ten different feature maps. Finally, these
ten layers of feature maps are superimposed and input into the
Unet-based neural network.

The data characterized by different feature maps are fed
into the Unet-based neural network, where the Unet network
[20] initially developed for image segmentation, exhibits a
typical encoding-decoding architecture. The encoder situated
in the first half leverages the pooling layers for gradual down-
sampling, augmenting resistance against minor perturbations
like image translation and rotation, reducing overfitting risk,
minimizing operation numbers, and amplifying the perceptual
field’s size. The other half is the decoder, which performs
up-sampling using deconvolution layers, thus restoring the
decoded features to their original size and allowing the spatial
and edge information of the input image to be gradually
regained. Consequently, the low-resolution feature maps get
mapped to the pixel-level segmentation result maps. The U-Net
algorithm further compensates for the lost information during
down-sampling at the encoding stage using a skip connection
between the encoder and decoder, which combines the feature
maps at corresponding positions in both processes, equipping
the decoder with additional high-resolution information during
up-sampling, resulting in a more precise recovery of detailed
information in the original image, thus ameliorating the seg-
mentation accuracy.

However, empirical investigations have demonstrated that
the appropriate number of layers of the Unet network required
for various precipitation models is not consistent [21] [22]. To
better capture the global context at different scales for trans-
lating unsampled images, we have implemented an enhanced
model, Unet++ [23], as a generator. This model retains the

benefits of Unet while allowing for the precise integration of
features at varying network levels and a significant reduction
in the number of parameters.

Unet++ is an extension of the original Unet that introduces a
nested and dense skip pathway, enabling the model to capture
multi-scale contextual information by integrating features from
different levels of the network, which improves the model’s
capacity to generate accurate and detailed output images.
Additionally, the dense skip connections in Unet++ augment
the information flow between the encoder and decoder, thereby
facilitating the recovery of more spatial information in the
output image. Moreover, Unet++ utilizes fewer parameters
and is more efficient than other models. Overall, incorporating
Unet++ as the generator for the proposed deep learning model
for weather radar beam blockage correction can enhance its
performance and robustness, where the operation of the data
in the Unet++ based generator network layer is detailed in Fig.
5.

Among these, after the multi-channel convolution operation
of the previous stage, ten feature maps with a size of 448 x
192 will be input. The data will then undergo down-sampling
as illustrated in the left half of Fig. 5. Each down-sampling
computational unit, i.e., the computing module linked to the
down-sampling arrow in the figure, comprises three distinct
components. The initial step of the down-sampling calculating
unit involves a two-dimensional convolution operation, utiliz-
ing a 3 x 3 convolution kernel, along with SAME boundary fill
padding and a stride size of 1. The purpose of This convolution
operation aims to train the kernel weights to detect various fea-
tures across various precipitation events, encompassing cloud
edge features for less intense precipitation data like KDAX
radar data, and cloudiness texture features for more intense
precipitation data such as KFWS radar data [24]. The second
component comprises a Leaky Rectified Linear Unit (Leaky
ReLU) activation layer featuring a negative partial slope of
0.2 that imparts nonlinearity to the linear weighting while
circumventing the issue of vanishing gradients. This results
in a superior fit of the precipitation data distribution in more
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Fig. 5. Unet++ based generator neural network applied in the weather radar beam blockage correction system.

intricate radar data, in line with our model’s requirements. The
third part comprises a maximum pooling layer with a filter
size of 2 x 2. The layer operates by dividing the input image
into several blocks of 2 x 2 size and selecting the maximum
value in each block as the output. Despite the screening of
input data, it still contains a significant amount of noise in the
training data. The maximum pooling aids in extracting critical
features from the input image, while eliminating noise and
superfluous details, resulting in an enhanced restoration effect.
Additionally, the process aids in reducing the spatial dimension
of the feature mapping for large volumes of radar data in the
model, reducing the number of parameters and computational
complexity. The aforementioned process will be repeated five
times in a sequence of down-sampling, where the size of the
radar data is halved while doubling the dimensionality at each
step, which results in a final output of high-dimensional data
with the most distinctive features at the end of down-sampling,
measuring 14 x 6 x 320.

During the decoding stage of upsampling, a skip connection
is established between the down-sampled and up-sampled
computing modules. The primary function of this connec-
tion is to duplicate the data output generated by the down-
sampling pooling layer and combine it with the up-sampling
data in the channel dimension through concatenation, which
results in twice the number of feature maps in the output.
The diminution in feature information during the pooling
procedure of down-sampling necessitates the utilization of
skip connections to integrate the feature maps before down-
sampling with those after up-sampling, thereby preserving the
coherence of image features. Moreover, since our correction
model utilizes precipitation data from targets with distinct
features, feature information at varying scales is required to
capture image features more effectively. Unet++ skip connec-
tions can proficiently extract multiple-scale feature information
by incorporating numerous feature maps and uniting them
through skip connections, thus leading to superior image
reconstruction outcomes. Multiple skip connections can also

diminish the influence of noise in training data and circumvent
overfitting predicaments.

The subsequent process is the upsampling stage on the right
side of Fig. 5, where each upsampling computing module
comprises four components. The first component is the de-
convolution operation with a filter size of 2 x 2, a stride of 2,
and a dilation of 1, which is for increasing the size of the up-
sampled input tensor and restoring it to the original input size
while retaining the feature information of the original image.
In our correction model, as the output of down-sampling is
high-dimensional multi-feature data, deconvolution operation
can also refine the spatial information of the feature map,
thereby enhancing the precision and stability of the model.
However, the deconvolution operation is solely intended to
recover the image dimension and some of the features, and
therefore is not the complete inverse operation of pooling. As
a result, the data copied from the skip connection is necessary
to fill the feature gap effectively. Therefore, a merging process
is needed for these two components in the second part of
the upsampling unit, i.e., the concatenation operation. The
merged data contains both up-sampled and down-sampled
feature information, which can aid the network in better
grasping the contextual and semantic information in the image,
consequently enhancing the accuracy and effectiveness of
image segmentation or restoration. The third component is a
convolutional layer with a filter size of 3 x 3. As the merged
data from the previous stage possesses twice the number
of data channels, we require a multi-channel convolutional
layer with half the number of channels. Lastly, a similar
Leaky ReLU layer is used in down-sampling. This is because
the deconvolution operation results in information loss and
blurring, necessitating this layer following the deconvolution
to increase the nonlinear representation of the network, thereby
improving its ability to recover the details and structure of
the original image. After five upsampling stages, the data will
undergo three-channel convolution with the sigmoid activation
function to obtain the corrected data.
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During training, the generator’s task is to produce output
images that closely resemble the real images and successfully
fool the discriminator. A loss function is employed to train
the generator and update its weight parameters through back-
propagation. Equation (3) specifies the exact function used.

Lo = AEyy.lly — Gz, 2)|] — By log(D(z, G(x, 2)))] 3)

The generator’s loss function is divided into two compo-
nents. The first component is the L1 loss, also known as the
mean absolute error (MAE) loss function. In this function, x
refers to the input data, which is the radar image generated
by PBB simulation, y refers to the corresponding ground truth
image, which is the original radar image, z refers to an input
random seed, which is the Gaussian distribution random seeds
we input, and G is the generator prediction. Thus, this L1
loss measures the average absolute difference between the
predicted image G(z,z) and the ground truth image y for
all input images x, their corresponding ground truth images ¥,
and condition z. The second component is the adversarial loss,
which trains the generator to outsmart the discriminator. Here,
D denotes the discriminator output, and the natural logarithm
is represented by ’log’. The minus sign is used to convert the
maximization problem of the discriminator into a minimization
problem for the generator. This component computes the
average logarithm of the probability that the generator’s output
image G(z, z) can deceive the discriminator D, considering all
input images x and conditions z. In other words, it measures
the discriminator’s discriminatory outcome for the real image
versus the generated image by the generator. In essence, the
objective of the two components of the generator is to impart
the ability to create true and real images which can surpass the
discriminator, while concurrently minimizing the divergence
between the inpainted and ground truth images. To prevent
issues such as overfitting, a hyperparameter lambda value of
8 is incorporated to regulate the weight distribution between
the two components.

2) Discriminator: The corrected radar data of size 448
x 192 x 3 output from the generator will be fed into
the discriminator, along with the ground truth data of the
same dimensions. The specific process is shown in Fig. 6.
The primary processing of the discriminator can be broadly
categorized into four stages, beginning with the convolutional
layer. Similarly to the generator, a filter of 3 x 3 is used
for convolutional processing. However, unlike the generator’s
convolutional layer, which aims to capture various features to
infer missing pixels, the discriminator’s convolutional layer
focuses on detecting the same class of features to facilitate
comparison with the true values. In the case of radar data,
the initial convolutional layers focus on extracting low-level
features such as edges and textures, representing cloud patches
and noise in the data, which allows the subsequent network to
learn higher-level features. The middle layers extract mid-level
features such as shape and structure, which aid in separating
precipitation information from irrelevant details. The latter
convolutional layers extract high-level features that are critical
in comparing precipitation size and location in the target
region. To further improve the generalization ability of the
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Fig. 6. Discriminator network applied in the CGAN-based
weather radar beam blockage correction system.

discriminator and prevent overfitting, the second part of the
discriminator also undergoes a Leaky ReLU layer with a
negative partial slope of 0.2. Next, a dropout layer is needed
to randomly deactivate some neurons to decrease the co-
adaptation between neurons in the network, thus enhancing the
model’s ability to generalize and prevent overfitting. A dropout
layer with the rate of 0.1 employed in our correction model is
beneficial in reducing the discriminator’s reliance on specific
local features, which mitigates the risk of the discriminator be-
ing excessively sensitive to the repaired image. Consequently,
this layer facilitates the discriminator’s comprehension and
characterization of the entire radar image. The fourth part
involves a 2 x 2 pooling operation that can down-sample the
radar image data in the model, thereby extracting the most
important features while reducing the spatial size of the data,
which helps the discriminator to identify the relevant feature
class better. The down-sampling calculating module consisting
of the above four parts is integrated within the discriminator,
resulting in the processed data size of 7 x 3 x 287 after six
layers of this unit. The processed data is then output as 3 x
1 x 287 via the last maximum pooling layer, enabling the
transformation of local information in the image into higher-
level features for the determination of global features in the
final fully connected layer. Subsequently, the feature map
is flattened into a one-dimensional vector and mapped to a
scalar output value ranging from 0 to 1 via the sigmoid fully
connected layer, thus denoting the degree of similarity between
the corrected radar image and the ground truth radar image. A
value closer to 1 indicates higher similarity, whereas a value
closer to O indicates higher dissimilarity. The discriminator
generates real or fake feedback representing the difference
between the restored radar image and the real radar image,
which is then fed to the generator to evaluate the restoration

861
x1
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effectiveness.

To provide better guidance for the generator in generating
more realistic data, a discriminator loss function is used during
training, as expressed in Equation 4.

Lp = —Eq y[log(D(z,y))] = Exllog(l — D(z, G(z, 2)))]
“4)
The loss function of the discriminator can be bifurcated
into two distinct components: the former pertains to the loss
incurred on actual data and their corresponding labels, while
the latter entails the loss on the data and labels generated
by the generator. In the former component, the discriminator
assesses the degree of correspondence between the actual
data and labels through its probability output, denoted as
D(z,y), where x and y correspond to the input data and label,
respectively. As the actual data and labels ought to exhibit high
correspondence, a lower loss function value is obtained when
the probability of the discriminator output approaches 1, with a
minimum value of 0. In the latter component, the loss function
evaluates the degree of correspondence between the generated
data and labels. Here, x refers to input data, z denotes
input random noise, G(z,z) indicates the data and labels
generated by the generator, and D(x, G(x, z)) represents the
probability of the discriminator outputting the generated data
and labels. Since the generated data and labels should have low
correspondence, a smaller loss function value is obtained when
the probability of the discriminator output is closer to 0, with
a minimum value of 0. By fusing these two components, the
discriminator effectively assesses whether the corrected radar
image and ground truth match and outputs the corresponding
probability, which is subsequently employed as a component
of the generator’s loss function to facilitate realistic data
and label generation. Notably, our CGAN-based model trains
the discriminator and the generator in an alternating manner,
where the former is trained first, and its feedback guides the
training of the generator in each iteration round.

C. Post-processing: Merge Output

To better simulate the masked condition in practical sce-
narios and enable a more thorough evaluation of the PBB
component, an overlay merging operation will be executed
once the correction data has been generated. This operation,
as depicted in Fig. 7 with the mask Equation (5), aims to

combine the output of the correction process with the original
data to generate a merged image that represents the corrected
areas within the context of the original image.

Tmerged = Tout X Mmask +x x (1 —mask)

&)

Fig. 7 illustrates the merging process of corrected radar
data and the variations in the data boundary conditions. The
generator produces a corrected radar image as shown in Fig.
7(a), with reflectivity information used as an example. Fig.7(b)
illustrates a merging mask that is of the same size as the
PBB mask layer in the data, as depicted in Fig. 2(b). By
using the first half of the merging equation, the corrected
data that corresponds to the PBB size can be obtained, as
shown in Fig. 7(c). The variable x in the second half of the
equation denotes the corresponding ground truth data, which is
depicted in Fig. 2(a). After the merging operation, a corrected
image containing PBB position information can be obtained,
as shown in Fig. 7(d).

D. Comparison Model

In order to evaluate the effectiveness of the CGAN-based
model, we also included a comparison group that uses a one-
dimensional linear interpolation method for correction. This
method involves performing linear interpolation from the PBB
mask boundary, in dimensions with respect to the azimuth, as
specified in Equation (6).

T — X0

y=yo+ (y1 —Yo)——
Ty — Xo

(6)

In this equation, g and x; represent the known locations
of boundaries, yo and y; represent the precipitation intensity
corresponding to those locations, while z and y represent
the locations and results of the points to be interpolated,
respectively. This formula allows for the estimation of the
value of a point between two known points based on their

respective values.

IV. RESULTS AND EVALUATION

As previously stated, to enhance the adaptability and gener-
alization of the model across various precipitation patterns and
thereby augment the predictive accuracy of the model, a total
of three models were employed. Specifically, these comprise
the convective precipitation CGAN correction model based
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Fig. 8. KFWS test event at 2000UTC, May 16, 2021: (a)-(d) CGAN output with convective (KFWS) training model of random
size, 4°,10° and 16° PBB mask; (e)-(h) CGAN output with stratiform (KDAX) training model of random size, 4°, 10° and 16°
PBB mask; (i) ground truth; (j)-() linear interpolation output of 4°, 10° and 16° PBB mask.

on KFWS data, the stratiform precipitation CGAN correction
model based on KDAX data, and the conventional linear
interpolation correction model. In the interest of concision, we
designate the machine learning algorithm for KDAX training
data as the CA model and for KFWS training data as the TX
model. Therein, two CGAN models have been trained using
10,000 precipitation cases each from KDAX radar and KFWS
radar, obtained from May to September during 2019-2021 in
Northern California and Northern Texas, respectively. As a
result of the varying precipitation intensities in the data sets,
the learning rates of the network layers for the precipitation
features are not uniform, which results in differing conver-
gence rates of the two training models. To address this, the TX
model was trained for 20,000 iterations, and the CA model was
trained for 30,000 iterations, with learning rate decay applied
at 14,000 and 19,000 iterations, respectively.

In order to comprehensively evaluate the performance of the
proposed precipitation correction models, we tested a diverse
set of precipitation data from May 2017 and May 2021. The
test data included random azimuthal PBB masks as well as
fixed angle masks of 4, 10, and 16 degrees to enable more
rigorous evaluation and comparison of the model’s efficacy.
Additionally, we performed cross-testing between the two

CGAN models to identify the efficacy of correcting various
types of precipitation. The same set of tests was also applied
to the linear interpolation comparison group to ensure fair
comparison and evaluation.

To assess the effectiveness of the proposed beam blockage
correction model, this article employed four statistical hypoth-
esis tests to analyze the true positive (TP), false negative (FN),
true negative (TN), and false positive (FP) evaluations. Addi-
tionally, we applied four commonly used evaluation metrics,
namely probability of detection (POD), false alarm rate (FAR),
critical success index (CSI), and Heidke skill score (HSS), to
measure the model’s performance in detail. The calculation
methods for each of these metrics are described below.

TP

POD = 757N (7a)
FP

FAR = 2 b 7P (75)

CsI re (70)

“TPYFN+FP
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Fig. 9. KDAX test event at 0310UTC, May 07, 2017: (a)-(d) CGAN output with convective (KDAX) training model of random
size, 4°,10° and 16° PBB mask; (e)-(h) CGAN output with stratiform (KDAX) training model of random size, 4°, 10° and 16°
PBB mask; (i) ground truth; (j)-(I) linear interpolation output of 4°,10° and 16° PBB mask.

B 2x (TP x TN — FP x FN)
" (TP + FN) x (FN 4+ TN) + (TP 4+ FP) x (FP 4+ TN)
(7d)

HSS

In this context, the predicted values are generated by the
CGAN correction model or linear interpolation, while the
actual values are the ground truth data. To determine true
positives (T'P), both actual and predicted values must be
greater than or equal to a given threshold. False negatives
(F'N) occur when the actual value is greater than or equal to
the threshold, but the predicted value is less than the threshold.
False positives (F'P) occur when the actual value is less than
the threshold, but the predicted value is greater than or equal
to the threshold. Finally, true negatives (I'N) occur when both
the actual and predicted values are less than the threshold. To
evaluate the performance of the PBB correction model, this
study employs four statistical hypothesis tests, namely 7P,
FN, TN, and F P, along with four commonly used evaluation
metrics: the probability of detection (POD), false alarm rate
(FAR), critical success index (CSI), and Heidke skill score
(HSS). The quality of the model’s performance is indicated
by higher POD, CSI, and HSS scores and lower FAR scores,
all of which are calculated within the range of 0 to 1.

Fig. 8 presents the outcome of the KFWS radar observa-
tion with reflectivity data on May 16, 2021, at 20:00 UTC.
Overall, the CGAN correction model demonstrates superior
accuracy to the linear interpolation approach in both scenarios.
Comparing the two CGAN models, it is evident that the TX
model provides more realistic and nonlinear correction than
the CA model, particularly in regions with high precipitation.
However, the CA model is more precise in estimating precip-
itation intensity in low-precipitation areas. Additionally, the
TX model exhibits better cloud edge feature recognition and
processing compared to the CA model, which fails to remove
precipitation and clear air data accurately.

Regarding correcting the precipitation regional center data,
the TX model may overfit, which depends on the magnitude
of the ground truth center data. As the beam blockage angle
increases in this model, some corrected regional center data
becomes inaccurate, although this does not affect the accuracy
of cloud shape and precipitation characteristics. The correction
difference between the radar center point and the far end
appears insignificant as the range of beam blockage becomes
larger.

In contrast, as the beam blockage angle increases in the
CA model, there is an apparent incoherence of precipitation
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Fig. 10. Evaluation results of the beam blockage correction performance for KFWS test data with different inpainting methods,
blockage sizes, and reflectivity thresholds: (a) POD; (b) FAR; (c) CSI; (d) HSS.

information in the correction area, with feature loss in the
center of the large angle mask and corrected data similar
to stratiform precipitation. The correction difference between
the center point and the far end of the radar is noticeable,
primarily in cloud boundary information. Furthermore, the
unfitting of the precipitation model leads to ripple-like data left
by precipitation sampling when a large area of beam blockage
appears.

The linear interpolation comparison model reveals that as
the beam blockage angle increases, the accuracy of precipita-
tion information reduces, and cloud edge information is lost
entirely. Note that this model only guarantees the coherence of
precipitation information, and the accuracy of data and features
is poor.

Overall, the CGAN correction model outperforms the in-
terpolation model in terms of precipitation information co-
herence, accuracy, cloud edge accuracy, and feature integrity.
Both TX and CA models have pros and cons in terms of
data accuracy, with the TX model performing slightly better in
feature reconstruction and cloud edge processing for the con-
vective precipitation cases, but both exhibit higher corrected
performance than the interpolation model.

Fig. 9 depicts the outcomes obtained on May 7, 2017,
at 3:10 UTC, based on the KDAX radar observation with
reflectivity data. Upon comparing the two CGAN models, it
is evident that the CA model can effectively reconstruct the
features of stratified precipitation and reinstate interior and
edge information. In contrast, the TX model exhibits slight
overfitting in the center, leading to the correction of extraneous
detail that is not present in the edge and clear air regions.

In the case of the CA model, simulated precipitation fea-
tures become more pronounced as the beam blockage angle

increases, albeit not entirely restored. However, the corrected
data becomes smoother as the range of beam blockage grows,
with no substantial corrected differences between the distance
to the radar center point and the far end.

For the TX model, an increase in beam blockage azimuthal
angle results in the appearance of convective precipitation
features in small magnitudes, which leads to a slight fraction
of precipitation above the actual value. Furthermore, the model
tends to simulate complex boundary cases at the cloud edge
that differ from the ground truth values when there is a large
blockage angle.

In contrast to the interpolation model, the CGAN correc-
tion model exhibits significantly higher data and cloud edge
accuracy when dealing with large-scale stratified precipita-
tion blockage. While the CA model marginally has better
performance in terms of feature completeness than the TX
model, both models perform well overall in correction and
are superior to the interpolation model.

Upon comparing the outcomes of the two experiments, it is
evident that the CGAN model demonstrates superior corrective
capability over the interpolation model, except for restoring
stratified precipitation with low variation values and small
blockage angles. In addition, the TX model exhibits higher
adaptability and can significantly enhance the accuracy and
comprehensiveness of both its own and CA model corrections.
However, the CA model is solely effective for rectifying
stratiform precipitation.

Figs. 10 and 11 summarize the quantitative assessment
results for different beam blockage angles under various
correction models. Ten test results were randomly selected
from data independent from the training set spanning from
2017 to 2021. The obtained results will undergo evaluation and
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Fig. 11. Evaluation results of the beam blockage correction performance for KDAX test data with different inpainting methods,
blockage sizes, and reflectivity thresholds: (a) POD; (b) FAR; (c) CSI; (d) HSS.

subsequent averaging to derive a comprehensive global evalu-
ation. To emphasize differences in correction performance at
different rainfall intensities, evaluation scores were computed
using three thresholds (15, 25, and 35 dBZ). Fig. 10 reveals
that the correction performance decreases as the blockage
angle and threshold increase. The performance is observed
to decrease progressively in accordance with the same-model
test, cross-model test, and interpolation-model gradient. The
CA model sometimes exhibits less effectiveness than the
interpolation model, which aligns with the conclusion reached
in Fig. 8. Furthermore, the correction performance tends to
decrease more steeply as the blockage angle increases; i.e.,
the difference in correction performance between 16-degree
and 10-degree angles is much more significant than between
10-degree and 4-degree angles for the same model, which
indicates that correction difficulty and performance are not
linearly related to blockage size.

Fig. 11 exhibits a similar performance gradient as presented
in Figure 10. Notably, for certain small and medium angle cor-
rections, the TX model’s performance approaches or surpasses
that of the CA model, which aligns with the precipitation
intensity inclusiveness highlighted earlier. Additionally, linear
interpolation for stratiform precipitation correction leads to
entirely erroneous data when evaluated at high thresholds,
which explains the gap in correction outcomes between the
CGAN model and the interpolation model is more evident
in the TX model. It was also found that some of the 25
dBZ threshold performances appeared better than the 15 and
35 dBZ thresholds. This is because the 25 dBZ threshold is
an intermediate value between the two extremes of 15 and
35 dBZ. The 15dBZ threshold represents a lower value of
reflectivity, and the 35 dBZ threshold represents a higher value

of reflectivity. When using a 15 dBZ threshold, there is a
higher likelihood of overestimating the beam blockage and
correcting non-blocked regions, leading to false positives. On
the other hand, when using a 35dbz threshold, there is a higher
likelihood of underestimating the beam blockage and leaving
blocked regions uncorrected, leading to false negatives. The 25
dBZ threshold strikes a balance between these two extremes
and allows for more accurate correction of beam blockages.

V. DISCUSSION

A. Impact of Pseudo-Radar Observations on the Beam Block-
age Correction Performance

In Section II, it was mentioned that the dataset would in-
corporate pseudo-radar observations after undergoing cut and
filter processes, which can effectively eliminate low-quality
observations and decrease the noise and outliers in the training
data, thus enhancing the model’s robustness and accuracy.
However, it is necessary to analyze the differences between
the pseudo-radar observations and the original radar data to
determine the impact on the model. In convective precipitation,
cloud data typically exhibit a significant reflectivity core with
irregular echo interior partitions. The screening of pseudo-
radar observations primarily focuses on areas with elevated
reflectivity, while features of the echo interior partition, which
are considerably lower in magnitude than the core peak, are
barely selected. This can result in a small range of unsmoothed
data in the corrected data. Although the impact can be negli-
gible on the KFWS test data, it renders the KDAX test data
less plausible, particularly when significant angle correction
is necessary. In the case of the CA model, the precipitation
in the original data is in the form of low-intensity and large
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areas. Clipping in the image’s center can cause the training
set to lose some features of the cloud boundaries, leading to a
tendency to round off the boundary when handling convective
precipitation with complex boundary information, which can
limit the model’s generalization to new and unseen storm
events thus reducing the practical utility. To address this issue,
the optimal solution is to increase the amount of training data
and add small precipitation events to the training set.
Furthermore, the original plan position indicator (PPI) radar
images used in the model are two-dimensional images with
centroids. Rotational filtering of the pseudo-radar observations
leads to the loss of centroid orientation information. In other
words, the distal data of the pseudo-radar observations may
point closer to the radar, which can confuse the precipitation
characteristics at the far with near radar points during training,
making it impossible to accurately evaluate the difference
in performance between the two ends of the data in the
range direction or continue the experiment to analyze the
effect of beam blockage shape on the corrected data. To
address this issue, pseudo-radar observations can be modified
to employ sectors within concentric circles, ensuring that the
range direction always points towards the radar. Alternatively,
models with high rotational robustness can be utilized to
ensure that the network captures the appropriate features.

B. Potential of Dual Model Systems

In the testing phase, a cross-model testing approach was
employed, wherein the convective precipitation model and the
stratiform precipitation model were tested for their feasibility
in using the correction of the other model. As inferred in
Section IV, the convective precipitation training model can
accurately simulate beam blockage in stratiform precipitation,
encompassing precipitation intensity and cloud edge charac-
teristics, while the stratiform precipitation training model is
better equipped for corrections in a limited range of beam
blockage. Therefore, the possibility of fusing the two models
can be examined. For instance, in northern Texas, convec-
tive precipitation is typical in summer, particularly during
late afternoons and evenings, while stratiform precipitation
is expected in spring and winter. However, simultaneous
occurrences of both precipitation types may make using a
single model impractical. Therefore, we can merge the dual
CGAN models and use the surrounding unblocked data to
determine the appropriate precipitation model for the corrected
area. In northern California, we can use a dual-model system
that combines traditional interpolation methods with CGAN
models. Since the edge features of stratiform precipitation
clouds are simple, the interpolation method first provides a
baseline correction to the radar image, while the CGAN model
refines the correction and handles more intricate precipitation
patterns.

However, the dual-model system has some potential draw-
backs, including increased computational cost and complexity
due to the need to train and use multiple models for calibration.
Additionally, inconsistent calibration results may arise when
using different models, making it difficult to compare and
evaluate system performance, thereby necessitating the devel-

opment of new evaluation methods. Despite these concerns,
the benefits of a dual-model system outweigh the drawbacks
and are essential in the practical application of the model.

C. Impact of Beam Blockage Size on the Correction Model
Performance

In Section IV, we discussed a scenario where the linear
interpolation model achieved a similar correction performance
to the deep learning model in a small-angle blockage test of
stratiform precipitation. Since linear interpolation is a straight-
forward method that estimates missing data points based on
the surrounding data, however, this method assumes a linear
variation of data between the available data points, which may
result in inaccurate estimation when the amount of missing
data is large or when the data varies non-linearly. Small areas
of stratiform precipitation where the precipitation core is not
apparent lead to a linear increase in reflectivity from the cloud
edge to the center, corresponding to the linear interpolation
assumption. When the radar beam blockage size is significant,
the increase in non-linear data results in linear interpolation
correction that cannot accurately estimate the missing data. In
convective precipitation correction, convective clouds usually
comprise several precipitation cores characterized by different
peaks, making it challenging to have a uniform linear distri-
bution. Consequently, the interpolation and deep learning test
results in the TX model vary considerably.

On the other hand, CGAN can learn to generate realistic
data points that match the available data. Nevertheless, the
performance of the CGAN model heavily depends on the
quantity and quality of the training data. The size and informa-
tion blocked can impact the quality of the training data. Small
radar beam blockages may not affect the quality of the training
data, while large radar beam blockages can reduce the quality
of the training data, leading to less accurate calibration results.
Therefore, the extent and severity of beam blockage and
the precipitation distribution within the radar data determine
the correction performance. It is crucial to consider these
factors when choosing the appropriate correction method for
a particular application. The fusion model discussed in the
previous subsection can also be beneficial in this regard.

VI. CONCLUSION

The seamless continuation of weather radar imagery is a
crucial aspect of data processing and quantitative applications.
However, the correction of beam blockages that occur fre-
quently and can result in missing or low-quality data has not
been thoroughly investigated. In this study, we have developed
and executed a beam blockage correction system based on
conditional adversarial neural networks. We trained our dual
model using stratiform precipitation data from Northern Cali-
fornia (collected by KDAX radar) and convective precipitation
observations over the Dallas-Fort Worth area in northern
Texas (collected by KFWS radar), and conducted cross-model
testing. A conventional linear interpolation approach is also
employed during the testing phase for comparison purposes.
The major findings of this study are summarized as follows.
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1) From a visual standpoint, the CGAN-based model for
correcting radar beam blockage surpasses conventional
interpolation models in terms of its correction efficacy.
The correction performance generally declines in the
following order: CGAN models trained using similar pre-
cipitation events, crossover models trained using distinct
precipitation events, and linear interpolation models. In
contrast, the TX model is more comprehensive, enabling
improved correction of precipitation features and cloud
edge prediction in diverse test sets not only in TX but also
in CA. Meanwhile, the CA model exhibits suboptimal
performance in correcting large-angle beam blockage
with notable precipitation differences.

2) From the evaluation results, it is concluded that the
correction efficacy has a non-linear correlation with the
beam blockage size, and the superiority of the CGAN
model becomes increasingly prominent as the threshold
on precipitation intensity (in terms of radar reflectivity)
and blockage size increase.

3) The disparity between the performance of the CGAN
model and that of the interpolation model is consider-
ably greater during convective precipitation cases than
stratiform cases.

In the future, we will incorporate precipitation type analysis
and fuse the CGAN model to address the challenge cases when
convective and stratiform precipitation coexist. In addition, we
can adopt novel pseudo-radar observation filters and measuring
metrics to refine the correction efficacy. More importantly,
we will focus on real beam blockage or PBB situations. The
“simulated” PBB cases are used in this article only for the sake
of evaluations. In real situations, it is rather easy to determine
the PBB area based on the radar location, radar scan strategy
(including radar beam elevation and beamwidth), distance
from the radar, and local terrain elevation information. Once
the blockage area is identified, we can simply create the PBB
mask and perform PBB correction as described in this article.
In these cases, it is more challenging to verify the correction
performance since no truths are available. A potential solution
is to quantify the PBB correction performance through radar
quantitative precipitation estimation (QPE). Basically, rainfall
estimates from radar data both with PBB and after PBB correc-
tion can be derived using standard QPE methodologies (e.g.,
[1, 14, 25]), and the derived QPE can be compared/evaluated
using rain gauge observations in the PBB areas to quantify the
improved QPE performance brought by PBB correction.
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