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Polarimetric Radar Quantitative Precipitation
Estimation Using Deep Convolutional Neural

Networks
Wenyuan Li, Haonan Chen, Senior Member, IEEE, Lei Han, Member, IEEE

Abstract—Accurate estimation of surface precipitation with
high spatial and temporal resolution is critical for decision mak-
ing regarding severe weather and water resources management.
Polarimetric weather radar is the main operational instrument
used for quantitative precipitation estimation (QPE). However,
conventional parametric radar QPE algorithms such as the radar
reflectivity (Z) and rain rate (R) relations can not fully represent
clouds and precipitation dynamics due to their dependency on
local raindrop size distributions and the inherent parameteriza-
tion errors. This article develops four deep learning (DL) models
for polarimetric radar QPE (i.e., RQPENetD1, RQPENetD2,
RQPENetV, RQPENetR) using different core building blocks.
In particular, multi-dimensional polarimetric radar observations
are utilized as input and surface gauge measurements are used
as training labels. The feasibility and performance of these DL
models are demonstrated and quantified using U.S. Weather
Surveillance Radar - 1988 Doppler (WSR-88D) observations near
Melbourne, Florida. The experimental results show that the dense
blocks-based models (i.e., RQPENetD1 and RQPENetD2) have
better performance than residual blocks, RepVGG blocks-based
models (i.e., RQPENetR and RQPENetV) and five traditional Z-
R relations. RQPENetD1 has the best quantitative performance
scores, with a mean absolute error (MAE) of 1.58 mm, root
mean squared error (RMSE) of 2.68 mm, normalized standard
error (NSE) of 26%, and correlation of 0.92 for hourly rainfall
estimates using independent rain gauge data as references. These
results suggest that deep learning performs well in mapping the
connection between polarimetric radar observations aloft and
surface rainfall.

Index Terms—Dual-polarization, weather radar, quantitative
precipitation estimation, deep learning

I. INTRODUCTION

Precipitation is a crucial component of the global and
regional water cycles and playing an important role in weather-
, water-, and climate-related research and applications. In the
context of climate changes, the water cycle is accelerated,
resulting in more frequent flash floods. In addition, owning
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to rapid urbanization, densely populated areas are more vul-
nerable to urban flash floods and other weather extremes [1–3].
Therefore, accurate and timely estimation of precipitation is
critical to decision making regarding severe weather and water
resources management.

Radars and rain gauges are the two main instruments used
for precipitation monitoring and measurements. Since radars
can provide spatially continuous observations over large areas
with high temporal resolutions [3–5], they are considered the
cornerstones of the national severe weather observation and
forecast infrastructure in many countries. Rain gauges are
often used for evaluation and bias correction of radar rainfall
estimates since rain gauges provide direct measurements of
rainfall, though at point locations [6–9]. Traditionally, the
relationships between radar reflectivity (Z) and rainfall rate
(R), also known as Z-R relations, are utilized for radar quan-
titative precipitation estimation (QPE), and these relations are
still used for many operational radars. Since the introduction
of radar polarization [10], a large amount of research effort
has been devoted to polarimetric radar systems and QPE
based on polarimetric observables, including radar reflectivity,
differential reflectivity (Zdr), and specific differential phase
(Kdp) (e.g., [4][5][11][12]).

The polarimetric variables offer more microphysical infor-
mation about precipitation such as raindrop shape and size
distributions, leading to better rainfall estimates than conven-
tional Z-R relations. Nevertheless, both Z-R and polarimetric
radar rainfall relations are generally derived based on non-
linear regression (typically power-law relations) between radar
observables and rainfall rates. This type of fixed-parameter
power-law relations cannot represent all types of rainfall at
multiple climate regimes, or even one climate region. Often,
the parametric radar rainfall relations need to be adjusted
for regional applications. In addition, the inherent parame-
terization error in these relations is large, especially in Z-R
relations ([4][5]). Kirstetter et al. [13] considered the inherent
uncertainty in the Z-R relations of different precipitation types
based on the Multi-Radar Multi-Sensor (MRMS) QPE system,
which improved the accuracy of precipitation estimation to a
certain extent. Nevertheless, none of these power-law relations
could incorporate the spatial features of precipitation in with
terms of radar observations.

In recent years, due to the powerful data fitting and informa-
tion extraction capabilities of deep learning (DL), it has been
successfully applied to many research areas such as image
classification, object detection, and image segmentation. For
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example, the Convolutional Neural Networks (CNN) devel-
oped by the Visual Geometry Group (VGG) at University
of Oxford [14] have achieved great success in image clas-
sification. In order to take into account the result accuracy
and the inference speed of the model, RepVGG [15] uses a
re-parameterization technique, which can use a multi-branch
structure when the model training, and convert the multi-
branch into a single-branch during model testing. In addition,
the residual block and dense block in the ResNet [16] and
DenseNet [17] networks have addressed the gradient vanishing
problem to a large extent when the model layers are too
deep: ResNet won the double champion of ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) classification
and object detection task in 2015, and DenseNet won the best
paper of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) in 2017. The three classic models men-
tioned above have far-reaching influence in the development
of deep learning, partly because their core building blocks are
highly innovative and practical, and are easy to implement.
When applied to the QPE task, the core building blocks show
promising performance by capturing more spatial correlated
information from dual-polarization radar data and the rain-
falling process.

In this article, we uses classical DL core building blocks
(i.e., dense blocks, residual blocks, and RepVGG blocks) to
address the identified issues in radar QPE. In particular, four
DL QPE models are designed to extract precipitation informa-
tion and quantify surface rainfall rate using 3-D polarimetric
radar observations above the ground. The feasibility and per-
formance of these DL models are demonstrated and quantified
using the Weather Surveillance Radar - 1988 Doppler (WSR-
88D) observations near Melbourne (KMLB), Florida, USA.
To our knowledge, this article is among the first studies about
using machine learning for quantitative applications of weather
radars. Section II describes the study domain and data used in
this article. Section III details the architecture of the designed
DL models. Section IV presents the experimental results.
Discussion and conclusions are provided in Section V.

II. STUDY DOMAIN AND DATASETS

A. Study Domain

Our study domain is located in the Florida Peninsula, the
third most populous state in the United States. Fig. 1 shows the
distribution of the rain gauges and the location of the KMLB
dual-polarization radar station represented by the yellow dot
(80.65◦W, 28.11◦N). Here, it should be noted that, due to
the degradation of data quality for longer radar observation
distance, we only select radar observations and rain gauge data
within 150 km from the KMLB radar station as the dataset.
Therefore, the red dots and black dots in Fig. 1 represent the
distribution of rain gauges within and beyond 150 km from the
radar site, respectively. All these rain gauges form the South
Florida Water Management District (SFL) rain gauge network.

Florida has a subtropical and tropical rainforest climate,
with a peculiar peninsula geographical environment. It has
more thunderstorm activity than other parts of U.S. Specif-
ically, the frequency of summer thunderstorms in central

Fig. 1. The study domain (black circle with a radius of 150
km). The yellow dot represents the KMLB WSR-88D radar
location (28.11◦N, 80.65◦W) in Melbourne, Florida. The red
dots and black dots indicate distribution of rain gauges within
and beyond 150 km from the radar site, respectively.

Florida, our study domain, equals that of the world’s maximum
thunderstorm areas, i.e., Lake Victoria in Africa and the
Amazon basin1. Florida often has minor flash floods that may
pose a serious threat to human life. In addition to this, most of
the study domain is flat and relatively low in elevation, making
it less obscuring and more visible for radar observations.
Therefore, this is an ideal study domain for QPE.

B. Datasets

In this study, dual-polarization radar data are collected
from the KMLB Weather Surveillance Radar – 1988 Doppler
(WSR-88D) near Melbourne, Florida, USA. The KMLB radar
is an S-band radar that emits electromagnetic waves with
a wavelength of 10.0-11.1 cm. The radar has a maximum
detection range of 460 kilometers and an azimuth range of
0-360◦. Its antenna scanning elevation angle ranges from 0.5◦

to 19.5◦, and can be as low as 0.2◦ or even lower in coastal
areas. It takes about 5-7 minutes to complete a volume scan.
The KMLB radar range resolution is 250m, and radar azimuth
resolution is 0.5◦. The rain gauge data used in this article are
collected from the SFL tipping bucket rain gauge network
in Florida, which has undergone an extensive data quality.
These data are also used as the verification data for the Global
Precipitation Measurement (GPM) mission of NASA. The
above radar and rain gauge data from 2016-2019 are used in
this study. Specifically, we use the data from 2016 to 2018 for
training (80% of the data) and validation (20% of the data),
and the data from 2019 as independent test data.

In general, ground clutter occurs on WSR-88D radar prod-
ucts when the returns from stationary or nearly stationary
ground targets are not filtered out. This clutter may be caused
by building and wind farms and can be mistakenly considered

1https://climatecenter.fsu.edu/topics/thunderstorms
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Fig. 2. Example KMLB WSR-88D radar observations at 20:34 UTC, 19 July 2017: (a) radar reflectivity Z before quality
control; (b) radar reflectivity Z after quality control; (c) differential reflectivity Zdr before quality control; (d) differential
reflectivity Zdr after quality control; (e) specific differential phase Kdp estimated using DROPS2.0 [5].

as real precipitation. Therefore, they need to be filtered out
before further processing. The DROPS2.0 algorithm is used
in our study to filter the non-precipitation echoes and estimate
the specific differential phase Kdp [5]. Fig. 2 shows the radar
reflectivity Z and differential reflectivity Zdr before and after
quality control, as well as the estimated specific differential
phase Kdp at 20:34 UTC on 19 July 2017. It should be
mentioned that the rain gauge data with rainfall amount less
than 2.5 mm and those with rainfall rate less than 1 mm/h are
also excluded.

III. METHODOLOGY

Figure 3 illustrates the pipeline of our DL framework for
QPE. It is divided into two independent parts: (a) model
training and (b) estimation. In the model training period, the
historical 3-D radar and rain gauge data are fed directly into
the DL network to train a regressor. The trained regressor is
then used to make estimation for precipitation using newly
arrived radar data. Next, we will introduce how to establish
the training data set followed by the model architecture
introduction.

A. Establishing the Training Data Set

Because dual-polarization radar observations have been
widely used for quantitative precipitation estimation, here we

use three observables Z, Zdr and Kdp as model’s input, where
Z is radar reflectivity, Zdr is the difference between horizontal
radar reflectivity and vertical radar reflectivity, Kdp is one-half
the range derivative of the differential phase shift (ϕdp) [4].
Meanwhile, since rain gauge observations (i.e. rainfall rate)
are the most accurate measurement of precipitation, we use
them as the ground truth for model training.

As the temporal resolution of the two kinds of data are dif-
ferent, we need to align radar observations and rain gauge data.
The KMLB radar observations with the temporal resolution of
5-7 minutes, whereas rain gauges are sparsely located and pro-
duce precipitation observations with the temporal resolution of
1 minute. In this study, the average value of rain gauge data
within the interval of two adjacent radar observations is used
as the ground truth. Next, we will introduce how to construct
one training data sample.

As shown in Fig. 4, the input of the model is a tensor
T6×9×9 containing the 3D radar data of the above 3 variables
in a 9 × 9 pixel window centered in pixel (5, 5). The window
size 9 × 9 is chosen according to the optimal results of our
experiments. It should be mentioned that only the lowest and
second lowest elevation angles of radar observation data are
used in this study. The main reason is that, although the radar
beams at high elevation angles can detect rain aloft, due to
the ongoing evaporation while falling, some of the rain is
evaporated before it reaches the ground, so the rainfall may
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Fig. 3. Flowchart of the deep learning method for polarimetric radar QPE: (a) training stage; (b) application of the trained
models. The historical 3-D radar and rain gauge data are fed directly into the DL network to train a regressor during the training
period. The trained regressor is then used to estimate QPE based on new radar data. QC stands for data quality control.

be overestimated. Therefore, there are 3 variables and each
has 2 elevation angles, this is how the number 6 (3 × 2)
comes about. For the learning process, the learning target is the
nearest rain gauge data (i.e. rainfall rate) corresponding to the
centered pixel (5, 5). To produce a data pool, the 9 × 9 pixel
window is moved across the radar image sequentially, shifting
location one pixel at a time on the radar image generated every
5-7 minutes. Finally, the total number of samples is 101337,
including training, validation and testing data.

Fig. 4. Illustration of a training data sample for the devised
deep learning models.

B. Model Architecture
Considering residual blocks, dense blocks, and RepVGG

blocks are flexible, efficient, and generalizable, we use them
as the core building blocks of our radar quantitative precip-
itation estimation neural networks (RQPENet). RQPENetD1

and RQPENetD2 both use dense blocks as the core building
blocks, but differ in the number of model layers. RQPENetR
and RQPENetV use residual blocks and RepVGG blocks as
the core building blocks, respectively. Among them, we give
a detailed introduction of how to use the dense block to build
our RQPENetD1. The other three models can be achieved
similarly. In this article, four DL models are evaluated to find
which core building block is most suitable for QPE.

Figure 5 shows the overall RQPENet architecture using
the dense blocks, i.e., RQPENetD1. At the beginning of
RQPENetD1, the input is fed into one convolution layer with
96 kernels of size 3 × 3 followed by four dense blocks and
three transition layers. To the end, the rainfall rate (R; units:
mm/h-1) is obtained through an adaptive average pooling layer
and a fully connected (FC) layer. The dense blocks and tran-
sition layers are the two primary components which are used
recursively to form the model structure. The detailed structures
of the dense blocks and transition layers are introduced below.

Each dense block is composed of several bottleneck layers.
Every bottleneck layer has batch normalization, ReLU and
convolution sub-layers, i.e., BN-ReLU-Conv(1 × 1) and BN-
ReLU-Conv(3 × 3). The four dense blocks contains 6, 12,
36 and 24 bottleneck layers respectively. The dense block
enables feature reuse through copy and concatenate operations,
which increase direct connections between feature maps within
a block and ensure maximum information exchange between
various layers of the model. The transition layer consists of
a 1 × 1 Conv layer that keeps the same number of channels,
followed by an average pooling layer with stride 2. The benefit
of the transition layer is to decrease both the model weight
parameters and the feature maps size while extracting high-
level implicit features.

In addition, RQPENetD1 involves a hyper-parameter k,
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Fig. 5. The RQPENetD1 model architecture with four Dense Blocks, including the detailed structure of each Dense Block.
Note that each Dense Block uses different number of bottleneck layers, although the overall structure of the four Dense Blocks
is the same.

called growth rate, which sets the number of channels added
at each layer within a dense block. In our experiments, k
is set to 48. Design as described above strengthens feature
transfer, effectively utilizes features in the spatial dimension,
helps alleviate the vanishing-gradient problem, and reduces
the number of model parameters. The loss function used by
RQPENetD1 is defined as the mean square error L of radar
rainfall estimates retrievals with respect to rain gauge rainfall
observations:

L =
1

N

∑(
Z − Ẑ

)2

(1)

where Z and Ẑ represent the rainfall rate estimated by the
model and the training target label, respectively, and N is
the total number of samples of the testing dataset. The model
weighs are updated through the following equation:

wi,j,k(new) = wi,j,k(old) − ρ
∂L

∂wi,j,k(old)
(2)

where wi,j,k represents the weight associated with the kth
features of the jth bottleneck layer within dense block i, and
ρ is learning rate.

After a detailed description of RQPENetD1, the other three
methods are briefly described below.
(1) RQPENetD2. It has similar architecture to RQPENetD1,

but differs in the third and fourth dense blocks. The
bottleneck layers in dense block 3 and dense block 4 in
RQPENetD2 and RQPENetD1 are (24, 16) and (36, 24)
respectively, which means RQPENetD2 is a smaller net-
work compare to RQPENetD1 and it has fewer parameters
and less computational complexity.

(2) RQPENetR. It uses the residual module as the core
component to form the model. Residual blocks consist
of skip connections that allow inputs to skip one or more
convolutional layers and are added to the output of the last
convolutional layer in the module. Residual learning can
improve attention to residual or hard-to-learn information
in radar data. In RQPENetR, four similar residual blocks
are placed in series, with each residual block containing
3, 4, 23 and 3 bottleneck layers, respectively.

(3) RQPENetV. The RepVGG block is used as the core
building block in this model. RepVGG adds multiple
parallel skip connections (i.e., multi-brunch structure) in
the training stage based on the residual module. Each
block has three parallel branches: a main branch with a
convolution kernel size of 3x3, a shortcut branch with a
convolution kernel size of 1x1, and a BN-only shortcut
branch. In addition, it is converted to a single-brunch
structure during testing stage to reduce the number of
parameters used by the model. RQPENetV has five stages,
and each stage contains 1, 4, 6, 16 and 1 RepVGG blocks.

IV. EXPERIMENTS AND RESULTS

A. Comparison Experiments

To cross-compare the performance of DL models in precip-
itation estimation, this study also adopts five Z-R relations,
including three commonly used parametric relations (Eq. 3a-
3c) [18, 19], and two Z-R relations used in Florida (Eq. 3d-3e)
[20], as follows:

Ra(Z) = 1.70× 10−2 × Z0.714 (3a)

Rb(Z) = 3.64× 10−2 × Z0.625 (3b)

R(Z,Zdr) = 1.42× 10−2 × Z0.770 × (10
Zdr
10 )−1.670 (3c)

Rd(Z) = 2.62× 10−2 × Z0.687 (3d)

R(Kdp) = sign(Kdp)× 54.3|Kdp|0.806 (3e)

where Z is in mm6m−3; R denotes the rainfall rate in mm/h;
Kdp is in ◦km−1 and sign(Kdp) item allows R to be negative.
The subscripts a, b, and d of R correspond to the formula
number, which is convenient for distinguishing in the tables.

B. Evaluation Metrics

In this article, the rainfall rate over an hour is accumulated
to obtain the hourly radar rainfall amount. For evaluating
RQPENet performance on radar precipitation estimating, the
root mean squared error (RMSE), mean absolute error (MAE),
the correlation coefficient (CC) and normalized standard error
(NSE) are computed respectively as follow:
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RMSE =

√∑N
n=1 (Rn −Gn)

2

N
(4)

MAE =

∑N
n=1 |Rn −Gn|

N
(5)

CC =

∑N
n=1 (Rn − R̄n)(Gn − Ḡn)√∑N

n=1 (Rn − R̄n)
2
√∑N

n=1 (Gn − Ḡn)
2

(6)

NSE =

∑N
n=1 |Rn −Gn|∑N

n=1 Gn

(7)

BIAS =

∑N
n=1 Rn∑N
n=1 Gn

(8)

where Rn and Gn denote the radar precipitation estimates and
rain gauge observations (mm) at the nth hour, respectively. R̄n

and Ḡn represent the mean of radar precipitation estimates and
rain gauge observations (mm) in the test dataset. N is the total
number of hours, which is 3950 in our experiments. Higher
CC and BIAS ratio close to 1, or lower RMSE, MAE, NSE
indicate better estimation performance.

In addition, this article introduces five widely used eval-
uation metrics in atmospheric science, namely, probability of
detection (POD), false alarm ratio (FAR), critical success index
(CSI), Heidke skill score (HSS), and Gilbert skill score (GSS).
They are respectively defined as:

POD =
TP

TP + FN
(9)

FAR =
FP

TP + FP
(10)

CSI =
TP

TP + FN + FP
(11)

HSS =
2× (TP × TN − FP × FN)

(TP + FN)× (FN + TN) + (TP + FP)× (FP + TN)
(12)

GSS =
TP −Q

TP + FN + FP −Q
(13)

Q =
(TP + FN)× (TP + FP )

TP + FN + FP + TN
(14)

where TP , TN , FN and FP denote true positive, true
negative, false negative and false positive, respectively. If the
radar precipitation estimates and ground truth are greater than
a threshold, they are considered positive, otherwise negative.
TP means that the estimates and ground truth are both
positive, TN means that they are both negative, FN means
that the estimate is negative while the ground truth is positive,
whereas FP means that the estimate is positive while the
ground truth is negative. Gilbert Skill Score (GSS) has another
name “Equitable Threat Score (ETS)”, which measures the
fraction of events that the model is able to correctly estimate

after removing the odds of random hits (i.e., Q). GSS is an im-
provement to CSI, which can balance misses and false alarms,
and the evaluation score is fairer. Higher POD, CSI, HSS,
GSS, or lower FAR indicate better estimation performance.

C. Results and Analysis

TABLE I: Evaluation results of hourly rainfall estimates from
nine QPE methods.

Model MAE RMSE CC NSE BIAS
(mm) (mm) (%) (ratio)

RQPENetD1 1.58 2.68 0.92 26 0.91
RQPENetD2 1.66 2.83 0.92 27 0.85
RQPENetV 1.79 3.01 0.92 29 0.82
RQPENetR 1.75 2.98 0.91 29 0.85
Ra(Z) 3.26 5.07 0.76 54 0.54
Rb(Z) 3.39 5.34 0.77 56 0.48

R(Z,Zdr) 3.34 5.15 0.78 55 0.49
Rd(Z) 2.98 4.79 0.76 49 0.63
R(Kdp) 2.42 3.74 0.85 40 0.81

TABLE II: Evaluation results of hourly rainfall estimates from
nine QPE methods. A threshold of 2 mm is applied.

Model POD FAR CSI HSS GSS

RQPENetD1 0.94 0.07 0.87 0.75 0.60
RQPENetD2 0.94 0.08 0.87 0.73 0.58
RQPENetV 0.93 0.08 0.86 0.72 0.56
RQPENetR 0.95 0.10 0.86 0.70 0.53
Ra(Z) 0.60 0.03 0.59 0.42 0.26
Rb(Z) 0.62 0.03 0.61 0.43 0.28

R(Z,Zdr) 0.58 0.02 0.58 0.41 0.26
Rd(Z) 0.67 0.04 0.65 0.46 0.30
R(Kdp) 0.79 0.07 0.74 0.56 0.39

TABLE III: Evaluation results of hourly rainfall estimates from
nine QPE methods. A threshold of 5 mm is applied.

Model POD FAR CSI HSS GSS

RQPENetD1 0.78 0.08 0.73 0.74 0.59
RQPENetD2 0.75 0.07 0.71 0.72 0.57
RQPENetV 0.71 0.06 0.68 0.69 0.53
RQPENetR 0.75 0.07 0.71 0.72 0.56
Ra(Z) 0.45 0.06 0.44 0.45 0.29
Rb(Z) 0.40 0.05 0.39 0.41 0.26

R(Z,Zdr) 0.41 0.04 0.40 0.42 0.27
Rd(Z) 0.53 0.08 0.51 0.52 0.36
R(Kdp) 0.70 0.12 0.64 0.64 0.47

We use the 2019 radar observations and rain gauge data as
the testing dataset. Firstly, we evaluate the overall performance
of the nine QPE methods, including four DL methods and five
Z-R relations in terms of MAE, RMSE, CC, NSE and BIAS.
Then, we derived the evaluation scores (i.e., POD, FAR, CSI,
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Fig. 6. Scatter plots of hourly precipitation estimates from different deep learning models versus evaluation gauge observations:
(a)-(d) represent RQPENetD1, RQPENetD2, RQPENetV and RQPENetR respectively, and (e)-(i) correspond to Ra(Z), Rb(Z),
R(Z,Zdr), Rd(Z) and R(Kdp), respectively.

HSS and GSS) for various RQPENet and Z-R relations under
different precipitation thresholds (2 mm, 5 mm and 10 mm).
In addition, three cases studies are selected to illustrate the
performance of four RQPENet methods.

Table I shows the MAE, RMSE, CC, NSE and BIAS
ratio values of the nine QPE methods. Overall, RQPENetD1

achieves superior estimation performance than other eight
approaches. It has the lowest MAE of 1.58 mm, RMSE of
2.68 mm, NSE of 26%, highest CC of 0.92 and BIAS ratio of
0.91. RQPENetD2 achieves the second best performance. This
shows that the dense blocks are more suitable than residual
and RepVGG blocks on quantitative precipitation estimation
task.

Figure 6 shows the scatter plots of precipitation estima-
tion error for different QPE methods, where subplots (a)-
(d) correspond to RQPENetD1, RQPENetD2, RQPENetV and
RQPENetR respectively, and (e)-(i) correspond to Ra(Z),
Rb(Z), R(Z,Zdr), Rd(Z) and R(Kdp) respectively. The hor-
izontal axis is the hourly rainfall amount observed by the rain
gauge, and the vertical axis is the precipitation estimated by the
RQPENet. This plot uses the y = log10x function to represent
the number of samples per scatter point, where x is the actual
number of samples at a given scatter point, and y is the color-
coded value in the color range. The closer the distribution
of scatter points to the red diagonal, the more similar the
quantitative precipitation estimates to the ground truth. Fig.
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Fig. 7. The area under the curve (AUC) for the four deep learning methods and five Z-R relations: (a) is the evaluation
result for all the precipitation samples; (b) is the evaluation result for the samples with precipitation less than 5 mm; (c) is
the evaluation result for the samples with precipitation between 5 mm and 10 mm; (d) is the evaluation result for the samples
with precipitation larger than 10 mm.

TABLE IV: Evaluation results of hourly rainfall estimates
from nine QPE methods. A threshold of 10 mm is applied.

Model POD FAR CSI HSS GSS

RQPENetD1 0.73 0.14 0.65 0.75 0.59
RQPENetD2 0.67 0.11 0.62 0.72 0.57
RQPENetV 0.63 0.10 0.59 0.70 0.54
RQPENetR 0.65 0.10 0.60 0.71 0.55
Ra(Z) 0.39 0.13 0.37 0.48 0.32
Rb(Z) 0.28 0.07 0.27 0.38 0.23

R(Z,Zdr)) 0.32 0.08 0.31 0.43 0.27
Rd(Z) 0.48 0.17 0.44 0.55 0.38
R(Kdp) 0.67 0.19 0.58 0.69 0.52

6(a)-6(i) indicate that all nine methods generally underestimate
the precipitation, especially at heavy precipitation events. As
can be seen from Fig. 6(a), the precipitation estimates of
RQPENetD1 are the closest to the rain gauge observations,
with an average radar precipitation estimate is 5.52mm. This
shows that the dense blocks-based models can alleviate the
problem of precipitation underestimation to a certain extent,

while RQPENetD1 is more effective than RQPENetD2. Fig.
6(e)-6(i) are the scatter plots of five traditional methods for
precipitation estimation. It can be seen that the estimation
results are not as good as those from the machine learning
models.

Next, we demonstrate the QPE performance for different
precipitation intensities based on three hourly rainfall accumu-
lation thresholds, i.e., 2 mm, 5 mm and 10 mm respectively.
Tables II, III and IV show the quantitative evaluation results
of POD, FAR, CSI, HSS and GSS using nine methods for
QPE task. For all thresholds, RQPENetD1 achieves the highest
CSI, HSS and GSS values which represent it has the best
comprehensive performance. For the 2 mm threshold (Tables
II), RQPENetR achieves the highest POD value. For the 5 and
10 mm threshold (Tables III and IV), R(Z,Zdr) and Rb(Z)
achieve the lowest FAR values, which mean less false alarms.
But it should be mentioned that, although POD and FAR are
important evaluation metrics, they cannot be used separately to
evaluate a method. If a method has only a high POD value or
a low FAR value, it does not mean that the method is good. It
is only meaningful when a method has a high POD and a low
FAR simultaneously. In general, RQPENetD1 has relatively
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Fig. 8. Rainfall maps derived from four deep learning QPE models: (a)-(d) represent the precipitation maps from RQPENetD1,
RQPENetD2, RQPENetV and RQPENetR at 21:00 UTC on 19 June 2019, respectively; (e)-(h) are the same as (a)-(d), but at
18:00 UTC on 1 August 2019; (i)-(l) are the same as (a)-(d), but at 14:00 UTC on 19 October 2019.

high POD values and relatively low FAR values, which make
it achieve the best overall performance.

Figure 7 shows the area under the curve (AUC) for the nine
QPE approaches. The horizontal axis is the error threshold
between the precipitation estimates and the ground truth. The
vertical axis is the estimated success rate when the error value
between the precipitation estimates and the ground truth is less
than this threshold. The higher the AUC, the better the model is
at precipitation estimation. As shown in Fig. 7(a), RQPENetD1

outperforms the other three models considering all testing
samples; RQPENetD2 achieves the second best performance.
Then, we separate all testing samples into three categories to
calculate the AUC values: < 5 mm, [5 mm, 10 mm], > 10
mm. Fig. 7(b) to (d) show that RQPENetD1 achieves the best
performance in weak to heavy precipitation cases. In general,
the results reveal that the dense blocks-based models, i.e.
RQPENetD1 and RQPENetD2, perform best in the QPE task
in both heavy rain and weak rain cases, and the RQPENetD1

model has the best comprehensive performance.
Finally, we select three real cases to demonstrate the

performance of four RQPENet models. Fig. 8 shows the
precipitation maps derived from the four models at 21:00
UTC on 19 June 2019, 18:00 UTC on 1 August 2019, and
14:00 UTC on 19 October 2019. Tables V, VI, and VII are
the quantitative evaluation results of these three cases, respec-

tively. Scrutinizing the rainfall maps in Fig. 8 (a)-(d), which
are derived from RQPENetD1, RQPENetD2, RQPENetV and
RQPENetR, respectively, at 21:00 UTC on 19 June 2019. It
can be seen that compared with RQPENetD1, RQPENetR and
RQPENetV underestimate precipitation in heavy precipitation
areas, which is consistent with the analysis in Fig. 6. The
evaluation results in Table V show that RQPENetD1 achieves
the best performance in this case. Similar results can be found
for the other two cases.

TABLE V: Evaluation results of four QPE algorithms for
hourly rainfall estimates at 21:00 UTC, 19 June 2019.

Model MAE RMSE CC NSE BIAS
(mm) (mm) (%) (ratio)

RQPENetD1 1.32 1.87 0.66 32 0.80
RQPENetD2 1.44 1.98 0.65 35 0.74
RQPENetV 1.51 2.07 0.69 37 0.68
RQPENetR 1.65 2.19 0.63 40 0.67

V. CONCLUSION AND DISCUSSION

In this article, we designed four deep learning models
for quantitative precipitation estimation using dense blocks,
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TABLE VI: Evaluation results of four QPE algorithms for
hourly rainfall estimates at 18:00 UTC, 1 August 2019.

Model MAE RMSE CC NSE BIAS
(mm) (mm) (%) (ratio)

RQPENetD1 1.63 2.26 0.90 23 0.90
RQPENetD2 1.76 2.38 0.91 25 0.87
RQPENetV 1.98 2.74 0.91 28 0.80
RQPENetR 2.03 2.71 0.89 29 0.84

TABLE VII: Evaluation results of four QPE algorithms for
hourly rainfall estimates at 14:00 UTC, 19 October 2019.

Model MAE RMSE CC NSE BIAS
(mm) (mm) (%) (ratio)

RQPENetD1 2.25 2.98 0.78 38 0.71
RQPENetD2 2.36 3.11 0.78 40 0.67
RQPENetV 2.67 3.41 0.75 46 0.62
RQPENetR 2.59 3.34 0.76 44 0.63

RepVGG blocks and residual blocks, namely, RQPENetD1,
RQPENetD2, RQPENetV and RQPENetR. Dual-polarization
radar observations and rain gauge data are used in these
deep leaning models. In the data preprocessing stage, we
filter the non-precipitation echoes from radar observations data
and align the radar observations and rain gauge observations
in the spatial and temporal domain. The training, validation
and testing dataset are collected in Florida during 2016-2019.
Ten evaluation metrics are used in our study for quantitative
analysis. The experimental results show that dense blocks-
based models achieve higher accuracy results in QPE and
alleviates the problem of rainfall underestimation in heavy
precipitation area compared to the other methods. This is
because the unique dense connection structure in dense blocks
strengthens the information flow and transmission efficiency
across feature maps, encourages feature maps reuse and fully
utilizes spatiotemporal information. In addition, RQPENetD1

with deeper layers performs better than RQPENetD2 in terms
of overall evaluation metrics and specific precipitation events.
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