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Abstract—Satellite sensors have been widely used for precipita-
tion retrieval, and a number of precipitation retrieval algorithms
have been developed using observations from various satellite
sensors. The current operational rainfall rate quantitative precip-
itation estimate (RRQPE) product from the geostationary opera-
tional environmental satellite (GOES) offers full disk rainfall rate
estimates based on the observations from the advanced baseline
imager (ABI) aboard the GOES-R series. However, accurate
precipitation retrieval using satellite sensors is still challenging
due to the limitations on spatio-temporal sampling of the satel-
lite sensors and/or the uncertainty associated with the applied
parametric retrieval algorithms. In this article, we propose a
deep learning framework for precipitation retrieval using the
combined observations from the ABI and geostationary lightning
mapper (GLM) on the GOES-R series to improve the current
operational RRQPE product. Particularly, the proposed deep
learning framework is composed of two deep convolutional neural
networks (CNNs) that are designed for precipitation detection
and quantification. The cloud-top brightness temperature from
multiple ABI channels and the lightning flash rate from the GLM
measurement are used as inputs to the deep learning framework.
To train the designed CNNs, the precipitation product multi-
radar multi-sensor (MRMS) system from the National Oceanic
and Atmospheric Administration (NOAA) is used as target
labels to optimize the network parameters. The experimental
results show that the precipitation retrieval performance of the
proposed framework is superior to the currently operational
GOES RRQPE product in the selected study domain, and
the performance is dramatically enhanced after incorporating
the lightning data into the deep learning model. Using the
independent MRMS product as a reference, the deep learning
model can reduce the retrieval uncertainty in the operational
RRQPE product by at least 31% in terms of the mean squared
error and normalized mean absolute error, and the improvement
is more significant in moderate to heavy rain regions. Therefore,
the proposed deep learning framework can potentially serve as
an alternative approach for GOES precipitation retrievals.

Index Terms—Precipitation retrieval, GOES-R series, deep
learning, convolutional neural networks.
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PRECIPITATION is a critical component in the regional
and global water cycles. Accurate precipitation estimation

is important for predicting water availability and understanding
the risks of flooding and/or drought, especially in the context
of climate changes which intensify the Earth’s water cycle and
increase the frequency of extreme weather events.

Traditionally, precipitation measurement was accomplished
by using rain gauges. However, the existing rain gauge net-
work may not be sufficient to capture the precipitation distri-
butions due to its limited coverage and low density, especially
over the oceans and other remote regions [1]. Also, rain gauges
require regular maintenance to ensure their proper functioning
and accuracy. Issues such as gauge blockage, evaporation,
wind effects, and measurement errors can affect the quality
and reliability of the collected data. The ground-based multi-
radar multi-sensor (MRMS) system was operationalized in
2015 by the National Oceanic and Atmospheric Administra-
tion (NOAA) [2]. This system primarily integrates about 180
operational weather radars from the continental United States
(CONUS) and Canada with the numerical weather prediction
model data and rain gauge observations to generate quantita-
tive precipitation estimates. Nevertheless, the performance of
precipitation estimates from MRMS is limited in the western
United States and some other areas due to the lack of weather
radar coverage over complex terrain regions. In addition, the
MRMS products are only available over the contiguous United
States [2].

In contrast to rain gauges and ground-based weather radars,
satellite sensors have wide coverage over the globe. Therefore,
various geostationary Earth orbit (GEO) satellites and low
Earth orbit (LEO) satellites have been deployed and used
for observing clouds and precipitation. Based on the GEO
infrared (IR) data or passive microwave (PMW) measurements
from LEO satellite sensors, different precipitation retrieval
algorithms have been developed (e.g., [3], [4], [5]). Among
the LEO and GEO satellites, the latest generation of geosta-
tionary operational environmental satellite (GOES) satellites
(i.e., GOES-R series) has unique advantages in continuously
monitoring precipitation at large scales and at a high temporal
resolution. Measurements from the multi-channel advanced
baseline imager (ABI) and the geostationary lightning mapper
(GLM) aboard the GOES-R series are widely used to inves-
tigate various atmospheric phenomena. Therein, the current
operational GOES-16 (formerly known as GOES-R) rainfall
rate quantitative precipitation estimate (RRQPE) product is
derived to assign each earth-navigated pixel a rainfall rate
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[5]. The algorithm in this product includes eight linear and
eight non-linear predictors based on the ABI measurements.
The algorithm derives the rainfall rates in two steps. The
first step is to identify pixels that are experiencing rainfall.
After that, it retrieves rainfall rates for pixels where rainfall
has been detected. Although the GOES-16 RRQPE product
can complement ground-based observations well in many
instances, the performance of this precipitation product still
needs to be improved, especially in the western United States
where orographic precipitation processes are often undetected
by the RRQPE and in mesoscale convective systems (MCSs)
that frequent the midwestern United States [6][7][8][9]. The
currently operational GOES-16 product is calibrated based
on passive microwave-derived rainfall rates, which may not
fully capture the variability and complexity of the precipitation
within the MCS, resulting in underestimation or overestima-
tion of rainfall rates by RRQPE.

Several machine learning-based frameworks for precipita-
tion retrievals using satellite data have been developed and
shown to be effective in recent years. For example, the
precipitation estimation from remotely sensed information
using artificial neural networks cloud classification system
(PERSIANN CCS) was designed in [10], which extracted
the local and regional cloud features from satellite IR im-
agery, and transferred the satellite cloud images into pixel
rain rates through artificial neural networks. Chen et al. [11]
improved satellite-based precipitation retrievals using a deep
learning-based data fusion approach, which incorporated the
dual-polarization measurements from a high-resolution ground
radar network. Upadhyaya et al. [12] described a quantitative
precipitation estimation algorithm based on the GOES-16 ABI
observations, as well as low-level environmental information
and a numerical weather prediction model. However, these
previous algorithms are either based on feedforward neural
networks, which may not be sufficient to extract the rich
information contained in the satellite data. More importantly,
none of these studies have incorporated the GLM data, which
is expected to provide critical information about heavy con-
vective precipitation.

To this end, this article proposes a deep learning-based
framework for improving the operational GOES-16 precipi-
tation product using both ABI and GLM measurements. The
essential components of this precipitation retrieval framework
are two convolutional neural networks (CNNs), which are
widely used in image classification and computer vision
problems since they have the advantage of being invariant
to scaling and translation, meaning they can recognize and
classify objects regardless of their size or scale within an
image. [13], [14]. In CNNs, the shared weights among the
neurons reduce the number of parameters, and allow the
network to extract the more important high-level features of
images, such as topology and spatial information. In addition,
the pooling operation in CNNs shrinks the size of the feature
maps, which overcomes the distortions and translations. In the
proposed model, the convolutional layers in CNNs can capture
the spatial features of precipitation from the multi-channel
satellite observations, including the lightning data from GLM
measurements. This article also performs a detailed feature

analysis to quantify the impacts of different input data on
precipitation retrieval performance at different precipitation
intensities.

This paper is organized as follows. In Section II, the study
domain in the southeastern United States, the ABI, GLM, and
MRMS datasets, and the proposed deep learning framework
are detailed. Section III presents an in-depth analysis on the
discrimination of the input features for the deep learning
model, and the implementation results using the proposed
framework over the selected study domain. A discussion about
the performance of the proposed framework is also given in
this section. Finally, conclusions based on the experimental
results and suggested future work are provided in Section IV.

II. DATASETS, STUDY DOMAIN, AND METHODOLOGY

A. ABI and GLM Measurements and MRMS Datasets

The GOES-16 (current GOES-East) satellite was jointly de-
veloped and operated by NOAA and the National Aeronautics
and Space Administration (NASA). It covers North and South
America and the Atlantic Ocean to the west coast of Africa.
In this article, we utilize the ABI and GLM measurements
acquired from the GOES-16 satellite as inputs to the deep
learning model. To train the model, the ground-based MRMS
quantitative precipitation estimation (QPE) product is used for
the target labels. The data from May to September in 2019 are
divided into training and validation data. The data from May
to September in 2020 are used for the independent test. The
period of May to September is selected mainly because it is
the rainy season in our study domain. Detailed information
on each dataset used in this article will be provided in the
following.

1) GOES-16 ABI Measurement: The full-disk ABI mea-
surement is an imaging radiometer with 10 minutes temporal
resolution, which images Earth’s weather, oceans, and en-
vironment using 16 spectral bands associated with different
center wavelengths and spatial resolutions, including 2 visible,
4 near-infrared, and 10 infrared bands [15]. For the purpose of
precipitation retrieval, we select 5 infrared spectral bands 8,
10, 11, 14, and 15, with 6.2 µm, 7.3 µm, 8.4 µm, 11.2 µm, and
12.3 µm center wavelength, respectively. These wavelengths
have been shown to be particularly sensitive to water vapor
[15]. On the contrary, the near-infrared and visible bands
in ABI measurements are less sensitive to water vapor and
precipitations compared to these selected five infrared bands.
All these five bands have a spatial resolution of 2 km. The
radiance data from these selected bands are converted into
brightness temperatures (BTs), which are incorporated into the
input features of the deep learning model.

Previous studies [16], [17] have demonstrated that the
brightness temperature differences (BTDs) derived from the
GOES-16 ABI bands can be utilized to obtain precipitation re-
trieval products, as well as land surface temperature and cloud-
top pressure products. For instance, the BTD between 6.2 µm
band 8 and 7.3 µm band 10 approximates the concentration
and distribution of water vapor [15]. The BTD between 8.4
µm band 11 and 11.2 µm band 14 can differentiate between
thick and thin cirrus, and between clouds made of ice and those
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made of liquid [15]. Consequently, the methodology described
herein incorporates five BTD features in addition to the BT
features.

2) GOES-16 GLM Measurement: The GLM measurement
uses a single-channel, near-infrared optical transient detector
to identify and indicate the presence of lightning. It measures
the in-cloud, cloud-to-cloud, and cloud-to-ground lightning
activities continuously over the Americas and adjacent ocean
regions with near-uniform 8 km spatial resolution and 20 sec-
onds refresh rate [18]. In the GLM measurement, the lightning
data are ingested and assembled into three categories of high-
level products: event, group, and flash, which can be easily
and conveniently utilized for scientific research and broader
operational applications. For instance, the flash product from
the GOES-16 GLM measurement has been employed in [19]
to improve convective precipitation forecasting. The GLM
measurement has also been found to be valuable for estimating
locations of strong radar echoes [20].

In the GOES-16 GLM measurement, an event, which is
the basic unit of data from the GLM measurement, is defined
as the occurrence of a single pixel exceeding the background
threshold during a single frame. A group is defined as multiple
simultaneous adjacent events in pixels that occur in the same
time integration frame. The reason for defining groups is that
a lightning discharge is usually present in more than one
pixel during a single time integration frame. The location
information for the groups is stored in Earth-based latitude
and longitude coordinates. A flash is defined as a set of groups
sequentially separated in time by 330 ms or less and in space
by no more than 16.5 km (nominally two pixels). Thus, a flash
may include one group with a single event or it may consist of
many groups that contain many events. The spatial information
for flashes is in latitude and longitude to be consistent for
the groups and flashes. In this article, we apply the high-
level flash product as an additional input feature to our deep
learning model in order to identify areas of deep convection
with associated heavy rain rates.

3) Ground-Based MRMS Product: The ground-based
MRMS product was operationalized in 2015 by NOAA, which
integrates multiple radars, satellites, surface observations, up-
per air observations, lightning reports, rain gauges, and nu-
merical weather prediction models in the continental United
States and Canada, and generates quantitative precipitation
estimates. The integration of radar with multi-sensor data
provides more accurate diagnoses of physical processes in the
atmosphere than using radar data alone. Furthermore, a bias
correction algorithm was later developed by Ware [2], [21],
which takes the density of the gauge network and the distance
from the gauge into consideration. It properly weights the
radar estimates and the gauge observations at each grid point
to improve the quantitative precipitation estimates. The bias
correction process for MRMS data can be summarized into
the following three stages: a) calculation of hourly radar-gauge
differences; b) interpolation of differences onto the MRMS
grid via an inverse-distance-weighted mean scheme; c) sub-
traction of interpolated differences from radar QPE. The bias
correction is performed separately for different subdomains
within the CONUS region. The presented results by Zhang

et al. in [2] demonstrate that this bias correction approach
consistently improves the radar QPE accuracy throughout the
year across the CONUS domain. This bias-corrected MRMS
product has a spatial resolution of 1 km and includes the
accumulation results ranging from 1 to 72 hours. In this article,
we use the hourly bias-corrected MRMS rainfall estimates as
the target labels to train the deep learning model, which has
been identified as the most precise precipitation rainfall rate
product during the period of this study.

B. Study Domain

In this article, a rectangular region in the southeastern
United States is selected as the study domain, which spans
from 81◦W to 97◦W in longitude and 31◦N to 39◦N in
latitude, covering an area of approximately 1600 km × 800
km as shown by the red rectangle in Fig. 1. This region was
chosen due to the fact that it primarily consists of relatively
flat terrains with similar characteristics as the digital elevation
model (DEM) information in Fig. 1 presents. The deployment
of radars and rain gauge sites across this area has been
extensive, owing to the absence of complex terrain features
like high mountains or lakes [2]. As a result, the MRMS
precipitation estimates in this region are considered reliable
and accurate with the bias-correction algorithm, making them
suitable as target labels for our deep learning model. Although
the main challenge is the mesoscale convective precipitation
in western and the mid-western United States as described
above, this article is describing a prototype algorithm and the
selected region is relatively “simple” in terms of terrain and
has accurate QPE for training.
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Fig. 1. Location of the study domain (denoted by the red rectangle) in the
CONUS. The background color indicates the digital elevation model (DEM)
information.

C. Methodology

In this subsection, we present the deep learning-based
framework for precipitation, which includes data pre-
processing, components and structure of the deep learning
model, essential aspects of model training and testing, and
a comprehensive evaluation of the retrieval performance using
appropriate metrics.
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Fig. 2. The deep learning framework for precipitation retrievals using GOES ABI and GLM data. In the convolutional (Conv-) and pooling (Pool-) layers,
k, f, s, and p represent kernel size, number of feature maps, stride size, and pooling size, respectively. The spatio-temporal resolution of the data and data
pre-processing is also illustrated. The rainfall rate estimates are determined by combining the detection results from CNN-1 and estimation results from
CNN-2.

1) Data Pre-Processing: The data pre-processing phase
comprises four key parts: a) converting the radiance data from
the GOES-16 ABI measurement into BT and BTD features;
b) forming the hourly flash rate feature from the GOES-16
GLM measurement; c) partitioning the features into patches;
d) labeling the partitioned patches using the MRMS data in the
training phase. Each of them will be demonstrated elaborately
in the following.

a) BTs and BTDs: To convert the spectral radiance data
of the selected bands in the GOES-16 ABI measurement into
the BT, we use the transformation equation [22]

BTi = [fk2/(ln((fk1/Li) + 1))− bc1]/bc2, (1)

where i ∈ {8, 10, 11, 14, 15} is the index for the GOES-16
ABI band; BTi is the brightness temperature converted from
the band i spectral radiance; Li is the spectral radiance data
from the band i; bc1 and bc2 are the spectral response function
offset and the scale correction term, respectively; fk1 and fk2
are the Planck function coefficients, which are derived as

fk1 = 2hcν, (2)

fk2 = 2h
c

b
ν, (3)

where h is the Planck constant; b is the Boltzmann constant;
c is the velocity of light; ν is the band central wavenumber.
In this article, the values of bc1, bc2, fk1, and fk2 are loaded
from the GOES-16 ABI measurement data files.

Once the BT features are calculated, we also include the
following BTD features:

BTD10, 8 = BT10 − BT8,

BTD11,14 = BT11 − BT14,

BTD14,10 = BT14 − BT10,

BTD11,14 = BT11 − BT14,

BTD14,15 = BT14 − BT15,

(4)

where BTDi1,i2 , i1, i2 ∈ {8, 10, 11, 14, 15} is the brightness
temperature difference of BTi1 subtracting BTi2 .

To accommodate the 1-hour temporal resolution of the bias-
corrected MRMS data, the BTs and BTDs with a resolution of
10 minutes are averaged over the six scans within an hour. By
doing so, the resulting averaged BTs and BTDs are treated as
the representative BT and BTD features for that specific hour.

b) Lighting Flash Rates: In GOES-16 GLM measure-
ment, flashes are recorded and stored with the associated
longitude, latitude, and radiant energy. To form the hourly
flash rate feature, we initialize a grid with a 2 km spatial
resolution over the selected study domain for each hour. We
then find the coordinates of the flashes within this hour and
assign the grid pixel value with the occurrence of the flashes
at the corresponding location. It should be noted that the flash
occurrence is counted regardless of the released flash energy.
Also, the spatial resolution formed hourly flash rate feature
is 2 km while the spatial resolution of the GOES-16 GLM
measurement is 8 km. When the coordinates of the flashes
are not perfectly matched to the grid coordinates, we find
the closest locations in the feature grid as the corresponding
locations for the flashes.

c) Partitioning: In summary, a total of 11 features are
stacked together as the input features to the deep learning
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model, including 5 BT features, 5 BTD features, and the
GLM flash rate feature. To apply these features to the deep
learning model, we partition them into 11 × 29 × 29 patches
with stride size 1 and feed them to the deep learning model
next. The selection of 29 × 29 patch size in each band is
based on the following consideration. CNNs excel at capturing
spatial information from data. By utilizing nearby information
surrounding the patch center, we aim to effectively determine
the rainfall rate at that specific location. However, if the patch
size is too large, it may encompass numerous precipitation
patterns that could potentially confuse the CNN and yield
inaccurate results. We have conducted a series of experiments
involving different patch sizes to determine the optimal choice.
After careful evaluation, we found that a patch size of 29×29
yielded the best performance. Therefore, we made the decision
to employ a 29×29 patch size for each band in our framework.

d) Ground-Based MRMS Product: In the training phase,
we first down-sample the MRMS data from 1 km to 2 km
to match the resolution of the input features and generate
target labels for the partitioned patches. Specifically, we retain
every other cell on the MRMS grid, both column-wise and
row-wise. This sub-sampling approach allows us to reduce
the spatial resolution of the MRMS data while still capturing
the essential information needed for our analysis. The MRMS
estimates at the center of the partitioned patches are then
utilized to label the 11 × 29 × 29 patches. In the case of
precipitation detection, the partitioned patches are labeled as
precipitation if the MRMS rainfall rates exceed 0.1 mm/hr, and
as non-precipitation otherwise. For precipitation estimation,
the MRMS estimates at the center of the partitioned patches
are taken as the target values of the partitioned patches.

2) Deep Learning Framework: Fig. 2 details the deep
learning framework. Once the GOES-16 ABI and GLM mea-
surements have been pre-processed, we apply the partitioned
patches to the deep learning model. The deep learning model
consists of two components: a detection CNN module (CNN-
1) and an estimation CNN module (CNN-2), both of which
have three convolutional layers, two average pooling layers,
and one dense layer. For all the convolutional layers in CNN-
1 and CNN-2, the kernel size is set to 4 (i.e., the width and
height of kernels are 4) with stride size 1. The numbers of
feature maps in three convolutional layers for both CNN-1
and CNN-2 are set to 64, 128, and 128, respectively. All the
pooling layers in CNN-1 and CNN-2 use an average pooling
mask with size 2 and stride 2. In CNN-1, the feature maps
at the third convolutional layer are fully connected to the
dense layer, which has 2 nodes to predict the detection results,
i.e., precipitation and non-precipitation. In CNN-2, the feature
maps at the third convolutional layer are fully connected to a
single-node dense layer for precipitation estimation.

In the training phase, the losses between the predicted
results and the actual target labels provided by the MRMS
data are calculated for both modules, in which the CNN-1 uses
the binary cross-entropy loss, and the CNN-2 uses a weighted
mean squared error (MSE) loss to address the precipitations
according to their target rainfall rates. The weighted MSE loss

in CNN-2 is defined as

Loss(θ) =
1

N

N∑
n=1

(1 + yn)(ŷn(θ)− yn)
2, (5)

where θ denotes the model parameters in CNN-2, N is the
total number of training patches; yn and ŷn are the actual and
the predicted label for the nth training patch, respectively. One
can notice that the heavier the precipitation in a patch is, the
larger weight it gets. Since the actual rainfall rate yn is always
non-negative, (1 + yn) ensures the weight is always greater
than or equal to 1. The losses are then back-propagated to the
CNN modules to update the network parameters individually.

In the testing phase, the test data features are pre-processed
into 11×29×29 patches similar to the training data, and then
applied to the deep learning model. The final precipitation
retrievals are determined by fusing the results from the two
modules. Specifically, if CNN-1 detects precipitation for a
given patch, the rainfall rate at the center location of that patch
is estimated based on the outcome of CNN-2. Conversely, if
CNN-1 does not detect precipitation in a patch, the corre-
sponding rainfall rate at the center location for that patch is 0
mm/hr.

3) Performance Evaluation: The detection performance of
the proposed deep learning framework is evaluated in terms
of Heidke skill score (HSS), critical success index (CSI) [23],
probability of detection (POD), and false alarm ratio (FAR),
which are given as

HSS =
2(TP × TN − FN × FP)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)
, (6)

CSI =
TP

TP + FN + FP
, (7)

POD =
TP

TP + FN
, (8)

FAR =
FP

TN + FP
, (9)

where TP (true positive) is the number of pixels predicted and
labeled as precipitation; FP (false positive) is the number of
pixels labeled as non-precipitation, but predicted as precip-
itation; FN (false negative) is the number of pixels labeled
as precipitation, but predicted as non-precipitation; TN (true
negative) is the number of pixels predicted and labeled as non-
precipitation.

The integrated HSS and CSI metrics directly reflect the
model skill. Normally, higher POD, HSS, CSI, and lower FAR
indicate better model performance. Furthermore, to investigate
the precipitation detection performance at different rainfall
rates, the evaluation metrics are computed based on a number
of rainfall rate thresholds. This is done by transforming the
deep learning-based estimates and the ground-based MRMS
product into binary arrays. Specifically, if the rainfall rate of
the deep learning-based estimate or the ground-based MRMS
product at a grid pixel is higher than the threshold, “1” is
assigned to this grid pixel, otherwise “0” will be assigned. For
each threshold, we compute the confusion matrix between the
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transformed binary arrays from the proposed deep learning-
based rainfall rate estimates and the corresponding ground-
based MRMS product to further obtain the four detection
evaluation metrics above.

The performance of the precipitation estimation is evaluated
in terms of mean squared error (MSE), mean absolute error
(MAE), normalized mean error (NME), and the normal mean
absolute error (NMAE), which are calculated as

MSE =
1

M

M∑
m=1

(ŷm − ym)2, (10)

MAE =
1

M

M∑
m=1

|ŷm − ym|, (11)

NME =

∑M
m=1 ŷm − ym∑M

m=1 ym
, (12)

NMAE =

∑M
m=1 |ŷm − ym|∑M

m=1 ym
, (13)

where m ∈ [1,M ] is the testing patch index; ym is the rainfall
rate from MRMS ground truth, ŷm is the predicted rainfall
rate estimates; M is the total number of testing patches. It is
important to compute and show all of these metrics to gain
a comprehensive understanding of the model’s performance.
Each metric captures different aspects of the errors, providing
valuable insights. In other words, MSE and MAE quantify
the squared and the absolute errors, respectively, while NME
and NMAE provide a relative perspective by normalizing the
errors.

To assess the efficacy of precipitation estimation under vary-
ing intensities, we adopt the identical rainfall rate thresholds
employed in evaluating the detection performance of precip-
itation. At each threshold level, we determine the grid pixel
indices where the ground-based MRMS product exceeds the
threshold value. We subsequently calculate the four categories
of estimation evaluation errors between the predicted rainfall
rates and the ground-based MRMS product exclusively for
these selected pixel indices.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we commence by first conducting a com-
prehensive examination of the impact of the input features
for precipitation retrieval. Then, the experimental results of
the proposed deep learning-based precipitation retrieval and
the operational product over the selected study domain are
presented and evaluated using the metrics in Section II-C3,
encompassing both hourly and daily accumulated results.
Lastly, an extensive discussion of the precipitation retrieval
performance is provided.

A. Features Analysis

To investigate the impact of each input feature on the pre-
cipitation retrieval for different levels of precipitation rainfall
rates, Fisher discriminant analysis (FDA) [24] was applied to

the 11 input features across four distinct rainfall rate thresh-
olds, including 1, 4, 7, and 10 mm/hr. By employing FDA,
we were able to quantitatively measure the discrimination of
the features based on the statistics of the dataset, where the
highest Fisher measure indicates the most informative and
discriminating feature. For each threshold, the Fisher measure
FDA(i) for the band i feature was calculated as

FDA(i) =
|µ0(i)− µ1(i)|2

σ2
0(i) + σ2

1(i)
, (14)

where µ0(i) and µ1(i) are the pixel mean of the band i feature
over all the pixels in patches whose precipitation estimation
target labels are above and below the threshold, respectively;
σ2
0(i) and σ2

1(i) are the pixel variance of the band i feature
over all the pixels in patches whose precipitation estimation
target labels are above and below the threshold, respectively.
In this analysis, we selected 64,000 patches randomly from
the data in 2019 and obtained the Fisher measures of the 11
input features, which are presented in Fig. 3.
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Fig. 3. Fisher measures of the input features at different rainfall intensities
determined by the rainfall rate thresholds. The x-axis includes all the input
features to the deep learning model, where BTi and BTDi1,i2 , i, i1, i2 ∈
{8, 10, 11, 14, 15} refer to the BT from the GOES-16 ABI band i, and the
BTD from band i1 subtracting band i2, respectively. Lightning refers to the
hourly flash rate obtained from the GOES-16 GLM measurement.

As depicted in Fig. 3, we note that the Fisher measurements
of both BT and BTD features remained relatively constant
across varying rainfall rate thresholds. In general, BT features
exhibited greater impact than BTD features, with the BT
feature from ABI band 8, having a center wavelength of 6.2
µm, being the most informative. Nonetheless, with regards to
the hourly flash rate feature (denoted as Lightning in Fig.
3), its Fisher measurements exhibited remarkable variations
for different rainfall rate thresholds. As the rainfall rate
threshold increased from 1 mm/hr to 10 mm/hr, the Fisher
measure of the hourly flash rate feature increased from 0.22
to 0.59 approximately. Furthermore, the hourly flash rate
feature became the second most informative feature when the
rainfall rate threshold was 10 mm/hr. The Fisher Measure
results for the Lightning feature are consistent with the fact
that higher rain rates are usually associated with deeper and
more intense convection compared to lower rain rates. These
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findings suggest that the lightning data could potentially play
a pivotal role in precipitation retrieval, particularly for heavy
precipitation.

B. Experimental Setups

Once the GOES-16 ABI and GLM measurements were
pre-processed and partitioned into 11 × 29 × 29 patches,
a total of 6.4 million patches from the data in 2019 were
randomly selected for training the designed deep learning
model, for which the numbers of precipitation patches and
non-precipitation patches are equal. Then, the deep learning
model was validated on 6.4 million validation patches, which
were also randomly selected from the data in 2019, and
exclusive to the training patches. Finally, the trained deep
learning model was tested on the test patches in 2020. For the
testing set, we sampled 12.8 million patches from the dataset
collected in 2020, for which the numbers of precipitation
patches and non-precipitation patches are equal. The reason
for the sampling was to ensure a well-balanced representation
of both precipitation and non-precipitation patches in the
testing dataset. Including all non-precipitation samples from
the dataset would have led to an imbalance in the testing set,
potentially biasing and inflating certain evaluation metrics such
as TN, MSE, and MAE. By using a testing set with a balanced
representation of precipitation and non-precipitation samples,
we were able to obtain reliable and unbiased evaluation results
for the framework’s performance. Before being applied to the
deep learning model, the pixel values in the patches were
normalized between 0 and 1 for each individual feature as

BTi,norm =
BTi − BTi,min

BTi,max − BTi,min
, (15)

where BTi,max and BTi,min are the maximum and the min-
imum values of the BT from band i in the training set. The
normalization for the BTD and flash rate features were done
in a similar manner. It should be noted that the BT features,
the BTD features, and the flash rate features had different
maximum and minimum values, which needed to be taken
into account in normalization. The maximum and minimum
values for the input features used in this article are presented
in Table I.

TABLE I
MAXIMUM AND MINIMUM VALUES USED FOR NORMALIZING THE INPUT

FEATURES.

feature Maximum Minimum

BTD8 (K) 257.44 200.37
BTD10 (K) 273.46 199.81
BTD11 (K) 310.46 198.95
BTD14 (K) 314.75 198.63
BTD15 (K) 308.96 198.19

BTD10, 8 (K) 29.08 -5.89
BTD11,14 (K) 49.86 -1.37
BTD14,10 (K) 54.40 -1.80
BTD11,14 (K) 10.83 -7.40
BTD14,15 (K) 8.32 -0.43

Lightning (Count/hr) 5 0

Both CNN modules used ReLU as the activation function at
each neuron. The deep learning model was optimized using the
Adam optimizer with learning rates 2e-6 and 2e-7 for CNN-1
and CNN-2, respectively. The training batch size was set to
100 and the training epoch was set to 100. All experiments
were implemented using the Tensorflow platform [25]. In
the following figures and tables, the proposed framework is
referred to as “CNN w/ GLM”.

In order to experimentally quantify the impact of the GLM
data, another model with the same framework in Fig. 2
was trained except without using the GLM measurement for
comparison, hence the input patches for this model were of
size 10 × 29 × 29. Otherwise, the loss functions, activations,
optimizer, hyper-parameters, and the network architecture be-
side the input layer remained the same. This model is referred
to as “CNN w/o GLM”.

C. Experimental Results

In this section, the experimental results are presented,
including the hourly and daily accumulated results. Results
for both accumulation periods were evaluated using the met-
rics in Section II-C3 with different thresholds, including the
performance comparison of the proposed deep learning-based
precipitation retrieval with and without GLM measurement, as
well as the currently operational GOES-16 RRQPE product.

1) Hourly Retrieval Results: Fig. 4 shows a visual example
of the hourly precipitation estimates at 23:00 UTC, May 17,
2020, including the CNN-based precipitation retrieval with
and without the hourly flash rate feature from the GLM
measurement, the MRMS ground truth, and the currently
operational GOES-16 RRQPE product. It can be seen from
Fig. 4 that the CNN-based precipitation retrieval outperformed
the operational product as it was able to identify heavy
precipitation areas that the operational product missed. The
CNN-based retrieval provided better estimates for both weak
and intense precipitation, particularly in areas with intense
precipitation when using lightning data compared to the model
without lightning data. Despite some false alarmed areas,
such as the region near 85◦W, 37◦N, the estimates from the
CNN-based retrieval with the lightning data had lower errors
than the estimates from the CNN-based retrieval without the
lighting data and the operational product, and the operational
product completely failed to indicate the precipitation over
this area. These visual and comparative observations between
the CNN-based retrieval with and without GLM corroborated
our conclusion in Section III-A that the lightning data from
the GLM measurement played a crucial role in precipitation
retrieval.

The quantitative evaluation results of the CNN-based precip-
itation retrieval and the operational product on the validation
data and the test data were summarized in Table II, where
the best scores were indicated in bold. The evaluation metrics
for detection focused on distinguishing between precipitation
and non-precipitation, whereas the assessment metrics for
estimation encompassed all levels of precipitation events.
In general, the CNN-based retrieval approach outscored the
operational GOES-16 RRQPE product. For the integrated HSS
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Fig. 4. Example of hourly precipitation estimates at 23:00 UTC, May 17, 2020: (a) CNN-based retrieval with GLM data; (b) CNN-based retrieval without
GLM data; (c) ground-based MRMS product; (d) operational GOES-16 RRQPE product.

TABLE II
PERFORMANCE OF HOURLY PRECIPITATION RETRIEVALS FROM THE DESIGNED CNN MODELS AND THE OPERATIONAL GOES-16 RRQPE PRODUCT

BASED ON THE VALIDATION AND TEST DATA.

HSS CSI POD FAR MSE (mm2) MAE (mm) NME NMAE

Validation Data
CNN w/ GLM 0.73 0.74 0.78 0.06 27.62 1.98 -0.04 0.48
CNN w/o GLM 0.70 0.74 0.91 0.23 48.32 2.76 -0.10 0.66

Operational Product 0.52 0.54 0.55 0.03 73.97 3.55 -0.52 0.75

Test Data
CNN w/ GLM 0.71 0.73 0.77 0.06 31.79 2.49 -0.09 0.52
CNN w/o GLM 0.67 0.74 0.91 0.24 50.59 3.56 -0.11 0.74

Operational Product 0.53 0.55 0.57 0.03 71.49 3.65 -0.53 0.76

and CSI metrics, the CNN-based retrieval with the lightning
data had at least 32% improvement on the testing data. For the
estimation errors, it reduced the MSE, MAE, and NMAE by
at least 31%. Although the CNN-based model without GLM
had higher POD, it also had a relatively high FAR.

To highlight the precipitation performance for different
rainfall rates, seven thresholds were applied in calculating the
evaluation metrics, including 1, 2, 4, 7, 10, 15, and 20 mm/hr.
These metrics versus thresholds were plotted in Fig. 5. It can
be seen that, in general, the CNN-based retrieval approach
produced higher skill scores and lower errors compared to the
operational GOES-16 RRQPE product. From Fig. 5 (a)-(c) and
(e)-(f), we can observe that when the rainfall rate thresholds
increased from 10 to 20 mm/hr, the detection performance
of all models dropped and the estimation error raised, which
implied that the precipitation retrieval for heavy rain was
more challenging than the retrieval for weak and moderate
rain. Similarly, Fig. 5 (e)-(f) reveals that an increase in the
rainfall rate thresholds from 1 to 20 mm/hr led to a decline
in estimation performance for all models. This was expected
as higher rain rates are typically associated with more intense
convective features that are often transient and more challeng-
ing to retrieve from a satellite remote sensing perspective.

Notice that the normalized errors in Fig. 5 (g)-(h) dropped
as the thresholds increased because of the normalization in
the calculation. It is remarkable that the CNN-based retrieval
model with GLM exhibited a more reliable performance than
both the CNN-based model without GLM and the operational
product, particularly for heavy precipitation events where the
hourly rainfall rate exceeded 10 mm/hr. This conclusion is
consistent with the visual example illustrated in Fig. 4 and the
FDA investigation in Fig. 3.

2) Daily Retrieval Results: The daily precipitation retrieval
results were obtained by aggregating the precipitation esti-
mates over 24 hours of a day. An example of the precipitation
estimates on Aug 20, 2020, is presented in Fig. 6, including
the CNN-based precipitation retrieval with and without the
hourly flash rate feature from GLM measurement, the MRMS
ground truth, and the currently operational GOES-16 RRQPE
product. In Fig. 6 (c), an area of precipitation with a number of
embedded convective cells can be observed in the southeastern
part of the study domain. Most of these rainfall patterns were
revealed by the CNN-based retrieval with the lightning data in
Fig. 6 (a), albeit with some underestimation. Conversely, these
heavy precipitation areas were largely missed by the CNN-
based retrieval without the lightning data and the operational
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Fig. 5. The quantitative evaluation scores of the operational GOES-16 RRQPE product and deep learning-based retrievals with and without using lightning
information. The evaluation scores are calculated for hourly rainfall accumulations based on all the test data, using different thresholds: (a) HSS, (b) CSI, (c)
POD, (d) FAR, (e) MSE, (f) MAE, (g) NME, (h) NMAE. The evaluation scores of the CNN-based retrievals with GLM data are marked along the red curves.

product, leading to substantial inaccuracy and underestimation.
In contrast, for the moderate precipitation in the northeast
part of the study domain, both of the CNN-based retrievals
were able to more accurately delineate the precipitation areas
and their intensities compared to the operational product. In
Fig. 6 (b), the estimates without using GLM measurement
seemed to have a coarser resolution than the estimates in Fig.
6 (a). Since the CNN-based retrieval model without GLM
exhibits a relatively high false alarm rate for weak to moderate
precipitation, after aggregating the estimates to a daily scale,
the delineation of areas with weak to moderate precipitation
appeared less distinct compared to the estimates obtained from

the CNN-based retrieval model without GLM model, making
the estimates look smoother.

The daily precipitation evaluation with thresholds was car-
ried out as follows. We first obtained the daily precipitation
estimates of the days in the testing months in 2020. Note that
we completely skipped the days with abnormal/missing data
in ABI or GLM measurements, as well as the days without
recorded precipitation events within the chosen study domain.
We then calculated the daily precipitation evaluation metrics
for each remaining day with thresholds 1, 5, 10, 20, 30, 40, and
50 mm/day. Finally, for each threshold, the daily precipitation
evaluation metrics were averaged over the remaining days. The
averaged daily precipitation evaluation metrics were plotted in
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Fig. 6. Example of daily precipitation accumulations on August 20, 2020: (a) CNN-based retrieval with GLM data; (b) CNN-based retrieval without GLM
data; (c) ground-based MRMS product; (d) operational GOES-16 RRQPE product.

Fig. 7. It can be seen from Fig. 7 that the CNN-based retrieval
approach performed better than the operational GOES-16
RRQPE product with lower errors. For the more challenging
heavy precipitation retrieval, the CNN-based retrieval with the
lightning data exhibited large improvements when compared
to the CNN-based retrieval without the lightning data and the
operational product. Although the operational product had the
lowest FAR as shown in Fig. 7 (d), the FAR of the CNN-based
retrieval with GLM still maintained reasonable values. In Fig.
7 (g), the negative values of NMEs imply that all three models
underestimated the precipitation overall, with the CNN-based
retrieval with lightning data demonstrating the lowest NME.
These observations are consistent with the underestimation
of precipitations in Fig. 6 using the CNN-based retrieval.
Furthermore, our comparison of the CNN-based retrieval with
and without GLM highlights the significance of the lightning
data for precipitation retrieval, particularly as the rainfall rates
increase.

D. Discussion

1) Deep Learning for Precipitation Retrieval: The experi-
mental results have demonstrated the efficacy and superiority
of the deep learning model for precipitation retrieval using
the ABI and GLM measurements on the GOES-R series
satellite, particularly for moderate and heavy precipitation.
From these results, one can conclude that the deep learning-
based precipitation retrieval can significantly enhance the cur-
rently operational product to improve the precipitation retrieval
accuracy, with brightness temperatures from the selected ABI
bands and the flash rates from the GLM measurement as the
input features. Thus, the proposed deep learning framework
can potentially serve as an alternative approach for GOES
precipitation retrievals. In comparison to other deep learning
models with wide usages, e.g., VGG-16 with 13 convolutional

layers and 3 dense layers [26], [27], our proposed deep learn-
ing model only has 3 convolutional layers and 1 dense layer for
each CNN module. Consequently, the proposed deep learning
model is lightweight and efficient, providing precipitation
estimates without consuming excessive computational time.
However, it is important to note that further investigation is
necessary to determine the generalization capability of deep
learning models for precipitation retrieval.

From another perspective, the deep learning model learns a
mapping from the BTs, BTDs, and flash rates to the precipi-
tation rainfall rate. These BT and BTD features are derived
from the observations of the GOES-16 ABI measurement
and are on the top or near the clouds with a 2 km spatial
resolution. The flashes in the GOES-16 GLM measurement
account for all in-cloud, cloud-to-cloud, and cloud-to-ground
lightning activities with 8 km resolution. On the other hand,
the target labels used for training the deep learning model
are the ground-based MRMS dataset and have a 1 km spatial
resolution. In the training phase, the MRMS data are re-
sampled to 2 km spatial resolution to provide the target labels
for the training patches. Hence, errors may inevitably arise
during sampling and providing the target labels of the training
patches. In spite of the possible errors raised from the different
resolutions of datasets, the environments between the clouds
and the grounds are variable. Any atmospheric changes may
affect the learned mapping, and cause unstable or inaccurate
precipitation estimates.

Moreover, it is anticipated that the operational RRQPE
product on the GOES-R series satellite has a global or at least
hemispheric coverage, while the study domain in this article
is only a region in the southeastern United States. When we
expand the study domain to the whole globe, further studies
are required to justify whether multiple deep learning models
or only one deep learning model is adequate to offer accurate
hemispheric coverage of rainfall rate estimates. An additional
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Fig. 7. The quantitative evaluation scores of the operational GOES-16 RRQPE product and deep learning-based retrievals with and without using lightning
information. The evaluation scores are calculated for daily rainfall accumulations based on all the test data, using different thresholds: (a) HSS, (b) CSI, (c)
POD, (d) FAR, (e) MSE, (f) MAE, (g) NME, (h) NMAE. The evaluation scores of the CNN-based retrievals with GLM data are marked along the red curves.

concern regarding the expansion of the proposed framework
pertains to the parallax shift in ABI measurements [28]. That
is, the cloud-top features observed by the GOES-R satellite
sensors appear to be displaced away from the satellite sub-
point. The parallax shift becomes more noticeable as the study
domain moves closer toward the edges of the ABI’s field of
view. For the study domain in this article, the parallax effects
were less significant compared to other areas, such as the
western United States, due to its proximity to the satellite
sub-point. Furthermore, it should be acknowledged that one
of the advantages of CNNs lies in their ability to be shift-
invariant, which prompted us to overlook the parallax effect

in our study. Nevertheless, it is important to note that this
parallax shift will pose a more substantial challenge when
extending our work to encompass the western United States
or the entire western hemisphere. Despite the missing or
invalid data in GOES-16 ABI and GLM measurements, the
reliability and accuracy of the targets of the training data,
i.e., ground-based MRMS product, are crucial when training
a deep learning model for precipitation retrieval. However,
as presented in [2], the coverage of the MRMS dataset is
mostly limited to the continental United States. Even so, the
deployment of the ground radars over some complex terrains
may not be as sufficient as those in plain areas which have
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relatively flat terrain. These complex areas include the regions
where the deployment of radars is challenging due to various
environmental obstacles such as mountains, oceans, and dense
vegetation. For offering a global precipitation retrieval product,
these complex terrains are unavoidable and further study on
deep learning-based precipitation over complex terrains needs
to be further investigated. One benefit of the deep learning-
based precipitation retrieval is to leverage the transfer learning
technique for the precipitation retrieval over different regions
[29], [30]. By employing transfer learning, the deep learning
model trained on the present study domain can be adapted
for other regions by retaining most of the previously learned
knowledge and making minor modifications based on the
characteristics of the new region.

In addition, the performance of deep learning models is
highly dependent on the quality and the quantity of the
dataset. It is crucial that the training data encompasses a vast
number of precipitation patterns to achieve desirable results.
Consequently, we aim to include as many precipitation patterns
as possible during the training phase. In case the testing data
differ considerably from the training data and are unfamiliar
to the deep learning model, the testing performance may be
adversely affected. However, it is not feasible to incorporate all
possible precipitation patterns into the training data. Another
consideration with a large amount of data is that, although
the training can be done offline, the elapsed time for training
a deep learning model will markedly increase. One remedy
is to implement the continual lifelong learning technique for
deep learning models [31], [32]. Once the deep learning
models have been well-trained but some unseen precipitation
patterns arise, the continual lifelong learning technique, e.g.,
the elastic weight consolidation (EWC) in [32], can adjust the
deep learning model parameters when encountering previous
unseen precipitation patterns without forgetting the previous
knowledge catastrophically, for which the deep learning model
can maintain the performance on the previous precipitation
patterns but also be adaptive to the newly unseen patterns.
Also, it is no longer a restrictive requirement that the training
data must contain all intensities of precipitation data.

Finally, in this article, we only included BT, BTD, and
lightning as input features for precipitation retrieval. Other en-
vironmental factors, such as terrain information, water vapor,
temperature, and wind magnitude/direction, also impact the
precipitation and therefore can be incorporated with the BT,
BTD, and lightning features for a potentially more accurate
precipitation retrieval. One way to include these additional
features without starting the training process over is the
network expansion for deep learning neural networks [33],
[34]. For example, the terrain and elevation information has
been shown to be important factors for the satellite-based
precipitation retrieval in [35], [36], [37]. The deep learning
model can incorporate the elevation data by adding an extra
input layer to the deep learning model and continue learning
a mapping function from BT, BTD, flash rate, and elevation
to the precipitation rainfall rates.

2) Lightning Data in Precipitation Retrieval: From the ex-
perimental results, it can be seen that after including the hourly
flash rate feature from the GOES-16 GLM measurement as

an additional input to the deep learning model, the perfor-
mance of the deep learning-based precipitation retrieval was
outstandingly improved. This finding supports the inference on
the lightning data using FDA in Section III-A, highlighting the
crucial role of lightning information in precipitation retrievals.

However, in this article, only the flash rate from the GLM
measurement was used, regardless of the energy released from
the flashes. One main reason we did not use the released
energy directly as the feature is that it would not provide
clear information about the absence of lightning. If we used
the hourly released energy from the flashes as a feature, we
could not justify whether a small number of flashes occurred
within a short period of time but released massive of energy
intensely, or a large number of flashes occurred mildly within
an hour. In contrast, the hourly flash rate can explicitly reflect
the occurrence of the flashes, which usually take place with the
precipitations. This also avoids possible errors in estimating
the released energy from the flashes. Other than that, the
GLM measurement provides three products, event, group, and
flash, while in this article, we selected the most integrated
flash product. A supplemental study on how each of them
impacts the deep learning-based precipitation retrieval could
be conducted thoroughly to further improve the deep learning-
based retrieval performance. Lastly, in the data pre-processing
for the GLM measurement, the grids with a 2 km spatial
resolution were formed, while the spatial resolution for the
GLM measurement is 8 km. This spatial resolution mismatch
can cause inaccurate flash rate features. The resolution of the
GLM measurement can be potentially enhanced by using the
super-resolution generative adversarial networks [38], [39], so
that a more precise flash rate feature can be formed to match
the 2 km spatial resolution of the selected infrared bands from
the ABI measurements.

IV. CONCLUSIONS

Although ground-based radars can provide accurate quanti-
tative precipitation estimates, their coverage is limited because
of the difficulties in deploying ground radars over complex
terrains, such as mountains and oceans. The satellite sensors
can overcome this issue as they have wide coverage over
the globe. The quantitative precipitation retrieval products are
derived from the observations from these satellite sensors,
e.g., the currently operational RRQPE product on the GOES-
R series satellite. In different precipitation regimes, including
orographic precipitation in the western United States and in
mesoscale convective systems, the precipitation estimates from
the operational RRQPE product on the GOES-R series satellite
are affected and result in inaccuracy estimates [40], [6].

In light of this issue, we propose a deep learning frame-
work for precipitation retrieval using the ABI and GLM
measurements on the GOES-R series satellite. This framework
leverages the BT and BTD features derived from the infrared
bands on the ABI measurement and the hourly flash rate
features based on the GLM measurement. These features are
partitioned into patches and applied to a deep learning model
as the inputs. Then, the deep learning model, comprising
two CNN modules, is trained with the ground-based MRMS
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dataset as target labels, and tested over the selected study
domain in the southeastern United States. The experimental
results demonstrate that the proposed framework is capable of
providing promising precipitation estimates with high accu-
racy, and has the potential to enhance the currently operational
RRQPE product. Based on these experimental results, two
main conclusions are drawn as follows.

1) The test results indicate that the deep learning-based
framework for precipitation retrieval using ABI and
GLM measurements can enhance the currently opera-
tional GOES-16 RRQPE product. Visually, the CNN-
based retrieval model with lightning data yields more
encouraging estimates and captures more precipitation
patterns, especially heavy precipitations, than the oper-
ational RRQPE product on the GOES-R series satellite.
Quantitatively, compared to the operational product, the
CNN-based retrieval model has better detectability by
achieving at least 32% improvement in terms of the
integrated HSS and CSI metrics, and can reduce at
least 31% estimation error in terms of MSE, MAE, and
NMAE.

2) To investigate the impact of the lighting data on deep
learning-based precipitation retrieval, we conducted
FDA on 11 input features and controlled experiments,
in which the deep learning model was trained and
tested with and without using the hourly flash rate
feature. The experimental results show that in com-
parison, the CNN-based retrieval with lightning data
significantly outscored the CNN-based retrieval without
lightning data, highlighting the importance of lightning
in deep learning-based precipitation retrieval. The flash
rate feature can significantly help the CNN-based re-
trieval model improve the accuracy of the rainfall rate
estimates, particularly for moderate and heavy precipi-
tations.

However, it is worth noting that although the CNN-based
retrieval with lightning data has exhibited encouraging results,
several avenues for improvement remain unexplored. First, it
is important to acknowledge that the study domain in this
article is limited to a rectangular region of approximately
1600 km × 800 km in the southeastern United States. To
develop an operational algorithm for precipitation retrieval,
the coverage must be expanded to encompass the globe or
at least the hemisphere. Therefore, future work will focus
on developing a deep learning-based precipitation retrieval
framework to extend the study domain and test the precip-
itation retrieval performance over a larger domain. Second,
as the study domain expands, it is inevitable to consider
the regions with complex terrain, such as mountains, lakes,
and oceans. Incorporating terrain or elevation information as
input features to the deep learning model could potentially
enhance the accuracy of the precipitation retrieval framework.
In addition to terrain information, other factors typically
associated with precipitation, including water vapor, ground
temperature, cloud height, and wind magnitude/direction, can
also be integrated as input features to improve the deep
learning-based precipitation retrieval framework. Finally, as

the study domain expands and more data become available,
transfer learning and continual lifelong learning techniques
could be employed to enhance the efficiency and accuracy
of the deep learning-based precipitation retrieval framework.
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